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1Univ. Grenoble Alpes, CEA, INAC-Pheliqs, 38000 Grenoble, France

(Dated: February 16, 2018)

While the coherent control of two level quantum systems —qubits— is now standard, their contin-
uum electronic equivalents —flying qubits— are much less developed. A first step in this direction
has been achieved in DC interferometry experiments. Here, we propose a simple setup to per-
form the second step, the spectroscopy of these flying qubits, by measuring the DC response to
a high frequency AC voltage drive. Using two different concurring approaches — Floquet theory
and time-dependent simulations — and three different models — an analytical model, a simple
microscopic model and a realistic microscopic model — we predict the power-frequency map of the
multi-terminal device. We argue that this spectroscopy provides a direct measurement of the flying
qubit characteristic frequencies and a key validation for more advanced quantum manipulations.

I. INTRODUCTION

The development of a new type of quantum bit hap-
pens in stages. Let us consider the singlet-triplet double
quantum dot qubit1 as a typical example. In this case,
the first stage consists of DC measurements of the so-
called stability diagram. Once a suitable physical regime
has been found, stage II consists of performing the spec-
troscopy of the qubit to assert its suitability and deter-
mine its dynamical characteristics. This can be done
through, e.g. electronic dipolar spin resonance (EDSR)2.
It is crucial to pass these two stages before one can con-
sider sending more elaborated pulse sequences like Rabi,
Ramsey and echo experiments. In the last stage (before
considering coupling several of these qubits), one imple-
ments single shot measurements.

Quantum mechanics, however, is not limited to bound
states and propagating quantum states instead of bound
states could also be used to form qubits. The so-called
flying qubits have been successfully realized with pho-
tons in linear quantum optics3,4 but here we focus on
proposals based on electrons5. The first stage of the elec-
tronic flying qubit6,7 implementation has been demon-
strated in several experiments that show controlled two
paths interferometry in two dimensional electron gas in
the presence8,9 or absence10,11 of magnetic field as well
as in graphene12. Other features, specific to propagat-
ing quantum systems, have also been demonstrated (in-
cluding single electron sources13–16 and their Hong-ou-
Mandel characterization) or proposed theoretically17–19.
However stage II, the spectroscopy of a flying qubit, has
not yet been realized experimentally.

The electronic flying qubits that we consider in this
article are ”two paths” interferometers, the electronic
analogue of the Mach-Zehnder interferometer sudied in
optics. The two states of the qubits are coded in the
two paths ↑ or ↓ that a single electronic excitations use
for propagation. Here the role of the qubit frequency
is replaced by h̄/τ where τ is a characteristic time, a
difference between two times of flight (to be defined be-
low), of the device. Similarly to localized system that
may have multiple energy levels, there may be several

propagating channels giving rise to several characteristic
times τ . Measuring these times and assessing that elec-
tronic interferometry experiments can be performed at
high frequency is the next key milestone of the field.

In this article, we propose to use quantum rectifica-
tion (measurement of a DC current in presence of a
high frequency sinusoidal drive)20–25 as a tool to per-
form the spectroscopy of flying qubits. We argue that
quantum rectification provides a clear spectroscopy of the
device while being much more accessible experimentally
than other techniques, in particular in the challenging
∼ 10 GHz− 1 THz frequency range which is required for
this type of physics.

II. A TWO PATHS ELECTRONIC
INTERFEROMETER USING A SPLIT WIRE

GEOMETRY

We focus this study on the tunneling wire “flying
qubit” geometry sketched in Fig. 1a and studied experi-
mentally in10,11,26,27. The device consists of two quasi-
one dimensional wires labeled ↑ (upper) and ↓ (lower)
connected to four electrodes: two on the left L↑, L↓ and
two on the right R↑, R↓. Close to the electrodes, the
wires are disconnected. However, in a central region of
length L, the two wires are in contact so that an electron
can tunnel back and forth from the upper to the lower
part. A capacitive top gate Vg controls the intensity of
the tunneling coupling between the wires. The coher-
ent oscillation that takes place in the tunneling region
between the upper and lower wire can be interpreted as
a quantum gate operated on the flying qubit. Equiva-
lently, an electron entering the upper wire decomposes
into a superposition of a symmetric and antisymmetric
propagating states which forms a two-path interferome-
ter.

The DC characteristics of this device have been an-
alyzed previously10,28 both theoretically and experimen-
tally. For completeness, we recall here its salient features.
Let us determine the scattering matrix of this device in
the limit where (i) there is only one propagating chan-
nel in each of the wires and (ii) the spatial variation of
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FIG. 1. (Color online) Upper panel: schematic of the flying
qubit geometry. Two wires labeled ↑, ↓ are connected to two
electrodes on the left (L↑, L↓) and two electrodes on the right
(R↑, R↓). Lower panel: schematic of the transverse part of
the propagating modes close to the electrodes (left) and in
the central tunneling region (right).

the tunneling coupling is very smooth with respect to
the Fermi wave length. This implies that there is no re-
flection in the device as backscattering involves the 2kF
Fourier component of the potential (kF is the Fermi mo-
mentum): an electron injected on the left, say in L↑ is
transmitted either toward R↑ or R↓. To determine the
transmission amplitude dba(E) from channel a on the left
to channel b on the right (a, b ∈ {↑, ↓}), let us consider the
transverse part of the propagating modes. A schematic
representation of these wavefunctions is shown in Fig. 1b
for the decoupled wires (close to the electrodes) and in
Fig. 1c for the tunneling region. In the latter, the ↑ and
↓ channels hybridize into a symmetric S and an antisym-
metric A channels of respective longitudinal momentum
kS and kA along the x direction. The key point is to rec-
ognize that the S (A) channel is continuously connected
to the symmetric (anti-symmetric) combination of the ↑
and ↓ channels, |S/A〉 ↔ (|↑〉 ± |↓〉) /

√
2. Hence an elec-

tron injected in |↑〉,

|↑〉 = 1
2 (|↑〉+ |↓〉) + 1

2 (|↑〉 − |↓〉)→ 1√
2

(|S〉+ |A〉), (1)

is transmitted into S and A with amplitude 1/
√

2. Inside
the tunneling wire, the wavefunction picks up a phase
eiφS/A which in the WKB approximation reads φS/A =∫ L

0 dx kS/A(x) ≈ kS/AL. After the tunneling region, the
S and A recombine into the ↑ and ↓ channels and we
arrive at,

d↑↑(E) = 1
2(eiφS + eiφA), d↓↑(E) = 1

2(eiφS − eiφA). (2)

The differential conductance gba that relates the current
flowing on the right in lead b from an increase of volt-
age in the left on lead a is given by the Landauer for-
mula, gba = (e2/h)Dba(EF ) with Dba(EF ) = |dba(EF )|2
and EF the Fermi energy (we ignore spin everywhere; it
can be restored by simply multiplying the currents by
a factor 2). The above analytic expressions have been
shown to grasp the important features of the correspond-
ing experimental devices in DC10. In particular, upon
decreasing the gate voltage Vg toward large negative val-
ues, kS − kA decreases towards zero (the two channels

become increasingly alike) and the differential conduc-
tance g↑↑ ∝ cos2((φS − φA)/2) ≈ cos2((kS − kA)L/2)
first oscillates, then saturates to perfect transmission.

For the AC response discussed in this article, we need
the energy dependence of the transmission amplitude.
Linearizing the dispersion relation of the S and A chan-
nels, we introduce the corresponding velocity vS,A =
(1/h̄)dES,A/dk and the time of flight τS/A = L/vS,A
through the channel. The phase difference φS(E)−φA(E)
is controlled by the difference τ ≡ τS−τA of time of flight,
and we arrive at

φS(E)− φA(E) ≈ δF + (E − EF )τ/h̄ (3)

with δF ≡ φS(EF )− φA(EF ).

III. A GENERAL FORMULA FOR
CALCULATING RECTIFICATION CURRENTS

We now develop the scattering theory of the rectified
direct current generated by an AC voltage drive. We
consider a multiterminal mesoscopic system and apply
a periodic time dependent voltage V (t) to one electrode
(for definiteness, we focus below on L↑) with frequency
ω. We seek to obtain the average (over time) DC current
flowing in the different electrodes. Such a calculation can
be performed in different but fully equivalent “Floquet”
formalisms including the scattering29, Non-equilibrium
Green’s function30 or wave function approach31. Here,
we follow the latter after Ref. 19,31.

In what follows, we neglect the spatial dependence
of the electric potential drop, i.e. we suppose that the
drop of electric potential takes place very abruptly at the
Ohmic contact - two dimensional gas interface. Such an
approximation is well justified in the present case due to
the presence of the electrostatic gates that define the con-
ducting region. These gates are metallic, hence equipo-
tential; they ensure that the potential drop takes place on
a distance which is essentially set by the distance between
the gate and the two-dimensional electron gas. This dis-
tance is typically of the order of 100 nm which is much
shorter than the size of the device (typically 10 µm) so
that the approximation of perfectly sharp drop is rea-
sonably accurate. In the opposite situation (absence of
electrostatic gates) the potential drop would be linear be-
tween the two contacts. A discussion of this problem can
be found in section 8.4 of31. The abrupt drop of potential
is an important ingredient for the physics of propagating
pulses such as the minimum excitations ”Levitons”. The
recent experiments that measured the time of flight of
such pulses32 provide a clear experimental evidence that
the drop is indeed sharp and take place at the Ohmic con-
tact - electronic gas interface, since well defined velocities
could be measured.

The effect of the time dependent voltage is to dress an
incoming wave function of the form eikx−iEt/h̄ with an
extra phase factor e−iΦ(t) [with Φ(t) ≡

∫ t
0 dt

′ eV (t′)/h̄]
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that accounts for the variation of electric potential. De-
composing this phase into its Fourier component Pn,

e−iΦ(t) =
∑
n

Pne
−iωnt, (4)

the net effect of V (t) is that the incoming wave function
is now a coherent superposition

∑
n Pne

ikx−iEt/h̄−iωnt of
plane waves at different energy. As different energies get
transmitted into different channels, we arrive at the fol-
lowing time dependent transmission amplitude for an in-
coming energy E,

dba(t, E) =
∑
n

Pndba(E + nh̄ω)e−iEt/h̄−iωnt (5)

where dba(t, E) is the Fourier transform with respect to
E′ of dba(E′, E) which is itself the inelastic amplitude
to be transmitted from energy E, lead a toward energy
E′, lead b. The generalization of the Landauer formula
to time dependent currents provides the time dependent
current Ib(t) as

Ib(t) = e

h̄

∫
dE

2π
[
|dba(t, E)|2 − |dba(E)|2

]
fa(E) (6)

where fa(E) is the Fermi function of the lead a sub-
ject to the time dependent voltage. The second term
in the previous equation subtracts the current sent
from lead a in the absence of time-dependent voltage
which is a convenient way to ensure the overall current
conservation17,31. Focusing on the DC (rectification) cur-
rent Īb = ω/(2π)

∫ 2π/ω
0 dtIb(t) we arrive at,

Īb = e

h

∑
n

|Pn|2
∫
dE|dba(E)|2 [fa(E + nh̄ω)− fa(E)] .

(7)
Equation (7) is very general and relates the rectification
properties of an arbitrary mesoscopic system to its scat-
tering matrix dba(E), a well known DC object. In par-
ticular, it can be easily evaluated numerically for a large
class of microscopic models using readily available nu-
merical packages (in our case the Kwant33 package) for
arbitrary periodic pulses. We note that following the
same arguments as Ref. 31, we find that the rectification
current is “conserved” and “gauge invariant” in the sens
defined by Büttiker34, i.e. the DC current in electrode a
is exactly compensated by the DC currents in the other
leads and applying an AC potential on all the leads si-
multaneously does not generate any DC current.

IV. APPLICATION TO THE FLYING QUBIT

A. Simple scattering model

We now make a specific calculation using our analyti-
cal model Eq. (2) for the flying qubit geometry. We also

FIG. 2. (Color online) Rectified DC current from Eq. (9a) for
δF = 0.32π and τ = 58 ps. The results of Fig. 4 correspond
to cuts along the green lines.

specialize to a drive V (t) = V0 cosωt with a unique fre-
quency which implies Pn = Jn(eV0/h̄ω) where Jn(x) is
the Bessel function of the first kind. Up to an irrelevant
phase factor, the time dependent transmission reads,

d↑↑(t, E) = 1
2

[
1 + eiδF +iτ(E−EF )/h̄eiΦ(t)e−iΦ(t−τ)

]
.

(8)
Following the same route as in the general case, and as-
suming zero temperature for simplicity, we get,

Ī↑ = e

4πτ sin(δF )
[
J0

(
2eV0

h̄ω
sin
(ωτ

2

))
− 1
]

(9a)

Ī↓ = −Ī↑. (9b)

Eqs. (9a, 9b) call for a few comments. (i) Even though we
apply the oscillatory voltage on the upper left electrode,
no DC current actually flows there as implied by Eq. (9b)
and current conservation. Instead, the DC rectified cur-
rent is pumped from the upper right to the lower right
electrode. (ii) Eq. (9a) is non perturbative both with re-
spect to frequency and drive amplitude. An illustrative
color plot is shown in Fig. 2. It shows rich oscillatory
features both as a function of ω and V0. Fig. 2 is the fly-
ing qubit analogue of the usual spectroscopy maps. (iii)
The adiabatic limit ω → 0 can be understood without
using the time dependent Floquet formalism. First, we
compute the DC current-voltage characteristics

I(V ) =(e/h)
∫ EF +eV

EF

dE |d↑↑(E)|2

= e2

2hV + e

2πτ sin
(
eV τ

2h̄

)
cos
(
δF + eV τ

2h̄

)
. (10)

Then the adiabatic rectified DC current is found by com-
puting the time average of I(V = V0 cosωt) and we arrive
at

Ī↑ = e

4πτ sin(δF )
[
J0

(
eV0τ

h̄

)
− 1
]

(11)

which corresponds to the ω → 0 limit of Eq. (9a). The
rectified current is directly linked to the presence of
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the non-linear term in the I(V ) characteristics. (iv)
At large x, the Bessel function decreases as J0(x) ∼
sin(x+ π/4)

√
2/πx so that the rectified current reaches

its maximum value Ī↑ = − e
4πτF

sin(δF ) at large voltage
and ωτ = π.

B. Simple microscopic model

We now introduce a microscopic model for the Mach-
Zehnder interferometer of Fig. 1 and discuss our direct
method to perform time dependent simulations of the de-
vice. We shall find a perfect match between our time de-
pendent simulations and a semi-analytical approach that
uses the microscopic model to calculate the DC scatter-
ing matrix (using the Kwant package33) and Eq. (7) to
relate the latter to the rectified current in presence of an
AC drive. We model the Mach-Zehnder interferometer
through the following Hamiltonian,

Ĥ(t) =
∑

a∈{↑,↓}

+∞∑
i=−∞

[−c†i+1,aci,a + Uic
†
i,aci,a]

+
+L/2∑
i=−L/2

γic
†
i,↑ci,↓ + h.c. (12)

where ci,a (c†i,a) is the usual fermionic destruction (cre-
ation) operator on site i and wire a ∈ {↑, ↓}. Ui is an
electric potential present in the central region, γi charac-
terizes the tunneling between the upper and lower wire
and is controlled by the voltage Vg and L is the total
length of the tunneling part of the wire. The nearest
neighbor hopping amplitude is set to unity which defines
our energy and time units (h̄ = 1).

For our simulations, we choose L = 500 sites, EF =
1.3, γi interpolates smoothly (over 50 sites) between 0 in
the electrodes and −0.7 in the tunneling region. The po-
tential Ui interpolates smoothly between 0.8 in the elec-
trode, 1 in a small region just before and after the tun-
neling region (this region is present for numerical con-
venience, see section 10 of Ref. 31) and vanishes inside
the tunneling region. Ui also includes a uniform contri-
bution V0 cos(ωt) for all sites in the upper left electrode
and t > 0. For these parameters, we find a characteristic
time τ ≈ 58 and δF ≈ 0.32π. These two values can be
determined consistently from three different calculations:
from the propagation of a voltage pulse in the time de-
pendent simulation, from the energy dependence of the
DC conductance or from the WKB approximation.

The time-dependent simulations are performed using
the method described in Ref. 31,35 where all details are
provided. In this method, we directly integrate the
Schrödinger equation

ih̄∂t|Ψ(t)〉 = Ĥ(t)|Ψ(t)〉 (13)
without further approximations. The main difference
with Eq.(7) lies in the treatment of the oscillatory AC po-
tential: in the scattering matrix approach, it is assumed
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FIG. 3. (Color online) Simple microscopic model. Left panel:
DC differential conductances g↑↑(E) (dashed blue line) and
g↓↑(E) (straight red line) as obtained from a direct numer-
ical calculation of the tight-binding model. The numerical
calculations were performed with the Kwant33 package. The
reflection probability from L↑ to L↑ or L↓ vanishes in the re-
gion of interest. Right panel: currents in R↓ (straight red
line, I↓(t)) and R↑ (dashed blue line, I↑(t)) after a microwave
excitation in L↑ (dotted black line) computed using time de-
pendent simulations of the microscopic model.

that the AC potential drop does not create any back scat-
tering. This approximations is usually very good, up to
small deviations ∼ V0/EF that have been calculated in
Ref.31. The left panel of Fig. 3 shows an example of the
DC differential conductances g↑↑(E) and g↓↑(E) as ob-
tained from a direct numerical calculation of the tight-
binding “simple microscopic model”. We indeed observe
the oscillations with energy discussed after Eq. (2). We
checked that the period of these oscillations matches the
WKB result that can be calculated independently. The
right panel of Fig. 3 shows the result (current I(t) ver-
sus time t) of a typical time dependent simulation of the
model in presence of the AC drive (smoothly switched
on at t = 0). These curves are averaged over time to
calculate the DC rectification current Ī.

C. Comparison between the different approaches

The first remarkable feature of the rectified current is
the fact that it is pumped between the two right elec-
trodes. The DC current in electrode L↑ vanishes even
though the AC voltage is applied there. Figure 2 shows
the rectified current Eq. (9a) as a function of the drive
frequency and amplitude.

The DC current follows damped oscillations with both
V0 and ω with frequency h/τ in the ∼ 10 GHz range.
In particular, the characteristic time τ can be extracted
directly from the minima of the DC current as a func-
tion of ω. Fig. 4 shows the plot of current Ī↑ versus fre-
quency ω for three different values of V0, corresponding
to cuts in Fig. 2 (green lines). Fig. 4 contains the results
of three different calculation: the ideal analytical calcu-
lation Eq. (9a), the time dependent simulations of the
microscopic model Eq. (12) and a semi-analytical calcu-
lation that uses the time independent part of the mi-
croscopic model and compute the rectification properties
using Eq. (7). We find that a close agreement between the
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FIG. 4. (Color online) Simple microscopic model. DC current
Ī↑ for three different voltage amplitudes V (t) = V0 cos(ωt)
with V0 = 31, 62, 93µV (green, red, blue). The symbols cor-
respond to time-dependent simulation of Eq. (12), the straight
lines to semi-analytic theory Eq. (7) and the dash lines to the
analytic approach Eq. (9a).

three approaches with a very accurate agreement between
the latter two. Departure from the ideal analytic formula
(9a) arises due to the presence of a small backscattering
in the device (which is not perfectly adiabatic) and the
fact that the linear relation Eq. (3) is not strictly valid in
the microscopic model (presence of the other character-
istic scales).

We conclude that the ideal analytical model Eq. (9a)
describes the physics qualitatively but cannot be used
for quantitative predictions. On the other hand, Eq. (7)
is computationally affordable and in precise agreement
with the direct integration of the Schrödinger equation.
It may be used for other - more realistic - models, which
we shall do in the next section.

V. REALISTIC MICROSCOPIC MODEL

The two models studied above are of course idealized.
Below, we develop a much more refined model which
builds upon our previous work10. The model of Ref.10

was shown to be in remarkable agreement with the DC
experimental data even though the electrostatic poten-
tial was modeled rather crudely. Here, we extend the
modelisation and perform a self-consistent treatment of
the electrostatic-quantum problem. We also include fi-
nite temperature thermal smearing (∼ 20 mK).

Before describing the specifics of the ”realistic model”,
let us brifly discuss some orders of magnitude. The typ-
ical value of the difference of the time of flight τ that
can be reached experimentally depends on the product
of three factors, τ = L (1/vS − 1/vA) ≈ L/vS × (kS −
kA)/kS . The longitudinal velocity vS can be estimated
from the experimental results of Ref. 32 to be vS ≈ 2 -
5 (105m s−1). Typical values of kS − kA found in Ref. 10

lie between 1% and up to 10% of the Fermi momentum

FIG. 5. (Color online) Top view of the layout of the gates
that define the “realistic microscopic model”.

kS . The length L of the tunneling region in Ref. 10 was
L = 1µm but coherent oscillations have since been ob-
served in much longer samples36 L ≈ 40µm indicating
that the low temperature (≈ 20 mK) phase coherence
length in these samples is of a few tens of µm, comparable
to what has been observed in the quantum Hall regime9.
Altogether, we estimates τ ∼ 100 ps for the slowest mode
of a 20µm long sample, which is consistent with what is
found below in the simulations of the realistic model.

A. Geometry

The model is defined solely by the position of the top
gates that are deposited on the surface of the GaAs het-
erostructure. It consists of a central region (defined by
two lateral gates and a central tunneling gate) which
smoothly evolves into two disconnected wires on the left
and on the right of the central region. A top view of the
layout of the gates is shown in Fig. 5. A cut at x = 0
(left panel) and x > 10µm (right panel) is shown in the
upper panel of Fig.6.

The dimensions of the device (with a central region
13.8µm long and 0.92µm large) are fully compatible with
standard e-beam lithography techniques. The different
gates are grouped into three categories: the three inte-
rior gates (green) are set to the same potential Vt, the
two outer gates of the central region are set to Vm and
the four outer gates of the electrodes are set to Vl. The
transition region between the central region and the lead
(x ∈ [−9.2,−6.9] and x ∈ [6.9, 9.2] µm ) is defined by an
interpolation described later in this section.

B. Self-consistent model

In order to calculate the electrostatic potential seen by
the two-dimensional electron gas, we work in the effective
mass (m∗ = 0.067me, me: bare electron mass) approxi-
mation for the Schrödinger equation which is solved self-
consistently with Poisson equation. The Hamiltonian of
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FIG. 6. (Color online) Upper panels: side view of the “realis-
tic microscopic model” layout. Lower panels: self-consistent
electrostatic potential seen by the electrons as a function of
the transverse direction y. The insets show a zoom close to
the Fermi level EF = 0. Left panels: cut inside the central
region (x = 0). Right panels: cut inside the leads (x > 10µm
or x < 10µm)

the two dimensional electron gas,

H =
P 2
x + P 2

y

2m∗ − eV (x, y, z = 0), (14)

is discretized on a square grid with lattice constant a =
3 nm (approximately 2×106 ≈ 300 × 6000 sites). The
Schrödinger equation

HΨαE = EΨαE (15)

is solved using the Kwant package33. The electrodes are
taken to be semi-infinite so that the spectrum is actually
continuous and the eigenfunctions labeled by an energy
E and a mode index α. The density of electrons n(x, y)
is given by the integral over energy of the local density
of states,

n(x, y) =
∑
α

∫
dE

2π |ΨαE(x, y)|2f(E) (16)

where f(E) = 1/(eE/kBT + 1) is the Fermi function at
temperature T (and we have set the Fermi energy EF = 0
as our reference energy point). The Poisson equation
away from the electron gas reads

∆V (x, y, z) = 0 (17)

while close to the gas the discontinuity of the electric field
is set by n(x, y):

∂zV (x, y, 0+)− ∂zV (x, y, 0−) = −e
ε

[n(x, y) + nd] (18)

where the dopant density nd sets the actual density of the
gas and ε ≈ 12ε0 is the dielectric constant. The Poisson
equation is solved using the FEniCS package37.

FIG. 7. (Color online) Structure of the subbands in the cen-
tral region. Left panel: Energy dispersion E(k) versus k
for Vt = −0.43 V. The bands that cross the Fermi energy
E = EF = 0 correspond to propagating channels. Right
panel: Transverse energies E(k = 0) of the different modes as
a function of the tunneling voltage Vt. The bands below the
Fermi energy are propagating. Parameters: Vm = −0.495 V
and Vl = −0.45 V for both panels. Symmetric/Antisymmetric
modes pairs are plotted with similar color and line style.

In order to solve the set of self-consistent equations
(15, 16, 17, 18), we perform one approximation which
considerably lowers the computational effort while re-
taining good accuracy. In a first step, we solve the self-
consistent problem deep in the lead region where the
system is invariant by translation along x (hence effec-
tively maps onto a 2D problem for the Poisson equation
and 1D for the quantum problem). We obtain V (|x| �
10, y, 0) ≡ VA(y). Secondly, we solve the problem deep
inside the central region, assuming that the potential is
not affected by the leads (hence also invariant by trans-
lation along x). We obtain V (|x| � 10, y, 0) ≡ VB(y).
An example of the obtained self-consistent potentials
VB(y) (left) and VA(y) (right) is shown in Fig. 6 for
Vt = −0.43 V, Vm = −0.495 V and Vl = −0.45 V. In the
last step, we describe the potential in the transition re-
gions (x ∈ [−9.2,−6.9] and x ∈ [6.9, 9.2] ) by performing
an interpolation between VA(y) and VB(y).

The density of the gas is ∼ 3.2× 1011 cm−2 which cor-
responds to a Fermi wave length λF ≈ 45 nm. Since the
transition region is long compared to λF , the transition
is adiabatic and we observe very small reflexion proba-
bility. Who also have to check that mode coming from
L↑ are fully transmitted into mode of R↑ and R↓ and no
leak into L↓. Otherwise it would create Fabry-Perot in-
terferences between both potential transitions which will
compete with the Mach-Zehnder interferometry. This is
achieve by a smooth transition of the potential.

C. DC and AC characterization

Once the electrostatic potential is known, we calculate
the transmission probabilities for the various conducting
channels. We have used Vt = −0.43 V, Vl = −0.45 V and
Vm = −0.495 V so that five propagating channels are
open in each lead, and ten channels are open in the cen-
tral region (a typical experimental situation). The left
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FIG. 8. (Color online) Lower panel: DC differential conduc-
tance ∂I/∂Vb as a function of the central gate voltage Vt for
Vl = −0.45 V and Vm = −0.495 V. The voltage bias Vb is ap-
plied to the upper left contact L↑ while the other three are
grounded. The current is measured in the upper right con-
tact R↑ (full lines, ∂I↑/∂Vb) and in the lower right contact
R↓ (dashed line, ∂I↓/∂Vb). Upper panel: contribution from
the individual propagating channels, shifted by multiples of
2e2/h for clarity. Calculations performed at zero temperature

panel of Fig. 7 shows an example of band structure of
the central region where we have used matching colors to
identify the symmetric/antisymmetric pairs. The right
panel of Fig. 7 shows E(k = 0) for the various modes
which allows one to identify the propagating channels
(E(k = 0) < 0) and evaluate the splitting between the
symmetric and antisymmetric components. Fig. 8 shows
the DC conductance (at zero temperature) as a function
of the tunneling voltage Vt (lower panel) obtained with
Kwant33. The upper panel shows the contributions from
the different propagating channels. The strongest oscil-
lating signal is obtained close to the onset of the opening
of a new channel where the two momenta for the symmet-
ric and anti-symmetric channels are the most different.

D. Rectification spectroscopy

The total number of orbitals is now rather large (∼
2 × 106) so that a direct time dependent calculation is
prohibitive. But discussion of section IV C shows that
we can use Eq. (7) and get the same results with much
less computational time. In order to obtain the rectifi-
cation current one requires the calculation of the total
transmission probability

Dab(E) =
∑

α∈a,β∈b

|dαβ(E)|2 (19)

where the sum is take onto all the propagating channel
of the corresponding electrode. An example of such a
calculation using Kwant33 is shown in Fig. 9 together
with the detailed contributions of the different channels.
The curve Dab(E), antisymmetrized around the Fermi

FIG. 9. (Color online) Middle panel: Total transmission prob-
ability D(E), [full lines, D↑↑(E), dashed line, D↑↓(E)] vs. en-
ergy E , where E is measured relatively to the Fermi energy
EF . Upper panel: contribution from the individual propagat-
ing channels, shifted by multiples of 2e2/h for clarity. Lower
Panel: zoom of the middle panel. Parameters: Vt = −0.43 V,
Vl = −0.45 V and Vm = −0.495 V for all panels.

level, provides the information for the calculation of the
rectified current response to an AC drive as can be seen
from the following reformulation of Eq. (7),

Īb = e

h

∑
n>0
|Pn|2

∫
dE [Dba(E−n)−Dba(En)]

× [fa(En)− fa(E−n)] (20)

where En = E + nh̄ω/2. Conversely, Eq.(20) shows that
the rectification response can be used to reconstruct the
anti-symmetrized transmission probability of the device.
To reconstruct the full transmission probability, includ-
ing the symmetric part, calculations/measurements for
different Fermi levels (using e.g. a back gate) are neces-
sary.

The resulting rectified current for the realistic model
is Fig. 10. Fig. 10 is qualitatively similar to the idealized
model despite the fact that it includes a realistic model-
ing of the electrostatic potential, multiple opened channel
(5) and a finite temperature (20 mK). This is a strong
indication of the robustness of this type of spectroscopy.

An important aspect of the multi-channel model is that
different channels (with different scales τ) contribute to
the rectified current with contributions of order 1/τ so
that the fastest channels have larger contributions. How-
ever, this does not prevent one from observing the slowest
channels since the scales at which the different contribu-
tions vary is also very different [as can be inferred by
an inspection of Eq.(9a)]. In order to bring the different
contributions to the same scale, it can be advantageous
to plot the derivative of the current ∂Ī/∂V0 instead of
the current itself. This is typically performed experi-
mentally using a lock-in technique. The signal can be
furthered amplified by plotting the anti-symmetric sig-
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nal ∂Ī↑/∂V0−∂Ī↓/∂V0 with respect to the two outputs in
order to subtract any spurious signal coming from other
rectification processes. Indeed, the multi-channel realis-
tic model contains another source of rectification current
coming from the opening of new channels which give rise
to plateaus in the rectification current. These plateaus
are very conveniently subtracted by looking at the anti-
symmetric signal ∂Ī↑/∂V0 − ∂Ī↓/∂V0.

FIG. 10. (Color online) Realistic microscopic model. Col-
ormap of ∂Ī↑/∂V0−∂Ī↓/∂V0 versus voltage amplitude V0 and
frequency ω/2π. The inset shows a zoom of the main panel.
Two channels with τ = 220ps (oscillations visible in the inset)
and τ = 19ps (oscillations visible in the main panel) dominate
the signal. Calculations performed at 20 mK.

The data of Fig. 10 corresponds to 5 pairs of prop-
agating channels with respectively τ = 220 ps, 19 ps,
τ = 3 ps and two very fast channels with τ � 1 ps. With
curent experimental capabilities, the two interesting pairs
that may be used for flying qubits are the two slowest
τ = 220 ps and 19 ps. It is interesting that despite the
presence of the three faster pairs, the spectroscopy lines
of these two pairs are clearly visible in Fig. 10: at these
scales, the three fast pairs only contribute to a global
background. The two characteristic times τ = 220 ps
and 19 ps can be directly extracted by fitting the low
frequency (< 10 GHz) and large frequency (< 100GHz)
part of the diagram.

VI. DISCUSSION AND CONCLUSION

The experimental observation of the features shown in
Fig. 10 would provide the first direct measure of the char-
acteristic times of the device and validate the possibility
for the dynamical probing of an interference pattern at
high frequency. This is a key step on the route toward
further quantum manipulation with voltage pulses and
the first full fledged electronic flying qubit5.

Another important aspect which is at stakes is our abil-
ity to make accurate models, and predictive simulations,
for high frequency quantum transport. At the experi-
mental level, the electrostatic gates are controlled with
voltages of the order of 1 V while the equilibrium elec-
trostatic potential seen by the electrons is of the order
of several mV, i.e. 2-3 orders of magnitude smaller (see
e.g. Fig.6). Hence, the construction of accurate mod-
els must go through a precise understanding of the com-
bined electrostatic-quantum problem in presence of high
frequency dynamics. Conversely, the physics of these sys-
tems depends on the precise interplay between these two
physics. Being in position to make quantitative predic-
tions for these systems would allow one to design much
more optimum geometries and experimental protocols; it
would have a decisive impact in the development of the
field. This article presents a step in this direction.

Our understanding of high frequency quantum trans-
port, pulse propagation and dynamical interferometry
(the ingredients of electronic flying qubit architectures)
is mostly based so far on non-interacting models. As
the experiments progress toward the exploration of this
new physics, the modeling will require new aspects to
be treated more accurately. Future work shall include a
proper treatment of the electron-electron interactions at
the RPA level38. and beyond as well as a the modeli-
sation of the different channels for decoherence. Indeed,
understanding what sets the fundamental limit of coher-
ence in these systems will probably be one of the most
interesting challenge of the field in the years to come.
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