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Synthesis and Kinetic evaluation of an azido analogue of methylerythritol phosphate: a Novel Inhibitor of E. coli YgbP/IspD

As multidrug resistant pathogenic microorganisms are a serious health menace, it is crucial to continuously develop novel medicines in order to overcome the emerging resistance. The methylerythritol phosphate pathway (MEP) is an ideal target for antimicrobial development as it is absent in humans but present in most bacteria and in the parasite Plasmodium falciparum. Here, we report the synthesis and the steady-state kinetics of a novel potent inhibitor (MEPN 3 ) of Escherichia coli YgbP/IspD, the third enzyme of the MEP pathway. MEPN 3 inhibits E. coli YgbP/IspD in mixed type mode regarding both substrates. Interestingly, MEPN 3 shows the highest inhibitory activity when compared to known inhibitors of E. coli YgbP/IspD. The mechanism of this enzyme was also studied by steadystate kinetic analysis and it was found that the substrates add to the enzyme in sequential manner.

Drug resistance is an ever-growing concern that poses a major challenge for new drug development. In the field of antibiotic discovery, the situation is alarming as some infections are already impossible to treat due to resistance. Enterobacteriaceae, in particular Klebsiella pneumonaiae and Escherichia coli, are highly pervasive in community-acquired and nosocomial infections. The worldwide emergence of carbapenemase-producing Enterobacteriaceae represents a serious public health threat as carbapenems are often the last option for treatment of patients infected by these bacteria [START_REF] Grundmann | Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study[END_REF] . WHO already estimated in 2014 that 44% of its member states reported E. coli strains resistant to third-generation cephalosporins and fluoroquinolones and highlighted the high resistance rates of E. coli strains to the last-generation drugs [START_REF]ANTIMICROBIAL RESISTANCE Global Report on Surveillance[END_REF] . In September 2017, WHO classified carbapenem-resistant and third-generation cephalosporin resistant Enterobacteriaceae among the most critical priority for Research and Development of new antibiotics as strains that cannot be fought by any antibiotic on the market are emerging worldwide [START_REF]Prioritization of pathogens to guide discovery, research and development of new antibiotics for drug resistant bacterial infections, including tuberculosis[END_REF] . Given the severe threat from organisms resistant to conventional antibacterial agents, targeting the MEP pathway responsible for the biosynthesis of the universal isoprenoid precursors in most bacteria and in the parasite responsible for malaria was proposed as an attractive strategy in the search for new antimicrobial agents [START_REF] Rohmer | Isoprenoid biosynthesis as a novel target for antibacterial and antiparasitic drugs[END_REF][START_REF] Gräwert | Biochemistry of the non-mevalonate isoprenoid pathway[END_REF][START_REF] Zhao | Methylerythritol Phosphate Pathway of Isoprenoid Biosynthesis[END_REF][START_REF] Masini | Development of Inhibitors of the 2C-Methyl-D-erythritol 4-Phosphate (MEP) Pathway Enzymes as Potential Anti-Infective Agents[END_REF] .

Isoprenoids are the most diverse family of natural products that comprises over 55000 known compounds. They are found in all living organisms and are involved in numerous essential biological processes such as electron transport, cell-wall biosynthesis, and protein prenylation [START_REF] Rohmer | The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants[END_REF][START_REF] Heuston | Isoprenoid biosynthesis in bacterial pathogens[END_REF] . Isoprenoids are synthesised through multiple condensation of two main building blocks: dimethylallyl diphosphate (DMADP, 1) and isopentenyl diphosphate (IDP, 2, Fig. 1) [START_REF] Rohmer | The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants[END_REF] . The MEP pathway, absent in humans, is an alternative to the well-known mevalonate pathway existing in animals [START_REF] Bloch | Sterol Molecule -Structure, Biosynthesis, and Function[END_REF] for the formation of IDP and DMADP. The MEP pathway (Fig. 1) starts with condensation of pyruvate (3) and glyceraldehyde 3-phosphate (4) to form 1-deoxy-D-xylulose 5-phosphate (5), which is further converted to 2-C-methyl-D-erythritol 4-phosphate (MEP, 6). MEP reacts with cytidine triphosphate (CTP) to generate 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME, 7), which is further phosphorylated to yield 4-diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate (CDP-MEP, 8). After cyclisation and cytidine monophosphate (CMP) release, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (ME-cPP, 9) forms. ME-cPP then generates (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBDP, 10) that further produces DMADP and IDP.

To date only one compound targeting the MEP pathway, namely fosmidomycin, an inhibitor of the second enzyme 1-deoxyxylulose 5-phosphate reductoisomerase (DXR), is under clinical trial as an antimalarial agent in combination with clindamycin and piperaquine [START_REF]Evaluation of Fosmidomycin and Piperaquine in the Treatment of Acute Falciparum Malaria[END_REF] , highlighting the potential of the MEP pathway for drug development [START_REF] Wells | Malaria medicines: a glass half full?[END_REF] . Exploring new inhibitors of the MEP pathway could be a source of new therapeutic agents that are urgently needed to fight life-threatening infections. Here we report the synthesis and inhibition studies of MEPN 3 , (11, Fig. 2a) as a potential inhibitor of E. coli YgbP (also called IspD), the third enzyme of the MEP pathway.

Results and Discussion

E. coli YgbP/IspD. E. coli YgbP/IspD (EC 2.7.7.60) is encoded by the ygbP gene and catalyses the transformation of MEP and CTP into 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME; 7) and inorganic diphosphate (PPi) (Fig. 1) in the presence of a divalent cation such as Mn 2+ , Mg 2+ or Co 2+13 . YgbP was checked for activity using a similar method as described previously and based on the transformation of inorganic diphosphate to phosphate by inorganic pyrophosphatase followed by the quantification of the resulting phosphate by complexation with malachite green ammonium molybdate [START_REF] Bernal | A colorimetric assay for the determination of 4-diphosphocytidyl-2-C-methyl-D-erythritol 4-phosphate synthase activity[END_REF] . This method is robust, simple, fast, reliable and inexpensive for checking the activity of YgbP. The activity of YgbP limiting the concentration of CTP to 200 µM (as substrate inhibition was reported at high concentrations [START_REF] Richard | Kinetic Analysis of Escherichia coli 2-C-Methyl-D-erythritol-4-phosphate Cytidyltransferase, Wild Type and Mutants, Reveals Roles of Active Site Amino Acids[END_REF] ) was 3.47 µmol.min -1 .mg -1 and is in the same range as published [START_REF] Bernal | A colorimetric assay for the determination of 4-diphosphocytidyl-2-C-methyl-D-erythritol 4-phosphate synthase activity[END_REF] . The kinetic parameters of YgbP/IspD were determined using either varied MEP concentrations and a fixed CTP concentration (200 µM) or varied CTP concentrations and a fixed MEP concentration (250 µM). The reaction rates could be fitted according to the Michaelis-Menten equation and apparent K m values of 40 ± 7 µM for MEP (k cat = 1.77 s -1 ) and 84 ± 9 µM for CTP (k cat = 6.87 s -1 ) were estimated, which are in agreement with the reported values using the same method for the quantification of the activity [START_REF] Bernal | A colorimetric assay for the determination of 4-diphosphocytidyl-2-C-methyl-D-erythritol 4-phosphate synthase activity[END_REF] . A similar K m for MEP (32 ± 3 µM) was reported by Cane et al. [START_REF] Cane | Molecular cloning, expression and characterization of the first three genes in the mevalonate-independent isoprenoid pathway in Streptomyces coelicolor[END_REF] using a radiolabeled assay. Rohdich et al. [START_REF] Rohdich | Cytidine 5′-triphosphate-dependent biosynthesis of isoprenoids: YgbP protein of Escherichia coli catalyzes the formation of 4-diphosphocytidyl-2-C-methylerythritol[END_REF] published a smaller K m for MEP (3.14 µM) but a similar K m for CTP (131 µM) when the detection of inorganic diphosphate was achieved indirectly after its consumption through a cascade of reactions leading to the reduction of NADP + . Richard et al. [START_REF] Richard | Kinetic Analysis of Escherichia coli 2-C-Methyl-D-erythritol-4-phosphate Cytidyltransferase, Wild Type and Mutants, Reveals Roles of Active Site Amino Acids[END_REF] reported 370 ± 60 µM (10-fold higher than our result) K m value for MEP but used different conditions with high CTP concentrations (above 7 mM).

Our aim was to design an E. coli YgbP/IspD inhibitor that would be suitable for fragment-based drug discovery approaches. We searched a position for the insertion of an azide functionality while introducing minimal structural perturbation on the MEP substrate and keeping chemical stability. Therefore, we tested MEPN 3 (11, Fig. 2), a MEP analogue harbouring an azido on the methyl group.

Synthesis of MEPN 3 . The route to MEPN 3, (11) is outlined in Fig. 2 and starts with ketone 12 which was previously described by Coates and coworkers [START_REF] Lagisetti | The Dioxanone Approach to (2S,3R)-2-C-Methylerythritol 4-Phosphate and 2,4-Cyclodiphosphate, and Various MEP Analogues[END_REF] . Submitted to a Corey-Chaykovsky reaction, ketone 12 was diastereoselectively converted to epoxide 13 [START_REF] Corey | Dimethyloxosulfonium Methylide ((CH 3 ) 2 SOCH 2 ) and Dimethylsulfonium Methylide ((CH 3 ) 2 SCH 2 ). Formation and Application to Organic Synthesis[END_REF][START_REF] Mazitschek | Synthesis and biological evaluation of novel fumagillin and ovalicin analogues[END_REF] ; this represents a valuable improvement compared to Coates' synthesis of 13, which featured a two-step "olefin formation-epoxidation" procedure that led to a diastereomeric mixture [START_REF] Lagisetti | The Dioxanone Approach to (2S,3R)-2-C-Methylerythritol 4-Phosphate and 2,4-Cyclodiphosphate, and Various MEP Analogues[END_REF] . Epoxide 13 was further transformed into azido alcohol 14 with sodium azide, followed by deprotection of the primary alcohol with tetra-n-butylammonium fluoride. The resulting azido diol 15 was phosphorylated with dimethyl chlorophosphate to yield compound 16. Hydrolysis of benzylidene acetal with an acidic resin followed by deprotection of the phosphate group using a McKenna reaction [START_REF] Błażewska | Reaction-Which Oxygen Attacks Bromotrimethylsilane?[END_REF] afforded MEPN 3 (11).

MEPN 3 is a poor substrate of YgbP/IspD. As MEPN 3 (11) structurally resembles MEP, YgbP was further assayed using MEPN 3 as a substrate. Poulter et al. [START_REF] Krasutsky | Synthesis of Methylerythritol Phosphate Analogues and Their Evaluation as Alternate Substrates for IspDF and IspE from Agrobacterium tumefaciens[END_REF] have previously reported that 2-C-ethyl-D-erythritol phosphate was a substrate for Agrobacterium tumefaciens YgpP/IspD showing replacement of the methyl at C-2 of MEP by an alternative substituent could still allow catalysis. Initial studies showed that MEPN 3 was a substrate of YgbP but the enzymatic reaction velocity declined at higher MEPN 3 concentrations (>500 µM), revealing substrate inhibition (Fig. S1). From the obtained data, the activity of YgbP (at 300 µM of MEPN 3 ) was 100-fold less than the activity of YgbP with MEP (at 250 µM) showing that MEPN 3 is a poor substrate.

The previous assay was based on the detection of the released diphosphate but not on the detection of CDP-MEN 3 (18) (Fig. 3a) that should be produced if MEPN 3 behaved like MEP in the active site of YgbP. In this context, strain-promoted alkyne-azide cycloaddition (SPAAC) using BCN ((1R,8S,9S)-bicyclo[6.1.0]non-4-yn-9-yl)methanol) derivative 23 encompassing a TMPP (tris(2,4,6-trimethoxyphenyl phosphonium, 21, Fig. 2) tag was employed to detect CDP-MEN 3 (18) in the YgbP assay with MEPN 3 as substrate. TMPP had been previously applied as a charge derivatisation agent for small biological molecules to enhance their detectability using positive ion ESI-MS analysis, as it carries a permanent positive charge [START_REF] Cartwright | Detection of phosphorus tagged carboxylic acids using HPLC-SF-ICP-MS[END_REF][START_REF] Woo | Phosphonium labeling for increasing metabolomic coverage of neutral lipids using electrospray ionization mass spectrometry[END_REF][START_REF] Huang | A Picomole-Scale Method for Charge Derivatization of Peptides for Sequence Analysis by Mass Spectrometry[END_REF] . BCN-TMPP (23) was prepared as described in Fig. 2. BCN was activated with p-nitrochloroformate to generate molecule 19 [START_REF] Ursuegui | An in vivo strategy to counteract post-administration anticoagulant activity of azido-Warfarin[END_REF] which was further converted into compound 20 using ethylenediamine [START_REF] D' Alessandro | Bioorthogonal Probes for the Study of MDM2-p53 Inhibitors in Cells and Development of High-Content Screening Assays for Drug Discovery[END_REF] . In parallel, TMPP and bromoacetic acid N-hydroxysuccinimide ester were used to produce TMPP derivative 22. Reaction of BCN derivative 20 with the activated TMPP (22) afforded the target molecule 23 in good yield. In a preliminary experiment, BCN-TMPP was incubated with MEPN 3 and after LC-MS analysis (C 18 column, UV detection for LC, positive mode detection for MS) the major product was detected at m/z 534 Da (calculated mass = 1067 Da) consisting of BCN-TMPP-MEPN 3 (24) (Fig. 3b) carrying a second positive charge in addition to TMPP's permanent charge (Fig. 3c). In order to identify the product of YgbP using MEPN 3 as substrate, the completed enzymatic reaction was incubated with BCN-TMPP, and after LC-MS analysis, a product displaying m/z 686 Da corresponding to 25 (calculated mass = 1372 Da) harboring two charges was detected confirming that MEPN 3 was turned over by YgbP to CDP-MEN 3 (Fig. 3d). The fact that MEPN 3 was a poor substrate compared to MEP was surprising as the only difference between both molecules was the azide function. To better understand the slow turnover of MEPN 3 by YgbP, we further evaluated the inhibition potential of 11 on YgbP.

Inhibition of E. coli YgbP/IspD by MEPN 3 .

Preliminary experiments revealed the YgbP reaction rate using its natural substrates (MEP and CTP) was decreasing when MEPN 3 was present. In order to further determine the inhibition parameters and the inhibition mode of MEPN 3 , steady-state inhibition kinetic studies were performed (Fig. 4,a,d). The data were fitted according to the double reciprocal analysis (Fig. 4b,e) and highlighted that MEPN 3 inhibited YgbP in a mixed type inhibition mode with respect to both substrates. From the replots (Fig. 4c,f), we have found K i = 21 ± 3 µM and αK i = 54 ± 4 µM (α = 2.5) when MEP was the varied substrate while K i = 47 ± 6 µM and αK i = 105 ± 24 µM (α = 2.2) when CTP was the varied substrate. As αK i value was higher than K i value in both cases, it suggests that MEPN 3 has a higher affinity for the free enzyme than for the enzyme-substrate complex.

Although there are number of reports describing potent inhibitors of YgbP from malaria parasites [START_REF] Imlay | Plasmodium IspD (2-C-Methyl-D-erythritol 4-Phosphate Cytidyltransferase), an Essential and Druggable Antimalarial Target[END_REF][START_REF] Price | Molecular Mechanism of Action of Antimalarial Benzoisothiazolones: Species-Selective Inhibitors of the Plasmodium spp. MEP Pathway enzyme[END_REF] and Mycobacteria [START_REF] Gao | Identification and validation of a novel lead compound targeting 4-diphosphocytidyl-2-C-methylerythritol synthetase (IspD) of mycobacteria[END_REF][START_REF] Varikoti | Structure based de novo design of IspD inhibitors as anti-tubercular agents[END_REF] as well as from the plant Arabidopsis thaliana [START_REF] Witschel | Inhibitors of the Herbicidal Target IspD: Allosteric Site Binding[END_REF][START_REF] Kunfermann | Pseudilins: Halogenated, Allosteric Inhibitors of the Non-Mevalonate Pathway Enzyme IspD[END_REF][START_REF] Witschel | In search of new herbicidal inhibitors of the non-mevalonate pathway[END_REF] , there are hardly any inhibitors reported for E. coli YgbP (Fig. 5) and they all display very high IC 50 reflecting their poor inhibition potential. The first inhibitor described for E. coli YgbP was D-erythrol-4-phosphate (26) with IC 50 value of 1.36 mM which was also a substrate and reduced the turnover rate compared to natural substrate MEP 34 . Two years later, L-erythrol-4-phosphate (27) was reported to be a weak competitive inhibitor of MEP in E. coli YgbP, displaying a K i value of 240 mM [START_REF] Lillo | Functional expression and characterization of EryA, the erythritol kinase of Brucella abortus, and enzymatic synthesis of L-erythritol-4-phosphate[END_REF] . Interestingly fosmidomycin (28), the only inhibitor of MEP pathway currently in clinical trial and targeting DXR, was also reported to be an inhibitor of YgbP. Odom and co-workers reported an increase of MEP level and decrease of CDP-ME level when Plasmodium falciparum was treated with fosmidomycin and further showed that 28 inhibited E. coli YgbP activity with an IC 50 value of 20.4 mM [START_REF] Zhang | A Second Target of the Antimalarial and Antibacterial Agent Fosmidomycin Revealed by Cellular Metabolic Profiling[END_REF] . Interestingly, in the course of this work, Freel Meyers and co-workers 37 described (5S)-D-methylerythritol monofluoromethyl phosphonate (29) as a new inhibitor of E. coli YgbP displaying an IC 50 value of 0.7 mM. Even though no detailed kinetics were reported, these results encouraged us in our approach. MEPN 3 is a mixed type inhibitor of E. coli YgbP regarding both substrates with K i values in the micromolar range (21 µM and 47 µM). IC 50 for MEPN 3 was estimated to be around 41.5 µM (see Fig. S4), making MEPN 3 the best inhibitor of E. coli YgbP known to date.

As MEPN 3 is a substrate analogue of MEP, we expected the inhibition to be competitive with MEP and uncompetitive with CTP. In order to further understand the mixed type inhibition observed for MEPN 3 on YgbP regarding both substrates, set of docking studies were performed to investigate the binding mode of 11.

Docking experiments of MEPN

3 with E. coli YgbP. Three different X-ray structures of E. coli YgbP have been reported [START_REF] Richard | Structure of 4-diphosphocytidyl-2-C-methylerythritol synthetase involved in mevalonate-independent isoprenoid biosynthesis[END_REF] : the apo form of the protein (1INJ) and its complexes with CTP (1I52) or CDP-ME (1INI). However, no structure of E. coli YgbP in complex with MEP has been obtained to date. To identify the mode of binding of 11, we attempted to solve the crystal structure of E. coli YgbP in complex with 11 but we were unsuccessful. The lack of crystal structure of YgbP in complex with MEP or with its structural analogue MEPN 3 may be due to an ordered sequential mechanism, in which CTP binds first to the enzyme followed by MEP, as proposed by Cane and co-workers [START_REF] Richard | Kinetic Analysis of Escherichia coli 2-C-Methyl-D-erythritol-4-phosphate Cytidyltransferase, Wild Type and Mutants, Reveals Roles of Active Site Amino Acids[END_REF] . To further investigate the binding mode of MEPN 3 , docking experiments were performed using the E. coli YgbP homodimeric CTP form (1I52). Indeed, this form appears to be the most suitable since it has the highest resolution and is the only one that displays a well-defined P-loop (residues 17-25) [START_REF] Richard | Structure of 4-diphosphocytidyl-2-C-methylerythritol synthetase involved in mevalonate-independent isoprenoid biosynthesis[END_REF] . Two sets of docking were done: the first one using a protein target containing a bound CTP and a second one using an empty protein target. To avoid bias linked to the use of a too small docking area, we defined, for both cases, a search area covering the entire YgbP CTP/CDP-ME binding site. To validate our docking procedure, CTP for which the crystallographic structure in complex with YgbP is available, was submitted to our docking protocol. The docked CTP superimposed very well onto the CTP observed in the crystal structure. The closest docking pose displays a docking score of -11.27 and a RMSD value of 0.11 Å (Fig. 6).

When using a target already containing CTP, we were able to identify two binding sites for MEP and MEPN 3 (Fig. 6): one deeply buried at the bottom of the CDP-ME pocket with docking scores of -7.86 and -7.96 for MEPN 3 and MEP respectively, and a second site located closest to the surface of the protein which appears to be more favorable for the binding of the two molecules given the slightly better docking scores obtained in that case (-9.28 and -8.64 for MEPN 3 and MEP respectively). When the empty protein (no CTP bound) was used as a target, we observed that MEPN 3 preferentially docked into the CTP binding pocket with a docking score for the best pose of -8.85.

The docking results confirmed that MEPN 3 can bind either to the CTP binding pocket or to the hypothetical MEP binding pocket explaining the mixed type inhibition of MEPN 3 for E. coli YgbP revealed by the kinetic data. These results show that the very high inhibition potential of MEPN 3 compared to the other E. coli YgbP described inhibitors is most probably due to the fact that MEPN 3 can bind to both substrate pockets. The design of such inhibitors has never been achieved previously. Interestingly, fosmidomycin (28), has also been reported to bind to the CTP binding site of E. coli YgbP according to docking experiments [START_REF] Zhang | A Second Target of the Antimalarial and Antibacterial Agent Fosmidomycin Revealed by Cellular Metabolic Profiling[END_REF] . The high potential of fosmidomycin as a drug compared to the other known DXR inhibitors might be linked to this additional binding property. The druggability of the CTP-binding pocket in the homologue protein of M. tuberculosis has actually been reported by Hirsch and co-workers [START_REF] Masini | Druggability of the enzymes of the non-mevalonate-pathway[END_REF] . In this context, the binding of MEPN 3 into the CTP-binding site should be considered as a starting point for new antibacterial development.

As MEPN 3 is an analogue of MEP, we further checked whether MEP could also bind to the CTP pocket of E. coli YgbP. Using the target without bound CTP, our experiments revealed that MEP also preferentially docks to this pocket with a docking score of -9.40 (Fig. S5). No other evidence suggesting the binding of MEP to the CTP-binding pocket has been reported but if this hypothesis based on docking were to be true, the multiple binding sites revealed here for MEP would be puzzling from the catalytic point of view. This has prompted us to further investigate the mechanism of E. coli YgbP using a more detailed kinetic analysis.

Investigation of E. coli YgbP mechanism by using a bi-substrate kinetic analysis. Cane and

co-workers [START_REF] Richard | Kinetic Analysis of Escherichia coli 2-C-Methyl-D-erythritol-4-phosphate Cytidyltransferase, Wild Type and Mutants, Reveals Roles of Active Site Amino Acids[END_REF] highlighted, using pulse-chase experiments, that the formation of CDP-ME was accomplished by an ordered sequential mechanism, in which CTP binds first to the enzyme followed by MEP binding. Nucleophilic attack on α-phosphate group of CTP by the phosphate moiety of MEP will then afford a pentacoordinate intermediate that will subsequently collapse to produce CDP-ME and diphosphate [START_REF] Richard | Kinetic Analysis of Escherichia coli 2-C-Methyl-D-erythritol-4-phosphate Cytidyltransferase, Wild Type and Mutants, Reveals Roles of Active Site Amino Acids[END_REF][START_REF] Richard | Structure of 4-diphosphocytidyl-2-C-methylerythritol synthetase involved in mevalonate-independent isoprenoid biosynthesis[END_REF] . However, the ordered sequential catalytic mechanism of YgbP has never been characterised using a complete bisubstrate kinetic analysis. Such a kinetic analysis was performed here by measuring the velocity of different assays in which one of the substrate concentration was varied at different but fixed concentrations of the second substrate. Double reciprocal plots of initial velocity for both substrates resulted in lines intersecting left to the vertical axis and above to the horizontal axis (Fig. 7a,c) confirming that YgbP mechanism is sequential where ternary complex forms before any product release [START_REF] Copeland | Evaluation of enzyme inhibitors in drug discovery. A guide for medicinal chemists and pharmacologists[END_REF][START_REF] Borra | Substrate specificity and kinetic mechanism of the Sir2 family of NAD(+)dependent histone/protein deacetylases[END_REF] .

After fitting the data to the rate equation for sequential bi-substrate mechanism (See supporting information for more details), the complete kinetic scheme for E. coli YgbP was obtained for the first time (Fig. 8). K m values of 149 μM (K iA ) for CTP and 46 μM (K iB ) for MEP were retrieved and were found to be in agreement with the K m values obtained using the classical Michaelis-Menten equations (K m = 84 μM for CTP and K m = 40 μM for MEP). The dissociation constant of YgbP-CTP complex for MEP (K B ) was revealed to be very low (20 μM) while the dissociation constant of YgbP-MEP complex for CTP (K A ) was thirteen times higher (265 μM). These values show that if CTP binds to the free enzyme first, the affinity of MEP for YgbP-CTP complex is increased (low dissociation constant) leading to the production of CDP-ME. If MEP binds to the free enzyme first, the affinity of CTP for YgbP-MEP complex will be very low (high dissociation constant) and the YgbP-MEP complex might not be productive and would dissociate to regenerate the free enzyme. This achievement is compatible with the hypothesis that MEP could bind to the CTP pocket and if this happens, the resulting complex would be expected to dissociate to allow the binding of CTP in the CTP pocket. Then, once MEP is present in the active site, the reaction would proceed.

Selectivity of MEPN 3 . Fosmydomycin is the only inhibitor of the MEP pathway currently under clinical trial. It targets DXR but also to a weaker extend YgbP. This double targeting of fosmidomycin for the MEP pathway is very interesting and may be at the origin of the high potential of fosmidomycin as an antibiotic compared to the other MEP pathway inhibitors. This unique property of fosmidomycin encouraged us to investigated whether MEPN 3 is selective for YgbP or if it targets another enzyme of the MEP pathway. In this context, DXR was investigated as a potential target for our inhibitor, as it lays just before YgbP in the MEP pathway and produces MEP. Docking experiments were carried out based on the structure of E. coli YgbP in complex with 1-deoxy-D-xylulose 5-phosphate (5) and NADPH (1Q0Q). Two sets of docking were performed: one with only NADPH bound and another with the empty target. Interestingly, we observed that MEPN 3 binds in the binding site of the substrate 5 with a docking score of -9.09 for the best pose (Fig. S6). These results need to be further confirmed using kinetic investigations on DXR but they already highlight that MEPN 3 is a good starting point in the search for new drugs as it might target several enzymes of the MEP pathway.

Conclusion

We have successfully synthesised MEPN 3 , the best inhibitor of E. coli YgbP/IspD known to date and the first inhibitor shown to bind to either or both substrate binding sites. This special binding feature appears to be at the origin of the potency of MEPN 3 . In addition, our in-depth kinetic studies of YgbP, using a bi-substrate model for the first time also highlighted that the binding of MEP to the free enzyme disfavored the formation of the product. Building on the knowledge gained from our study, new inhibitors derived from MEPN 3 might be further elaborated either by developing new analogs bearing this dual binding profile or via structure-based fragment selection and in situ chemistry since MEPN 3 is already a good starting point for such strategy. With this aim, fragments could be among other MEP analogues or other molecules binding to the CTP pocket. In this context, preliminary docking experiments were performed using the empty target and a ligand obtained by replacing the azido function of 11 by a methyltriazole moiety. Docking scores and the pose obtained when 11 is in the CTP pocket show that fragment growing using click chemistry is feasible.

Therefore, the discovery of MEPN 3 as a new YgbP inhibitor as well as its unusual mode of action paves the way for original approaches toward the discovery of drug candidates that are urgently needed for the treatment of antimicrobial-resistant Enterobacteriacea infections.

Materials and Methods

General conditions for enzyme kinetics. Colorimetric assay reported by Bernal et al. [START_REF] Bernal | A colorimetric assay for the determination of 4-diphosphocytidyl-2-C-methyl-D-erythritol 4-phosphate synthase activity[END_REF] was used with some modifications. The standard reaction mixture contained 50 mM Tris-HCl pH = 8, 1 mM MgCl 2 , 1 mM DTT, 133 mU/mL of inorganic pyrophosphatase, 200 µM CTP (when MEP was the variable substrate), 250 µM MEP (when CTP was the variable substrate) unless otherwise stated and 0.065 µg YgbP enzyme in the final volume of 400 µL. Assays were initiated by addition of YgbP and incubated eight min at 30 °C before being quenched with 100 µL dye reagent (for preparation see SI). The assays were further incubated for ten min before measuring OD at 630 nm. A blank reaction that contained every component except YgbP was carried out at the same time for each assay and the corresponding OD 630 value of the blank was subtracted from the OD 630 value measured for the assay. The phosphate concentration of the assays was determined from standard curves obtained by measuring OD 630 values of different phosphate standards with concentrations varying from 2 to 30 µM. Data were fitted with the least-squares method to the corresponding equations using GraphPad Prism 7.

YgbP kinetic parameter determination. MEP concentrations were 15, 30, 45, 60, 100, 150 and 250 µM when MEP was the variable substrate and CTP concentration was fixed at 200 µM. CTP concentrations were 30, 60, 90, 120, 180, 270 and 450 µM when CTP was the variable substrate and MEP concentration was fixed at 250 µM.

YgbP inhibition kinetic studies. Steady-state kinetic constants were determined from different assays at several fixed inhibitor concentrations and varying the concentration of one substrate and keeping the concentration of the other substrate constant. The initial velocities and concentrations were fitted according to the appropriate model of inhibition [START_REF] Segel | Enzyme kinetics: Behavior and Analysis of Rapid Equilibrium and Steady State Enzyme Systems[END_REF] .

YgbP mechanism determination.

YgbP bi-substrate kinetic assays were performed, first by varying MEP concentrations at several fixed CTP concentrations and second by varying CTP concentrations at several fixed MEP concentrations. The data were fitted to the corresponding equations to determine kinetic values as described in SI.

YgbP kinetic studies with MEPN 3 as a substrate. MEPN 3 concentrations were 40, 150, 300, 400, 600, 1000, 1500, 2000 and 3000 µM and CTP concentration was fixed at 200 µM.

MEPN 3 as substrate of YgbP. MEPN 3 (0.2 mM) was added to a mixture of CTP (1 mM), MgCl 2 (5 mM), DTT (1 mM) in a final volume of 200 μL buffer (Tris HCl, 50 mM pH = 8). E. coli YgbP (34 µg) was added to initiate the reaction. The reaction mixture was incubated at 30 °C for one h then MeCN (200 µL) was added, and the mixture was left at 0 °C for 20 min to precipitate proteins. The precipitate was removed by centrifugation (13000 rpm, 10 min). BCN-TMPP (0.8 mM) was added to the supernatant that was further incubated at 37 °C overnight. The mixture was analysed by LC-MS (Waters Alliance 2690 LC system with C 18 column coupled with Waters ACQUITY QDa mass detector) using 10 µL of injection volume.

Docking experiments.

In silico docking experiments were carried out with the Schrödinger suite (Schrödinger LLC, New York, NY, USA). The X-ray structure of the CDP-ME synthase with CTP (PDB ID 1I52) was used for the studies [START_REF] Richard | Structure of 4-diphosphocytidyl-2-C-methylerythritol synthetase involved in mevalonate-independent isoprenoid biosynthesis[END_REF] . The protein structure was processed with the protein preparation wizard tool. Ligand 3D structures, tautomers and ionisation states were produced with LigPrep. The CDP-ME binding pocket was used to generate the docking grid. We defined a docking area of 32 Å × 32 Å × 32 Å centered on the reaction product (CDP-ME). No constraints (such as hydrogen bond or atom position) were applied to guide the binding. All the compounds were docked using Glide [START_REF] Friesner | Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes[END_REF] in extra precision (XP) mode [START_REF] Halgren | Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening[END_REF] . The Glide docking score was used to rank the docking poses.

Figure 1 .

 1 Figure 1. MEP pathway.

Figure 2 .

 2 Figure 2. Synthesis of MEPN 3 (11) and BCN-TMBPP (23). (a) Synthetic route to MEPN 3 . (a) (CH 3 ) 3 SOI, NaH, DMSO, 10 min, r.t; (b) NaN 3 , NH 4 Cl, DMF, 2 h, 60 °C; (c) TBAF, THF, 0 °C to r.t; (d) (CH 3 O) 2 POCl, DMAP, DCM, 2 h, 0 °C; (e) DOWEX (H + ), MeOH, 48 h, r.t; (f) (CH 3 ) 3 SiBr, H 2 O, DCM, 0 °C to r.t. (b) Synthetic scheme for BCN-TMPP. (a) Ethylenediamine, TEA, DMF, 2 h, r.t; (b) Bromoacetic acid N-hydroxysuccinimide ester, toluene, 0.5 h, r.t; (c) NEt 3 , DCM, 16 h, r.t.

Figure 3 .

 3 Figure 3. LC-MS analysis of MEPN 3 or its product in the YgbP catalysed reaction after derivatisation with TMPP-BCN (23). (a) Structure of CDP-MEN 3 (b) Structure of MEPN 3 or of its product after derivatisation with TMBPP-BCN. (c) Mass-to-charge ratio of MEPN 3 clicked with TMPP-BCN. (d) Mass-to-charge ratio of the product of 11 in the YgbP catalysed reaction clicked with 23.

Figure 4 .

 4 Figure 4. Inhibition of E. coli YgbP by MEPN 3 . (a) Steady state kinetics at variable MEP concentrations and fixed MEPN 3 concentrations (0 µM, r 2 = 0.99; 20 µM, r 2 = 0.98; 40 µM, r 2 = 0.99; 60 µM, r 2 = 0.99). (b) Double reciprocal plot of (a) (0 µM, r 2 = 0.99; 20 µM, r 2 = 0.99; 40 µM, r 2 = 0.98; 60 µM, r 2 = 0.99) (c) Replot of slope and intercept of (b) (slope, r 2 = 0.98; intercept, r 2 = 0.95). (d) Steady state kinetics at variable CTP concentrations and fixed MEPN 3 concentrations (0 µM, r 2 = 0.98; 30 µM, r 2 = 0.99; 60 µM, r 2 = 0.99; 90 µM, r 2 = 0.98). (e) Double reciprocal plot of (d) (0 µM, r 2 = 0.99; 30 µM, r 2 = 0.98; 60 µM, r 2 = 0.98; 90 µM, r 2 = 0.99). (f) Replot of slope and intercept of (e) (slope, r 2 = 0.99; intercept, r 2 = 0.95). Mean and SEM values are displayed, n ≥ 3.

Figure 5 .

 5 Figure 5. Structures of E. coli YgbP described (26-28) and new (11) inhibitors. Ki values are displayed when available, otherwise they are replaced by the reported IC 50 values.

Figure 6 .

 6 Figure 6. In silico docking results. Docking experiments were performed with the X-ray structure of E. coli YgbP: CTP complex (PDB ID: 1I52). The best docking poses and their corresponding docking scores (D.S) are reported. (A,B) CTP and respectively MEPN 3 docked using a target with an empty binding pocket. (C) to (F) docking poses revealing the two possible binding sites observed for MEP (C,E) or MEPN 3 (D,F) when the docking experiments were performed with a target already containing bound CTP. The compounds were docked using Glide in extra precision (XP) mode and the Glide docking score was used to rank the docking poses.

Figure 7 .

 7 Figure 7. Bi-substrate steady-state kinetic analysis of E. coli YgbP. (a) Double reciprocal plot of initial velocities at variable MEP concentrations and fixed CTP concentrations (30 µM, r 2 = 0.99; 50 µM, r 2 = 0.99; 80 µM, r 2 = 0.96; 240 µM, r 2 = 0.99). (b) Slope and intercept replot of (a) (slope, r 2 = 0.97; intercept, r 2 = 0.90). (c) Double reciprocal plot of initial velocities at variable CTP concentrations and fixed MEP concentrations (10 µM, r 2 = 0.99; 20 µM, r 2 = 0.96; 40 µM, r 2 = 0.95; 120 µM, r 2 = 0.98). (d) Slope and intercept replot of (c) (slope, r 2 = 0.97; intercept, r 2 = 0.92). Mean and SEM values are displayed, n ≥ 3.

Figure 8 .

 8 Figure 8. E. coli YgbP bi-substrate steady state kinetic analysis. For reasons of clarity, the scheme was simplified as in the YgbP-MEP complex, MEP could also bind in the CTP binding site. See Fig.S3for detailed reaction mechanism.
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