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SEMI-CLASSICAL LIMIT OF LARGE FERMIONIC
SYSTEMS AT POSITIVE TEMPERATURE

MATHIEU LEWIN, PETER S. MADSEN, AND ARNAUD TRIAY

ABsTRACT. We study a system of N interacting fermions at positive
temperature in a confining potential. In the regime where the inten-
sity of the interaction scales as 1/N and with an effective semi-classical
parameter 1 = N~/¢ where d is the space dimension, we prove the
convergence to the corresponding Thomas-Fermi model at positive tem-
perature.
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In this article we study mean-field-type limits for a system of NV fermions
at temperature T' > 0 in a fixed confining potential. We assume that the
interaction has an intensity of the order 1/N and that there is an effective
semi-classical parameter & = N~1/¢ where d is the space dimension. In the
limit we obtain the nonlinear Thomas-Fermi problem at the corresponding
temperature 7' > 0. This paper is an extension of a recent work [16] by
Fournais, Solovej and the first author where the case T' = 0 was solved.

Physically, the Thomas-Fermi model is a rather crude approximation of
quantum many-body systems in normal conditions, and it has to be refined
in order to obtain a quantitative description of their equilibrium proper-
ties. However, certain physical systems in extreme conditions are rather
well described by Thomas-Fermi theory. It then becomes important to
take into account the effect of the temperature. For instance, the positive-
temperature Thomas-Fermi model has been thoroughly studied for very
heavy atoms [I5] (I8, 22| [I1]. It has also played an important role in as-
trophysics, where the very high pressure encountered in the core of neutron
stars and white dwarfs makes it valuable for all kinds of elements of the
periodic table [40, [39] 10l [4]. Finally, the Thomas-Fermi model is also useful
for ultracold dilute atomic Fermi gases, but the interaction often becomes
negligible due to the Pauli principle, except in the presence of spin or of
several interacting species [19].

Date: February 5, 2019.



2 M. LEWIN, P.S. MADSEN, AND A. TRIAY

In the regime considered in this paper, a mean-field scaling is coupled to a
semi-classical limit. This creates some mathematical difficulties. Before [16],
this limit has been rigorously considered at T' = 0 for atoms by Lieb and
Simon in [33, B2] and for pseudo-relativistic stars by Lieb, Thirring and
Yau in [36], B7]. Upper and lower bounds on the next order correction have
recently been derived in [211, 6], for particles evolving on the torus. There
are several mathematical works on the time-dependent setting [41], [49] [3| [14]
17, 8 B [, 42] [7, 13], in which the Schrédinger dynamics has been proved
to converge to the Vlasov time-dependent equation in the limit N — oc.
Finally, the first two terms in the expansion of the (free) energy of a Fermi
gas with spin in the limit p — 0 was provided in [3I] at 7' = 0 and in [47] at
T > 0.

The mean-field limit at positive temperature for fermions is completely
different from the bosonic case. It was proved in [24] that in the similar
mean-field regime for bosons, the leading order is the same at T' > 0 as when
T = 0. Only the next (Bogoliubov) correction depends on 7" [29]. In order to
observe an effect of the temperature at the leading order of the bosonic free
energy, one should take T'~ N, a completely different limit where nonlinear
Gibbs measures arise [20, 25 27, 28] 26|, 45]. Without statistics (boltzons),
the temperature does affect the leading order of the energy [23], and the
same happens for fermions, as we will demonstrate.

Our method for studying the Fermi gas in the coupled mean-field /semi-
classical limit relies on previous techniques introduced in [I6]. Assuming
that the interaction is positive-type (w > 0), the lower bound follows from
using coherent states and inequalities on the entropy. We discuss later in
Remark [l a conjectured inequality on the entropy of large fermionic systems
which would imply the result for any interaction potential, not necessarily
of positive-type. The upper bound is slightly more tedious. The idea is
to construct a trial state with locally constant density in small boxes of
side length much larger than %, and to use the equivalence between the
canonical and grand-canonical ensembles for the free Fermi gas. Finally, the
convergence of states requires the tools recently introduced in [16] based on
the classical de Finetti theorem for fermions.

The article is organized as follows. In the next section we introduce both
the N-particle quantum Hamiltonian and the positive-temperature Thomas-
Fermi theory which is obtained in the limit. We then state our main theo-
rems, Theorem [2] and Theorem [{l As an intermediate result for the upper
bound, we show in Section 2l how to approximate a classical density by an N
body quantum state. In Section Bl we use this trial state and some known
results about the free Fermi gas at positive temperature to prove our main
result in the non-interacting case. The interacting case is dealt with in Sec-
tion 4l Finally, in Section Bl we study the Gibbs state and the minimizers of
the Thomas-Fermi functional at positive temperature (Theorem [IJ).
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1. MODELS AND MAIN RESULTS

1.1. The Vlasov and Thomas-Fermi functionals at 7" > 0. For a given
density p > 0 and an inverse temperature 5 > 0, the Vlasov functional at
positive temperature is given by

et tm) =G [ [ (p AV @) m o) oy

+$//wa(ﬂc—y)pm(~’v)pm(y) dz dy

i (27T1)d5 //RQdS(m (z,p)) dzdp, (1)

where s (t) = tlogt + (1 —t)log (1 — t) is the fermionic entropy, and

1
o ()= (2m)* /]Rd (@) dp

is the spatial density of particles. Here m is a positive measure on the phase
space R% x R?, with the convention

(271T)d //R?d m(z,p) dzdp = /Rd () = p,

and which is assumed to satisfy Pauli’s principle 0 < m < 1. For convenience
we have added the factor 1/p in front of the interaction energy, because it
will naturally arise in the mean-field limit. We denote the Vlasov minimum
free energy by

v(p)=  inf & (m). (2)

2m) =4 [[g2da m=p

Precise assumptions on A,V and w will be given later.
Similarly as in the case T' = 0, we can rewrite the minimum as a two-step

procedure where we first choose a density v € L'(R% R, ) with Jgav =p

and minimize over all m such that p,, = v, before minimizing over v. For

any fixed constants v € Ry and A € R? we can solve the problem at fixed z

and obtain

: 1 , 1
0<m(p)<1 ((27T)d /Rd [p+ A" (p) dp+ ()15 /Rd s (m(p)) dp)

(2m)=? fpqa m(p) dp=v

1
=~ a3 log (1 + e‘ﬁ(pQ_“FG(B’"))> dp + prc(B,v)v
R

where upg (5, v) is the unique solution to the implicit equation

1 1 dp —
(2r)d /Rd 1+ P ) P =Y
and with the unique corresponding minimizer
1
" 1+ BUrtAP—prG(Bw)

mu,A(p)
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This is the uniform Fermi gas at density v > 0. For later purposes we
introduce the free energy of the Fermi gas

1

— _ —B(p*—pra(Bv))
Fs(v): @178 Jo log (1 +e ) dp + prc(B,v)v.  (3)

Note that A only appears in the formula of the minimizer. It does not affect
the value of the minimum Fg(v).

All this allows us to reformulate the Vlasov minimization problem using
only the density, which leads to the Thomas-Fermi minimization problem at
positive temperature T'= 1/

G = _win | [ Be@)is [ v

veL'(R%R) Rd
Jra v(@) dz=p

+$/A2dw(x_y>u<x>u<y> dxdy}. (4)

The Vlasov minimization (2]) on phase space will be more tractable and we
will almost never use the Thomas-Fermi formulation () of the problem.

Now we discuss the existence of a unique Vlasov minimizer for (), under
appropriate assumptions on V, A, w. We use everywhere the notation Vi =
max(+V,0) for the positive and negative parts of V', which are both positive
functions by definition.

Theorem 1 (Minimizers of the Vlasov functional). Fiz p, 5y > 0. Suppose
that Vo € LY% (RY) N LWH/2(RY), A € LL (R?) and that Vi € LL  (R9)
satisfies [pa e V4@ dx < co. Let

we L'*s (Rd) 4L <Rd) + R, .

Then, for all B > By, there are minimizers for the Viasov problem ([2). Any
minimizer mq solves the nonlinear equation

1
Lexp (B(lp + A@)P + V (2) + p~ 1w % py (2) = 1))

)

mo (,I,p) =

for some Lagrange multiplier . The minimum can be expressed in terms of
mo and [ as

B (o) = — — loa (1 4+ e~ B(PPHV@) +o~ wspmg (@)-1)
via (P) (%)dﬁ//ﬂw og( +e 0 dz dp

+ pp — % //de w (T = Y) pmq (T) pmo (y) da dy. (6)

Furthermore, if w > 0, then Egig 1s strictly conver and therefore has a
unique minimizer. In this case, for p' > 0 define

Foalpp) = inf G (m). (7)

2m) % [fa2a m=p
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Then, for any p' > 0, F\éla(-,p’) is C' on Ry and the multiplier appearing
in [B) is given by

— (8)

The proof of Theorem [l is classical and given for completeness in Sec-
tion Bl Note that the magnetic potential A has only a trivial effect on the
minimization problem. The minimizers for a given A are exactly equal to
the mo(x,p + A) with mg a minimizer for A = 0. The value of the minimal
energy, the density p,,, and the Lagrange multiplier ; are unchanged under
this transformation.

The two conditions e~ ¥+ € L' (R?) and V_ € LY?(R%) N L1T9/2(R) have
been chosen to ensure that the minimizer has a finite total mass and a finite
total energy. This is because

1 2
—B(p*/2+V4) 2
//R?d 1+ eBP*+Vi-Vo) = //RM € + {p* < 2V_}|
d
=€ (ﬁ ey ) (9)
R4

and, similarly,

// log <1 + e—ﬁ(p2+v+—v,)) dx dp
R2d

< // e B /24V1) L o (14 BV.)
~ JJR {p2<2v_}

et d

<C <5—%e—5v+ +VE 4 ﬁV1+2> .
R4

1.2. The N-body Gibbs state and its limit. The aim of this paper is

to understand the large—N limit of fermionic systems in a mean-field-type

regime. We will end up with the Vlasov problem Eq. () introduced in the

previous section.

1.2.1. The mean-field limit. Here we analyze the ‘mean-field’ limit where the
interaction has a fixed range and a small intensity. We consider the following
Hamiltonian
al 1
Hyp = Z iRV, + A(z;)]> + V (z5) + N Z w(z; —x)  (10)
j=1 1<j<k<N

acting on the Hilbert space /\le L? (Rd) of anti-symmetric functions. For
simplicity we neglect the spin variable. We suppose that

A2, w e L5 (R?) + 122 (RY)

and that w is an even function. We also assume that the electric potential
Ve [h? (R?) is confining, that is, V (z) — oo when |z| — oo, and

loc

that the divergence is so fast that fe_ﬁo‘q(gﬁ) dz < oo for some 3y > 0.
Note that this implies that V_ has a compact support, hence in particular
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V_ € LY2(RY) N L'H4/2(R?). At inverse temperature 3 > Sy, the canonical
free energy is given by the functional

Sévéfl (T') =Tr (Hysl) + %Tr(r logT), (11)

defined for all fermionic quantum states I' = I'* > 0 with Tr(I") = 1. The

minimum over all I' is uniquely attained at the Gibbs state
Dpg =2 te v,

where Z = Tre A~ which leads to the minimum free energy

1
egan (h,N) = H%iné'é;ﬁ () = 3 log Tr e PHNM,

Our main result is the following.

Theorem 2 (Mean-field limit). Let By, p > 0. Assume thatV € Lllotd/ 2 (R%)
is such that V (z) — oo at infinity and that fe*50V+("”) dr < oo. Further-
more, assume |A|*,w € L1t/? (]Rd) + L (]Rd) with w even and satisfying

w > 0. Then, for all B > By we have the convergence

Jlim ndel (h,N)=eb (p). (12)
hEN—p

Moreover, if (I'n) is a sequence of approximate Gibbs states, that is,
hN _d
Ecum(TN) = €4 (1 N) + (™),

then for all k > 1 we have in the same limit

(k) ®k
— 13
/]RQdk MprN® /]RQdk Mo ? (13)
for all p € LY(R2?*) + L°(R?**), where mgfk%N is the k-particle Husimi

function of U'ny and mg is the unique minimizer of the Vlasov functional in

Eq. @). Similarly, if we denote by ngj\z the k-particle Wigner measure of
I'n, we also have,

k
ngjv)cp — / m&*op, (14)
R2dk R2dk

for all ¢ satisfying 85‘11...85‘:8511...85:@ € L®(Rk) where max(a;, 8;) < 1.
Finally, the one particle density of Iy satisfies the following convergence

mS}%N — my strongly in L' (R??), (15)
P ) — Pmg Sstrongly in LY(RY) 0 LF2/4(RY), (16)
TN

moreover, we have
hdp(rlji — pme weakly in LY (RY) N LIFH4RD).
(k)

The Husimi function m Fln (based on a given shape function f) and the

Wigner measure ngjv) are defined and studied at length in [16]. These are
some natural semiclassical measures that can be associated with I'y in the
k-particle phase space R?% . We will recall their definition in the proof later
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in Section 43l The convergence of states as in (I3]) and (I4]) actually follows
rather easily from the theory developed in [16] and most of this article will

be dedicated to the proof of the limit (I2)).

Remark 3. For simplicity we work with a confining potential V but Theo-
rems[d and[@ hold the same when R? is replaced by a bounded domain Q0 with
any boundary conditions.

Remark 4. Our lower bound relies on the strong assumption that w > 0,
but the upper bound does not. It is classical that a positive Fourier transform
allows to easily bound the interaction from below by a one-body potential, see

Eq. 39) below.

Remark 5. Without the assumption w > 0, the Viasov functional Eeig can
have several minimizers and the limit in Eq. (I3]) is believed to be an average

over the set of minimizers of Egig, Namely there exists a so called de Finetti

measure P [16], concentrated on the set of minimizers for e\ﬁna, such that
k k
mfd, = [ mokap(m)

in the sense defined in Theorem [3. We conjecture the following Fatou-type
inequality on the entropy

liminf A Tr Ty log Ty > / </ s(m)) dP(m) (17)

N—ro0 R2d

hN—p
for general sequences (I'y) with de Finetti measure P. Should this inequality
be true, we could remove the assumption w > 0 in Theorem [2. In fact, in
our proof we show that the above inequality holds when the right-hand side is

replaced by
/ s (/mdP(m)) .
R2d

When there is a unique minimizer, the two coincide.

Example 6 (Large atoms in a strong harmonic potential). The Hamiltonian
in Eq. (I0) can describe a large atom in a strong harmonic potential. Indeed,
consider N electrons in a harmonic trap and interacting with a nucleus of
charge Z. In the Born-Oppenheimer approximation, the N electrons are
described by the Hamiltonian

N Z 1
Y A - Y
— lzj| = |zy — wg
j=1 i<k

Scaling length in the manner x; = N_l/Qx;» we see that this Hamiltonian is
unitarily equivalent to

ZN-1 1 1

N
4/3 -2 —1)2 2
VG T e NV e T Y 2
J

j=1
Hence taking Z proportional to N and w proportional to N, we obtain the
Hamiltonian of Eq. (I0) with d =3, A =0, V(z) = |z> and w(z) = |=|7!.

In the limit we find the positive-temperature Thomas-Fermi model for an
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atom in a harmonic trap, which has stimulated many works in the Physics
literature [15] 18] 221 [11].

1.2.2. The dilute limit. In this section we deal with the case where the inter-
action potential has a range depending on N and tending to zero in our limit
N — oo with #*N — p. This is classically taken into account by choosing
the interaction in the form

wy(x) = N"w(N"z) (18)

for a fixed w and a fixed parameter n > 0. In our confined system, the average
distance between the particles is of order N~/ ~ p=1/dp The system is
dilute when the particles interact rarely, that is, n > 1/d. For bosons in 3D,
the limit involves the finite-range interaction 4mady where a = [p, w/(47)
for n < 1 and a = ag, the s-wave scattering length a5 when n = 1. Due to
the anti-symmetry the s-wave scattering length does not appear for fermions,
except if there are several different species, e.g. with spin. This regime has
been studied in [31] for the ground state and [47] at positive temperature,
for the infinite translation-invariant gas. Here we extend these results to the
confined case but do not consider any spin for shortness, hence we obtain a
trivial limit. Our main result for dilute systems is the following.

Theorem 7 (Dilute limit). Let By, p > 0. We assume that V € Lllotd/Q (R%)
is such that V () — oo at infinity and that [e PV+(@) dx < co. Fur-
thermore, assume that |A|* € L1742 (R?) + L (R?) and w € L*(RY) N

LY*42(RY) is even.

e If0<n<1/d and w > 0 then, for all B > By we have
. 3, w) o
lim hdegan(h, N)=e g °(p)

N—o00 Via
heN—p
here ¢2 9% % () is the mini he Vi th i ;
where e, (p) is the minimum of the Vlasov energy with interaction

potential ([pa w)do.

o Ifn>1/d, d >3 and w > 0 is compactly supported, then for all B >
we have .

]\}LIHOO hdegan(h’ N) = e@la(p)

N —p

where eg’fn(p) s the minimum of the Vlasov energy without interaction po-

tential.

In both cases, we have the same convergence of approximate Gibbs states
as in Theorem [2

The proof of Theorem [Mis given in Section [l

2. CONTRUCTION OF TRIAL STATES

In this section we construct a trial state for the proof of the upper bound.
In the dilute case this construction is similar to the one in [47] where the
thermodynamic limit of non-zero spin interacting fermions were studied in
the grand-canonical picture. In particular we will make use of [47, Lemma
2]. Precisely we prove the following proposition.
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Proposition 8 (Canonical trial states). Let pg € C°(R%) be such that
Jgapo = 1. Assume |A? € LYWI2RY), w e LYRY) N LHFI/2RY).  If
nd > 1, we assume w to be compactly supported. Then, there is a sequence
of canonical states T'y on /\f\;l L2(RY) satisfying

N
R <TrZ(z’hV + A)’Ty + Tr Iy log PN> — F(po), (19)

i=1 v U
LINE)
~Pry — Po — 0 (20)
HN tw L1(R4) ﬁ]g;iol
and
1 Jpa(w s po)po if n =0
2) .
N Joa wy(x — y)p(FN (x,y)dxdy v (Jpaw) [rapd if0O<dn<1

RIN—1 0 if dn>1,d > 3.
(21)
Furthermore, we can take ,0%1137 to be supported in a compact set which is

independent of N and uniformly bounded in L>=(R?) so that the convergence
(20) holds in fact in all LP(RY) for 1 < p < oco.

Proof. The proof consists in dividing the space into small cubes in which we
take a correlated version of the minimizer for the free case and then do the
thermodynamic limit in these cubes. This choice allows us to control the
one-body density, which will be almost constant in these boxes. Without
loss of generality, we will write the proof for A = 0. The proof is the same

for A # 0.

Step 1. Definition of the trial state. Let py € C°(R?) and take R > 0
such that supp pg C [~R/2, R/2)? =: Cg. Divide Cg in small cubes of size
>0, Cr C U.ep. (re-1ynze Nz With A, = 20+ [—£/2,0/2)%. We will take
later 1 >> ¢ > h. For all z define N, := [A%¢?miny_ po| so that 3. N, < N.
For 0 < & < £/4 and for all z, define the box

~ (—c 0 —c\?
Az.:z€+[— 7 3 ) C A,

and denote by
(5 neap)
~ 6 K3 K3
r,= 7. = Z )\k‘ekl/\---/\6sz><€]€1/\---/\€sz‘
kE'PNz (Zd)

the canonical minimizer of the free energy at inverse temperature 8 of N,
free fermions in the box A, with periodic boundary conditions, where P, (E)
denotes the set of all subset of E with n elements. For j € Z¢,

ej(w) = (£ — ) W2eier

are the eigenfunctions of the periodic Laplacian in Kz and Ay the eigenvalues
of fz associated with e, = eg, A...Aeg,_. Note that we omit the z dependence
of A\; and e;. We now regularize these functions and construct a state in the
slightly larger cube A, with Dirichlet boundary condition. Let y € C™(R%)



10 M. LEWIN, P.S. MADSEN, AND A. TRIAY

such that x = 0in R¥\ B(0,1), x > 0 and Jga x =1, denote x. = e~y (e 1)
and define for j € Z¢

fi = e /15, * Xe
Note that

/fjfk—/ejek 5 Xe) = // Ye(y — 2)dyda
Z/~ ej@/ X = 0j k-

Hence the family (f;); is still orthonormal and one can check that it satisfies
fi =ejin [—(£ —2¢)/2, (¢ —2¢)/2)% and as well as the Dirichlet boundary
condition on A,. Besides from having a state satisfying the Dirichlet bound-
ary condition, we also want to add correlations in order to deal with the
dn > 1 case. Let ¢ € C2°(RY) such that ¢ = 1 in B(0,1) and ¢ < 1 almost
everywhere and for s > 0 denote ¢s = (s~ 1-). Following [47], we define the
correlation function F'(z1,...,zn,) = [[;<; ¢s(zi — z;) and the state

To= Y MZy U fu A A fun ) (Ffay Ao A fr |
kePn, (Z9)
where Zj, = ||F fr, Aeoo A froy, |12
the state

~.. are normalization factors. Now consider
L2(AD?)

r::/\rz.

z
We will show that I" satisfies the three limits Eq. (I9), [20) and (2I). This
state does not have the exact number of particle N but satisfies >, N, =
N — O((N). Hence we will only have to correct the particle number by
adding O(¢/N) uncorrelated particles of low energy, for instance outside the
support of pg. This will not modify the validity of the three limits. Now we
focus on I' and compute its free energy.
In the case nd < 1, we choose the following regime for the parameters
introduced above.

s<h<e<l< N and sl < K.

One could in fact take I'p—; (removing the factor F, see below) and remove
the dependence in s. In the case nd > 1, the convergence holds in the regime

N M« s< h<e<land sl < h?.

Step 2. Verification of ([I9]). We fix z and work in the cube A,. Let us
first compute the kinetic energy of the correlated Slater determinants appear-
ing in the definition of I', (note that this is not a eigenfunction decomposition
due of the lack of orthogonality). Let us denote X = (/T3 * xc )@Nz 50 that
Ui = fry A A fry, = Xeg Ao Aegy (we will omit the superscript z when
there is no ambiguity) and denote V, —A the gradient and the Laplacian for
all coordinates x1,...,zy, in the box A, with Dirichlet boundary condition,
we can check that

27k

V(FXep, Ao Newy ) = | XVF + FVX +iFX Z

€k N "'/\esz’
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Hence,

Mo
Tr(-A) = Y 7 <sk + (XVF + FVX)er, A Ay |12 4 )
kePn, (Z9)

where

N
ep = [2r(0 — )7t Z k;
j=1

is the eigenvalue of —AP associated with the eigenfunction eg. Note that
M o< e Pek We will show that >k )\kaflek ~ Y ARER = Tr(—Aper)f
and that the second summand above is an error term. For that we first need
to estimate the normalization factors Z; and then bound the factor with the
VF and VX. We will use several times that for any sequence a1, ...,a, >0
we have

12ﬁ(1—an)21—ian- (22)

Hence,

2 2
Zk_/AN I es(@n—2m)?[PdX

1<n<m<N,

>1_/AN S (1= puln — w2 W2

1<n<m<N,
>1- [ (1- — 29)2)p5 ) (21)pY) (w2)drd
> A2( ps(@1 — 22)%) py (21)py, (x2)dz1d22

1—Cshdp=2, (23)

where we used that pg) (z,y) < p&}z (x)p&}z (y) because Uy is a Slater deter-

minant, and that p( ) szd]lxz *xe < Ch™¢,
Then we compute
N

N,
|Va:1F|2 _ Z Vs(r1 — 7m) - Vs (21 — xn)F2+Z Vs (21 — xmg|2F2
mn, ©s(1 — Tm)ps(T1 — Tm) =2 ws(x1 — Tpm)
m,n>2

and obtain

IVFOI ey <€ [ 1Vipstar = 22)|[Vipu(oa = )]

x pEI’lZ (wl)pgz ($2)p$2 (z3)dxidredrs

+ C/ [Vipu(ar — w2) P0y) (21)py) (w2)drdey
A2d
< Cs2 (S2d€dh73d + Sdgdh72d> .

Now we turn to the VX part. We have

V./Tx *x:(x
Vo X(21,..,zn,) = m( 1)

L3 *xe(21)

(z1,.., TN,)
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and

v\/ *Xs x1)
/ VX Pleg, Ao Aegy [P = /Nz Z |‘I’k|2

U x Xs(xl)

Py,

2
/ V\/]lf\z * Xe(71)
Az

I3 *xe(z1)

2
< C/ ‘V, [15 * Xe(ﬂfl)‘ N4
A )
< CN ™ / / VX2 < Ceinde72,
Az
2

where we used the pointwise bound ‘V, /I3 * Xg(xl)‘ < [|V/X:I?. Since
X and F' are both bounded by 1 we obtain

g2(d—=1) pd;—3d + gd—2pdp—2d + (ap—d—2
1 — Csdpdp—2d

4 N;+z/dsd£dh—2d>_

Tr(—A)L, = Tr(—APT, + 0(

We proceed with estimating the entropy of I',. Thanks to [47, Lemma 2]
we have

TrI, logl, <Tr fz log fz — log mkin A
—TrT, logT, + O <sd€dh_2d> ,

where we used the estimate (23]) on Z;. Combining the last two estimates
gives
Tr(—=A?A)T + TrTlogT
= Tr(—h*A), + TrTlogT,
z

Z B, per (A, B, N,) + 0790 (Sdgdh—2d> i O<(h—d€d)1+2/d5d£dh—2d>

§20d=1) gdp=3d 4 gd—2pdp-2d | pdp—dg—2
2 p—d
+RY O( 1 — Csdpdp 24 ’

where we used that N, < HpoHLoo(Rd)h*dﬁd. It is a known fact [44] [46] (see
also [38] 51] for more details) that

e Rz, N) = WU Fg (N, /(- 9ed)) + (e (24)

locally uniformly in p, := N,h% % as h — 0 under the condition & < /.
This is the thermodynamic limit of the free Fermi gas. By the continuity of
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Fj and the estimate N,/(h=4(¢ — €)?) = p(2) + O(ef~!) we obtain

W (Tr(—h?A)T + TrTlogT) < 09>~ Fy(p(2)) + o(1) + O(e/0)
2€7Z4

s 2(d—-1) S d—2 2
O ((st/12)18) + O (51 + 0 << /h) 1_+ C(( géii/)h2)d+(h/e) >

If s < h < ¢ < £ with the extra condition that s¢ < h? we obtain the
upper bound in ([I9]) by passing to the limit and by identifying the first term
above as a Riemann sum. The lower bound is obtained in the same fashion
by seeing I', as a trial state for the periodic case.

Step 3. Verification of (20). Let us recall that I'p—; is the uncorrelated
version of the trial state (which corresponds to taking ¢ = 1) and that we

denote by p%k):l its k-particle density, for k¥ > 1. From (22) and using that
I'r—1 is a sum of Slater determinants we have

1||P(1) - Pg) 1||L1(]Rd)

NS Y ¥ // (1= sl — 22)2)p) (w1, 22) 1 s
R2d

z€7Z4 ke'PN Zd)

<CN! Z // (1 —ps(x1 — x2) )NQE 2d 0y dxs
z€Z4

<CONT'Y sUINZe
zc74

C(s/h)%.

We also used that pfﬁ% < p$% ® pgi) < ||p0||Loo(Rd)NZ2€—2d_ Finally, denoting

by I', p—1 the uncorrelated version of I', and by pill)p

we have

_, its one-body density

1
IN=25L ) = poll oo ety <ZHN o = pola o ey

< CZ <HVPOHL°°(R‘1)€CH—1 + HPOHLOO(Rd)ed_lg)
< C(€Z+ e/l).
We have used that in 2£ + [~ (¢ — 2¢)/2, (¢ — 2¢)/2),
N = N e min po) = po + O(H0") + OV poll ()
and that
IV = polacllzsene) < Cllpoll e ray:

Under the stated conditions on A, ¢, s and € we have N_lpg) — poin L! (Rd).
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Step 4. Verification of (2I]). Let us first turn to the case 0 < nd < 1.

Note that
p(Fz) _ Z p(F2z) + Z P(rlz) ® P(FIZ)/
zezZ4 z#2
= @pr) + D ot ot @ pp- (25)
2€Z4

The second term above is negligible in our regime. Indeed, using the triangle
inequality, the Lieb-Thirring inequality [34, B5] and Young’s inequality we

obtain
> / wn(z —y) <p(p22) — i@ p%?) '
R4

2€7Z4

N72

_ 1 1
< ON?|lwyllprsarsgay S {||p§3\|L1+2/d(Rd>\|p§j||L1<Rd>

z€Z4

1
) TeT, (Z;V:Zl _Azj) 1+2/d
+ IV,

NIH2/d

< ON2N#a S N2
2€7Z4
< O(N7¢)2¢0~ 752)

where we used that pl(}Z) < ON =4 < Cllpo| Loo(Rd)ffd almost everywhere

and the estimate on the kinetic energy of I', computed before. Hence, if
Nflpg) — po in L'(RY) and if £ = o(N~"), since both N*ng) and pg
are bounded (uniformly in N) in L>°(R%), by (25) and the use of Young’s
inequality we obtain (21]) for 0 < nd < 1.

The case nd > 1 is easier to handle since in this case N~ = o(s). Indeed,
due to the correlation factor F' and because w is compactly supported we
will have Trwy (z — y)I' = 0 for N sufficiently large. O

3. PROOF OF THEOREM [2] IN THE NON-INTERACTING CASE w =0

In this section we prove the convergence (I2) of the free energy in Theo-
rem 2l in the case where the interaction is dropped, that is w = 0. We study
the interacting case later in Section Bl The convergence of states will be
discussed in Section £.3]

The non-interacting case is well understood since the Hamiltonian is qua-
dratic in creation and annihilation operators in the grand canonical picture.
The minimizers are known to be the so-called quasi-free states [2]. For those
we have an explicit formula and the argument of the proof is reduced to a
usual semi-classical limit. The upper bound on the free energy is a conse-
quence of Proposition [ from the previous section. The proof of the lower
bound relies on localization and the use of coherent states.

We start with the following well-known lemma, the proof of which can
for instance rely on Klein’s inequality and the convexity of the fermionic
entropy s [50].
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Lemma 9 (The minimal free energy of quasi-free states). Let 5 > 0, and
let H be a self-adjoint operator on a Hilbert space $) such that Tre PH < .
Then

1 1
Ogrgll (TrH’y—i— BTrs(’y)) =3 Trlog <1 —i—e*ﬁH) ,

vEG1(H)

with the unique minimizer being vo = ﬁ.
With Lemma [@ at hand we are able to provide the

Proof of Theorem [2 in the non-interacting case. Suppose that w = 0. We
start out by proving the upper bound on the energy, using the trial states
constructed in the previous section. Let p > 0 and 0 < v € CF° (]Rd)
with [pqv (2) dv = p. By Proposition B we then have a sequence (I'y) of
canonical N-particle states satisfying

N d
hd Tr Z [ihV ¢, + A(z)’Ty | + %TrFN logI'y — / Fg (v (x)) de.
j=1 ke

The one-particle densities hd,oﬁz]

converge to v strongly in L' (Rd) and are
uniformly bounded in L>(R%). Hence they converge strongly in all LP(R?)
for p € [1,00). Since V € Lllotd/ 2 (Rd) and p(Fljzr are, by construction, sup-
ported in a fixed compact set, we have

TV (x) I’g\l,) = hd/ V (z) ,0%1) (x) de — V(z)v(z) de.
Rd N R
This means that
ndel. (h,N) <R (Tn) — s (v(@) do+ /R V(@) (@) de,
and, since v is arbitrary, we have shown that
lim sup hdegan (h,N) < eela (p).
N—o0

hEN—p

To prove the lower bound, we use the following bound [2] 50] on the
entropy

TrTlogI’ > Tr <I’(1) log r 4 (1 — F(l)) log (1 — I’(l))) ="Trs <F(1))

which follows from the fact that quasi-free states maximize the entropy at
given one-particle density matrix I'M. The bound applies to any N-particle
state I' whose one-particle density is r. Applying Lemma [ above, we
have for any p € R and any N-body state I

EXMT) > Tr (jihV + A(2)* + V (z) — ) IO + %Trs (r<1>) + 1N

> —% Trlog (1+ e P(MVHA@P V@) 1y,
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Thus, we are left to using the known semi-classical convergence (whose proof
is recalled below in Proposition [I0))

d
lim inf —h— Trlog <1 + e’B(WVJFA(m)‘Q*V(m)*ﬂ))

h—0 I3

and to take p = pyia (p). Recognizing the expression of the Vlasov free
energy on the right-hand side we appeal to Theorem [I] and immediately
obtain

1}\%1?5 hdegan (h, N) > eéla (P) >
hEN—p

concluding the proof of (I2)) in the non-interacting case. O

In ([26]) we have used the following well-known fact, which we prove for
completeness.

Proposition 10 (Semi-classical limit). Let By > 0, we assume that |A|? €
LYF2(RY) + LO(RY), V € Lt/ (RY) is such that V (z) — oo at infinity

loc

and that fe*50V+("”) dr < oo. Then for any chemical potential p € R and
all B> Po,

d
lim sup % Trlog <1 + e*ﬁ((\ihV+A|2+pr)>

h—0
< B 1)d5 // log <1 +e_6(p2+v(x)_“)) dedp. (27)
™ R2d

This result is known [50] and the proof we provide here is essentially
the one in [48], where however the von Neumann entropy z log(x) was used
instead of the Fermi-Dirac entropy xlog(z) + (1 — z)log(l — z). In fact,
Theorem [2 shows that the inequality (27) is indeed an equality.

Proof of Proposition [I0. Without loss of generality we may assume that p =
0. We also assume in a first step that V. € L°(R?) and then remove this
assumption at the end of the proof. Due to technical issues involving the
potential V', we need to localize the minimization problem on some bounded
set. Let x,n € C™ (Rd) satisfy x2 +n? =1, suppx € B (0,1) and suppn C
B(O,%)c. For R > 0, denote xp = X(TR) and np = 17(}—%) Let H; =
|ihV +A|?+V and take 7" = as in Lemma[l By the IMS localization

formula we have

Tr Hyy" = Tr <HhXR'YﬁXR) +Tr (HnnmﬁnR) —h? Tr <|V><R|2 + |V771~z|2> o
(28)

1
14-ePHn

and using the convexity of s and [9, Theorem 14],
hY _ h h
Trs <7 ) = Tr xrs (7 ) Xr + Trngs (7 ) NR

> Trs (XR’YﬁXR> +Trs (WR'YEUR> : (29)
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We first deal with the localization outside the ball. The operators we consider
in B (07 2) are the ones with Dirichlet boundary condition. We obtain by
Lemma [A that the remainder terms are bounded by

1
Tr (HEUR’Yh??R) + 3 Trs <nR’Yh77R>

1 . 2
- . —B([ikV+A)2+V—C
> =5 Trrap(0.2)7) 108 (1467 ))
C . 2
v o o= B(liInV+APR+V
> =5 Tera(ogy) ¢ )
C _ _12AD
& _ETrLQ(B(oé)C)e pRAmY) (30)

> _% Trr2(ga) ¢ B AT (1—a)Vtaint s, me V) (31)

alnfB(O RrRycV
> _C // p 2+ (1-)V(z )) dz dp, (32)
27Th R2d

where o > 0 is such that 8(1 — a) > fp. The inequality ([B0) comes from
the diamagnetic inequality [12] and (BI]) is obtained by the min-max char-
acterization of the eigenvalues. The last inequality follows from Golden-
Thompson’s formula [43, Theorem VIII.30].

The error term in the IMS formula can be estimated by

1 C 1
—Tr <|V><R|2 - |V7m|2> At > - Tr A"

> —g Tre PHn
R

R (27h) R2d

where we used again the diamagnetic and Golden-Thompson inequalities.
Next we derive a bound on the densities Pl where 7% = xrY xR, using

the Lieb-Thirring inequality [34, 35]. Combining [28)), 29), (32) and (33)

we have shown

v

e (R)
hd

1 1
TrHﬁfyg—l—BTrs(’yg) - STrHﬁfyﬁ_,_BTrs(,yh)

1
=3 Trlog (1 + 6_6H5> <0 (34)
where € (R) — 0 when R — co. By Lemma [ we have

1 1
Tr Hyy}, + 3 Trs (’yg) > 3 Tr (—hQA) Al

1 . 2 C
1 —B(lihv+A2/2+V) _ &
3 Trlog <1 +e ) i

where, as in (32),

—ainfV
Triog (1 + ¢ T +4R27)) < € / / (v?/2+ 0=V @) 4 dp,
27Th R2d
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This implies the following bound on the kinetic energy

Tr (—h2A) 7} < % (35)

By the Lieb-Thirring inequality, we obtain

2 1
/Rd Pyn ()" da < CTr< A7R> hd+20 (36)

We return to the estimate on the localized terms in ([28) and (29)), using
coherent states. Let f € C° (Rd) be a real-valued and even function, and

consider the coherent state fI (y) = h_%f(h_% (y — x) )ei%. The projec-
tions |fx,p> (fx,p| give rise to a resolution of the identity on L? (R?):

1
o o 1) (] = Mgz,

Using this in combination with Jensen’s inequality and the spectral theorem,
we obtain

Trs <XR7 XR 2a :c,p’ > > dzdp
R

h  ~hfh dx dp. 37
// S P

On the other hand, applying [16] Corollary 2.5] we have

Tr HyxrY"Xr

L Hiv 2, ) dadp

(27rh // (Ip+ AP +V (@) (fpfLy) ddp

oo ( ()-25}3% (A—A* fﬁf)-mvwz

—h/Rd|Vf|2+/Rd,o7§ (V—V* fﬁf) (38)

Since hdpyg is supported in B (0, R) and is uniformly bounded in L1+2/d (Rd)

by (Bd), and V x |fﬁ‘2 converges to V locally in L11d/2 (]Rd). The same
argument applied to A and |A|> combined with Hélder’s inequality, the
Lieb-Thirring inequality and (35) shows that the remainder terms above are
o (h~?). At last, combining (34)), (B7) and (B8) as well as a simple adaptation
of Proposition [I4] to finite domains (Remark [I5)) yields

lim sup 7% Tr log <1 + e*B(V’iV*A\QﬂLV))

h—0
// log (1 + eiﬁ(p%v(x))) dedp+ ¢ (R),
R2d

where € (R) — 0 when R — oo. This concludes the proof in the case
V_ € L*®(RY). We now remove this unnecessary assumption: let us consider

(2m)*
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a potential V' satisfying the assumptions of Proposition [I0 (possibly un-
bounded below). For K > 0, we take the cut off potential Vi = V1 >_g)
and for any 0 < € < 1 we obtain using Lemma

—% Trlog <1+eﬁ(ihv+‘4|2+v)>

1
: . 2 2z
> ouin, <Tr (1 =2)|ithV + AP + Vi) v + BTTS(7)>

. . 2 _
+ min, Tr (|ihV + A* +V — Vi) v
= —% Trlog (1 + 675((175)‘ihv+A|2+VK))

— Tr (eihV + AP +V — Vi) _.
Applying the Lieb-Thirring inequality, we obtain

Tr (eihV + A* +V — Vi) _ < Ch9e=/2 / (V = Vi) 2 dz.
Rd

This means that for any K and ¢
lim sup 7% Tr log <1 + e_ﬁ(|mv+A\2+V)>

h—0
1 2
< 1 1 —B((1—e)p*+Vk (z))
_(277)‘1//11@% og< +e )dxdp

+e7 20 | (V= Vi) da.
R4

First taking K — oo and afterwards ¢ — 0, the result follows using the
monotone convergence theorem. O

4. PROOF OF THEOREM [2] IN THE GENERAL CASE

In this section we deal with the interacting case w # 0. We first focus on
the proof of Theorem [ (mean-field limit) before proving Theorem [7] (dilute
limit).

4.1. Convergence of the energy in the mean-field limit n = 0. Here
we prove ([Z) in the case of general w € L'+4/2 (R?) + L (RY). The upper
bound on the canonical energy follows immediately from the trial states
constructed in Proposition 8] so we concentrate on proving the lower bound.
This is the content of the following proposition.

Proposition 11. Let By, p >0,V € Lllotd/Q (Rd) such that V (x) — oo when

|z| = oo and [ e PV+(®) dz < co. Furthermore, let |A2,w € L'+/2 (RY) +
L (Rd), w be even and satisfy w > 0. Then we have

e rd B B

lim inf Aec,, (7, N) > ey, (p)-

hEN—p
Proof. The main idea of the proof is to replace w by an effective one-body
potential, and then use the lower bound in the non-interacting case.

We begin by regularizing the interaction potential: let ¢ € C2°(R?) even
and real-valued, define y = ¢ * ¢ and w, = w * Y. with x. = e ¥x(e71")
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for € > 0. Note that w; > 0. Moreover, if « > 0 and w = wy + wo
with wy € LHg(Rd) and [Jwa||feorey < @ then wie = wy x xc satisfies
w1 € LY(RY) and wa . 1= wy * x. satisfies [wa,el oo (may < . Then, using
the Lieb-Thirring inequality, we can replace w by w. up to an error of order
w1 — wi el p1ra/2gay + Cav, see for instance [16, Lemma 3.4]. It remains to
let € tend to zero and then let « tend to zero. We therefore assume for the
rest of the proof that w satisfies @ € L'(R%).

Now, with 0 < @ € L'(R?), it is classical that we can bound w from below
by a one-body potential, see, e.g., [16, Lem. 3.6]. More precisely, we have
for all 1,...,2x € R? and ¢ € C°(RY)

N/\ 2
w 0z, — | >0,

which after expanding is the same as

N
1 N
> e a) 2 Y weplw) - [ (erwle - Ju©). @9
— , Rd 2
1<i<j<N =1

Let mg be the minimizer of the semiclassical problem with density p, whose
existence is guaranteed by Theorem [[I For any N-body trial state I' we
obtain from (39)

Tr Hy pl' > Tr ((ihV + A(uv))2 +V(z)+ ptw x P (ac)) r®

N 1
- ﬁ Rd(pmo * w)pmo - _w(0)7

2
where I'M) is the I-particle reduced density matrix of I'. Let pyia(p) be
the chemical potential corresponding to the minimizer mg and define Veff =
V + p~tw * ppy () — pvia(p). Denoting by eg’jf (A, N) the minimum of the
canonical energy with potential V*f and with no interaction, we obtain using
the convergence shown for the non-interacting case in Section Bl

o th
hdeCan (h N) 2 hdegaf (h N) 2 (pmo * w)pmo + MVla(p)th

// log(1+ e~ B +V(a )))dxdp
N—)oo R2d

hd

~ 3 Rd(pmo * W) Pmo + Uvia(p)p

- eela(p)a

where the last equality is due to Theorem [Il This concludes the proof of the
convergence of energy in Theorem O

4.2. Convergence of the energy in the dilute limit n > 0. Here we
prove the convergence of the energy in Theorem [l where n > 0. We first state
a lemma about the regularity of the minimizers of (@) when the interaction
has a Dirac component. It will be needed in the proof of the convergence of
the energy in Theorem [1 below.
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Lemma 12. Let 8,a,p > 0, let A,V satisfy the assumptions of Theorem [,
let w = ady for some a > 0. If m € L' (R??) satisfies the non-linear equation
(@), then py, € L1F4/2 (RY).

Proof. For simplicity and without loss of generality, we assume that a = p =
1, u = 0 and we take w = 6y and A = 0. Since p,,, € L' (Rd), it is sufficient
to show that py, 1y, (2)>1} i in Li+d/2 (Rd). Recalling that m satisfies the

equation
1

1+ BV @ tpm@)’

m (z,p) = (40)

we immediately have
e— BV (@)+pm ()

pm (r) < (27T)d

/ eI dp = Oy g PV @ tom (@),
R4

implying that
pm(x)eﬁpm(x) < CdﬁeﬁV—(x).
Hence d
pm]l{meH, S (V_ + log Cdﬁ) ]l{pm21} € L1+5(Rd),

since V_ € L1*% (Rd) and {pn, > 1} has finite measure by Markov’s inequal-
ity. U

Remark 13. If w = 0 then p,, behaves like V_d/2, it can be seen by doing
the same computation as in [3). Therefore, without other assumptions than

da
w e L2 (RY), we cannot expect more from py,.

4.2.1. Case0 < n < 1/d. We assume that 0 < dn < 1 and take w € L' (]Rd)
with 0 < @ € L' (R?). Take wy = N%w (N") and consider the canoni-
cal model with this interaction. Denoting a = [psw (x) dz, Proposition 8
implies that

lim sup hdegan (N,h) < ef,’f;}:mso (p).

N—o0

hiN—p
To show the lower bound, we follow the argument of Proposition [[Il Denote
by mg the minimizer of the Vlasov functional with the delta interaction
adg, and let I'yy be the Gibbs state minimizing the canonical free energy

functional. Applying ([B9) with ¢ = % Pmgs We obtain

1
TrHypI'nv > Tr ((ihv +A)? + Veﬁ> Tg\lf) + — Tr (WN * Py — APmg) Fg\p
p

N

=57 [, (pmo = oN) oo R ()N 40 () (41)

where Veff =V 4 5Pmg — ,u%ia&) (p). Here, by Holder’s inequality, we have
1

BT (Wi * g — ame)FSV)

= h /]Rd (wN * Pmo — a,omo) ppg\})

[N * pmg — apmg HL1+d/2(Rd) ’

< ||nd ‘
- H pI’g\}) L1+2/d(Rd)
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which tends to 0 since ||hd,0F(1) || L1+2/a(ray s bounded, by the Lieb-Thirring
N

inequality, and since py,, € L5 (Rd) by Lemma Finally we have,

/ (Pmo * WN) Prmg — a/ Prro-
R4 R4

Hence, continuing from (41]), we conclude that

liminf hel, (N, h) > - —— / / log (1 +e*5(p2+ve“<w>)> da dp
](\i/~>oo (27‘(’) B J Jr2d
h*N—p

=ad @ 2
+u$la“°(p)p—%/wpmo

w=as
= = (p) .

4.2.2. Case n > 1/d. Here we treat the dilute limit. Assume that d > 3,
0<weL! (Rd), and that w is compactly supported. Then, since w > 0,
we have the immediate lower bound

. - w=0 w=0
l}ggof hdegan (N,h) > lﬂlgof hde?j;fl (N,h) = eég (p) .
hEN—p hiN—p

On the other hand, it follows from Proposition [ that we also have the
corresponding upper bound, so

This finishes the proof of the convergence of the energy in the dilute limit.

4.3. Convergence of states. Without loss of generality, we take again
p=1

4.3.1. Convergence of the k-particle Husimi and Wigner measures. The proof
of the limits (I3) and (I4) in the case w > 0 is a corollary of the proof of
[16, Theorem 2.7|] and that Eeig has a unique minimizer. In particular, the
limiting measures do not depend on the coherent state function f. We start
by briefly recalling the definitions and then we sketch the proof of the con-
vergence of states.

For f € L?(R%) a normalized, real-valued function and (z,p) € R%*¢, h >
0, we define fg,p(y) = ¥4 f((x — y)/RY?)eP¥/" and denote by Pﬁp =
| f;ip) ( fg,p| the orthogonal projection onto fgp. For k > 1, we introduce the
k-particle Husimi measure of a state I'

k N! L 5
mgﬂl)‘(xlapla "'7xk7pk) == m Tr (Px17p1 R ® Pxprk ® ]lN,kF) s

for 1,p1, ..., xk,pr € R**. We also recall the definition of the Wigner

measure,
k _ixk .
WO p) = [ [ et Tharen
RdE JRA(N—E)

xD(x1 + 7y /2, ooy T + Ayr /2, 2g g1, 05 28) Ayt - dypdzpy1-..dzn,
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for x1,p1,...,x5,pr € R2¥ where T'(-,-) is the kernel of the operator T.
The rest of the proof is the same as in [16] and we just outline it. Using [16]
Theorem 2.7| and the fact that the Husimi measures are bounded both in the
x and p variables we obtain the existence of a Borel probability measure P
onB={uec LY (R¥) 0<pu<l, Jgea it < p} such that, up to a subsequence,

we have
(k) Rk d
/ka Mpry® - /B < R2dk m SD) P(m)’

for any o € L'(R?%) 4+ L°°(R?%) and similarly for the Wigner measures. We
begin with the case n = 0. Using coherent states, the tightness of (mS}%N) N

and a finite volume approximation we obtain

i 16, 0,8 2 oo [ ([ @2+ v)men)) dpm)

Nj —0Q
hiNj—p

_|_%/B</ka(w>kpm)pm> dP(m)Jrﬁ/Rst(/lgmd?’(m))- (42)

The lower semi-continuity of the entropy term can be justified as in the
proof of Lemma [[7l The case 0 < 7 < 1/d can be adapted using (39)
with ¢ = Npp,, and the case n > 1/d is even easier since the interaction is
assumed non-negative and can therefore be dropped.

Then, because V is confining, one can show that the de Finettti measure
P is supported on S = {p € L} (R??),0 < pu < 1, [goa = p}. If we denote
m = [¢mdP(m), the right side of [{2) is not exactly Ecan(7) because of
the interaction term. In the case 0 < n < 1/d we assumed @ > 0, hence the
following inequality follows from convexity:

/ </ w *pmpm> dP(m) = / W * P P
S R2dk R2d

The case 1/d < 7 is immediate since assumed w > 0 and the limiting energy
has no interaction term. Gathering the above inequalties we have

i e (h N7) > EG2°GT) > e ()

BN —p
where 5612" and e@’l'a (p) are the appropriate limiting functional and energy:
ie. e =wifn =20, =([gaw)dp if 0 < dp <1ande=0ifdy>1
and d > 3. Now, the equality in this series of inequalities forces P to be
supported on the set of minimizers of E\B,ig **. In our case, it is the singleton
{mo}. And since this limit does not depend on the subsequence we have
taken, we conclude that the whole sequence converges.

4.3.2. Convergence of the 1-particle Husimi measure and spatial density. The
convergence in L'(RY) of mS}%N comes from the fact that Sgig has good
coercive properties. For simpiicity we take A = 0 in the following. Using
Eq. B9) with ¢ = Npy,, as well as [16, Lemma 2.4] with a finite volume

approximation such as what has been done in the proof of Proposition [I{]
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one obtains that

hdeCan(

- (p +V(z —wN * pmg (2 ))m?%N (z, p)dxdp

271' d/g / fFN +0(1)
=0+ oy [ ) = stmo) +ot) @

As before we denote by ee’l; (p) the appropriate limiting energy, depending
on the choice of 7. Recall that in the case n > 1/d, the interaction potential
is assumed to be non negative, so the interaction term is just dropped. We
now focus on the second term in ([43]). Let us remark that

5(mf,rN) — s(mo)
(1)

1-m
_ D) fir 1) f.r
=mgp log m—oN + (1 —mjp, )log 1_mON
—}—(mo—m() ) log 1= mo
JEn mo

(1)
m 1 —
> mglog TJ;—EN +ﬁ(mo—m§c1,)pN)<p2+V+;wN*pmo—M+B 1>,

where we used the expression of mg (Bl) and the pointwise inequality

xzlog(x/y)+ (y—x) > 0 for any x,y > 0. Integrating over x and p, we obtain
1)

on the right side the sum of the relative von Neumann entropy of m Fln and
myg, and a term which tends to zero, due to the weak convergence we have
proven. By Pinsker’s inequality and (43]) we obtain

d 1 W ?
h BCan(h N) 6Vla (p) 2 W R2d |mf,FN o m0| + 0(1)

The convergence of the energies gives the strong convergence in L'(R??)
(1)

of me towards the Vlasov minimizer mg. This automatically gives that

pm;l)r — pmy in L'(R%). The convergence in L'*2/4(R%) follows from the

(Claésical) Lieb-Thirring inequality

ol L1+as2 ray <CIImHZT2R2d p2dedp) | HZL?(RM

for any m in L' (R??).
Finally, by the Lieb-Thirring inequality hdpﬁi is bounded in L'(R%) N

Litd/ 2(R%), hence this sequence is weakly precompact in those spaces. On
the other hand, for any ¢ € C2°(R?) we have by [16, Lemma 2.4]

/p W soz/ o) o |12
rd "r Ty
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and let p be an accumulation point for hd,ogli, by passing to the limit in both

sides we obtain
/ Pmotp = / pp-
Rd Rd
(1

The test function ¢ being arbitrary, we conclude that hdpF) has a single

N
accumulation point and therefore converges weakly in L'(R?) N L'+4/2(R¢)

towards py, .

5. PROOF OF THEOREM [I} STUDY OF THE SEMICLASSICAL FUNCTIONAL

This section is devoted to the proof of Theorem [Il and some auxiliary
results on the semiclassical functional. We begin our analysis with the free
particle case (w = 0) and then generalize to systems with pair interaction.
We recall that the magnetic potential does not affect the energy, only the
minimizer, and can be removed by a change of variables so we do not consider
it here. For this section and for p > 0 we denote by

SVla(p):{meLl(RM) ‘0§m§1, @#/ﬂwm:p}.

the set of admissible semi-classical measures.

5.1. The free gas.

Proposition 14 (Minimizing the free semi-classical energy). Suppose that
w =0, and that V. € LllOC (Rd) satisfies [pa e PV+(®) dx < 0o for some B> 0
and V_ € L¥?(R¥) N L1*T42(RY). Fiz p > 0 and define mg € Svia (p) by

_ 1
mo (#:P) = T e v

where u 1s the unique chemical potential such that
1
— dx dp = p.
Then
) =0 M =0
6617: (p) = E\ﬁngw (mo)
1 / CB(p2 V() —
=— log <1+e B(r*+V (@) “)) dz dp + pp. 44
(2m)* B Jr2a “
Proof. The map

R:=pu— (277)_d/ mo(x,p) dx dp
R2d

is well-defined on R, using that
1 max(1, e)
14 eBEHV(@)—1) = 1 4+ BP*+V(2))
which is integrable under our conditions on V', by the remarks after Theo-
rem [Il In addition, R is increasing and continuous with

li = li = +o0.
Jm R(u) =0, lim R(u) = +o0
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Therefore we can always find u so that the density of mg equals the given p.
Note then that

1

1= mo (2,p) = PO mg (2,p) = - g T

so that
— 1
EBpw=0 () = { 24V (x) — 1) mo+ mglogm
Ve (mo) @) 5 Jui B(p (z) — i) mo 0logmg
— mg log <eﬁ(p2+V(m)—u)mO> } dz dp
1
+ log (1 — mg) + mg) dxd
(277)‘16/11@%( g ( 0) + Brmg) P
1 2
_ loo (1 4+ e BE*+V@)-1)Y 4z d
(2w)dﬁ/de og (1+e¢ ) dedp-+ pp

showing the second equality in ([44]). That my is the minimizer follows from
the fact that the free energy is strictly convex. For instance, for any other
m € Syla (p), since the function s (t) = tlogt + (1 —t)log (1 —¢) is convex
on (0,1) with derivative s’ (£) = log (%), we have pointwise

s(m) > s (mo) + ' (mo) (m — my)
=—BE*+V(z)—p)m+B(p°+V(z)—p)mo+s(mg), (45)

replacing mg by its expression implies that Egig’wzo (m) > Egig’wzo (myg).

That mg is the unique minimizer follows from the fact that Egig’wzo is a

strictly convex functional. O

Remark 15. For an arbitrary domain Q C R*?, we have by the very same
arguments that

min { ! /Q((p2+V(x))m(x,p)dx—i—ls(m(x,p)))dxdp}

meL'(@) | (2r)? B
0<m<1

= — ® 1)dﬁ /Qlog <1 + e_ﬁ(pQ"'v(x))) dx dp.
T

with the unique minimizer mo (z,p) = (1 + PPV E@EN=1 4nd no chemical
potential since we have dropped the mass constraint.

5.2. The interacting gas. We now deal with the interacting case. When
w # 0, to retrieve the existence of minimizers as well as their expression,
we need to use compactness techniques and compute the Euler-Lagrange
equation. We divide the proof in several lemmas. We start by proving the
semi-continuity of the functional in Lemma [I6] and then prove the existence
of minimizers on Syia(p) in Lemma[I7l To obtain the form of the minimizers
we compute the Euler-Lagrange equation but because the entropy s is not
differentiable in 0 and 1 we first need to prove in Lemma [I8 that minimiz-
ers cannot be equal to 0 nor 1 in sets of non zero measure. The proof of
Theorem [Ilis given at the end of this subsection.
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Lemma 16. Fiz p, By > 0. Suppose that w = 0, and that Vi € Llloc (]Rd),
Vo € L¥2RY) N LHU2(RY) satisfies [pa e PV+@) da < co. Then for all

8> Bo, Eglgw 0 s L1- strongly lower semi-continuous on Syia (p).

Proof. We have to show that for any Cp € R
£(Co) i= {m € Svia (p) | EH° (m) < Co }

is closed with respect to the L'-norm on Syi, (p). Let (my) € £(Cp) be a
sequence converging towards some m € L! (Rd) with respect to the L'-norm.
By the L' convergence we immediately have W [Jg2am = p, we can also

extract a subsequence converging almost everywhere and obtain 0 < m < 1.
Applying Remark [[H with Q = {|z| + |y| > R}, we have for any R > 0 that

P24V (2)) 1 (2,0) + =5 (m (2,p)) dazdp

x\+\p\>R B

\
=73 //:r|+p|>R tog (1 e o +V(x))> dzdp = or(1). (46)

Now we use that (m,,) is bounded in L>(R??) to obtain that m, — m in
LP(R%*) for all 1 < p < co. By Fatou’s lemma and dominated convergence
we obtain

lim inf // (p* + V4 (2)) my, (2,p) dadp
|z[+|p|<R

n—oo
2‘/3/ (p” + Vi () m (z,p) dzdp,
|z|+|p|<R

// V_ (z) my (z,p) dedp — // V_ (z) m (z,p) dxdp.
o +pl<R e S jal+pl<R

It remains to deal with the entropy term: by continuity of s and by dominated
convergence we have

// s (my (z,p)) dedp — // z,p)) dz dp.
|zl +[p|<R e Ix\+\p\<R

All in all we obtain

3 3 67 ) =0
Co > hnniloréf EGDYT (M)

V(m)) m (z,p) dedp
|z|+|p|<R
1
— s(m(x dz d o(R
+3 /WSR (m (2,p)) dodp+ o(R)
P’ + Vi () m(z,p) dvdp + o(R)
Iw\+|p\<R

27‘(‘ //R?d CCp dxdp_{_ﬂ//ﬂ@d d:Cdp

Finally, we use the monotone convergence theorem and let R tend to oo to
obtain Egig’wzo (m) < Cp. O
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Lemma 17. Fiz p, 3y > 0. Suppose that w € L1*4/2(R?) + L (R?) +
Rydo, Vi € LL. (RY),V_ € LI*Y/2(RY) satisfies [pa e PV+ @ dz < 0o and
Vi(x) = oo as |x| — oo. Then for all 5 > Py, 5512 is bounded below and
has a minimizer mg in Syia (p).

Proof. Let (my) € Svia(p) be a minimizing sequence, i.e. 5512( n) —

e@la (p) as n — oo. Since (my,) is bounded in both L' (R??) and L> (R?),

one can verify that up to extraction the sequence has a weak limit mg €
Lt (de) N L* (R2d) satisfying

/)W@@@@MM®%/ mo (2,p) ¢ (z,p) dzdp  (47)
R2d R2d

for any ¢ € L! (]de) + L (]RZd). Moreover, the weak limit mg satisfies
0 <mg <1 and fde mo < ,O(27T)d. Note that we do not have pointwise

convergence a priori. Let us prove that mg is a minimizer of E\B,ig in Svia (p).
Our first step is to show the tightness of the sequence of probability measures
(my,) to obtain [goamo = (2m)%p, then we argue that mg € Svia (p) and
minimizes Sgig using weak lower-semicontinuity.

We start out by bounding the interaction term using some of the kinetic
energy. Let € > 0 and let us write w = wy +wy + ady with w; € L'T42(RY),
|wal| oo (ray < € and @ > 0. We use Young’s inequality to bound the inter-
action term

/Rd W * Py, Py = leHLHdﬂ(Rd)HPmnHLHM(Rd)HPmn”Ll(Rd)
+ ”wQHLC’O(Rd)HpmnH%l(Rd)
> Ce // p*my, (z,p) dedp — C. (48)
R2d

In the last inequality we have used the well-known fact [30] that

/ p*m (z,p) dp > inf / p*m (p) dp
R4 R4

0<m<1
[ in=(2m) o (a)

o ()1H2/4 (49)

— (271)¢
(@m) err g5

which gives the Lieb-Thirring inequality for classical measures on phase
space. Similarly we have

1+d/2 1+2/d
Agumwummsc(dﬂme@W,mwmmLmW).wm

Now using Proposition [[4] ([@9), (@8] and (B0), denoting o = (8 — So)/(25)

we have

¢z g\ﬁ/ig (mn)

1
2
V n a m m
RM(p +V (z))m +2p/Rd(w*p o) P

161aw0
2V(1a) ()

Za—ca//Rdeer ) mp — C (51)

+




FERMIONIC SYSTEMS AT POSITIVE TEMPERATURE 29

Note that by construction, S(1 — «) > fy. Taking € > 0 sufficiently small
but positive, the above inequality shows the tightness condition

//]R?d (p2 + Vi (w)) my, (z,p) dedp < C. (52)

Therefore [ [p20mo = (27)%p.
Now we prove that liminf, oo Egig(mn) > E\B,ig(mo). From the tightness
condition it is easy to verify that p,,, — pm, and that

/ (w — ado) * pmy, Pm, = | (W — abo) * Py Py -
Rd Rd

To finish, we deal with the delta part of the interaction as well as the entropy
part. We use that a continuous convex function is always weakly lower semi-
continuous. We obain

2 . 2 . 2
= <
o f = [, < i [
/ s(mo) :/ lim s(my,) Sliminf/ s(my,).
Rd Rd n—oo n—oo Rd

O

Lemma 18. Fiz p,3y > 0. Suppose that w € L td/2 (Rd) + L (Rd) +
R 0y, Vi € L} (]Rd) Vo e LY2(RY) satisfies Jza e PoVe @) dg < 0o and

loc
Vi(x) = o0 as |z| = oco. Then any minimizer mg € Svyi, (p) of Seig satisfies

0 <m(z,p) <1 for (z,p) € R* almost everywhere.

Proof. Define Q; := {mo =1} and Qg := {mo =0}. Our goal is to prove
that €©; and Qg have 0 measure. To this end, we will first show that
|21[|2] = 0. Then we use that at least one of then is a null set to prove
that so is the other one. Let us first assume neither of them are null sets.
Let r > 0,0 < A< % and for almost every (£1,£2) € Q1 x Qg define

01 = Mpe, nne, P2 = AL, )N

where 7/ ;= min{s > 0| |B (&, s) N Q| = |B (&1,7) N Q1|}. We will use the
notation v(r) = |B (&1,7) N Q1|. Note that by Lebesgue’s density theorem,
for almost every (£1,&2) € Q1 x Qp we have v(r) > 0 and ' < oo. The idea
is to consider the function mgy — @1 + @2 € Svia (p) and use the fact that mg

is a minimizer of Egig to obtain a contradiction. Let us estimate the entropy,
using that s(0) = s(1) =0 and s(t) = s(1 — ¢), we obtain

//deS(mO — 1+ o) = //des(mo) + 5(p1) + (2)
:23()‘)”(7”)+//Rgd8(m0).



30 M. LEWIN, P.S. MADSEN, AND A. TRIAY

It remains to estimate the contribution of this small perturbation to inter-
action energy, we have

/ Pmo—p14+p2W * Pmo—p1+p2 = / PmoW * Pmg + 2/ Poo—p1W * Pmy
R4 R4 R4

+/ Ppa—p1W * Ppos—p1 -
R4

Let ¢ > 0 and let us write w = w; + wy + ady with w; € L'42(RY),
w2l oo (ray < € and a > 0. We first use Young’s inequality to bound the
last term

/ w * (104,02 - ptpl) (104,02 - ptpl)
R4
< Hw1HL1+d/2(Rd) 10gs = P ||L1(Rd) g2 = P HL1+2/d(Rd)
+ w2l Lo (ray P2 — Pior ”%I(Rd) + allpe, — Pm”%%ﬂgd)
_d_
< ON? < |wll p1+a/2(ray o(r) a4 ngHLgo(Rd)v(r)2 + av(r)).
Next and similarly we estimate the second term (minus the delta interaction)

/Rd(wl +w2) * Pmg (Ppy — Pyr)

< ||w1||L1+d/2(]Rd) HpmoHL1+2/d(Rd) [P — P¢1||L1(Rd)
+ lwz| Lo (ray | Pmo | L1 (R | Pp2 — Pior [l 1 (e
< OXllwill prvarz gay [lomo || Lr+2/a(ray + (w2l Leo ey | Pmo | L1 Ry )0 (r)-
Since my is a minimizer, these estimates imply that

it (mo) < G2 (mo — @1 + 2)

oy [ 07V @t o) -

_d_
+ C’)\2 (HwHLl"'d/Q(Rd) ’U(’I“)1+ d+2 4 ||U}2||Lgo(Rd)U(T‘)2 + CL’U(’I“))

< &R (mo) +

+ O Noallsearsuy omollvsasy

25 (A
all d) v(r).

(2m)" B

Now we divide the last inequality by v(r) and we let  tend to zero and use

the Lebesgue differentiation theorem (and the Lebesgue density theorem),
to obtain that for almost all (£1,&2) € Q1 x Qq
25(\)

— v < —p% -V (x1) - apmo(xl) +p% +V (z2) + aPmo(x2)

i uwQHLgo(Rd)upmo||L1(Rd))v<r> ;

+C Hw||L1+d/2(Rd) ||pm0HL1+2/d(Rd) :

Now letting A tend to zero, we have that for almost all (£1,&2) € Q1 x Qo,
3+ V (22) + apmy(w2) — p? — V (21) — apme(z1) = oo which, since V €
Lllotdp(Rd) and pp,, € Lllotwd(]Rd), implies that |2 x Qg| = 0. Therefore,
at least one of them is a null set, we will treat the case where || = 0 and
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|21] # 0, the other one can be dealt with similarly. Because m has finite
mass we can find € > 0 such that Qs . := {1 —e < m(x,p) <1—¢/2} is not
a null set. Defining ¢; and ¢y (replacing Qg by €22 .) as before and doing
the same computations we obtain that for almost all (£1,&2) € 1 X Qg
I P _ 2
g S Vi) apmy (21) +p3 + V (22) + apm, (22)
s(m(£2) = A) — s(m(&))

+ b\ +C Hw||L1+d/2(Rd) ||pm0HL1+2/d(Rd) .

Because s is continuously differentiable on [1 — 2¢,1 — /2], the difference
quotient above is bounded uniformly in & € Q5. and A > 0 small enough.
Letting A\ tend to zero, we end up with the same contradiction as before
showing that 2 is a null set. O

Proof of Theorem[1. We assume A = 0 without loss of generality, since it
can be removed by a change of variable.

We will first show that the expression (B) of the minimizers is correct by
computing the Euler-Lagrange equation associated with any such minimizer
mg. This gives automatically the expression of the minimum energy (@). We
conclude, in the case w > 0, by showing that the chemical potential p is
given by (8).

Let ¢ > 0 small enough and ¢ € L' N L=({e < m < 1 —¢}) such that
[[o = @r)%p. For § = m we have my := mfj:“’ € Svia(p) for all
t € (—4,0). Since mg is a minimizer, we must have %Egla (mt)|t=0 = 0.
Using that %mt = (o —mgo)(1+1t)"? and &' (t) = log (%) we obtain

//de <p2+V(x)+%w*pmo (2) + L log <M>> o (2.p) dedp

B 1—m0($,p)

://RM <p2+V($)+%w*Pmo(x)

+ %mg (%) )mo (z,p) dzdp.  (53)

Denoting the right hand side by (27T)d,u\/1a (p) p, we have shown for any ¢
verifying the above conditions that

1
// <p2 +V (@) + ~w * ppy (2)
{e<m<1—¢} P

+1 log <M> — IVla (p)><P (z,p) dzdp = 0.

/8 1—my (.%',p)

This is enough for the left factor in the integrand above to be zero almost
everywhere on {¢ < m < 1 —¢}. But € can be taken arbitrary small and
by Lemma [I8 we have (J..o{e <m <1—e}={0<m < 1} = R* almost
everywhere, from which we obtain ().

That py,, € L*(RY)NL™*42(RY) follows from Lemma 2 and the fact that
myg satisfies ().

It remains to prove (8) when it is assumed that w > 0. This is a classical
argument and we only sketch it, we refer to [33] for further details. First
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note that the assumption @w > 0 ensures the convexity of E&Z, hence for
p >0, F\éla(p' ,p) is the minimum of a convex function under a linear con-
straint, it is therefore convex. This implies that, for p’ > 0, the function
F@la(-, p') is continuous on R and continuously differentiable except maybe
in a countable number of values of p. We first show that

R* 3 p— pu(p) €R

defines a bijection, where u(p), defined in (B, is the Lagrange multiplier
associated to the constraint p. Consider, for ¢ € R, the unconstrained
minimization problem

inf Egigl (m) —

H — B N
0<m<1 (Qﬂ)d /RQd m = ll)rzlg Fvla(P,P) Hmp- (54)

This yields a minimizer m* and hence a density p(u) := (27)~¢ [[ mH, see
Remark M3l The expression of m* can be computed through the Euler-
Lagrange equation,

_ 1

1 4 BV o rw—p)

From (54)), the density m* must also satisfy Egigl(m“) = Fela(p(,u), p') and
since w > 0, we conclude that m* is also the unique solution of this equation
and must satisfy (B where p(p) appears. By identification, u = u(p) is the
Lagrange multiplier associated to the minimization problem at density p.
This proves the bijective correspondance between u(p) and p.

Finally, if F\éla(-7 p') is differentiable in some py, the above discussion shows
@®) for p = po. But because of the one-to-one correspondance between p and

0, angla cannot be discontinuous, this concludes the proof. O
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