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SEMI-CLASSICAL LIMIT OF LARGE FERMIONIC SYSTEMS AT POSITIVE TEMPERATURE

We study a system of N interacting fermions at positive temperature in a confining potential. In the regime where the intensity of the interaction scales as 1/N and with an effective semi-classical parameter = N -1/d where d is the space dimension, we prove the convergence to the corresponding Thomas-Fermi model at positive temperature.
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In the regime considered in this paper, a mean-field scaling is coupled to a semi-classical limit. This creates some mathematical difficulties. Before [START_REF] Fournais | The semi-classical limit of large fermionic systems[END_REF], this limit has been rigorously considered at T = 0 for atoms by Lieb and Simon in [START_REF]The Thomas-Fermi theory of atoms, molecules and solids[END_REF][START_REF] Lieb | The Hartree-Fock theory for Coulomb systems[END_REF] and for pseudo-relativistic stars by Lieb, Thirring and Yau in [START_REF]Gravitational collapse in quantum mechanics with relativistic kinetic energy[END_REF][START_REF] Lieb | The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics[END_REF]. Upper and lower bounds on the next order correction have recently been derived in [START_REF] Hainzl | On the correlation energy of the mean-field Fermi gas[END_REF][START_REF] Benedikter | Optimal Upper Bound for the Correlation Energy of a Fermi Gas in the Mean-Field Regime[END_REF], for particles evolving on the torus. There are several mathematical works on the time-dependent setting [START_REF] Narnhofer | Vlasov hydrodynamics of a quantum mechanical model[END_REF][START_REF] Spohn | On the Vlasov hierarchy[END_REF][START_REF] Bardos | Mean field dynamics of fermions and the time-dependent Hartree-Fock equation[END_REF][START_REF] Elgart | Nonlinear Hartree equation as the mean field limit of weakly coupled fermions[END_REF][START_REF] Fröhlich | A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction[END_REF][START_REF] Benedikter | Mean-field evolution of fermionic systems[END_REF][START_REF] Benedikter | Mean-field Evolution of Fermionic Mixed States[END_REF][START_REF] Bach | Kinetic Energy Estimates for the Accuracy of the Time-Dependent Hartree-Fock Approximation with Coulomb Interaction[END_REF][START_REF] Petrat | A new method and a new scaling for deriving fermionic mean-field dynamics[END_REF][START_REF] Benedikter | From the Hartree dynamics to the Vlasov equation[END_REF][START_REF] Dietler | From Hartree dynamics to the relativistic Vlasov equation[END_REF], in which the Schrödinger dynamics has been proved to converge to the Vlasov time-dependent equation in the limit N → ∞. Finally, the first two terms in the expansion of the (free) energy of a Fermi gas with spin in the limit ρ → 0 was provided in [START_REF] Lieb | Ground-state energy of the lowdensity Fermi gas[END_REF] at T = 0 and in [START_REF] Seiringer | The thermodynamic pressure of a dilute Fermi gas[END_REF] at T > 0.

The mean-field limit at positive temperature for fermions is completely different from the bosonic case. It was proved in [START_REF] Lewin | Derivation of Hartree's theory for generic mean-field Bose systems[END_REF] that in the similar mean-field regime for bosons, the leading order is the same at T > 0 as when T = 0. Only the next (Bogoliubov) correction depends on T [START_REF] Lewin | Bogoliubov spectrum of interacting Bose gases[END_REF]. In order to observe an effect of the temperature at the leading order of the bosonic free energy, one should take T ∼ N , a completely different limit where nonlinear Gibbs measures arise [START_REF] Gottlieb | Examples of bosonic de Finetti states over finite dimensional Hilbert spaces[END_REF][START_REF]Derivation of nonlinear Gibbs measures from many-body quantum mechanics[END_REF][START_REF]Gibbs measures based on 1D (an)harmonic oscillators as mean-field limits[END_REF][START_REF]The interacting 2D Bose gas and nonlinear Gibbs measures[END_REF][START_REF]Classical field theory limit of 2D many-body quantum Gibbs states[END_REF][START_REF] Rougerie | De Finetti theorems, mean-field limits and Bose-Einstein condensation[END_REF]. Without statistics (boltzons), the temperature does affect the leading order of the energy [START_REF] Lewin | Bose Gases at Positive Temperature and Non-Linear Gibbs Measures[END_REF], and the same happens for fermions, as we will demonstrate.

Our method for studying the Fermi gas in the coupled mean-field/semiclassical limit relies on previous techniques introduced in [START_REF] Fournais | The semi-classical limit of large fermionic systems[END_REF]. Assuming that the interaction is positive-type ( w ≥ 0), the lower bound follows from using coherent states and inequalities on the entropy. We discuss later in Remark 5 a conjectured inequality on the entropy of large fermionic systems which would imply the result for any interaction potential, not necessarily of positive-type. The upper bound is slightly more tedious. The idea is to construct a trial state with locally constant density in small boxes of side length much larger than , and to use the equivalence between the canonical and grand-canonical ensembles for the free Fermi gas. Finally, the convergence of states requires the tools recently introduced in [START_REF] Fournais | The semi-classical limit of large fermionic systems[END_REF] based on the classical de Finetti theorem for fermions.

The article is organized as follows. In the next section we introduce both the N -particle quantum Hamiltonian and the positive-temperature Thomas-Fermi theory which is obtained in the limit. We then state our main theorems, Theorem 2 and Theorem 7. As an intermediate result for the upper bound, we show in Section 2 how to approximate a classical density by an N body quantum state. In Section 3, we use this trial state and some known results about the free Fermi gas at positive temperature to prove our main result in the non-interacting case. The interacting case is dealt with in Section 4. Finally, in Section 5 we study the Gibbs state and the minimizers of the Thomas-Fermi functional at positive temperature (Theorem 1).
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Models and main results

1.1. The Vlasov and Thomas-Fermi functionals at T > 0. For a given density ρ > 0 and an inverse temperature β > 0, the Vlasov functional at positive temperature is given by

E β,ρ Vla (m) = 1 (2π) d R 2d |p + A(x)| 2 + V (x) m (x, p) dx dp + 1 2ρ R 2d
w (x -y) ρ m (x) ρ m (y) dx dy

+ 1 (2π) d β R 2d s (m (x, p)) dx dp, (1) 
where s (t) = t log t + (1 -t) log (1 -t) is the fermionic entropy, and

ρ m (x) = 1 (2π) d R d m (x, p) dp
is the spatial density of particles. Here m is a positive measure on the phase space R d × R d , with the convention 1

(2π) d R 2d m(x, p) dx dp = R d ρ m (x)dx = ρ,
and which is assumed to satisfy Pauli's principle 0 ≤ m ≤ 1. For convenience we have added the factor 1/ρ in front of the interaction energy, because it will naturally arise in the mean-field limit. We denote the Vlasov minimum free energy by

e β Vla (ρ) = inf 0≤m≤1 (2π) -d R 2d m=ρ E β,ρ Vla (m) . (2) 
Precise assumptions on A, V and w will be given later.

Similarly as in the case T = 0, we can rewrite the minimum as a two-step procedure where we first choose a density ν ∈ L 1 (R d , R + ) with R d ν = ρ and minimize over all m such that ρ m = ν, before minimizing over ν. For any fixed constants ν ∈ R + and A ∈ R d we can solve the problem at fixed x and obtain

min 0≤m(p)≤1 (2π) -d R d m(p) dp=ν 1 (2π) d R d |p + A| 2 m (p) dp + 1 (2π) d β R d s (m (p)) dp = - 1 (2π) d β R d log 1 + e -β p 2 -µ FG (β,ν) dp + µ FG (β, ν) ν
where µ FG (β, ν) is the unique solution to the implicit equation 1 (2π) d R d 1 1 + e β(p 2 -µ FG (β,ν)) dp = ν and with the unique corresponding minimizer m ν,A (p) = 1 1 + e β(|p+A| 2 -µ FG (β,ν)) . This is the uniform Fermi gas at density ν > 0. For later purposes we introduce the free energy of the Fermi gas

F β (ν) := - 1 (2π) d β R d log 1 + e -β(p 2 -µ FG (β,ν)) dp + µ FG (β, ν) ν. (3) 
Note that A only appears in the formula of the minimizer. It does not affect the value of the minimum F β (ν).

All this allows us to reformulate the Vlasov minimization problem using only the density, which leads to the Thomas-Fermi minimization problem at positive temperature

T = 1/β e β Vla (ρ) = min ν∈L 1 (R d ,R + ) R d ν(x) dx=ρ R d F β ν(x) dx + R d V (x)ν(x) dx + 1 2ρ R 2d w (x -y) ν (x) ν (y) dx dy . ( 4 
)
The Vlasov minimization (2) on phase space will be more tractable and we will almost never use the Thomas-Fermi formulation (4) of the problem. Now we discuss the existence of a unique Vlasov minimizer for (2), under appropriate assumptions on V, A, w. We use everywhere the notation V ± = max(±V, 0) for the positive and negative parts of V , which are both positive functions by definition.

Theorem 1 (Minimizers of the Vlasov functional). Fix ρ, β 0 > 0. Suppose that

V -∈ L d/2 R d ∩ L 1+d/2 (R d ), A ∈ L 1 loc (R d ) and that V + ∈ L 1 loc R d satisfies R d e -β 0 V + (x) dx < ∞. Let w ∈ L 1+ d 2 R d + L ∞ ε R d + R + δ 0 .
Then, for all β > β 0 , there are minimizers for the Vlasov problem [START_REF] Bach | Generalized Hartree-Fock theory and the Hubbard model[END_REF]. Any minimizer m 0 solves the nonlinear equation

m 0 (x, p) = 1 1 + exp β(|p + A(x)| 2 + V (x) + ρ -1 w * ρ m 0 (x) -µ) , (5) 
for some Lagrange multiplier µ. The minimum can be expressed in terms of m 0 and µ as

e β Vla (ρ) = - 1 (2π) d β R 2d log 1 + e -β |p| 2 +V (x)+ρ -1 w * ρm 0 (x)-µ dx dp + µρ - 1 2ρ R 2d w (x -y) ρ m 0 (x) ρ m 0 (y) dx dy. (6) 
Furthermore, if w ≥ 0, then E β,ρ Vla is strictly convex and therefore has a unique minimizer. In this case, for ρ ′ > 0 define

F β Vla (ρ, ρ ′ ) := inf 0≤m≤1 (2π) -d R 2d m=ρ E β,ρ ′ Vla (m) . (7) 
Then, for any ρ ′ > 0, F β Vla (•, ρ ′ ) is C 1 on R + and the multiplier appearing in (5) is given by

µ = ∂F β Vla ∂ρ (ρ, ρ ′ ) ρ ′ =ρ . ( 8 
)
The proof of Theorem 1 is classical and given for completeness in Section 5. Note that the magnetic potential A has only a trivial effect on the minimization problem. The minimizers for a given A are exactly equal to the m 0 (x, p + A) with m 0 a minimizer for A ≡ 0. The value of the minimal energy, the density ρ m 0 and the Lagrange multiplier µ are unchanged under this transformation.

The two conditions e -βV

+ ∈ L 1 (R d ) and V -∈ L d/2 (R d )∩ L 1+d/2 (R d
) have been chosen to ensure that the minimizer has a finite total mass and a finite total energy. This is because

R 2d 1 1 + e β(p 2 +V + -V -) ≤ R 2d e -β(p 2 /2+V + ) + |{p 2 ≤ 2V -}| ≤ C R d β -d 2 e -βV + + V d 2 - (9) 
and, similarly,

R 2d log 1 + e -β(p 2 +V + -V -) dx dp ≤ R 2d e -β(p 2 /2+V + ) + C {p 2 ≤2V -} (1 + βV -) ≤ C R d β -d 2 e -βV + + V d 2 -+ βV 1+ d 2 - .
1.2. The N -body Gibbs state and its limit. The aim of this paper is to understand the large-N limit of fermionic systems in a mean-field-type regime. We will end up with the Vlasov problem Eq. ( 1) introduced in the previous section.

1.2.1. The mean-field limit.

Here we analyze the 'mean-field' limit where the interaction has a fixed range and a small intensity. We consider the following Hamiltonian

H N, = N j=1 |i ∇ x j + A(x j )| 2 + V (x j ) + 1 N 1≤j<k≤N w (x j -x k ) (10) 
acting on the Hilbert space N 1 L 2 R d of anti-symmetric functions. For simplicity we neglect the spin variable. We suppose that

|A| 2 , w ∈ L 1+ d 2 R d + L ∞ ε R d
and that w is an even function. We also assume that the electric potential

V ∈ L 1+d/2 loc R d is confining, that is, V (x) → ∞ when |x| → ∞,
and that the divergence is so fast that e -β 0 V + (x) dx < ∞ for some β 0 > 0. Note that this implies that V -has a compact support, hence in particular

V -∈ L d/2 (R d ) ∩ L 1+d/2 (R d ).
At inverse temperature β > β 0 , the canonical free energy is given by the functional

E N, Can (Γ) = Tr (H N, Γ) + 1 β Tr(Γ log Γ), (11) 
defined for all fermionic quantum states Γ = Γ * ≥ 0 with Tr(Γ) = 1. The minimum over all Γ is uniquely attained at the Gibbs state

Γ N, ,β = Z -1 e -βH N, ,
where Z = Tr e -βH N, , which leads to the minimum free energy

e β Can ( , N ) := min Γ E N, Can (Γ) = - 1 β log Tr e -βH N, .
Our main result is the following.

Theorem 2 (Mean-field limit).

Let β 0 , ρ > 0. Assume that V ∈ L 1+d/2 loc R d is such that V (x) → ∞ at infinity and that e -β 0 V + (x) dx < ∞. Further- more, assume |A| 2 , w ∈ L 1+d/2 R d + L ∞ ε R d
with w even and satisfying w ≥ 0. Then, for all β > β 0 we have the convergence

lim N →∞ d N →ρ d e β Can ( , N ) = e β Vla (ρ). (12) 
Moreover, if (Γ N ) is a sequence of approximate Gibbs states, that is,

E ,N Can (Γ N ) = e β Can ( , N ) + o( -d
), then for all k ≥ 1 we have in the same limit

R 2dk m (k) f,Γ N ϕ → R 2dk m ⊗k 0 ϕ ( 13 
)
for all ϕ ∈ L 1 (R 2dk ) + L ∞ (R 2dk ), where m (k)
f,Γ N is the k-particle Husimi function of Γ N and m 0 is the unique minimizer of the Vlasov functional in Eq. [START_REF] Benedikter | Mean-field Evolution of Fermionic Mixed States[END_REF]. Similarly, if we denote by W (k) Γ N the k-particle Wigner measure of Γ N , we also have,

R 2dk W (k) Γ N ϕ → R 2dk m ⊗k 0 ϕ, (14) 
for all ϕ satisfying

∂ α 1 x 1 ...∂ α k x k ∂ β 1 p 1 ...∂ β k p k ϕ ∈ L ∞ (R 2dk
), where max(α j , β j ) ≤ 1. Finally, the one particle density of Γ N satisfies the following convergence

m (1) f,Γ N -→ m 0 strongly in L 1 (R 2d ), (15) 
ρ m (1) f,Γ N -→ ρ m 0 strongly in L 1 (R d ) ∩ L 1+2/d (R d ), (16) 
moreover, we have

d ρ (1) Γ N ⇀ ρ m 0 weakly in L 1 (R d ) ∩ L 1+2/d (R d ).
The Husimi function m

(k)
f,Γ N (based on a given shape function f ) and the Wigner measure W (k) Γ N are defined and studied at length in [START_REF] Fournais | The semi-classical limit of large fermionic systems[END_REF]. These are some natural semiclassical measures that can be associated with Γ N in the k-particle phase space R 2dk . We will recall their definition in the proof later in Section 4.3. The convergence of states as in ( 13) and ( 14) actually follows rather easily from the theory developed in [START_REF] Fournais | The semi-classical limit of large fermionic systems[END_REF] and most of this article will be dedicated to the proof of the limit [START_REF] Cycon | Schrödinger operators with application to quantum mechanics and global geometry[END_REF]. Remark 3. For simplicity we work with a confining potential V but Theorems 1 and 2 hold the same when R d is replaced by a bounded domain Ω with any boundary conditions. Remark 4. Our lower bound relies on the strong assumption that w ≥ 0, but the upper bound does not. It is classical that a positive Fourier transform allows to easily bound the interaction from below by a one-body potential, see Eq. (39) below.

Remark 5. Without the assumption w ≥ 0, the Vlasov functional E β,ρ

Vla can have several minimizers and the limit in Eq. ( 13) is believed to be an average over the set of minimizers of E β,ρ

Vla . Namely there exists a so called de Finetti measure P [START_REF] Fournais | The semi-classical limit of large fermionic systems[END_REF], concentrated on the set of minimizers for e β Vla , such that

m (k) f,Γ N ⇀ m ⊗k dP(m),
in the sense defined in Theorem 2. We conjecture the following Fatou-type inequality on the entropy lim inf

N →∞ d N →ρ d Tr Γ N log Γ N ≥ R 2d s(m) dP(m) (17) 
for general sequences (Γ N ) with de Finetti measure P. Should this inequality be true, we could remove the assumption w ≥ 0 in Theorem 2. In fact, in our proof we show that the above inequality holds when the right-hand side is replaced by

R 2d s m dP(m) .
When there is a unique minimizer, the two coincide.

Example 6 (Large atoms in a strong harmonic potential). The Hamiltonian in Eq. (10) can describe a large atom in a strong harmonic potential. Indeed, consider N electrons in a harmonic trap and interacting with a nucleus of charge Z. In the Born-Oppenheimer approximation, the N electrons are described by the Hamiltonian

N j=1 -∆ x j + ω 2 |x j | 2 - Z |x j | + j<k 1 |x j -x k | .
Scaling length in the manner x j = N -1/2 x ′ j we see that this Hamiltonian is unitarily equivalent to

N 4/3   N j=1 -N -2 3 ∆ x j + ωN -1 2 |x j | 2 - ZN -1 |x j | + 1 N j<k 1 |x j -x k |   .
Hence taking Z proportional to N and ω proportional to N , we obtain the Hamiltonian of Eq. (10) with d = 3, A = 0, V (x) = |x| 2 and w(x) = |x| -1 . In the limit we find the positive-temperature Thomas-Fermi model for an atom in a harmonic trap, which has stimulated many works in the Physics literature [START_REF] Feynman | Equations of state of elements based on the generalized Fermi-Thomas theory[END_REF][START_REF] Gilvarry | Solutions of the temperature-perturbed Thomas-Fermi equation[END_REF][START_REF] Latter | Temperature behavior of the Thomas-Fermi statistical model for atoms[END_REF][START_REF] Cowan | Extension of the Thomas-Fermi-Dirac statistical theory of the atom to finite temperatures[END_REF]. 1.2.2. The dilute limit. In this section we deal with the case where the interaction potential has a range depending on N and tending to zero in our limit N → ∞ with d N → ρ. This is classically taken into account by choosing the interaction in the form

w N (x) := N dη w(N η x) (18) 
for a fixed w and a fixed parameter η > 0. In our confined system, the average distance between the particles is of order N -1/d ≃ ρ -1/d . The system is dilute when the particles interact rarely, that is, η > 1/d. For bosons in 3D, the limit involves the finite-range interaction 4πaδ 0 where a = R d w/(4π) for η < 1 and a = a s , the s-wave scattering length a s when η = 1. Due to the anti-symmetry the s-wave scattering length does not appear for fermions, except if there are several different species, e.g. with spin. This regime has been studied in [START_REF] Lieb | Ground-state energy of the lowdensity Fermi gas[END_REF] for the ground state and [START_REF] Seiringer | The thermodynamic pressure of a dilute Fermi gas[END_REF] at positive temperature, for the infinite translation-invariant gas. Here we extend these results to the confined case but do not consider any spin for shortness, hence we obtain a trivial limit. Our main result for dilute systems is the following. (ρ) is the minimum of the Vlasov energy with interaction potential ( R d w)δ 0 .

Theorem 7 (Dilute limit). Let β 0 , ρ > 0. We assume that V ∈ L 1+d/2 loc R d is such that V (x) → ∞ at infinity and that e -β 0 V + (x) dx < ∞. Fur- thermore, assume that |A| 2 ∈ L 1+d/2 R d + L ∞ ε R d and w ∈ L 1 (R d ) ∩ L 1+d/2 (R d ) is even. • If 0 < η < 1/
• If η > 1/d, d ≥ 3 and w ≥ 0 is compactly supported, then for all β > β 0 we have lim

N →∞ d N →ρ d e β Can ( , N ) = e β,0 Vla (ρ)
where e β,0 Can (ρ) is the minimum of the Vlasov energy without interaction potential.

In both cases, we have the same convergence of approximate Gibbs states as in Theorem 2.

The proof of Theorem 7 is given in Section 4.

Contruction of trial states

In this section we construct a trial state for the proof of the upper bound. In the dilute case this construction is similar to the one in [START_REF] Seiringer | The thermodynamic pressure of a dilute Fermi gas[END_REF] where the thermodynamic limit of non-zero spin interacting fermions were studied in the grand-canonical picture. In particular we will make use of [START_REF] Seiringer | The thermodynamic pressure of a dilute Fermi gas[END_REF]Lemma 2]. Precisely we prove the following proposition.

Proposition 8 (Canonical trial states). Let ρ 0 ∈ C ∞ c (R d ) be such that R d ρ 0 = 1. Assume |A| 2 ∈ L 1+d/2 (R d ), w ∈ L 1 (R d ) ∩ L 1+d/2 (R d ). If ηd > 1,
we assume w to be compactly supported. Then, there is a sequence of canonical states

Γ N on N i=1 L 2 (R d ) satisfying d Tr N i=1 (i ∇ + A) 2 Γ N + Tr Γ N log Γ N -→ N →∞ d N →1 R d F β (ρ 0 ), (19) 1 N ρ 
(1)

Γ N -ρ 0 L 1 (R d ) -→ N →∞ d N →1 0 ( 20 
)
and d N R 2d w N (x -y)ρ (2) Γ N (x, y)dxdy -→ N →∞ d N →1      R d (w * ρ 0 )ρ 0 if η = 0 R d w R d ρ 2 0 if 0 < dη < 1 0 if dη > 1, d ≥ 3. (21 
) Furthermore, we can take ρ

(1) Γ N to be supported in a compact set which is independent of N and uniformly bounded in L ∞ (R d ) so that the convergence [START_REF] Gottlieb | Examples of bosonic de Finetti states over finite dimensional Hilbert spaces[END_REF] 

holds in fact in all L p (R d ) for 1 ≤ p < ∞.
Proof. The proof consists in dividing the space into small cubes in which we take a correlated version of the minimizer for the free case and then do the thermodynamic limit in these cubes. This choice allows us to control the one-body density, which will be almost constant in these boxes. Without loss of generality, we will write the proof for A = 0. The proof is the same for A = 0.

Step 1. Definition of the trial state.

Let ρ 0 ∈ C ∞ c (R d ) and take R > 0 such that supp ρ 0 ⊂ [-R/2, R/2) d =: C R . Divide C R in small cubes of size ℓ > 0, C R ⊂ z∈B∞(Rℓ -1 )∩Z d Λ z with Λ z := zℓ + [-ℓ/2, ℓ/2) d . We will take later 1 ≫ ℓ ≫ . For all z define N z := ⌊ d ℓ d min Λz ρ 0 ⌋ so that z N z ≤ N .
For 0 < ε < ℓ/4 and for all z, define the box

Λ z := zℓ + - ℓ -ε 2 , ℓ -ε 2 d ⊂ Λ z
and denote by

Γ z = e -β( Nz i=1 -2 ∆ per i ) Z z = k∈P Nz (Z d ) λ k |e k 1 ∧ • • • ∧ e k Nz e k 1 ∧ • • • ∧ e k Nz |
the canonical minimizer of the free energy at inverse temperature β of N z free fermions in the box Λ z with periodic boundary conditions, where P n (E) denotes the set of all subset of E with n elements. For j ∈ Z d ,

e j (x) = (ℓ -ε) -d/2 e i 2π ℓ-ε j•x
are the eigenfunctions of the periodic Laplacian in Λ z and λ k the eigenvalues of Γ z associated with e k = e k 1 ∧...∧e k Nz . Note that we omit the z dependence of λ k and e k . We now regularize these functions and construct a state in the slightly larger cube

Λ z with Dirichlet boundary condition. Let χ ∈ C ∞ (R d ) such that χ ≡ 0 in R d \B(0, 1), χ ≥ 0 and R d χ = 1, denote χ ε = ε -d χ(ε -1 •)
and define for j ∈ Z d f j := e j 1 Λz * χ ε .

Note that

Λz

f j f k = e j e k (1 Λz * χ ε ) = Λz e j (x)e k (x)χ ε (y -x)dydx = Λz e j e k R d χ = δ j,k .
Hence the family (f j ) j is still orthonormal and one can check that it satisfies

f j ≡ e j in [-(ℓ -2ε)/2, (ℓ -2ε)/2
) d and as well as the Dirichlet boundary condition on Λ z . Besides from having a state satisfying the Dirichlet boundary condition, we also want to add correlations in order to deal with the dη >

1 case. Let ϕ ∈ C ∞ c (R d ) such that ϕ ≡ 1 in B(0, 1)
and ϕ ≤ 1 almost everywhere and for s > 0 denote ϕ s = ϕ(s -1 •). Following [START_REF] Seiringer | The thermodynamic pressure of a dilute Fermi gas[END_REF], we define the correlation function F (x 1 , ..., x Nz ) = i<j ϕ s (x i -x j ) and the state

Γ z = k∈P Nz (Z d ) λ k Z -1 k |F f k 1 ∧ ... ∧ f k Nz F f k 1 ∧ ... ∧ f k Nz | ,
where

Z k = F f k 1 ∧...∧f k Nz are normalization factors. Now consider the state Γ := z Γ z .
We will show that Γ satisfies the three limits Eq. ( 19), ( 20) and ( 21). This state does not have the exact number of particle N but satisfies z N z = N -O(ℓN ). Hence we will only have to correct the particle number by adding O(ℓN ) uncorrelated particles of low energy, for instance outside the support of ρ 0 . This will not modify the validity of the three limits. Now we focus on Γ and compute its free energy.

In the case ηd < 1, we choose the following regime for the parameters introduced above.

s ≪ ≪ ε ≪ ℓ ≪ N -η and sℓ ≪ 2 .
One could in fact take Γ F =1 (removing the factor F , see below) and remove the dependence in s. In the case ηd > 1, the convergence holds in the regime

N -η ≪ s ≪ ≪ ε ≪ ℓ and sℓ ≪ 2 .
Step 2. Verification of [START_REF] Giorgini | Theory of ultracold atomic Fermi gases[END_REF]. We fix z and work in the cube Λ z . Let us first compute the kinetic energy of the correlated Slater determinants appearing in the definition of Γ z (note that this is not a eigenfunction decomposition due of the lack of orthogonality). Let us denote X = ( 1 Λz * χ ε ) ⊗Nz so that

Ψ z k := f k 1 ∧ ... ∧ f k Nz = Xe k 1 ∧ ..
. ∧ e k Nz (we will omit the superscript z when there is no ambiguity) and denote ∇, -∆ the gradient and the Laplacian for all coordinates x 1 , ..., x Nz in the box Λ z with Dirichlet boundary condition, we can check that

∇ F Xe k 1 ∧ ... ∧ e k Nz =   X∇F + F ∇X + iF X Nz j=1 2πk j ℓ -ε   e k 1 ∧ ... ∧ e k Nz .
Hence,

Tr(-∆)Γ z = k∈P Nz (Z d ) λ k Z k ε k + (X∇F + F ∇X)e k 1 ∧ ... ∧ e k Nz 2 L 2 (Λ Nz z )
where

ε k := 2π(ℓ -ε) -1 Nz j=1 k j 2
is the eigenvalue of -∆ per associated with the eigenfunction e k . Note that

λ k ∝ e -β 2 ε k . We will show that k λ k Z -1 k ε k ≃ k λ k ε k = Tr(-∆ per
) Γ and that the second summand above is an error term. For that we first need to estimate the normalization factors Z k and then bound the factor with the ∇F and ∇X. We will use several times that for any sequence a 1 , ..., a p > 0 we have

1 ≥ p n=1 (1 -a n ) ≥ 1 - p n=1 a n . (22) 
Hence,

Z k = Λ Nz z 1≤n<m≤Nz ϕ s (x n -x m ) 2 |Ψ k | 2 dX ≥ 1 - Λ Nz z 1≤n<m≤Nz (1 -ϕ s (x n -x m ) 2 )|Ψ k | 2 dX ≥ 1 - Λ 2 z (1 -ϕ s (x 1 -x 2 ) 2 )ρ (1) 
Ψ k (x 1 )ρ

(1)

Ψ k (x 2 )dx 1 dx 2 ≥ 1 -Cs d ℓ d -2d , (23) 
where we used that ρ

(2)

Ψ k (x, y) ≤ ρ (1) Ψ k (x)ρ (1) 
Ψ k (y) because Ψ k is a Slater determinant, and that ρ (1)

Ψ k = N z ℓ -d 1 Λz * χ ε ≤ C -d . Then we compute |∇ x 1 F | 2 = Nz m =n m,n≥2 ∇ϕ s (x 1 -x m ) • ∇ϕ s (x 1 -x n ) ϕ s (x 1 -x m )ϕ s (x 1 -x m ) F 2 + Nz m≥2 |∇ϕ s (x 1 -x m )| 2 ϕ s (x 1 -x m ) 2 F 2
and obtain

∇F Ψ k 2 L 2 (Λ Nz z ) ≤ C Λ 3d z |∇ϕ s (x 1 -x 2 )||∇ϕ s (x 1 -x 3 )|× × ρ (1) 
Ψ k (x 1 )ρ (1) 
Ψ k (x 2 )ρ (1) 
Ψ k (x 3 )dx 1 dx 2 dx 3 + C Λ 2d z |∇ϕ s (x 1 -x 2 )| 2 ρ (1) Ψ k (x 1 )ρ (1) Ψ k (x 2 )dx 1 dx 2 ≤ Cs -2 s 2d ℓ d -3d + s d ℓ d -2d .
Now we turn to the ∇X part. We have

∇ x 1 X(x 1 , ..., x Nz ) = ∇ 1 Λz * χ ε (x 1 ) 1 Λz * χ ε (x 1 ) X(x 1 , ..., x Nz )
and

Λ Nz z |∇X| 2 |e k 1 ∧ ... ∧ e k Nz | 2 = Λ Nz z Nz j=1 ∇ 1 Λz * χ ε (x 1 ) 1 Λz * χ ε (x 1 ) 2 |Ψ k | 2 = Λz ∇ 1 Λz * χ ε (x 1 ) 1 Λz * χ ε (x 1 ) 2 ρ (1) Ψ k ≤ C Λz ∇ 1 Λz * χ ε (x 1 ) 2 N z ℓ -d ≤ CN z ℓ -d Λz |∇ √ χ ε | 2 ≤ Cℓ d -d ε -2 ,
where we used the pointwise bound

∇ 1 Λz * χ ε (x 1 ) 2 ≤ |∇ √ χ ε | 2 .
Since X and F are both bounded by 1 we obtain

Tr(-∆)Γ z = Tr(-∆ per ) Γ z + O s 2(d-1) ℓ d -3d + s d-2 ℓ d -2d + ℓ d -d ε -2 1 -Cs d ℓ d -2d + N 1+2/d z s d ℓ d -2d .
We proceed with estimating the entropy of Γ z . Thanks to [47, Lemma 2] we have

Tr Γ z log Γ z ≤ Tr Γ z log Γ z -log min k Z k = Tr Γ z log Γ z + O s d ℓ d -2d ,
where we used the estimate (23) on Z k . Combining the last two estimates gives

Tr(-2 ∆)Γ + Tr Γ log Γ = z Tr(-2 ∆)Γ z + Tr Γ log Γ z ≤ z e β,per Can ( Λ z , , N z ) + ℓ -d O s d ℓ d -2d + O ( -d ℓ d ) 1+2/d s d ℓ d -2d + 2 ℓ -d O s 2(d-1) ℓ d -3d + s d-2 ℓ d -2d + ℓ d -d ε -2 1 -Cs d ℓ d -2d ,
where we used that

N z ≤ ρ 0 L ∞ (R d ) -d ℓ d .
It is a known fact [START_REF] Robinson | The thermodynamic pressure in quantum statistical mechanics[END_REF][START_REF] Ruelle | Statistical mechanics. Rigorous results[END_REF] (see also [38,[START_REF] Triay | [END_REF] for more details) that

e β,per Can ( Λ z , , N z ) = -d ℓ d F β (N z /( -d ℓ d )) + o( -d ℓ d ) (24) 
locally uniformly in ρ z := N z d ℓ -d as → 0 under the condition ≪ ℓ. This is the thermodynamic limit of the free Fermi gas. By the continuity of

F β and the estimate N z /( -d (ℓ -ε) d ) = ρ(z) + O(εℓ -1 ) we obtain d Tr(-2 ∆)Γ + Tr Γ log Γ ≤ ℓ d z∈Z d F β (ρ(z)) + o(1) + O(ε/ℓ) + O (sℓ/ 2 ) d ℓ 2 + O (s/ ) d + O (s/ ) 2(d-1) + (s/ ) d-2 + ( /ε) 2 1 -C(sℓ/ 2 ) d .
If s ≪ ≪ ε ≪ ℓ with the extra condition that sℓ ≪ 2 we obtain the upper bound in (19) by passing to the limit and by identifying the first term above as a Riemann sum. The lower bound is obtained in the same fashion by seeing Γ z as a trial state for the periodic case.

Step 3. Verification of [START_REF] Gottlieb | Examples of bosonic de Finetti states over finite dimensional Hilbert spaces[END_REF]. Let us recall that Γ F =1 is the uncorrelated version of the trial state (which corresponds to taking ϕ ≡ 1) and that we denote by ρ

(k)
F =1 its k-particle density, for k ≥ 1. From ( 22) and using that Γ F =1 is a sum of Slater determinants we have

N -1 ρ (1) Γ -ρ (1) F =1 L 1 (R d ) ≤ N -1 z∈Z d k∈P Nz (Z d ) λ z k R 2d (1 -ϕ s (x 1 -x 2 ) 2 )ρ (2) Ψ z k (x 1 , x 2 )dx 1 dx 2 ≤ CN -1 z∈Z d Λ 2 z (1 -ϕ s (x 1 -x 2 ) 2 )N 2 z ℓ -2d dx 1 dx 2 ≤ CN -1 z∈Z d s d ℓ d N 2 z ℓ -2d ≤ C(s/ ) d .
We also used that ρ

(2) Ψ z k ≤ ρ (1) Ψ z k ⊗ ρ (1) Ψ z k ≤ ρ 0 L ∞ (R d ) N 2 z ℓ -2d .
Finally, denoting by Γ z,F =1 the uncorrelated version of Γ z and by ρ (1) z,F =1 its one-body density we have

N -1 ρ (1) F =1 -ρ 0 L 1 (R d ) ≤ z N -1 ρ (1) z,F =1 -ρ 0 1 Λz L 1 (R d ) ≤ C z ∇ρ 0 L ∞ (R d ) ℓ d+1 + ρ 0 L ∞ (R d ) ℓ d-1 ε ≤ C(ℓ + ε/ℓ). We have used that in zℓ + [-(ℓ -2ε)/2, (ℓ -2ε)/2) d , N -1 ρ (1) z,F =1 = N -1 ℓ -d ⌊ -d ℓ d min Λz ρ 0 ⌋ = ρ 0 + O( d ℓ d ) + O( ∇ρ 0 L ∞ (R d ) ℓ)
and that

N -1 ρ (1) z,F =1 -ρ 0 1 Λz L ∞ (Λz) ≤ C ρ 0 L ∞ (R d ) .
Under the stated conditions on , ℓ, s and ε we have

N -1 ρ (1) Γ → ρ 0 in L 1 (R d ).
Step 4. Verification of [START_REF] Hainzl | On the correlation energy of the mean-field Fermi gas[END_REF]. Let us first turn to the case 0 ≤ ηd < 1. Note that

ρ (2) Γ = z∈Z d ρ (2) Γz + z =z ′ ρ (1) Γz ⊗ ρ (1) Γ z ′ = ρ (1) Γ ⊗ ρ (1) Γ + z∈Z d ρ (2) Γz -ρ (1) Γz ⊗ ρ (1)
Γz .

(

) 25 
The second term above is negligible in our regime. Indeed, using the triangle inequality, the Lieb-Thirring inequality [START_REF] Lieb | Bound on kinetic energy of fermions which proves stability of matter[END_REF][START_REF]Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities[END_REF] and Young's inequality we obtain

N -2 z∈Z d R d w N (x -y) ρ (2) 
Γz -ρ

Γz ⊗ ρ

(1) Γz ≤ CN -2 w N L 1+d/2 (R d ) z∈Z d ρ (1) Γz L 1+2/d (R d ) ρ (1) Γz L 1 (R d ) + N 2 z   Tr Γ z Nz j=1 -∆ z j N 1+2/d z   1 1+2/d ≤ CN -2 N dη d d+2 z∈Z d N 2 z ℓ -2 1+2/d ≤ C(N η ℓ) d ℓ d(1-1 d+2 )
where we used that ρ

(1)

Γz ≤ CN z ℓ -d ≤ C ρ 0 L ∞ (R d ) -d
almost everywhere and the estimate on the kinetic energy of Γ z computed before. Hence, if

N -1 ρ (1) Γ → ρ 0 in L 1 (R d ) and if ℓ = o(N -η ), since both N -1 ρ (1)
Γ and ρ 0 are bounded (uniformly in N ) in L ∞ (R d ), by [START_REF]Derivation of nonlinear Gibbs measures from many-body quantum mechanics[END_REF] and the use of Young's inequality we obtain [START_REF] Hainzl | On the correlation energy of the mean-field Fermi gas[END_REF] for 0 ≤ ηd < 1.

The case ηd > 1 is easier to handle since in this case N -η = o(s). Indeed, due to the correlation factor F and because w is compactly supported we will have Tr w N (x -y)Γ = 0 for N sufficiently large.

Proof of Theorem 2 in the non-interacting case w ≡ 0

In this section we prove the convergence (12) of the free energy in Theorem 2 in the case where the interaction is dropped, that is w ≡ 0. We study the interacting case later in Section 4. The convergence of states will be discussed in Section 4.3.

The non-interacting case is well understood since the Hamiltonian is quadratic in creation and annihilation operators in the grand canonical picture. The minimizers are known to be the so-called quasi-free states [START_REF] Bach | Generalized Hartree-Fock theory and the Hubbard model[END_REF]. For those we have an explicit formula and the argument of the proof is reduced to a usual semi-classical limit. The upper bound on the free energy is a consequence of Proposition 8 from the previous section. The proof of the lower bound relies on localization and the use of coherent states.

We start with the following well-known lemma, the proof of which can for instance rely on Klein's inequality and the convexity of the fermionic entropy s [START_REF] Thirring | Atoms, Molecules and Large Systems[END_REF].

Lemma 9 (The minimal free energy of quasi-free states). Let β > 0, and let H be a self-adjoint operator on a Hilbert space H such that Tr e -βH < ∞. Then

min 0≤γ≤1 γ∈S 1 (H) Tr Hγ + 1 β Tr s (γ) = - 1 β Tr log 1 + e -βH ,
with the unique minimizer being γ 0 = 1 1+e βH . With Lemma 9 at hand we are able to provide the Proof of Theorem 2 in the non-interacting case. Suppose that w = 0. We start out by proving the upper bound on the energy, using the trial states constructed in the previous section. Let ρ > 0 and 0

≤ ν ∈ C ∞ c R d with R d ν (x) dx = ρ. By Proposition 8 we then have a sequence (Γ N ) of canonical N -particle states satisfying d Tr   N j=1 |i ∇ x j + A(x j )| 2 Γ N   + d β Tr Γ N log Γ N → R d F β (ν (x)) dx.
The one-particle densities d ρ

Γ N converge to ν strongly in L 1 R d and are uniformly bounded in L ∞ (R d ). Hence they converge strongly in all

L p (R d ) for p ∈ [1, ∞). Since V ∈ L 1+d/2 loc R d and ρ (1) 
Γ N are, by construction, supported in a fixed compact set, we have

d Tr V (x) Γ (1) N = d R d V (x) ρ (1) Γ N (x) dx → R d V (x) ν (x) dx.

This means that

d e β Can ( , N ) ≤ d E N, Can (Γ N ) → R d F β (ν (x)) dx + R d V (x) ν (x) dx,
and, since ν is arbitrary, we have shown that lim sup

N →∞ d N →ρ d e β Can ( , N ) ≤ e β Vla (ρ) .
To prove the lower bound, we use the following bound [START_REF] Bach | Generalized Hartree-Fock theory and the Hubbard model[END_REF][START_REF] Thirring | Atoms, Molecules and Large Systems[END_REF] on the entropy Tr Γ log Γ ≥ Tr Γ (1) log Γ (1) + 1 -Γ (1) log 1 -Γ (1) = Tr s Γ (1) which follows from the fact that quasi-free states maximize the entropy at given one-particle density matrix Γ (1) . The bound applies to any N -particle state Γ whose one-particle density is Γ (1) . Applying Lemma 9 above, we have for any µ ∈ R and any N -body state Γ

E N, Can (Γ) ≥ Tr |i ∇ + A(x)| 2 + V (x) -µ Γ (1) + 1 β Tr s Γ (1) + µN ≥ - 1 β Tr log 1 + e -β(|i ∇+A(x)| 2 +V (x)-µ) + µN.
Thus, we are left to using the known semi-classical convergence (whose proof is recalled below in Proposition 10)

lim inf →0 - d β Tr log 1 + e -β(|i ∇+A(x)| 2 +V (x)-µ) ≥ - 1 (2π) d β R 2d log 1 + e -β(p 2 +V (x)-µ) dx dp, (26) 
and to take µ = µ Vla (ρ). Recognizing the expression of the Vlasov free energy on the right-hand side we appeal to Theorem 1 and immediately obtain lim inf

N →∞ d N →ρ d e β Can ( , N ) ≥ e β Vla (ρ) ,
concluding the proof of ( 12) in the non-interacting case.

In [START_REF]Classical field theory limit of 2D many-body quantum Gibbs states[END_REF] we have used the following well-known fact, which we prove for completeness.

Proposition 10 (Semi-classical limit). Let β 0 > 0, we assume that

|A| 2 ∈ L 1+d/2 (R d ) + L ∞ ε (R d ), V ∈ L 1+d/2 loc R d is such that V (x) → ∞ at infinity and that e -β 0 V + (x) dx < ∞. Then for any chemical potential µ ∈ R and all β > β 0 , lim sup →0 d β Tr log 1 + e -β((|i ∇+A| 2 +V -µ) ≤ 1 (2π) d β R 2d log 1 + e -β(p 2 +V (x)-µ) dx dp. ( 27 
)
This result is known [START_REF] Thirring | Atoms, Molecules and Large Systems[END_REF] and the proof we provide here is essentially the one in [START_REF] Simon | The classical limit of quantum partition functions[END_REF], where however the von Neumann entropy x log(x) was used instead of the Fermi-Dirac entropy x log(x) + (1 -x) log(1 -x). In fact, Theorem 2 shows that the inequality [START_REF]Gibbs measures based on 1D (an)harmonic oscillators as mean-field limits[END_REF] is indeed an equality.

Proof of Proposition 10. Without loss of generality we may assume that µ = 0. We also assume in a first step that V -∈ L ∞ (R d ) and then remove this assumption at the end of the proof. Due to technical issues involving the potential V , we need to localize the minimization problem on some bounded set 2 +V and take γ = 1 1+e βH as in Lemma 9. By the IMS localization formula we have

. Let χ, η ∈ C ∞ R d satisfy χ 2 + η 2 = 1, supp χ ⊆ B (0, 1) and supp η ⊆ B 0, 1 2 c . For R > 0, denote χ R = χ • R and η R = η • R . Let H = |i ∇+A|
Tr H γ = Tr H χ R γ χ R +Tr H η R γ η R -2 Tr |∇χ R | 2 + |∇η R | 2 γ , (28) 
and using the convexity of s and [9, Theorem 14],

Tr s γ = Tr χ R s γ χ R + Tr η R s γ η R ≥ Tr s χ R γ χ R + Tr s η R γ η R . ( 29 
)
We first deal with the localization outside the ball. The operators we consider in B 0, R 2 c are the ones with Dirichlet boundary condition. We obtain by Lemma 9 that the remainder terms are bounded by

Tr H η R γ η R + 1 β Tr s η R γ η R ≥ - 1 β Tr L 2 (B(0, R 2 ) c ) log 1 + e -β(|i ∇+A| 2 +V -C) ≥ - C β Tr L 2 (B(0, R 2 ) c ) e -β(|i ∇+A| 2 +V ) ≥ - C β Tr L 2 (B(0, R 2 ) c ) e -β(-2 ∆ D +V ) (30) 
≥ - C β Tr L 2 (R d ) e -β(-2 ∆+(1-α)V +α inf B(0,R) c V ) (31) 
≥ -

Ce -α inf B(0,R) c V (2π ) d R 2d e -β(p 2 +(1-α)V (x)) dx dp, (32) 
where α > 0 is such that β(1 -α) > β 0 . The inequality (30) comes from the diamagnetic inequality [START_REF] Cycon | Schrödinger operators with application to quantum mechanics and global geometry[END_REF] and ( 31) is obtained by the min-max characterization of the eigenvalues. The last inequality follows from Golden-Thompson's formula [START_REF] Reed | Methods of Modern Mathematical Physics. I. Functional analysis[END_REF]Theorem VIII.30].

The error term in the IMS formula can be estimated by

-Tr |∇χ R | 2 + |∇η R | 2 γ ≥ - C R Tr γ ≥ - C R Tr e -βH ≥ - C R (2π ) d R 2d
e -β(p 2 +V (x)) dx dp, [START_REF]The Thomas-Fermi theory of atoms, molecules and solids[END_REF] where we used again the diamagnetic and Golden-Thompson inequalities.

Next we derive a bound on the densities ρ γ R , where γ R = χ R γ χ R , using the Lieb-Thirring inequality [START_REF] Lieb | Bound on kinetic energy of fermions which proves stability of matter[END_REF][START_REF]Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities[END_REF]. Combining (28), ( 29), [START_REF] Lieb | The Hartree-Fock theory for Coulomb systems[END_REF] and [START_REF]The Thomas-Fermi theory of atoms, molecules and solids[END_REF] we have shown

Tr H γ R + 1 β Tr s γ R - ε (R) d ≤ Tr H γ + 1 β Tr s γ = - 1 β Tr log 1 + e -βH ≤ 0 (34)
where ε (R) → 0 when R → ∞. By Lemma 9 we have

Tr H γ R + 1 β Tr s γ R ≥ 1 2 Tr -2 ∆ γ R - 1 β Tr log 1 + e -β(|i ∇+A| 2 /2+V ) - C d
where, as in [START_REF] Lieb | The Hartree-Fock theory for Coulomb systems[END_REF],

Tr log 1 + e -β(|i ∇+A| 2 /2+V ) ≤ Ce -α inf V (2π ) d R 2d e -β(p 2 /2+(1-α)V (x)) dx dp.
This implies the following bound on the kinetic energy

Tr -2 ∆ γ R ≤ C d . (35) 
By the Lieb-Thirring inequality, we obtain

R d ρ γ R (x) 1+ 2 d dx ≤ C Tr -∆γ R ≤ 1 d+2 C. ( 36 
)
We return to the estimate on the localized terms in ( 28) and ( 29), using coherent states. Let f ∈ C ∞ c R d be a real-valued and even function, and consider the coherent state f x,p (y) = -d 4 f -1 2 (y -x) e i p•y . The projections |f x,p f x,p | give rise to a resolution of the identity on L 2 R d :

1 (2π ) d R 2d |f x,p f x,p | = Id L 2 (R d ) .
Using this in combination with Jensen's inequality and the spectral theorem, we obtain

Tr s χ R γ χ R = 1 (2π ) d R 2d f x,p , s γ R f x,p dx dp ≥ 1 (2π ) d R 2d s f x,p , γ R f x,p dx dp. (37) 
On the other hand, applying [16, Corollary 2.5] we have

Tr H χ R γ χ R = 1 (2π ) d R 2d f x,p , H γ R f x,p dx dp = 1 (2π ) d R 2d |p + A| 2 + V (x) f x,p , γ R f x,p dx dp + R d ρ γ R A 2 -A 2 * f 2 -2ℜ Tr A -A * f 2 • i ∇γ R - R d |∇f | 2 + R d ρ γ R V -V * f 2 (38) Since d ρ γ R is supported in B (0, R) and is uniformly bounded in L 1+2/d R d
by [START_REF]Gravitational collapse in quantum mechanics with relativistic kinetic energy[END_REF], and V * f 2 converges to V locally in L 1+d/2 R d . The same argument applied to A and |A| 2 combined with Hölder's inequality, the Lieb-Thirring inequality and [START_REF]Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities[END_REF] shows that the remainder terms above are o -d . At last, combining (34), ( 37) and ( 38) as well as a simple adaptation of Proposition 14 to finite domains (Remark 15) yields lim sup

→0 d Tr log 1 + e -β(|i ∇+A| 2 +V ) ≤ 1 (2π) d R 2d log 1 + e -β(p 2 +V (x)) dx dp + ε (R) ,
where ε (R) → 0 when R → ∞. This concludes the proof in the case V -∈ L ∞ (R d ). We now remove this unnecessary assumption: let us consider a potential V satisfying the assumptions of Proposition 10 (possibly unbounded below). For K > 0, we take the cut off potential

V K = V 1 {V ≥-K}
and for any 0 < ε < 1 we obtain using Lemma 9

- 1 β Tr log 1+e -β(|i ∇+A| 2 +V ) ≥ min 0≤γ≤1 Tr (1 -ε) |i ∇ + A| 2 + V K γ + 1 β Tr s (γ) + min 0≤γ≤1 Tr ε|i ∇ + A| 2 + V -V K γ = - 1 β Tr log 1 + e -β((1-ε)|i ∇+A| 2 +V K ) -Tr ε|i ∇ + A| 2 + V -V K -.
Applying the Lieb-Thirring inequality, we obtain

Tr ε|i ∇ + A| 2 + V -V K -≤ C -d ε -d/2 R d (V -V K ) 1+d/2 - dx.
This means that for any K and ε lim sup

→0 d Tr log 1 + e -β(|i ∇+A| 2 +V ) ≤ 1 (2π) d R 2d log 1 + e -β((1-ε)p 2 +V K (x)) dx dp + ε -d/2 C R d (V -V K ) 1+d/2 - dx.
First taking K → ∞ and afterwards ε → 0, the result follows using the monotone convergence theorem.

Proof of Theorem 2 in the general case

In this section we deal with the interacting case w = 0. We first focus on the proof of Theorem 2 (mean-field limit) before proving Theorem 7 (dilute limit).

4.1.

Convergence of the energy in the mean-field limit η = 0. Here we prove [START_REF] Cycon | Schrödinger operators with application to quantum mechanics and global geometry[END_REF] in the case of general w ∈ L 1+d/2 R d + L ∞ ε R d . The upper bound on the canonical energy follows immediately from the trial states constructed in Proposition 8, so we concentrate on proving the lower bound. This is the content of the following proposition.

Proposition 11. Let β 0 , ρ > 0, V ∈ L 1+d/2 loc R d such that V (x) → ∞ when |x| → ∞ and e -β 0 V + (x) dx < ∞. Furthermore, let |A| 2 , w ∈ L 1+d/2 R d + L ∞ ε R d
, w be even and satisfy w ≥ 0. Then we have lim inf

N →∞ d N →ρ d e β Can ( , N ) ≥ e β Vla (ρ).
Proof. The main idea of the proof is to replace w by an effective one-body potential, and then use the lower bound in the non-interacting case. We begin by regularizing the interaction potential: let ϕ ∈ C ∞ c (R d ) even and real-valued, define χ = ϕ * ϕ and

w ε = w * χ ε with χ ε = ε -d χ(ε -1 •) for ε > 0. Note that w ε ≥ 0. Moreover, if α > 0 and w = w 1 + w 2 with w 1 ∈ L 1+ d 2 (R d ) and w 2 L ∞ (R d ) ≤ α then w 1,ε := w 1 * χ ε satisfies w 1,ε ∈ L 1 (R d ) and w 2,ε := w 2 * χ ε satisfies w 2,ε L ∞ (R d ) ≤ α.
Then, using the Lieb-Thirring inequality, we can replace w by w ε up to an error of order w 1 -w 1,ε L 1+d/2 (R d ) + Cα, see for instance [START_REF] Fournais | The semi-classical limit of large fermionic systems[END_REF]Lemma 3.4]. It remains to let ε tend to zero and then let α tend to zero. We therefore assume for the rest of the proof that w satisfies w ∈ L 1 (R d ).

Now, with 0 ≤ w ∈ L 1 (R d ), it is classical that we can bound w from below by a one-body potential, see, e.g., [START_REF] Fournais | The semi-classical limit of large fermionic systems[END_REF]Lem. 3.6]. More precisely, we have for all x 1 , . . . ,

x N ∈ R d and ϕ ∈ C ∞ c (R d ) R d w N i=1 δ x i -ϕ 2 ≥ 0,
which after expanding is the same as

1≤i<j≤N w(x i -x j ) ≥ N i=1 w * ϕ(x i ) - 1 2 R d (ϕ * w)ϕ - N 2 w(0). ( 39 
)
Let m 0 be the minimizer of the semiclassical problem with density ρ, whose existence is guaranteed by Theorem 1. For any N -body trial state Γ we obtain from ( 39)

Tr H N, Γ ≥ Tr (i ∇ + A(x)) 2 + V (x) + ρ -1 w * ρ m 0 (x) Γ (1) - N 2ρ 2 R d (ρ m 0 * w)ρ m 0 - 1 2 w(0),
where Γ (1) is the 1-particle reduced density matrix of Γ. Let µ Vla (ρ) be the chemical potential corresponding to the minimizer m 0 and define

V eff = V + ρ -1 w * ρ m 0 (x) -µ Vla (ρ).
Denoting by e β,eff Can ( , N ) the minimum of the canonical energy with potential V eff and with no interaction, we obtain using the convergence shown for the non-interacting case in Section 3,

d e β Can ( , N ) ≥ d e β,eff Can ( , N ) - d N 2ρ 2 R d (ρ m 0 * w)ρ m 0 + µ Vla (ρ) d N -→ N →∞ d N →ρ - 1 β(2π) d R 2d log(1 + e -β(p 2 +V eff (x)) ) dx dp - 1 2ρ R d (ρ m 0 * w)ρ m 0 + µ Vla (ρ)ρ = e β Vla (ρ)
, where the last equality is due to Theorem 1. This concludes the proof of the convergence of energy in Theorem 2.

4.2.

Convergence of the energy in the dilute limit η > 0. Here we prove the convergence of the energy in Theorem 7 where η > 0. We first state a lemma about the regularity of the minimizers of (4) when the interaction has a Dirac component. It will be needed in the proof of the convergence of the energy in Theorem 7 below. Lemma 12. Let β, a, ρ > 0, let A, V satisfy the assumptions of Theorem 1, let w = aδ 0 for some a > 0. If m ∈ L 1 (R 2d ) satisfies the non-linear equation ( 5), then ρ m ∈ L 1+d/2 R d .

Proof. For simplicity and without loss of generality, we assume that a = ρ = 1, µ = 0 and we take w = δ 0 and

A = 0. Since ρ m ∈ L 1 R d , it is sufficient to show that ρ m 1 {ρm(x)≥1} is in L 1+d/2 R d . Recalling that m satisfies the equation m (x, p) = 1 1 + e β(p 2 +V (x)+ρm(x)) , (40) 
we immediately have To show the lower bound, we follow the argument of Proposition 11. Denote by m 0 the minimizer of the Vlasov functional with the delta interaction aδ 0 , and let Γ N be the Gibbs state minimizing the canonical free energy functional. Applying [START_REF] March | Equations of State of Elements from the Thomas-Fermi Theory II: Case of Incomplete Degeneracy[END_REF] with ϕ = N ρ ρ m 0 , we obtain

ρ m (x) ≤ e -β(V (x)+ρm(x)) (2π) d R d e -βp 2 dp = C d,β e -β(V (x)+ρm(x)) , implying that ρ m (x)e βρm(x) ≤ C d,β e βV -(x) . Hence ρ m 1 {ρm≥1} ≤ (V -+ log C d,β ) 1 {ρm≥1} ∈ L 1+ d 2 (R d ), since V -∈ L 1+ d 2 R
Tr H N, Γ N ≥ Tr (i ∇ + A) 2 + V eff Γ (1) N + 1 ρ Tr (w N * ρ m 0 -aρ m 0 ) Γ (1) N - N 2ρ 2 R d (ρ m 0 * w N ) ρ m 0 + µ w=aδ 0 Vla (ρ) N + o -d , ( 41 
)
where

V eff = V + a ρ ρ m 0 -µ w=aδ 0 Vla (ρ).
Here, by Hölder's inequality, we have

d Tr(w N * ρ m 0 -aρ m 0 )Γ (1) N = d R d (w N * ρ m 0 -aρ m 0 ) ρ Γ (1) N ≤ d ρ Γ (1) N L 1+2/d (R d ) w N * ρ m 0 -aρ m 0 L 1+d/2 (R d ) ,
which tends to 0 since d ρ Γ (1)

N L 1+2/d (R d )
is bounded, by the Lieb-Thirring inequality, and since ρ m 0 ∈ L 1+ d 2 R d by Lemma 12. Finally we have,

R d (ρ m 0 * w N ) ρ m 0 -→ a R d ρ 2 m 0 .
Hence, continuing from (41), we conclude that lim inf

N →∞ d N →ρ d e β Can (N, ) ≥ - 1 (2π) d β R 2d log 1 + e -β(p 2 +V eff (x)) dx dp + µ w=aδ 0 Vla (ρ) ρ - a 2ρ R d ρ 2 m 0 = e β,w=aδ 0 Vla (ρ) .
4.2.2. Case η > 1/d. Here we treat the dilute limit. Assume that d ≥ 3, 0 ≤ w ∈ L 1 R d , and that w is compactly supported. Then, since w ≥ 0, we have the immediate lower bound

lim inf N →∞ d N →ρ d e β Can (N, ) ≥ lim inf N →∞ d N →ρ d e β,w=0
Can

(N, ) = e β,w=0
Vla (ρ) .

On the other hand, it follows from Proposition 8 that we also have the corresponding upper bound, so

lim N →∞ d N →ρ d e β Can (N, ) = e β,w=0
Vla (ρ) .

This finishes the proof of the convergence of the energy in the dilute limit.

4.3.

Convergence of states. Without loss of generality, we take again ρ = 1.

4.3.1.

Convergence of the k-particle Husimi and Wigner measures. The proof of the limits ( 13) and ( 14) in the case w ≥ 0 is a corollary of the proof of [START_REF] Fournais | The semi-classical limit of large fermionic systems[END_REF]Theorem 2.7] and that E β,ρ Vla has a unique minimizer. In particular, the limiting measures do not depend on the coherent state function f . We start by briefly recalling the definitions and then we sketch the proof of the convergence of states.

For f ∈ L 2 (R d ) a normalized, real-valued function and (x, p) ∈ R 2d , > 0, we define f x,p (y) = -d/4 f ((x -y)/ 1/2 )e ip•y/ and denote by P x,p = |f x,p f x,p | the orthogonal projection onto f x,p . For k ≥ 1, we introduce the k-particle Husimi measure of a state Γ

m (k) f,Γ (x 1 , p 1 , ..., x k , p k ) = N ! (N -k)! Tr P x 1 ,p 1 ⊗ • • • ⊗ P x k ,p k ⊗ 1 N -k Γ , for x 1 , p 1 , ..., x k , p k ∈ R 2dk .
We also recall the definition of the Wigner measure,

W (k) Γ (x 1 , ..., p k ) = R dk R d(N-k) e -i k ℓ=1 p ℓ •y ℓ × ×Γ(x 1 + y 1 /2, ..., x k + y k /2, z k+1 , ..., z N ) dy 1 ...dy k dz k+1 ...dz N , for x 1 , p 1 , ..., x k , p k ∈ R 2dk
, where Γ(•, •) is the kernel of the operator Γ.

The rest of the proof is the same as in [START_REF] Fournais | The semi-classical limit of large fermionic systems[END_REF] and we just outline it. Using [16, Theorem 2.7] and the fact that the Husimi measures are bounded both in the x and p variables we obtain the existence of a Borel probability measure P on B = {µ ∈ L 1 (R 2d ), 0 ≤ µ ≤ 1, R 2d µ ≤ ρ} such that, up to a subsequence, we have

R 2dk m (k) f,Γ N ϕ → B R 2dk
m ⊗k ϕ dP(m),

for any ϕ ∈ L 1 (R 2dk )+L ∞ (R 2dk
) and similarly for the Wigner measures. We begin with the case η = 0. Using coherent states, the tightness of (m

f,Γ N ) N and a finite volume approximation we obtain lim

N j →∞ d N j →ρ d e β Can ( , N j ) ≥ 1 (2π) d B R 2dk (p 2 + V (x))m(x, p) dP(m) + 1 2 B R 2dk (w * ρ m )ρ m dP(m) + 1 (2π) d R 2d s B m dP(m) . (42) 
The lower semi-continuity of the entropy term can be justified as in the proof of Lemma 17. The case 0 < η < 1/d can be adapted using [START_REF] March | Equations of State of Elements from the Thomas-Fermi Theory II: Case of Incomplete Degeneracy[END_REF] with ϕ = N ρ m 0 and the case η > 1/d is even easier since the interaction is assumed non-negative and can therefore be dropped. Then, because V is confining, one can show that the de Finettti measure

P is supported on S = {µ ∈ L 1 (R 2d ), 0 ≤ µ ≤ 1, R 2d µ = ρ}. If we denote m = S m
dP(m), the right side of (42) is not exactly E Can (m) because of the interaction term. In the case 0 ≤ η < 1/d we assumed w ≥ 0, hence the following inequality follows from convexity:

S R 2dk w * ρ m ρ m dP(m) ≥ R 2d w * ρ m ρ m .
The case 1/d < η is immediate since assumed w ≥ 0 and the limiting energy has no interaction term. Gathering the above inequalties we have lim

N j →∞ d N j →ρ d e β Can ( , N j ) ≥ E β,ρ,• Vla (m) ≥ e β,• Vla (ρ) ,
where E β,ρ,• Vla and e β,• Vla (ρ) are the appropriate limiting functional and energy: i.e.

• = w if η = 0, • = ( R d w)δ 0 if 0 < dη < 1 and • = 0 if dη ≥ 1
and d ≥ 3. Now, the equality in this series of inequalities forces P to be supported on the set of minimizers of E β,ρ,• Vla . In our case, it is the singleton {m 0 }. And since this limit does not depend on the subsequence we have taken, we conclude that the whole sequence converges. 4.3.2. Convergence of the 1-particle Husimi measure and spatial density.

The convergence in L 1 (R d ) of m (1) f,Γ N comes from the fact that E β,ρ
Vla has good coercive properties. For simplicity we take A = 0 in the following. Using Eq. ( 39) with ϕ = N ρ m 0 as well as [START_REF] Fournais | The semi-classical limit of large fermionic systems[END_REF]Lemma 2.4] with a finite volume approximation such as what has been done in the proof of Proposition 10, one obtains that

d e β Can ( , N ) ≥ 1 (2π) d R 2d p 2 + V (x) + 1 2ρ w N * ρ m 0 (x) m (1) 
f,Γ N (x, p)dxdp

+ 1 (2π) d β R 2d s(m (1) f,Γ N ) + o(1) = e β,• Vla (ρ) + 1 (2π) d β R 2d (s(m (1) f,Γ N ) -s(m 0 )) + o(1) (43) 
As before we denote by e β,• Vla (ρ) the appropriate limiting energy, depending on the choice of η. Recall that in the case η > 1/d, the interaction potential is assumed to be non negative, so the interaction term is just dropped. We now focus on the second term in [START_REF] Reed | Methods of Modern Mathematical Physics. I. Functional analysis[END_REF]. Let us remark that s(m

(1) f,Γ N ) -s(m 0 ) = m (1) f,Γ N log   m (1) f,Γ N m 0   + (1 -m (1) 
f,Γ N ) log   1 -m (1) f,Γ N 1 -m 0   + (m 0 -m (1) 
f,Γ N ) log 1 -m 0 m 0 ≥ m 0 log   m (1) f,Γ N m 0   + β(m 0 -m (1) 
f,Γ N ) p 2 + V + 1 ρ w N * ρ m 0 -µ + β -1 ,
where we used the expression of m 0 (5) and the pointwise inequality x log(x/y) + (y -x) ≥ 0 for any x, y > 0. Integrating over x and p, we obtain on the right side the sum of the relative von Neumann entropy of m

f,Γ N and m 0 , and a term which tends to zero, due to the weak convergence we have proven. By Pinsker's inequality and (43) we obtain

d e β Can ( , N ) -e β,• Vla (ρ) ≥ 1 2(2π) d β R 2d |m (1) f,Γ N -m 0 | 2 + o(1).
The convergence of the energies gives the strong convergence in

L 1 (R 2d ) of m (1)
f,Γ N towards the Vlasov minimizer m 0 . This automatically gives that ρ m (1)

f,Γ N → ρ m 0 in L 1 (R d ). The convergence in L 1+2/d (R d ) follows from the (classical) Lieb-Thirring inequality ρ m L 1+d/2 (R d ) ≤ C m d d+2 L 1 (R 2d ,p 2 dxdp) m 2 d+2 L ∞ (R 2d ) for any m in L 1 (R 2d ).
Finally, by the Lieb-Thirring inequality d ρ

Γ N is bounded in L 1 (R d ) ∩ L 1+d/2 (R d ) (1) 
, hence this sequence is weakly precompact in those spaces. On the other hand, for any ϕ ∈ C ∞ c (R d ) we have by [START_REF] Fournais | The semi-classical limit of large fermionic systems[END_REF]Lemma 2.4]

R d ρ m (1) f,Γ N ϕ = R d d ρ (1) 
Γ N ϕ * |f | 2
and let ρ be an accumulation point for d ρ

Γ N , by passing to the limit in both sides we obtain

R d ρ m 0 ϕ = R d ρϕ.
The test function ϕ being arbitrary, we conclude that d ρ (1) Γ N has a single accumulation point and therefore converges weakly in L 1 (R d ) ∩ L 1+d/2 (R d ) towards ρ m 0 .

Proof of Theorem 1: study of the semiclassical functional

This section is devoted to the proof of Theorem 1 and some auxiliary results on the semiclassical functional. We begin our analysis with the free particle case (w = 0) and then generalize to systems with pair interaction. We recall that the magnetic potential does not affect the energy, only the minimizer, and can be removed by a change of variables so we do not consider it here. For this section and for ρ > 0 we denote by

S Vla (ρ) = m ∈ L 1 R 2d 0 ≤ m ≤ 1, 1 (2π) d R 2d m = ρ .
the set of admissible semi-classical measures.

5.1. The free gas.

Proposition 14 (Minimizing the free semi-classical energy). Suppose that w = 0, and that 

V + ∈ L 1 loc R d satisfies R d e -βV + (x) dx < ∞ for some β > 0 and V -∈ L d/2 (R d ) ∩ L 1+d/2 (R d ).
(ρ) = E β,ρ,w=0 Vla (m 0 ) = - 1 (2π) d β R 2d log 1 + e -β(p 2 +V (x)-µ) dx dp + µρ. (44) 
Proof. The map

R := µ → (2π) -d R 2d
m 0 (x, p) dx dp is well-defined on R, using that

1 1 + e β(p 2 +V (x)-µ) ≤ max(1, e βµ ) 1 + e β(p 2 +V (x))
which is integrable under our conditions on V , by the remarks after Theorem 1. In addition, R is increasing and continuous with

lim µ→-∞ R(µ) = 0, lim µ→+∞ R(µ) = +∞.
Therefore we can always find µ so that the density of m 0 equals the given ρ.

Note then that 1 -m 0 (x, p) = e β(p 2 +V (x)-µ) m 0 (x, p) = 1 1 + e -β(p 2 +V (x)-µ) , so that

E β,ρ,w=0 Vla (m 0 ) = 1 (2π) d β R 2d β p 2 + V (x) -µ m 0 + m 0 log m 0 -m 0 log e β(p 2 +V (x)-µ) m 0 dx dp + 1 (2π) d β R 2d (log (1 -m 0 ) + βµ m 0 ) dx dp = - 1 (2π) d β R 2d log 1 + e -β(p 2 +V (x)-µ) dx dp + µρ,
showing the second equality in [START_REF] Robinson | The thermodynamic pressure in quantum statistical mechanics[END_REF]. That m 0 is the minimizer follows from the fact that the free energy is strictly convex. For instance, for any other m ∈ S Vla (ρ), since the function

s (t) = t log t + (1 -t) log (1 -t) is convex on (0, 1) with derivative s ′ (t) = log t 1-t , we have pointwise s (m) ≥ s (m 0 ) + s ′ (m 0 ) (m -m 0 ) = -β p 2 + V (x) -µ m + β p 2 + V (x) -µ m 0 + s (m 0 ) , (45) 
replacing m 0 by its expression implies that E β,ρ,w=0 Vla (m) ≥ E β,ρ,w=0 Vla (m 0 ). That m 0 is the unique minimizer follows from the fact that E β,ρ,w=0 Vla is a strictly convex functional.

Remark 15. For an arbitrary domain Ω ⊆ R 2d , we have by the very same arguments that

min m∈L 1 (Ω) 0≤m≤1 1 (2π) d Ω p 2 + V (x) m (x, p) dx + 1 β s (m (x, p)) dx dp = - 1 (2π) d β Ω log 1 + e -β(p 2 +V (x)) dx dp.
with the unique minimizer m 0 (x, p) = (1 + e β(p 2 +V (x)) ) -1 and no chemical potential since we have dropped the mass constraint.

5.2. The interacting gas. We now deal with the interacting case. When w = 0, to retrieve the existence of minimizers as well as their expression, we need to use compactness techniques and compute the Euler-Lagrange equation. We divide the proof in several lemmas. We start by proving the semi-continuity of the functional in Lemma 16 and then prove the existence of minimizers on S Vla (ρ) in Lemma 17. To obtain the form of the minimizers we compute the Euler-Lagrange equation but because the entropy s is not differentiable in 0 and 1 we first need to prove in Lemma 18 that minimizers cannot be equal to 0 nor 1 in sets of non zero measure. The proof of Theorem 1 is given at the end of this subsection.

Lemma 16. Fix ρ, β 0 > 0. Suppose that w = 0, and that

V + ∈ L 1 loc R d , V -∈ L d/2 (R d ) ∩ L 1+d/2 (R d ) satisfies R d e -β 0 V + (x) dx < ∞. Then for all β > β 0 , E β,ρ,w=0
Vla is L 1 -strongly lower semi-continuous on S Vla (ρ). 

Now we use that All in all we obtain

(m n ) is bounded in L ∞ (R 2d ) to obtain that m n → m in L p (R 2d ) for all 1 ≤ p < ∞. By
C 0 ≥ lim inf n→∞ E β,ρ,w=0 Vla (m n ) ≥ 1 (2π) d |x|+|p|≤R p 2 + V (x) m (x, p) dx dp + 1 β |x|+|p|≤R s (m (x, p)) dx dp + o(R) ≥ 1 (2π) d |x|+|p|≤R p 2 + V + (x) m (x, p) dx dp + o(R) - 1 (2π) d R 2d V -(x) m (x, p) dx dp + 1 β R 2d s (m (x, p)) dx dp.
Finally, we use the monotone convergence theorem and let R tend to ∞ to obtain E β,ρ,w=0

Vla (m) ≤ C 0 . Lemma 17. Fix ρ, β 0 > 0. Suppose that w ∈ L 1+d/2 R d + L ∞ ε R d + R + δ 0 , V + ∈ L 1 loc R d , V -∈ L 1+d/2 (R d ) satisfies R d e -β 0 V + (x) dx < ∞ and V + (x) → ∞ as |x| → ∞. Then for all β > β 0 , E β,ρ
Vla is bounded below and has a minimizer m 0 in S Vla (ρ).

Proof. Let (m n ) ⊆ S Vla (ρ) be a minimizing sequence, i.e. E β,ρ Vla (m n ) → e β Vla (ρ) as n → ∞. Since (m n ) is bounded in both L 1 R 2d and L ∞ R 2d
, one can verify that up to extraction the sequence has a weak limit

m 0 ∈ L 1 R 2d ∩ L ∞ R 2d satisfying R 2d m n (x, p) ϕ (x, p) dx dp → R 2d m 0 (x, p) ϕ (x, p) dx dp (47) 
for any ϕ ∈ L 1 R 2d + L ∞ ε R 2d . Moreover, the weak limit m 0 satisfies 0 ≤ m 0 ≤ 1 and R 2d m 0 ≤ ρ (2π) d . Note that we do not have pointwise convergence a priori. Let us prove that m 0 is a minimizer of E β,ρ

Vla in S Vla (ρ). Our first step is to show the tightness of the sequence of probability measures (m n ) to obtain R 2d m 0 = (2π) d ρ, then we argue that m 0 ∈ S Vla (ρ) and minimizes E β,ρ Vla using weak lower-semicontinuity. We start out by bounding the interaction term using some of the kinetic energy. Let ε > 0 and let us write w = w 1 + w 2 + aδ 0 with w 1 ∈ L 1+d/2 (R d ), w 2 L ∞ (R d ) < ε and a ≥ 0. We use Young's inequality to bound the interaction term

R d w * ρ mn ρ mn ≥ w 1 L 1+d/2 (R d ) ρ mn L 1+2/d (R d ) ρ mn L 1 (R d ) + w 2 L ∞ (R d ) ρ mn 2 L 1 (R d ) ≥ Cε R 2d p 2 m n (x, p) dx dp -C. (48) 
In the last inequality we have used the well-known fact [30] that

R d p 2 m (x, p) dp ≥ inf 0≤ m≤1 m=(2π) d ρm(x) R d p 2 m (p) dp = (2π) d c TF d d + 2 ρ m (x) 1+2/d , (49) 
which gives the Lieb-Thirring inequality for classical measures on phase space. Similarly we have

R d V -(x)ρ mn (x)dx ≤ C ε -d/2 V - 1+d/2 L 1+d/2 (R d ) + ε ρ mn 1+2/d L 1+2/d (R d ) . (50) 
Now using Proposition 14, (49), ( 48) and ( 50), denoting α = (β -β 0 )/(2β) we have

C ≥ E β,ρ Vla (m n ) ≥ α (2π) d R 2d p 2 + V (x) m n + 1 2ρ R d (w * ρ mn ) ρ mn + 1 2 e β(1-α),w=0 Vla (ρ) ≥ α -Cε (2π) d R 2d p 2 + V + (x) m n -C (51) 
Note that by construction, β(1 -α) > β 0 . Taking ε > 0 sufficiently small but positive, the above inequality shows the tightness condition

R 2d p 2 + V + (x) m n (x, p) dx dp ≤ C. ( 52 
) Therefore R 2d m 0 = (2π) d ρ. Now we prove that lim inf n→∞ E β,ρ Vla (m n ) ≥ E β,ρ
Vla (m 0 ). From the tightness condition it is easy to verify that ρ mn ⇀ ρ m 0 and that

R d (w -aδ 0 ) * ρ mn ρ mn → R d (w -aδ 0 ) * ρ m 0 ρ m 0 .
To finish, we deal with the delta part of the interaction as well as the entropy part. We use that a continuous convex function is always weakly lower semicontinuous. We obain

a R d ρ 2 m 0 = R d lim n→∞ ρ 2 mn ≤ lim n→∞ R d ρ 2 mn , R d s(m 0 ) = R d lim n→∞ s(m n ) ≤ lim inf n→∞ R d s(m n ). Lemma 18. Fix ρ, β 0 > 0. Suppose that w ∈ L 1+d/2 R d + L ∞ ε R d + R + δ 0 , V + ∈ L 1 loc R d , V -∈ L 1+d/2 (R d ) satisfies R d e -β 0 V + (x) dx < ∞ and V + (x) → ∞ as |x| → ∞. Then any minimizer m 0 ∈ S Vla (ρ) of E β,ρ
Vla satisfies 0 < m(x, p) < 1 for (x, p) ∈ R 2d almost everywhere.

Proof. Define Ω 1 := {m 0 = 1} and Ω 0 := {m 0 = 0}. Our goal is to prove that Ω 1 and Ω 0 have 0 measure. To this end, we will first show that |Ω 1 ||Ω 0 | = 0. Then we use that at least one of then is a null set to prove that so is the other one. Let us first assume neither of them are null sets. Let r > 0, 0 < λ < 1 2 and for almost every

(ξ 1 , ξ 2 ) ∈ Ω 1 × Ω 0 define ϕ 1 = λ1 B(ξ 1 ,r)∩Ω 1 , ϕ 2 = λ1 B(ξ 2 ,r ′ )∩Ω 0 , where r ′ := min {s ≥ 0 | |B (ξ 2 , s) ∩ Ω 0 | = |B (ξ 1 , r) ∩ Ω 1 |}. We will use the notation v(r) = |B (ξ 1 , r) ∩ Ω 1 |.
Note that by Lebesgue's density theorem, for almost every (ξ 1 , ξ 2 ) ∈ Ω 1 × Ω 0 we have v(r) > 0 and r ′ < ∞. The idea is to consider the function m 0 -ϕ 1 + ϕ 2 ∈ S Vla (ρ) and use the fact that m 0 is a minimizer of E β,ρ Vla to obtain a contradiction. Let us estimate the entropy, using that s(0) = s(1) = 0 and s(t) = s(1 -t), we obtain

R 2d s (m 0 -ϕ 1 + ϕ 2 ) = R 2d s (m 0 ) + s(ϕ 1 ) + s(ϕ 2 ) = 2s (λ) v(r) + R 2d s (m 0 ) .
It remains to estimate the contribution of this small perturbation to interaction energy, we have

R d ρ m 0 -ϕ 1 +ϕ 2 w * ρ m 0 -ϕ 1 +ϕ 2 = R d ρ m 0 w * ρ m 0 + 2 R d ρ ϕ 2 -ϕ 1 w * ρ m 0 + R d ρ ϕ 2 -ϕ 1 w * ρ ϕ 2 -ϕ 1 .
Let ε > 0 and let us write w = w 1 + w 2 + aδ 0 with w 1 ∈ L 1+d/2 (R d ), w 2 L ∞ (R d ) < ε and a ≥ 0. We first use Young's inequality to bound the last term

R d w * (ρ ϕ 2 -ρ ϕ 1 ) (ρ ϕ 2 -ρ ϕ 1 ) ≤ w 1 L 1+d/2 (R d ) ρ ϕ 2 -ρ ϕ 1 L 1 (R d ) ρ ϕ 2 -ρ ϕ 1 L 1+2/d (R d ) + w 2 L ∞ ε (R d ) ρ ϕ 2 -ρ ϕ 1 2 L 1 (R d ) + a ρ ϕ 2 -ρ ϕ 1 2 L 2 (R d ) ≤ Cλ 2 w L 1+d/2 (R d ) v(r) 1+ d d+2 + w 2 L ∞ ε (R d ) v(r) 2 + av(r) .
Next and similarly we estimate the second term (minus the delta interaction)

R d (w 1 + w 2 ) * ρ m 0 (ρ ϕ 2 -ρ ϕ 1 ) ≤ w 1 L 1+d/2 (R d ) ρ m 0 L 1+2/d (R d ) ρ ϕ 2 -ρ ϕ 1 L 1 (R d ) + w 2 L ∞ ε (R d ) ρ m 0 L 1 (R d ) ρ ϕ 2 -ρ ϕ 1 L 1 (R d ) ≤ Cλ( w 1 L 1+d/2 (R d ) ρ m 0 L 1+2/d (R d ) + w 2 L ∞ ε (R d ) ρ m 0 L 1 (R d ) )v(r).
Since m 0 is a minimizer, these estimates imply that Now letting λ tend to zero, we have that for almost all (ξ 1 , ξ 2 ) ∈ Ω 1 × Ω 0 , p 2 2 + V (x 2 ) + aρ m 0 (x 2 ) -p 2 1 -V (x 1 ) -aρ m 0 (x 1 ) = ∞ which, since V ∈ L Because s is continuously differentiable on [1 -2ε, 1 -ε/2], the difference quotient above is bounded uniformly in ξ 2 ∈ Ω 2,ε and λ > 0 small enough. Letting λ tend to zero, we end up with the same contradiction as before showing that Ω 1 is a null set.

Proof of Theorem 1. We assume A = 0 without loss of generality, since it can be removed by a change of variable. We will first show that the expression (5) of the minimizers is correct by computing the Euler-Lagrange equation associated with any such minimizer m 0 . This gives automatically the expression of the minimum energy [START_REF] Benedikter | Optimal Upper Bound for the Correlation Energy of a Fermi Gas in the Mean-Field Regime[END_REF]. We conclude, in the case w ≥ 0, by showing that the chemical potential µ is given by [START_REF] Benedikter | Mean-field evolution of fermionic systems[END_REF].

Let ε > 0 small enough and ϕ ∈ L This is enough for the left factor in the integrand above to be zero almost everywhere on {ε < m < 1 -ε}. But ε can be taken arbitrary small and by Lemma 18 we have ε>0 {ε < m < 1 -ε}= {0 < m < 1} = R 2d almost everywhere, from which we obtain [START_REF] Benedikter | Mean-field Evolution of Fermionic Mixed States[END_REF]. That ρ m 0 ∈ L 2 (R d )∩ L 1+d/2 (R d ) follows from Lemma 12 and the fact that m 0 satisfies [START_REF] Benedikter | Mean-field Evolution of Fermionic Mixed States[END_REF].

It remains to prove [START_REF] Benedikter | Mean-field evolution of fermionic systems[END_REF] when it is assumed that w ≥ 0. This is a classical argument and we only sketch it, we refer to [START_REF]The Thomas-Fermi theory of atoms, molecules and solids[END_REF] for further details. First note that the assumption w ≥ 0 ensures the convexity of E β,ρ Vla , hence for ρ ′ > 0, F β Vla (ρ ′ , ρ) is the minimum of a convex function under a linear constraint, it is therefore convex. This implies that, for ρ ′ > 0, the function F β Vla (•, ρ ′ ) is continuous on R + and continuously differentiable except maybe in a countable number of values of ρ. We first show that R * + ∋ ρ → µ(ρ) ∈ R defines a bijection, where µ(ρ), defined in [START_REF] Benedikter | Mean-field Evolution of Fermionic Mixed States[END_REF], is the Lagrange multiplier associated to the constraint ρ. Consider, for µ ∈ R, the unconstrained minimization problem

inf 0≤m≤1 E β,ρ ′ Vla (m) - µ (2π) d R 2d m = inf ρ≥0 F β Vla (ρ, ρ ′ ) -µρ. ( 54 
)
This yields a minimizer m µ and hence a density ρ(µ) := (2π) -d m µ , see Remark 15. The expression of m µ can be computed through the Euler-Lagrange equation, m µ = 1 1 + e β(p 2 +V +ρ ′-1 ρ m µ * w-µ) From (54), the density m µ must also satisfy E β,ρ ′ Vla (m µ ) = F β Vla (ρ(µ), ρ ′ ) and since w ≥ 0, we conclude that m µ is also the unique solution of this equation and must satisfy [START_REF] Benedikter | Mean-field Evolution of Fermionic Mixed States[END_REF] where µ(ρ) appears. By identification, µ = µ(ρ) is the Lagrange multiplier associated to the minimization problem at density ρ. This proves the bijective correspondance between µ(ρ) and ρ.

Finally, if F β Vla (•, ρ ′ ) is differentiable in some ρ 0 , the above discussion shows (8) for ρ = ρ 0 . But because of the one-to-one correspondance between µ and ρ, ∂ ρ F β Vla cannot be discontinuous, this concludes the proof.

  d and w ≥ 0 then, for all β > β 0 we have lim N →∞ d N →ρ d e β Can ( , N ) = e β,( R d w)δ 0 Vla (ρ) where e β,( R d w)δ 0 Can

Remark 13 . 2 - 4 . 2 . 1 .

 132421 d and {ρ m ≥ 1} has finite measure by Markov's inequality. If w = 0 then ρ m behaves like V d/, it can be seen by doing the same computation as in (9). Therefore, without other assumptions than w ∈ L 1+ d 2 (R d ), we cannot expect more from ρ m . Case 0 < η < 1/d. We assume that 0 < dη < 1 and take w ∈ L 1 R d with 0 ≤ w ∈ L 1 R d . Take w N = N dη w (N η •) and consider the canonical model with this interaction. Denoting a = R d w (x) dx, Proposition 8 implies that lim sup N →∞ d N →ρ d e β Can (N, ) ≤ e β,w=aδ 0 Vla (ρ) .

  Fix ρ > 0 and define m 0 ∈ S Vla (ρ) by m 0 (x, p) := 1 1 + e β(p 2 +V (x)-µ) , where µ is the unique chemical potential such that 1 (2π) d R 2d m 0 (x, p) dx dp = ρ. Then e β,w=0 Vla

Proof.

  We have to show that for anyC 0 ∈ R L(C 0 ) := m ∈ S Vla (ρ) | E β,ρ,w=0 Vla (m) ≤ C 0 is closed with respect to the L 1 -norm on S Vla (ρ). Let (m n ) ⊆ L(C 0 ) be a sequence converging towards some m ∈ L 1 R d with respect to the L 1 -norm. By the L 1 convergence we immediately have 1 (2π) d R 2d m = ρ,we can also extract a subsequence converging almost everywhere and obtain 0 ≤ m ≤ 1. Applying Remark 15 with Ω = {|x| + |y| ≥ R}, we have for any R > 0 that 1 (2π) d |x|+|p|≥R p 2 + V (x) m n (x, p) + 1 β s (m n (x, p)) dx dp ≥ -1 β |x|+|p|≥R log 1 + e -β(p 2 +V (x)) dx dp = o R (1).

Fatou's lemma and dominated convergence we obtain lim inf n→∞ |x|+|p|≤R p 2 +

 2 V + (x) m n (x, p) dx dp ≥ |x|+|p|≤R p 2 + V + (x) m (x, p) dx dp, |x|+|p|≤R V -(x) m n (x, p) dx dp -→ n→∞ |x|+|p|≤R V -(x) m (x, p) dx dp.It remains to deal with the entropy term: by continuity of s and by dominated convergence we have |x|+|p|≤R s (m n (x, p)) dx dp -→ n→∞ |x|+|p|≤R s (m (x, p)) dx dp.

E 1 + ϕ 2 )p 2 +- 1 -

 1221 β,ρ Vla (m 0 ) ≤ E β,ρVla (m 0 -ϕ V (x) + aρ m 0 (ϕ 2 -ϕ 1 )+ Cλ 2 w L 1+d/2 (R d ) v(r) 1+ d d+2 + w 2 L ∞ ε (R d ) v(r) 2 + av(r) + Cλ w 1 L 1+d/2 (R d ) ρ m 0 L 1+2/d (R d ) + w 2 L ∞ ε (R d ) ρ m 0 L 1 (R d ) v(r) + 2s (λ) (2π) d β v(r).Now we divide the last inequality by v(r) and we let r tend to zero and use the Lebesgue differentiation theorem (and the Lebesgue density theorem), to obtain that for almost all(ξ 1 , ξ 2 ) ∈ Ω 1 × Ω 0 V (x 1 ) -aρ m 0 (x 1 ) + p 2 2 + V (x 2 ) + aρ m 0 (x 2 ) + C w L 1+d/2 (R d ) ρ m 0 L 1+2/d (R d ) .

  1+d/2 loc (R d ) and ρ m 0 ∈ L 1+2/d loc (R d ), implies that |Ω 1 × Ω 0 | = 0. Therefore, at least one of them is a null set, we will treat the case where |Ω 0 | = 0 and |Ω 1 | = 0, the other one can be dealt with similarly. Because m has finite mass we can find ε > 0 such that Ω 2,ε := {1 -ε ≤ m(x, p) ≤ 1 -ε/2} is not a null set. Defining ϕ 1 and ϕ 2 (replacing Ω 0 by Ω 2,ε ) as before and doing the same computations we obtain that for almost all (ξ 1 , ξ2 ) ∈ Ω 1 × Ω 2,ε s(λ) λβ ≤ -p 2 1 -V (x 1 ) -aρ m 0 (x 1 ) + p 2 2 + V (x 2 ) + aρ m 0 (x 2 ) + s(m(ξ 2 ) -λ) -s(m(ξ 2 )) λ + C w L 1+d/2 (R d ) ρ m 0 L 1+2/d (R d ) .

1 ∩p 2 + 1 -

 121 L ∞ ({ε < m < 1 -ε}) such that ϕ = (2π) d ρ. For δ = ε 1+ ϕ ∞ we have m t := m 0 +tϕ 1+t ∈ S Vla (ρ) for all t ∈ (-δ, δ). Since m 0 is a minimizer, we must have d dt E β Vla (m t ) |t=0 = 0. Using that d dt m t = (ϕ -m 0 ) (1 + t) -2 and s ′ (t) = log t 1-t we obtain R 2d V (x) + 1 ρ w * ρ m 0 (x) + 1 β log m 0 (x, p) 1 -m 0 (x, p) ϕ (x, p) dx dp = R 2d p 2 + V (x) + 1 ρ w * ρ m 0 (x) + 1 β log m 0 (x, p) 1 -m 0 (x, p) m 0 (x, p) dx dp.(53)Denoting the right hand side by (2π) d µ Vla (ρ) ρ, we have shown for any ϕ verifying the above conditions that m 0 (x, p) -µ Vla (ρ) ϕ (x, p) dx dp = 0.
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