N
N

N

HAL

open science

Dependability evaluation. From functional to structural
modelling

Claudia Betous-Almeida, Karama Kanoun

» To cite this version:

Claudia Betous-Almeida, Karama Kanoun.

Dependability evaluation.

COMP’2001), Sep 2001, Budapest, Hungary. hal-02007586

HAL Id: hal-02007586
https://hal.science/hal-02007586
Submitted on 5 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

From functional to struc-
tural modelling. 20th International Conference on Computer Safety, Reliability and Security (SAFE-

https://hal.science/hal-02007586
https://hal.archives-ouvertes.fr

DEPENDABILITY EVALUATION :
FROM FUNCTIONAL TO STRUCTURAL
MODELLING

C. BETOUS-ALMEIDA, K. KANOUN

LAAS REPORT 01088
FEBRUARY 2001

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication

outside of CNRS. It has been issued as a Research Report
for early peer distribution.

Dependability Evaluation
From Functional to Structural Modelling

Claudia Betous-Almeida and Karama Kanoun

LAAS-CNRS
7, Avenue du Colonel Roche
31077 Toulouse Cedex 4 - France
{almeida,kanoun}@laas. fr

Abstract. The work presented in this paper is devoted to the definition
of a dependability modelling approach for the selection process of in-
strumentation and control systems (I&C) in power plants. We show how
starting from functional specifications, a functional-level model can be
transformed into a dependability model taking into account the system’s
architecture, following a progressive and hierarchical approach. This ap-
proach is illustrated on simple examples related to a specific architecture
of an 1&C system.

1 Introduction

Dependability evaluation plays an important role in critical systems’ definition,
design and development. Modelling can start as early as system functional spec-
ifications, from which a high-level model can be derived to help analysing de-
pendancies between the various functions. However the information that can be
obtained from dependability modelling and evaluation becomes more accurate
as more knowledge about system implementation is integrated into the models.
The aim of this paper is to show how starting from functional specifications,
a functional-level model can be transformed into a dependability model taking
into account the system’s architecture, using a progressive modelling approach.
The modelling approach has been applied to three different instrumentation and
control systems (1&C) in power plants, to help selecting the most appropriate
one. Due to space limitations, in this paper we illustrate it on a small part of
one of them.

The remainder of the paper is organised as follows. Section 2 gives the context
of our work. Section 3 is devoted to the presentation of the modelling approach.
Section 4 presents a small example of application of the proposed approach to
an I&C system and Section 5 concludes the paper.

2 Context of our Work

The process of defining and implementing an I&C system can be viewed as a
multi-phase process (as illustrated in Figure 1) starting from the issue of a Call

for Tenders by the stakeholder. The call for tenders gives the functional and non-
functional (i.e., dependability) requirements of the system and asks for candidate
contractors to make offers proposing possible systems/architectures satisfying
the specified requirements. A preliminary analysis of the numerous responses
by the stakeholder, according to specific criteria, allows the pre-selection of two
or three candidate systems. At this stage, the candidate systems are defined
at a high level. They are usually based on Commercial-off-the-Shelf (CO'TS)
components and the application software is not entirely written. The compara-
tive analysis of the pre-selected candidate systems, in a second step, allows the
selection of the most appropriate one. Finally, the retained system is refined
and thoroughly analysed to go through the qualification process. Dependability
modelling and evaluation constitute a good support for both the selection and
the refinement processes, thorough analysis and preparation of the final system’s
qualification. The main purpose of our work is to help the stakeholder in this
modelling process. To this end, we have defined a rigorous, systematic and hi-
erarchical modelling approach that can be easily used to select an appropriate
architecture and to model it thoroughly. Thus this approach can be used by any
system’s developer.

Responses to the CT
(N proposals)
] | | 1 |
I t I - - 1 . I time
~ Comparative analysis ~ Refinement of the applications
T T of the candidate systems T - Thorough analysis T
. . ~ Qualification
Call for Tenders Preselection Final System’s
CT) candidate systems selection operation
k< N)

Fig. 1. Various steps of 1&C definition process

3 Modelling Approach

Our modelling approach follows the same steps as the development process: It
is also performed in three steps as described in Figures 1 and 2:

Step A. Construction of a functional-level model based on the system’s specifi-
cations;

Step B. Transformation of the functional-level model into a high-level depend-
ability model, based on the system’s architecture. There is one for each

pre-selected candidate system;
Step C. Refinement of the dependability model, based on the detailed architec-
ture of the retained system.

Modelling is based on Generalised Stochastic Petri Nets (GSPN) due to their
ability to cope with modularity and model refinement [1]. The GSPN model is
processed to obtain the corresponding Markov chain. Dependability measures
(i-e., availability, reliability, safety, ...) are obtained through the processing of
the Markov chain, using an evaluation tool such as SURF-2 [3].

Functional —>
Specifications ~ 2

Functional-level
Model

System”. High-level
nhitoctre ——> (_ Depeadability Model
Retained Detailed
System's > Dependability Model
Architecture

Fig. 2. Main steps of our modelling approach

3.1 Functional-Level Model

The system’s functional-level model is the starting point of our method. This
model is independent from the underlying system’s architecture. Hence it can
be done even before the call for tenders, by the stakeholder,

The system’s functional-level model is formed by places which represent the
possible states of functions. For each function, the minimal number of places
is two (Fig. 3): One which represents the function’s nominal state (F) and the
other its failure state (F). Between these two states, we have the events that
manage changes from F to F and vice-versa. These events are inherent to the
system’s structure that is not specified in this step as it is not known yet. We
call the model that contains these events and the corresponding places, the link
model (Mp). Note that the set {F, M, F} that constitutes the system’s GSPN

model, will be completed once the architecture system is known!.

Fig. 3. Functional-level model related to a single function

Most of the times though, systems perform more than one function. In this
case we have to look for dependancies between these functions due to the com-
munication between them. We distinguish two degrees of dependancy. Figure 4
illustrates the two types of functional dependancy between two functions Fq and
Fy. F3 is independent of both F; and Fy.

Case (a) Total dependancy — Fy depends totally on Fy, noted Fo <P F;. In
this case, if Fy fails, F3 also fails, i.e. (M (F1) =1) = (M (F3) = 1),
where M (F) represents the marking of place F;

! This modelling approach is applicable in the same manner when there are several
failure modes per function.

Fy F3

(b) F2 « F]_ (partia.l)

(a) Fy « F (total)

Fig. 4. Types of functional dependancies

Case (b) Partial dependancy — Fo depends partially on Fq, noted Fy > Fy.
In this case, although F;’s failure does not induce Fy’s failure, i.e.
(M (Fp) =1) & (M (F3) = 1), Fy is affected. In fact, Fy’s failure
puts Fy in a degraded state that is represented by place Fy,. Fo, will
be marked whenever Fy is in its failure state and Fy in its nominal

one, i.e. M (Fog) =1 (M (Fp) =1) A (M (Fp) =1).

3.2 Link Model

The link model gathers the set of states and events related to the architectural
behaviour of the system. The first step in constructing this model consists on
the identification of the components associated with the system’s functions. For
modelling purposes, consider the following complete set of cases:

Case A. One function: In this case, several situations may be taken into ac-
count. A function can be done by:
A.l. A single software component on a single hardware component;
A 2. Several software components on a single hardware component;
A 3. A single software component on several hardware components;
A.4. Several software components on several hardware components;
Case B. Several functions: Again two situations can take place:
B.1. The functions have no common components;
B.2. The functions have some common components.

To illustrate the given situations, we will consider a simple example for each
case. Here we give only an overview of the structure of the link model. Note that
the structural models presented in this section are not complet. More information
is given in sections 3.3 et 3.4.

Case A. Case of a single function.

A.1. Let us suppose function F carried out by a software component S and a
hardware component H — Figure 5. Then, F and F markings depend upon the
markings of the hardware and software component models. More specifically:

.....................................

‘M
LGy N\ MG !
v
: LML
CoHaerm N\ Y Saer | 5
) ! M
v'c, v'c, I

Hox = hardware’s up state
Sok = software’s up state

Hgey = hardware’s failure state
Sdes = software’s failure state

Fig. 5. Interface model of a function executed by 2 components

e F’s up state is the combined result of H’s up state and S’s up state.
o I’s failure state is the result of H’s failure or S’s failure.

The behaviour of H and S is modelled by the so-called structural model (Mg)
and then it is connected to F and F through an wnterface model referred to as M;j.
The link model (M) is thus made up of the structural model (Mg) and of the
interface model (My): My, = Mg + Mj. This interface model connects hardware
and software components with their functions by a set of immediate transitions.
Note that there is only one interface model but to make its representation easier,
we split it into two parts: An upstream part and a downstream part.

Case A.2. Consider function F done by two software components S; and S, on
a hardware component H, in which case we have to consider two situations:
¢ Si and S, redundant (Fig. 6(a))
1. F’s up state is the combined result of H’s up state and S1 or Ss’s up
states:

MEF)=1=MHp)=1 A M(Sik)=1V M (S20x) = 1])

ii. F’s failure state is the result of H’s failure or Si’s failure and Si’s
failure:

M(EF) =1= (M (Haef) =1 V [M(Staes) =1 A M (Szaes) = 1)

¢ 51 in series with S, (Fig. 6(b))
1. F’s up state is the combined result of I, S; and Ss’s up states:

MEP)=1=MHpx)=1 A M(Sik)=1 A M (Szo) = 1)

Fig. 6. Link model of F done by two software components on a hardware component,

1. F’s failure state is the result of H’s failure or S; or Sy’s failure:
M(F) =1l=WM (Hdef) =1vM (S1des) =1 v M (SZdef) =1)

A.3. The case of function F done by a single software on several hardware
components, is essentially similar to the previous case;
A.4. Suppose function I done by a set of N components:

i. If all components, under the same conditions, have different behaviours,
then the structural model will have N initial places. This case corre-
sponds to a generalisation of Case A.1.

ii. If some of the N components, under the same conditions, have ezactly
the same behaviour, their structural models are grouped. In this case,
the structural model will have Q initial places (Q < N).

Case B. Consider two functions (the generalisation is straight forward) and let
{Cy;} (resp. {Cq;}) be the set of components associated to Fy (resp. Fg).

B.1. Fy and Fy have no common components, {C1;}N{Cy;} = 0. The interface
models related to Fy and F9 are built separately in the same way as explained
for a single function.

B.2. Fq and F3 have some common components, {Cy;} N {Czj} # 0. This case
is illustrated on a simple example:

e Iy done by three components: A hardware component H and two soft-
ware components Si; and Sq3. Fq corresponds to case (a) of Figure 6.

e F5 done by two components: The same hardware component H as for Fq
and a software component Sg;. Fo corresponds to Case A.L. of Figure 5.

Their model is given in Figure 7. It can be seen that i) both interface models
(Mg and Myy) are built separatly in the same way as done before, and ii)
in the global model, the common hardware component H is represented only
once by a common component model.

Fig. 7. Example of two functions with a structural dependancy

3.3 Interface Model

The interface model My connects the system components with their functions
by a set of transitions. This model is a key element in our approach. It has been
defined to be constructed in a systematic way in order to make the approach
re-usable and to facilitate the construction of several models related to various
architectures. Moreover, it has been defined in formal terms. The main rules are
stated in an informal manner in this paper.

Both parts of the My have the same number of immediate transitions and
the arcs that are connected to these transitions are built in a systematical way:

¢ Upstream My: It contains one function transition tp for each series (set
of) component(s) to mark the function’s up state place and one component
transition tgoy for each series, distinct component that has a direct impact

on the functional model, to unmark the function’s up state place.

- Each tF is linked by an inhibitor arc to the function’s up state place, by
an arc to the function’s up state place and by one bidirectional arc to
each initial (ok) component place;

- Each tgy is linked by an arc to the function’s up state place and by one

bidirectional arc to each failure component place.
 Downstream My: It contains one function transition t’g for each series (set
of) component(s) to unmark the function’s failure state place and one com-
ponent transition t’cy for each series, distinct component that has a direct
impact on the functional model, to mark the function’s failure state place.

- Each t’p is linked by an arc to the function’s failure state place and by
one bidirectional arc to each initial {(ok) component place;

- Bach t’y is linked by an inhibitor arc to the function’s failure state place,
by an arc to the function’s failure state place and by one bidirectional
arc to each component failure place.

3.4 Structural Model

In order to build the interface between the functional and the structural models,
we need to identify the components implementing each function, and thus the
initial places as well as their failure state places of the structural model.

The structural model can be built by applying one of the many existing
modular modelling approaches (see e.g., [4-T7]).

To complete the above examples, let us consider the simple case of Figure 5.
The associated structural model is given in Figure 8 in which the S4.; place of
Figure 5, corresponds to either place Seq or Sy;. The following assumptions and
notations are used:

e The activation rate of a hardware fault is Ay (Tr;) and of a software fault is
As (TI‘(;);

e The probability that a hardware fault is temporary is ¢ (try). A temporary
fault will disappear with rate & (Try);

o A permanent hardware fault (resp. software) is detected by the fault-tolerance
mechanisms with probability dj, (resp.d, for software faults). The detection
rate is 6, (Trs) for the hardware and §, (Tr7) for the software;

¢ The effects of a non detected error are perceived with rate m, (Tr4) for the
hardware and rate m; (Trg) for the software;

o Errors detected in the hardware component require its repair: repair rate is
p (Trs);

o Permanent errors in the software may necessitate only a reset. The reset rate
is p (Tre) and the probability that an error induced by the activation of a
permanent software fault disappears with a reset is r (tr7);

o If the error does not disappear with the software reset, a re-installation of
the software is done. The software’s re-installation rate is o (Tryg).

Note that a temporary fault in the hardware may propagate to the software
(try1) with probability p. We stress that when the software component is in place
Seq or S,;, it is in fact not available, i.e., in a failure state.

Also when the hardware is in the repair state, the software is on hold. The
software will be reset or re-installed as soon as the hardware repair is finished.
Due to the size of the subsequent model, this case is not represented here.

4 Application to 1&C Systems

An 1&C system performs five main functions: Human-machine interface (HMI),
processing (PR), archiving (AR), management of configuration data (MD), and

—— Immediate transition
— Timed transition

Try=2n Trg= As Hyyor S¢, = faultactivated te---oo-ooeeees L e PR PP !
Try=¢ Tr;= 85 Hopqor Seng=emor not detected try=t ty=t ;=1 tg=T

Try= 8h Tr8= s Sed = error detected tr3= Hh trg = Hs tg=TP tro~ U1=p
Try= mh Sts = software reset — =

Trg=p - : : y=d, tg=d
Trg=p 9 S i = software reinstallation s

Trp=0

Fig. 8. Structural model of a software and a hardware components

interface with other parts of the 1&C system (IP). The functions are linked by
the partial dependencies given in column 1 of Table 1.
Taking into account the fact that a system’s failure is defined by:

MHEM) =1 v M(PR)=1 v M(IP)=1

the above dependancies can be simplified as given in column 2 of Table 1.
Table 1. Functional dependancies of 1&C systems

|Function dependancies [Simplified funct. dependancies]
TIMI < {PR, AR, MD}|HMI < {AR, MD]

PR < {HMI, MD, IP} [PR « MD

AR < {HMI, MD] _ |AR & MD

IP < (PR, MD] IP < MD

These relations are translated by the functional model depicted in Figure 9.
To illustrate the second step of our modelling approach, we consider the ex-
ample of the I&C system used in [2]. This system is composed of five nodes
connected by a Local Area Network (LAN). The mapping between the various
nodes and functions is given in Figure 10. Note that while HMI is executed on

Fig. 9. Functional model for 1&C systems

Node 5

Nodel Node2 Node3 Node4

AR AR
HMI PR PR
HMI1 HMI HMI MD P P

_1 l | LAN

Fig. 10. 1&C architecture

four nodes, node 5 runs three functions. Nodes 1 to 4 are composed of one com-
puter each. Node 5 is fault-tolerant: It is composed of two redundant computers.
The structural model of this 1&C is built as follows:

e Node 1 to Node 3 ~ in cach node, a single function is achieved by one
software component on a hardware component. Its model is similar to the
one presented in Figures 5 and 8;

¢ Node 4 — has two independent functions. Its structural model will be similar
to the one depicted in Figure 7, followed by a model slightly more complex
than the one of Figure 8;

e Node 5 — is composed of two hardware components with three independent
functions each. Its structural model is more complex than the previous one
due to the redundancy. A part of this model has been presented in [2].

e LAN — the LAN is modelled at the structural level by the new structural
dependencies that it creates.

5 Conclusions

In this paper a three step modelling approach has been presented. This approach
is progressive and hierarchical and can easily be used to select and thoroughly
model an appropriate architecture. The functional-level and the structural mod-
els are linked by an interface model that is constructed in a formal way. This
interface model plays a central role in our modelling approach.

Although we have presented in this paper the application of our approach to
a small part of an I&C system, the approach has been applied to two other 1&C
systems to identify their strong and weak points.

The work is still in progress. In particular, the refinement of the dependability
model with the formal definition of refinement rules is under study. This will help
in the third step of the modelling approach for thorough analysis of the retained
system.

References

1. Ajmone Marsan, M., Balbo,G., Conte,G., Donatelli,S., and Franchescinis,G., Mod-
elling with Generalized Stochastic Petri Nets, Series in Parallel Computing, Wiley
(1995).

2. Almeida, C., Arazo, A., Crouzet, Y., and Kanoun, K., “Dependability of Computer
Control Systems in Power Plants: Analytical and Experimental Evaluation”, in Lec-
ture Notes in Computer Science, vol. 1943, Springer Verlag (2000) 165-175.

3. Béounes, C., and al. “SURF-2: A Program for Dependability Evaluation of Com-
plex Hardware and Software Systems”, in Proc. 23rd. Int. Symp. on Fault- Tolerant
Computing (FTCS-238), Toulouse, France (1993) 668-673.

4. Bondavalli, A., Mura, I., and Trivedi, K.S., “Dependability Modelling and Sensitiv-
ity Analysis of Scheduled Maintenance Systems”, in Proc. 3rd European Dependable
Computing Conf. (EDCC-3), Lecture Notes in Computer Science, vol, 1667, Springer
Verlag (1999) 7-23.

5. Fota, N., Kaniche, M., Kanoun, K., and Peytavin, P., “Safety Analysis and Eval-
uation of an Air Traffic Control System”, in Proc. 15th Int. Conf on Computer
Safety, Reliability and Security SAFECOMP’96, Vienna, Austria, (1996), 219-229.

6. Kanoun, K., Borrel, M., Morteveille, T., and Peytavin,A., “Availability of CAU-
'TRA, a Subset of the French Air Traffic Control System”, in IEEE Trans. on Com-
puters, vol. 48, n. 5, May (1999), 528-535.

7. Rabah, M., and Kanoun, K., “Dependability Evaluation of a Distributed Shared
Memory Multiprocessor System”, in Proc. 3rd European Dependable Computing
Conf. (EDCC-3), Lecture Notes in Computer Science, vol. 1667, Springer Verlag
(1999) 42-59.

