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Discriminating between computer-generated images (CGIs) and photographic images (PIs) is not a new problem in digital image forensics. However, with advances in rendering techniques supported by strong hardware and in generative adversarial networks, CGIs are becoming indistinguishable from PIs in both human and computer perception. This means that malicious actors can use CGIs for spoofing facial authentication systems, impersonating other people, and creating fake news to be spread on social networks. The methods developed for discriminating between CGIs and PIs quickly become outdated and must be regularly enhanced to be able to reduce these attack surfaces. Leveraging recent advances in deep convolutional networks, we have built a modular CGI-PI discriminator with a customized VGG-19 network as the feature extractor, statistical convolutional neural networks as the feature transformers, and a discriminator. We also devised a probabilistic patch aggregation strategy to deal with high-resolution images. This proposed method outperformed a state-of-the-art method and achieved accuracy up to 100%.

CCS Concepts:

Introduction

Despite the many benefits of computer-generated images (CGIs), for example in gaming, virtual reality, and 3D animation, they can also be used for malicious purposes. Videos generated for creating fake news to gain political advantages, create chaos, or damage reputations can easily spread uncontrollably in social networks. From the Digital Emily Project in 2010 [START_REF] Alexander | The digital emily project: Achieving a photorealistic digital actor[END_REF] to the Face2Face Project in 2016 [START_REF] Thies | Face2Face: Real-time face capture and reenactment of RGB videos[END_REF] and the Synthesizing Obama Project in 2017 [START_REF] Suwajanakorn | Synthesizing obama: learning lip sync from audio[END_REF], the requirements for performing a spoofing attack have been greatly simplified, from obtaining 3D scanning information captured by sophisticated devices (which is unrealistic for most attackers) to only needing RGB videos (which can be easily obtained online), and now to generating spoofing video in real time. Approaches like Face2Face can be used to break challenge-response tests in facial authentication systems or to impersonate people in teleconferences. Moreover, recent advances in generative adversarial networks (GANs) [START_REF] Goodfellow | Generative adversarial nets[END_REF] have overcome the size-limit problem, enabling realistic facial images to be generated in unprecedented high-definition quality (1024 × 1024) [START_REF] Karras | Progressive growing of GANs for improved quality, stability, and variation[END_REF]. These developments have raised alarms in forensics research as well as in security and privacy areas. Discriminating between such highquality computer-generated multimedia and their natural counterparts, especially in the case of images, is a continuous competition between the attacker side and the defender side.

Statistical properties obtained from transformed images (e.g., from wavelet transform or differential operators) have been widely used to distinguish CGIs from photographic images (PIs) [START_REF] Lyu | How realistic is photorealistic[END_REF][START_REF] Chen | Computer graphics identification using genetic algorithm[END_REF][START_REF] Li | Identifying photorealistic computer graphics using second-order difference statistics[END_REF]37,38,[START_REF] Chen | A novel photographic and computer graphic composites detection method[END_REF] and were recently demonstrated to be the best features for discrimination by Rahmouni et al. [START_REF] Rahmouni | Distinguishing computer graphics from natural images using convolution neural networks[END_REF]. They also demonstrated that applying automatic feature extraction using a convolutional neural network (CNN) can substantially improve classification compared with using handcrafted features.

In addition, the pre-trained VGG networks proposed by the Visual Geometry Group at the University of Oxford [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] (VGG-16 and VGG-19) have been widely used in areas outside their originally intended scope as image classification networks, such as for perceptual loss in the style transfer problem and for the super-resolution problem [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF][START_REF] Ledig | Photorealistic single image super-resolution using a generative adversarial network[END_REF]. Furthermore, these VGG networks were trained using a large-scale dataset [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], which maximizes the generalization ability of a CNN.

In the research reported here, we leveraged the generalization ability of the VGG-19 network, combined with statistical properties applicable to CNNs, to build a modular CGI-PI classifier. To deal with high-resolution images while minimizing computational cost, we use a probabilistic patch aggregation strategy that reduces V-RAM usage and shortens classification time.

Related Work

Previously reported approaches to distinguishing CGIs from PIs can be classified into four groups. Early research on digital image forensics by Farid and Lyu [START_REF] Farid | Higher-order wavelet statistics and their application to digital forensics[END_REF][START_REF] Lyu | How realistic is photorealistic[END_REF] suggested that statistics on the first-and higher-order wavelets can be used to classify CGIs and PIs. Wang and Moulin [36] improved on this approach by using features extracted from characteristic functions of wavelet histograms. Chen et al. [START_REF] Chen | Computer graphics identification using genetic algorithm[END_REF] suggested that a genetic algorithm could help in selecting an optimal feature set from the statistical moments of the characteristic functions of an image and its wavelet subbands. Li et al. [START_REF] Li | Identifying photorealistic computer graphics using second-order difference statistics[END_REF] used second-order difference statistics while Wu et al. [37] extracted features from histograms of difference images.

To detect CGI-PI splicing, Conotter and Cordin [START_REF] Conotter | Detecting photographic and computer generated composites[END_REF] exploited both wavelet-based features and noise residual statistics. For the same problem, Chen and Ke [START_REF] Chen | A novel photographic and computer graphic composites detection method[END_REF] proposed using a hybrid classifier taking as input the pattern noise statistics and histogram features of first-and second-order difference images.

Work on distinguishing between CGIs and PIs includes work focused on identifying the footprints of image acquisition devices. Khanna et al. [START_REF] Khanna | Forensic techniques for classifying scanner, computer generated and digital camera images[END_REF] took advantage of the residual pattern noise caused by both CCD (charged coupled device) and CMOS (complementary metal oxide semiconductor) sensors inside digital cameras or scanners. Dirik et al. [START_REF] Dirik | New features to identify computer generated images[END_REF] focused on traces of demosaicing and chromatic aberration in color filter arrays (CFAs), as did Gallagher and Chen [START_REF] Andrew | Image authentication by detecting traces of demosaicing[END_REF]. Peng et al. [START_REF] Peng | Discriminating natural images and computer generated graphics based on the impact of cfa interpolation on the correlation of PRNU[END_REF] also targeted CFAs and identified the effect of their interpolation on the local correlation of photo response non-uniformity noise.

Ng et al. [START_REF] Ng | An online system for classifying computer graphics images from natural photographs[END_REF] proposed a fusion classification system using the geometry (object model, light, post-processing), the wavelet, and the cartoon features. Fan et al. [START_REF] Fan | Classifying computer generated graphics and natural images based on image contour information[END_REF] clarified the limitations of using wavelets and made use of contour information. Zhang et al. [38] extracted the statistical properties of local edge patches in digital images. Also using statistical analysis, Li et al. [START_REF] Li | Distinguishing computer graphics from photographic images using local binary patterns[END_REF] explored the use of uniform gray-scale invariant local binary patterns. Tan et al. [START_REF] Dq Tan | Detecting computer generated images based on local ternary count[END_REF] improved previous work by using the local ternary count based on local ternary patterns. In other work, Peng et al. [START_REF] Peng | Discrimination of natural images and computer generated graphics based on multi-fractal and regression analysis[END_REF] proposed using multi-fractal and regression analysis.

Recently, Rahmouni et al. [START_REF] Rahmouni | Distinguishing computer graphics from natural images using convolution neural networks[END_REF] demonstrated that using statistics is the best approach to solving this forensic problem and that applying a CNN substantially improves the performance of traditional statistical-based methods. To the best of our knowledge, the method of Rahmouni et al. is state-of-the-art, with the highest accuracy for distinguishing between CGIs and PIs. Our modular CNN for discriminating between CGIs and PIs includes three modules, as illustrated in Figure 1. Unlike recent work [START_REF] Rahmouni | Distinguishing computer graphics from natural images using convolution neural networks[END_REF], we do not train the whole network end-to-end. The biggest problem with CNNs is the need to use a large-scale and diverse-content training dataset in order to achieve the best generalization. The dataset used by Rahmouni et al. [START_REF] Rahmouni | Distinguishing computer graphics from natural images using convolution neural networks[END_REF] is relatively large but is less diverse in content than the ILSVRC15 dataset [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]. Unfortunately, the ILSVRC15 dataset was designed for visual recognition, not digital image forensics research. However, CNNs have the ability to transfer learning, so the knowledge gained from solving one problem can be used to solve a different but related problem. Therefore, we used one of the winners of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) -the pre-trained VGG-19 network, as the feature extractor module. It is important to note that we did not fine tune the feature extractor in the training process.

Although recent work [37,[START_REF] Rahmouni | Distinguishing computer graphics from natural images using convolution neural networks[END_REF] has shown that statistical properties obtained from transformed images are the best features for CGI-PI discrimination, the features extracted from the pre-trained VGG-19 network were designed for visual recognition. Therefore, we constructed feature transformer modules to transform the output extracted by the feature extractor into statistical features. The number of convolutional layers in the transformers must be limited to prevent them from extracting semantic information, but there must be a sufficient number of such layers to be able to extract good statistical information.

The final module is a classifier. For this module, we selected the machine learning algorithm among state-of-the-art ones that has the best classification results.

Feature Extractor

Johnson et al. [START_REF] Johnson | Perceptual losses for real-time style transfer and super-resolution[END_REF] suggested that the results obtained from some activation layers of the pretrained VGG-16 network can be used to calculate the feature reconstruction loss and the style reconstruction loss, which are used for both the style transfer problem and the image super-resolution problem. Ledig et al. [START_REF] Ledig | Photorealistic single image super-resolution using a generative adversarial network[END_REF] argued that, in the case of feature reconstruction loss, using output from a deeper activation layer of the pre-trained VGG-19 network results in better perceptual quality than that with Johnson et al.'s approach. Therefore, there is no standard guideline for the utilization of the VGG network family. In the case of digital forensics, we hypothesized that features in lower layers have more discriminating power than ones from higher levels, which mostly contain semantic information. Moreover, instead of using the output of the rectified linear units (ReLUs) [START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF], for which negative values are omitted, we extracted output immediately after the convolutional layers.

To verify this hypothesis, we performed an experiment using the patches dataset proposed by Rahmouni et al. [START_REF] Rahmouni | Distinguishing computer graphics from natural images using convolution neural networks[END_REF] and the pre-trained VGG-19 network. We extracted the outputs after five convolutional layers located immediately before the maxpooling layers as shown in Figure 2. For the five settings given in Table 1, the combination of layers 1, 2, and 3 gave the highest classification accuracy. These results indicate that using only one layer does not produce the highest accuracy. However, if semantic layers were included, the classification performance would be affected by this irrelevant information. Therefore, we chose outputs from layers 1, 2, and 3 in Figure 2 (conv1 2, conv2 2, and conv3 4, respectively) as features to be extracted by the feature extractor. 

Feature Transformers

The role of the feature transformers is to transform features encoded by the pre-trained VGG-19 network into statistical properties that can be used to distinguish CGIs from PIs. Because there are three feature transformer modules, it is necessary to minimize their depths. Moreover, a deep feature transformer may produce unnecessary semantic information, which could negatively affect the network. However, a shallow network has a limited ability to transform the features. Therefore, we used two convolutional layers with 3 × 3 kernels and a stride of 1. We integrated batch normalization layers [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] into the transformers to regularize their training processes. Following the batch normalization layers are the ReLU activation layers. We attached a statistical pooling layer at the end of the modules to extract the statistical properties.

The three feature transformers share the same architecture, as illustrated in Figure 3. We built the statistical pooling layer following Rahmouni et al.'s approach [START_REF] Rahmouni | Distinguishing computer graphics from natural images using convolution neural networks[END_REF]. However, we assumed that finding the maximum and minimum of each filter was not necessary and that these actions would consume computational power, especially when performing back propagation in the training phase. Therefore, we calculate only the mean and variance of each filter, which are important in statistics and also are differentiable.

• Mean:

µ k = 1 H × W H i=1 W j=1 I kij .
• Variance:

σ 2 k = 1 H × W -1 H i=1 W j=1 (I kij -µ k ) 2 .
The k represents the layer index, H and W are respectively the height and width of the filter, and I is a two-dimensional filter array.

Classifier

Feed-forward multilayer networks, or multilayer perceptrons (MLPs), [START_REF] Dennis W Ruck | The multilayer perceptron as an approximation to a bayes optimal discriminant function[END_REF] are widely used to build classifiers in CNNs because of their differentiable property. However, there are other strong classification algorithms that have been widely used such as Fisher's linear discriminant analysis (LDA) algorithm [START_REF] Richard O Duda | Pattern classification[END_REF] and the support vector machine (SVM) algorithm [START_REF] Cortes | Support-vector networks[END_REF]. Therefore, we first use an MLP to build the classifier to train the feature transformers (as well as to train the classifier itself). After the training, the feature transformers are kept fixed, and the classifier is trained using the LDA and SVM classification algorithms. The learning curves of these algorithm are plotted in Figure 4. The proposed network converged very quickly in the few first epochs. The MLP algorithm had high accuracy but was less stable than the LDA and SVM algorithms. Since the LDA algorithm usually has higher accuracy than the SVM one, we evaluated only MLP and LDA classifiers, as described in section 5. In more detail, two properties are extracted by each statistical pooling filter: the mean µ i and the variance σ i . Each pooling layer has 64 filters. Since there are three feature extractor modules, the classifier receives a 384-dimension vector. For the MLP algorithm, we used two hidden layers and one dropout layer [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF] in between (with a dropout rate of one-third to avoid over-fitting). A classifier us-ing the MLP algorithm is illustrated in Figure 3. For the LDA and SVM classifiers, we used the Lin-earDiscriminantAnalysis and SVC module of the scikit-learn library. 1To choose the best weights for the feature transformers and the classifier, we begin from epoch 20 and use the one with the highest score in the validation set. Although the proposed network converged very quickly, it is better to use a longer training time to optimize its weights before harvesting.

Patch Aggregation

Using a CNN with large-scale input requires a large amount of GPU memory. One possible solution is to split the input into patches, perform classification, and aggregate the results [START_REF] Rahmouni | Distinguishing computer graphics from natural images using convolution neural networks[END_REF]. Although this approach can also detect local CGI inlay in large PI images (or vice-versa), it has high computational cost, especially when dealing with very large images. For instance, an image 4900 × 3200 pixels in size would require 1568 patches if the patch size was 100 × 100 pixels. This would result in 1568 classification calculations.

To reduce the number of calculations, we devised an approach using a probability sampling method that randomly selects a portion of the patches, performs classification using the selected patches, calculates the average of the predicted probabilities, and uses it as the final decision. Two patch selection strategies are illustrated in Figure 5. For some fixed number of patches (e.g., 10, 25, or 50), we could integrate them into one batch and feed that batch into the network instead of feeding each patch separately into the network, thereby shortening the computation time. Let

• y pred be the predicted label of input image I, which is either 0 (PI) or 1 (CGI).

• W be the set of patches w i extracted from the full-size image I, |W | = N (patches).

• p(w i ) = D(w i ) be the probability of patch w i being classified by the proposed network D as CGI. The probability of I being classified as CGI is calculated using

p(I) = 1 N N i=1 p(w i ). (1) 
Hence, the predicted label of I is

y pred = 1, if p(I) > 0.5 0, otherwise. (2) 
5 Evaluation

Datasets

For the image datasets, we began with the one recently constructed by Rahmouni et al. [START_REF] Rahmouni | Distinguishing computer graphics from natural images using convolution neural networks[END_REF]. Its CGI part contains 1800 high-resolution (around 1920 × 1080 pixels) screenshots in JPEG format from five photo-realistic video games. The PI part is taken from the RAISE dataset [START_REF] Dang-Nguyen | Raise: A raw images dataset for digital image forensics[END_REF], includes 1800 very high-resolution JPEG images (around 4900 × 3200) directly converted from RAW format. Both parts cover many kinds of indoor and outdoor environments. Sample images from this dataset are shown in Figure 6.

We made one major change to this dataset. We contend that the reduced-size images created by cropping high-resolution images to 650×650 are not appropriate for our purposes because their quality is still good. In reality, many images and videos have low quality, and a malicious person could additionally apply transformation to the CGIs, for example, scaling them to produce lower quality, to disguise the attack. Therefore, instead of cropping, we resized each high-resolution image to 360p resolution using a bilinear interpolation algorithm. This increased the diversity in quality of images used for evaluation.

In addition to using a patch size of 100 × 100, we also used a patch size of 256 × 256 for the high-resolution images to reduce the number of patches. This larger patch size could be used with large-memory GPUs. Moreover, a larger patch size should contain more valuable information, and with the size is the power of 2, we could reduce the effect of JPEG artifacts. In addition, we also extracted 100 × 100 patches from the reduced-size images. The datasets derived from the original one are summarized in Table 2.

We trained each discriminator on the training sets of the patch datasets. The valid. sets were used to validate the training process. After training, the discriminators were tested on the testing sets of both patch datasets and their corresponding Full-Size or Reduced-Size ones. Moreover, as described in section 5.3, we also tested the discriminators which were trained using the Patch-100-Full dataset on the Reduced-Size dataset to check whether this training strategy is capable of generalization.

Testing on High-Resolution Images

For testing on high-resolution images, we trained our proposed method and Rahmouni et al.'s one [START_REF] Rahmouni | Distinguishing computer graphics from natural images using convolution neural networks[END_REF] on the Patch-100-Full and the Patch-256- Full datasets. We then evaluated them on both the corresponding patch dataset and the Full-Size one.

The proposed method was also tested for several patch aggregation strategies, as presented in Table 3. For the 100 × 100 patch size, it was sufficient to sample only 50 patches to obtain performance equivalent to that of evaluating all patches on the Full-Size dataset. When the sampling process avoided some confused areas in the images, sampling only 10 256 × 256 patches outperformed sampling 25 patches or evaluating all patches, achieving an accuracy of 100%. Otherwise, the accuracy was slightly lower (e.g., 99.72%).

Our proposed method substantially outperformed Rahmouni et al.'s method [START_REF] Rahmouni | Distinguishing computer graphics from natural images using convolution neural networks[END_REF] on both the Patch-100-Full and Patch-256-Full datasets. It also had the highest results on the Full-Size dataset, reaching 100%. A comparison of accuracy between Rahmouni et al.'s method [START_REF] Rahmouni | Distinguishing computer graphics from natural images using convolution neural networks[END_REF] and the proposed method is shown in Table 4. Comparing the orig-inal 100 × 100 patch size with the 256 × 256 one shows that increasing the patch size improves the accuracy of Rahmouni et al.'s method. Moreover, use of the MLP classifier rather than the LDA one in the proposed method resulted in higher accuracy for both the Reduced-and Full-Size datasets. The ROC curves for the Patch-100-Full and Full-Size dataset discriminators are plotted in Figures 7 and8.

Dealing with Low-Resolution Images

In reality, many videos on social networks such as YouTube, Facebook, and Vimeo have 360p quality. Attackers can take advantage of this to produce low-resolution videos (and images) that are more difficult to detect. The results shown in Table 5 highlight this problem for discriminators trained on the Patch-100-Full dataset. Their performance The results in Table 5 show that both discriminators had better performance on the Patch-100-hand, failed to detect the splice in the first image and was confused in the second image.

Summary and Future Work

The proposed modular CGI-PI discriminator uses the VGG-19 network as the feature extractor, statistical convolutional neural networks as the feature transformers, and the machine learning algorithm among state-of-the-art ones that has the best classification results as a discriminator. It outperformed a state-of-the-art CGI-PI discriminator. The proposed random sampling strategy used for patch aggregation was demonstrated to be effective for large images. Testing showed that using only highresolution images for training is not sufficient to counter real-world attacks.

Our top priority now is to use ensemble adversarial training [START_REF] Tramèr | Ensemble adversarial training: Attacks and[END_REF] to counter adversarial machine learning attacks [START_REF] Huang | Adversarial machine learning[END_REF]. This kind of attack is becoming more common and is very effective against machine-learning-based discriminators. A promising candidate to replace patch aggregation for dealing with high-resolution images is the attentionbased approach [START_REF] Ba | Multiple object recognition with visual attention[END_REF]. We also plan to adapt the proposed discriminator to enable it to work with videos, not simply extracting data frame-by-frame and performing classification to reduce computational time.
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 1 Figure 1: Overview of modular CNN discriminator.
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 2 Figure 2: Detailed design of feature extractor and its connections with feature transformers and classifier.
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 3 Figure 3: Detailed settings of feature transformers and classifier.
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 4 Figure 4: Learning curves of MLP, LDA, and SVM classifiers on Patch-100-Full validation set described in section 5.1

Figure 5 :

 5 Figure 5: Patch selection strategies: Selecting all patches (left) vs. random sampling (right).

Figure 6 :

 6 Figure 6: Sample images from dataset constructed by Rahmouni et al. [27]. Images on the left are PIs and those on the right are CGIs.
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 78 Figure 7: ROC curves of discriminators tested on Patch-100-Full dataset. Proposed method used MLP classifier.

Table 1 :

 1 Accuracies for Training Using PatchesDataset for Five Settings.

	Setting	Accuracy (%)
	1	95.40
	1 + 2	97.60
	1 + 2 + 3	97.70
	1 + 2 + 3 + 4	96.50
	1 + 2 + 3 + 4 + 5	96.10

Table 2 :

 2 Datasets Used for Evaluation.

	Name	No. for training No. for valid. No. for testing	Image size
	Full-Size	2,520	360	720	High-resolution
	Patch-100-Full	40,000	1,000	2,000	100 × 100
	Patch-256-Full	40,000	1,000	2,000	256 × 256
	Reduced-Size	2,520	360	720	360p
	Patch-100-Reduced	40,000	1,000	2,000	100 × 100

Table 3 :

 3 Accuracy for Several Patch Aggregation Strategies on Full-Size Dataset. The Random Sampling Strategy Was Evaluated Three Times.

	Classifier			MLP				LDA	
	Patch size No. of patches	1	2	3	Avg.	1	2	3	Avg.
	100 × 100	10 50 100 All	99.31 99.72 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.63 99.86 99.31 99.72 99.63 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86 99.86
	256 × 256	5 10 25 All	99.72 99.44 99.72 100.00 99.72 100.00 99.91 99.86 99.58 99.72 99.72 99.63 99.44 99.03 99.58 99.35 99.86 99.86 99.86 99.86 99.72 99.72 99.72 99.72 99.86 99.72

Table 4 :

 4 Comparison of Accuracy between Rahmouni et al.'s Method[START_REF] Rahmouni | Distinguishing computer graphics from natural images using convolution neural networks[END_REF] and Proposed Method.

				Method	Patch-100-Full Patch-256-Full	Full-Size
		Rahmouni et al. -100 [27]	86.10	×	96.94
		Rahmouni et al. -256 [27]	×	93.95	98.75
		Proposed method -MLP -100	96.55	×	99.86
		Proposed method -LDA -100	96.40	×	99.86
		Proposed method -MLP -256	×	98.70	99.72 -100.00
		Proposed method -LDA -256	×	98.70	99.58 -99.86
		1.0		
		0.8		
	True Positive Rate	0.4 0.6		
		0.2		
		0.0 0.0	0.2	0.4 False Positive Rate 0.6 Proposed method (AUC = 0.96) 0.8 Rahmouni et al. (AUC = 0.93)	1.0
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Detecting Image Splicing

In an experiment, we used the discriminators to detect image splicing. Along with the normal way of dividing the test input into 100 × 100 patches, we also used an overlapping patch strategy. The probability of splicing for each area is the average of the probabilities of all patches to which the area belongs. Although this strategy has a higher calculation cost, it produces smoother output than the non-overlapping one. Example images are shown in Figure 11; the input sizes were 1800 × 1200 and 1200×800 pixels. Our proposed method (both overlapped and non-overlapped patches) outperformed Rahmouni et al.'s one [START_REF] Rahmouni | Distinguishing computer graphics from natural images using convolution neural networks[END_REF]. Although our method did not flawlessly separate all the splices and had a few minor false positives, it could detect their relative positions. Rahmouni et al.'s one, on the other