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Abstract

The magnetic properties of the cobaltite BaCo2(AsO4)2, a good realization of 

the quasi two-dimensional frustrated honeycomb-lattice system with strong planar 

anisotropy, have been reinvestigated by means of spherical neutron polarimetry with 

CRYOPAD. From accurate measurements of polarization matrices both on elastic 

and inelastic contributions as a function of the scattering vector Q, we have been 

able to determine the low-temperature magnetic structure of BaCo2(AsO4)2 and 

reveal its puzzling in-plane spin dynamics. Surprisingly, the ground-state structure 

(described by an incommensurate propagation vector 𝐤1 = (𝑘𝑥, 0, 𝑘𝑧), with 𝑘𝑥 =
0.270±0.005 and 𝑘𝑧 ≈ −1.31) appears to be a quasi-collinear structure, and not 

a simple helix, as previously determined. In addition, our results have revealed 

the existence of a non-negligible out-of-plane moment component ≈0.25𝜇𝐵/Co2+, 

representing about 10% of the in-plane component, as demonstrated by the presence 

of finite off-diagonal elements 𝑃𝑦𝑧 and 𝑃𝑧𝑦 of the polarization matrix, both on elastic 

and inelastic magnetic contributions. Despite a clear evidence of the existence of 

a slightly inelastic contribution of structural origin superimposed to the magnetic 

excitations at the scattering vectors 𝐐 = (0.27, 0, 3.1) and 𝐐 = (0.73, 0, 0.8) (energy 
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transfer Δ𝐸 ≈ 2.3 meV), no strong inelastic nuclear-magnetic interference terms 

could be detected so far, meaning that the nuclear and magnetic degrees of freedom 

have very weak cross-correlations. The strong inelastic 𝑃𝑦𝑧 and 𝑃𝑧𝑦 matrix elements 

can be understood by assuming that the magnetic excitations in BaCo2(AsO4)2 are 

spin waves associated with trivial anisotropic precessions of the magnetic moments 

involved in the canted incommensurate structure.

Keywords: Condensed Matter Physics, Materials Science

1. Introduction

When the space dimension 𝐷 is lowered from three, to two (2D, planar system) and 

finally to one (1D, chain system), the magnetism displays more and more interesting 

and non-trivial features, as a result of the enhancement of both the thermal and 

quantum fluctuations. In the extreme cases, this leads to the lack of three-dimensional 

long-range ordering (LRO) down to T = 0 K, the occurrence of spin-liquid states, 

and finally the emergence of unconventional spin dynamics. As established from 

numerous theoretical studies, both the ground state (GS) and the excited states of 

low-dimensional quantum magnets appear more and more exotic as the dimension 

of the spin-space 𝑛 increases (𝑛 = 1 for the Ising system, 𝑛 = 2 for the XY system and 

𝑛 = 3 for the Heisenberg system), or the spin quantum number 𝑆 decreases (from 

𝑆 = ∞ for the classical case, down to 𝑆 = 1 and 𝑆 = 1∕2 for the extreme quantum 

spin). The nature of the ground state depends also strongly on the connectivity of 

the lattice (i.e. the number of next-nearest neighbor spins) and the type of spin–

spin couplings which are involved: Ferromagnetic (F), antiferromagnetic (AF) or 

competing between first and second neighbor spins, frustrating or not frustrating the 

spin lattice, at short range or at long range. As it is now well admitted, the largest 

effects are seen for the 1D antiferromagnetic Heisenberg (HAF) chain system, which 

indeed displays drastically different ground states (GS) and spin-excitation spectra, 

depending whether the spin value is half-integer (𝑆 = 1∕2, 3∕2, ...) or integer (𝑆 =
1, 2, ...) [1]. More precisely, for the latter Haldane predicted the existence of a non-

magnetic 𝑆 = 0 singlet GS separated from the first triplet of excited states by a 

quantum energy gap 𝐸𝐺 ∼ 𝐽𝑆𝑒𝑥𝑝(−𝜋𝑆), J being the inter-spin coupling constant 

(𝐸𝐺 ≈ 0.41𝐽 for 𝑆 = 1 from numerical calculations [2]). Conversely, for the 𝑆 =
1∕2 HAF chain, the magnetic excitation spectrum should be a gapless continuum 

of magnetic excitations [3], but the introduction of frustrating AF second-neighbor 

interactions (𝐽1 − 𝐽2 model) leads to the opening of a gap above some critical 

ratio, by spontaneous dimerization of the spin system [4]. Similar effects have been 

predicted for the 𝑆 = 1∕2 𝑝-leg AF spin-ladder system, which indeed realize the 

cross-over between the 𝑆 = 1∕2 HAF chain (𝑝 = 1) and the 𝑆 = 1∕2 HAF square 

plane (𝑝 = ∞). For p even-integer (𝑝 = 2, 4, ...), the GS of the 𝑆 = 1∕2 HAF p-
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leg spin-ladder system should again exhibit a non-magnetic 𝑆 = 0 singlet ground 

state, and a gapped triplet of first excited states, with a gap energy exponentially 

vanishing as 𝑝 → ∞ (with 𝐸𝐺 ≈ 0.5𝐽 for 𝑝 = 2) [5]. At 𝐷 = 2, unlike the 

1D case, the quantum fluctuations are less relevant than the thermal fluctuations, 

and the magnetism recovers a more classical behavior, with a phase transition at 

finite temperature toward LRO for the 2D Ising model and no phase transition down 

to 0 K for the 2D Heisenberg model, and for both, spin-wave-type excitations. As 

shown longtime ago by Kosterlitz and Thouless in their seminal paper [6], the 

2D-XY (𝐷 = 2, 𝑛 = 2) model is pathological: A phase transition occurs below 

a finite temperature 𝑇𝐾𝑇 ∼ (𝜋2 )𝐽𝑆
2 (the famous Kosterlitz–Thouless transition 

temperature) from a disordered phase populated with unbind vortex and anti-vortex, 

toward a new topological ordered phase made of vortex-antivortex pairs, displaying 

an infinite susceptibility down to 0 K. The KT transition was further shown to be 

robust against in-plane anisotropy terms of 4-fold or 6-fold symmetry [7], the latter 

condition being realized for the hexagonal lattice or the honeycomb lattice, build 

from two hexagonal sublattices.

Motivated by the recent discovery of very fascinating electrical properties in 

graphene [8], and a renewed interest for studies of the magnetic properties of the 

honeycomb lattice [9, 10], we have reinvestigated the magnetic properties of the 

quasi-2D honeycomb-lattice planar systems of general chemical formula BaM2(X4)2
(M = Co, Ni, Fe; X = P, As). Among the various elements of this series, the 

cobaltite BaCo2(AsO4)2 (hereafter abbreviated as BCAO) exhibits very interesting 

and unusual magnetic properties (see, e.g., Ref. [11] for a comprehensive review), 

currently not yet fully elucidated. BCAO crystallographic structure is a two Bravais-

sublattice structure, described within the centrosymmetric trigonal (rhombohedral) 

space group 𝑅3̄ [11, 12, 13, 14, 15]. Within the hexagonal-cell representation, the 

lattice constants are 𝑎 = 𝑏 = 4.95 Å, 𝑐 = 23.23 Å, and 𝛽 = 120◦ at 𝑇 ≈ 1.5 K. 

The crystallographic structure of BCAO can be viewed as a stacking of honeycomb-

lattice layers of Co2+ (electronic configuration 3𝑑7, 𝐿 = 3 and 𝑆 = 3∕2) ions 

(nearest neighbor in-plane Co–Co distance 𝑎√
3
≈ 2.85 Å), well separated along 𝐜

by a distance 𝑐3 ≈ 7.74 Å (see Figure 1). The high ratio (≈2.72) of the interlayer 

to in-plane nearest neighbor (n.n.) distances confers to BCAO a very pronounced 

quasi-2D magnetic character. From single-crystal susceptibility and magnetization 

measurements, it was shown that the magnetic moments are mainly located within 

the basal (𝐚, 𝐛) planes, BCAO being a very good planar system. The macroscopic 

magnetic properties of this material can be quantitatively analyzed by considering 

a model of strongly anisotropic 𝑆 = 1∕2 effective spins (characteristic of a doublet 

ground state well separated from the first excited doublet state), interacting through 

the following XXZ spin Hamiltonian: [11, 14, 16, 17]

𝐻 = −
∑

𝐽𝑖𝑗

(
𝑆𝑥
𝑖
𝑆𝑥
𝑗
+ 𝑆

𝑦

𝑖
𝑆

𝑦

𝑗
+ 𝛼𝑧𝑆

𝑧
𝑖
𝑆𝑧
𝑗

)
−
∑

𝑔𝜈𝜇𝐵𝑆
𝜈
𝑖
𝐻𝜈 (1)
𝑖,𝑗 𝑖,𝜈
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Figure 1. In-plane projection of the crystallographic structure of BaCo2(AsO4)2, showing the honeycomb 
lattice of Co2+ ions and the two hexagonal Bravais sublattices (labeled 1 and 2). 𝐽1 , 𝐽2 and 𝐽3 are 
respectively the exchange-coupling constants between the first, second and third neighbors on the 
hexagons.

with effective spin–spin coupling constants 𝐽 ∼ 30 K (mostly ferromagnetic), an 

out-of-plane (OP) anisotropy parameter 𝛼𝑧 ≈ 0.4, and anisotropic components of the 

gyromagnetic tensor, 𝑔𝑥 ≈ 𝑔𝑦 ≈ 5 and 𝑔𝑧 ≈ 2.5 (planar-type anisotropy). Only a very 

weak in-plane (IP) anisotropy could be detected from the magnetic susceptibility 

measurements on single crystal. The easy-planar and quasi-2D characters of

magnetism in BCAO were corroborated by the observation of a rather strong 𝐴𝑇 2

term (with 𝐴 ≈ 28 mJ/K3/mole) in the low-temperature magnetic specific heat, [18], 

which a priori could be understood from the presence of a linear spin-wave (SW) 

branch in the low-energy magnetic excitation spectrum. Comprehensive specific-

heat and unpolarized neutron-diffraction measurements in zero-field have revealed 

a certain number of very peculiar features like, e.g., i) the occurrence of a sharp 

phase transition below 𝑇𝑁 ≈ 5.35 K (𝑘𝑇𝑁∕𝐽 ≈ 0.16), characterized by the 

incommensurate (IC) propagation vector 𝐤1 = (𝑘𝑥, 0, 𝑘𝑧), with 𝑘𝑥 = 0.270±0.005
and 𝑘𝑧 ≈ −1.31 (and equivalent wave vectors generated by trigonal symmetry, 𝐤2 =
(−𝑘𝑥, 𝑘𝑥, 𝑘𝑧), and 𝐤3 = (0, −𝑘𝑥, 𝑘𝑧)), ii) the absence of higher-order harmonics 

𝑛𝐤1 (𝑛 = 2, 3, 4, ...), and iii) a remarkable step-like temperature dependence of the 

order parameter [11, 14, 16, 17]. All these results were qualitatively understood by 

assuming the in-plane helical structure shown in Figure 2, described as a stacking of 

quasi-ferromagnetic (zigzag) pseudo-chains running along the b-axis, with a phase 

angle 2𝜋𝑘𝑥 ≈ 96◦ (close to 90◦) between two adjacent pseudo chains [11, 16]. The 

phase angle between the two Bravais sublattices 𝜙12 ≡ 𝜙 ≈ 83◦, is also close to 

90◦, implying weak effective inter-chain couplings. This is very likely the origin 

of the step-like staggered magnetization and the very peculiar field-temperature 

(H–T) phase diagram found in BCAO [11, 19]. Under a magnetic field applied along 

𝑏-axis, the spin system undergoes two successive first-order phase transitions, first 

toward an intermediate ferrimagnetic quasi-2D collinear phase at a critical field 
on.2018.e00507
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Figure 2. In-plane helical ordering in BaCo2(AsO4)2, showing the stacking of quasi-ferromagnetic chains 
weakly coupled.

𝐻𝑐1(𝑇 ≈ 0) ≈ 0.33 T, and second, toward the saturated paramagnetic state at 

a critical field 𝐻𝑐2(𝑇 ≈ 0) ≈ 0.55 T. The intermediate in-plane ferrimagnetic 

structure can be described as a stacking of ferromagnetic chains parallel to the 

field direction, following a long-range ordered sequence …↑↑↓↑↑↓… along the 

𝐚∗-direction. The ferrimagnetic ordering is characterized by a 1∕3-magnetization 

plateau between 𝐻𝑐1 and 𝐻𝑐2 and a planar propagation vector 𝐤𝐹𝑒𝑟𝑟𝑖 = (13 , 0), with 

a completely random stacking (with probability 1∕3, corresponding to the three ↑, ↑, 

and ↓moment possibilities) along the c-axis [11, 19]. Quite surprisingly, considering 

the rather strong IP exchange couplings involved in BCAO, the reduced critical 

fields 𝑔𝑥𝜇𝐵𝐻𝑐1∕𝐽 ≈ 0.015 and 𝑔𝑥𝜇𝐵𝐻𝑐2∕𝐽 ≈ 0.020 are very small, this implying 

that the helical, ferrimagnetic and saturated-paramagnetic structures should have 

very close magnetic energies. In other words, in BCAO the rotation of long chain-

segments seems not costing much energy and low-energy magnetic defects can be 

easily created. This peculiarity explains the strong hysteresis and the metastable 

behavior observed at low T, especially when the magnetic field is decreased from 

above 𝐻𝑐2 down to zero (defined in the following as the 0+ field) [11, 19].

The magnetic excitation spectrum of BCAO remains also quite intriguing [11, 14, 17, 

20]. Despite careful and extensive inelastic neutron scattering (INS) measurements 

performed both on thermal and cold neutron three-axis spectometers, no linear spin-

wave (SW) branch emerging from the IC wave vector 𝐤1 could be detected (as 

it should have been, e.g., for a simple helimagnetic or helical structure), in spite 

of the strong 𝑇 2-term observed in the low-T magnetic specific heat. Contrary, the 

dispersion curves along the non-equivalent [1 0 0] and [1 1 0] directions exhibit a 

clear line of minima at wave vectors 𝐪 = (0, 0, 𝑞𝑐) and a sharp spin-gap of energy 

Δ0 ≈ 1.45 meV, a behavior rather reminiscent of a quasi-2D gapped ferromagnetic 

mode. Unexpectedly, the simple SW theory for the honeycomb lattice described 
on.2018.e00507
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by the Hamiltonian (1) with spin–spin interactions up to third neighbors failed to 

account for the magnetic excitation spectra of the zero-field ground-state and of 

the intermediate ferrimagnetic phase. In contrast, the simple SW theory is quite 

successful to reproduce the dispersion of magnetic excitations in the saturated-

paramagnetic phase (described by the propagation vector 𝐤 = 0), in magnetic fields 

applied along the 𝑏-direction [11, 17]. For 𝐻 > 𝐻𝑐2, a good agreement between 

the experimental and calculated SW dispersion curves (both acoustic and optical) 

could be achieved by taking coupling parameters between first-, second- and third-

neighbor spins (see Figure 1), 𝐽1 ≈ 38 K, 𝐽2 ≈ 1.3 K (𝐽2∕𝐽1 ≈ 0.03) and 𝐽3 ≈
−10 K (𝐽3∕𝐽1 ≈ −0.26), an out-of-plane (OP) anisotropy term 𝛼𝑧 ≈ 0.37, and a 

very small IP anisotropy ratios ∣𝐽
𝑥
𝑛
−𝐽𝑦

𝑛

𝐽𝑛
∣ < 0.01 (n = 1, 2 and 3). The latter, much 

too small, cannot be held responsible for the opening of the 1.45-meV gap at 𝐪 = 0, 

which still remained very puzzling. Furthermore, with the above exchange-coupling 

parameters, the ground-state structure should have rather been ferromagnetic than 

helimagnetic. Obviously, there exist some inconsistencies among the published data, 

whose solution deserve further experimental investigations.

In order to clarify the nature of the magnetic ordering in BCAO (especially the 

role played by the frustration) and understand its puzzling spin dynamics, we 

have performed a comprehensive investigation of elastic and inelastic magnetic 

contributions in this material by means of the spherical-neutron-polarimetry (SNP) 

technique.

2. Methodology

The neutron-scattering technique, due to the neutron specificities (among other, 

because it’s a massive and neutral particle, bearing a spin 1∕2), is an invaluable 

technique for probing the magnetic properties in bulk materials. The bases of the 

technique are described in several seminal textbooks [21, 22, 23], emphasizing 

the relevance of the polarized-neutron scattering and the longitudinal polarization 

analysis (LPA) for the determination of magnetic structures and magnetic excitation 

spectra. By principle, the LPA allows to only recover the projection of the final 

polarization vector, 𝐏, onto the incident polarization vector 𝐏0, leading to an 

important loss of information. The recent availability of a new generation of 

diffractometers and three-axis spectrometers (TAS) providing high flux of polarized 

neutrons, in conjunction with the use of more sophisticated polarization-analysis 

methods, capable of determining independently the three components of the neutron 

polarization vector after scattering, has open a new field of investigation of materials 

exhibiting non-conventional magnetism [24]. The technique, referenced in the 

literature as vectorial neutron polarimetry (VNP) or spherical-neutron-polarimetry 

(SNP), is based on the use of the cryogenic polarization-analysis device CRYOPAD, 
on.2018.e00507
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invented more than fifteen years ago by F. Tasset [25] for the diffraction, and recently 

optimized for the inelastic neutron scattering (INS) [26, 27, 28, 29]. The principle 

of this device relies on the use of the combination of two pairs of magnetic fields 

(nutation and precession) decoupled by niobium-based superconducting shields in 

order to independently control the incident polarization vector (𝐏0) and analyze 

independently the three components of the final neutron polarization vector (𝐏). 

By principle, the sample is located in a zero-field area (residual magnetic field 

smaller than 2 mG), this allowing to keep intact the neutron polarization after 

scattering, until its analysis. For a given scattering vector 𝐐, by measuring the three 

components of the final polarization vector for three different orientations of the 

incident polarization, one is able to determine a 3 ×3 matrix, called the polarization 

matrix 𝑃𝛼𝛽(𝐐) (𝛼, 𝛽 = 𝑥, 𝑦, 𝑧), which contains all the information on the various 

structural and magnetic cross-sections, as we shall see later.

The general expressions giving the polarization vector 𝐏 of a scattered neutron beam 

as a function of the incident polarization vector 𝐏0 were derived long ago in two 

seminal papers [30, 31]. The reader interested by the SNP can find all the necessary 

information in two recently published textbook chapters [32, 33]. Basically, for a 

given scattering vector 𝐐, the SNP method gives access to the polarization matrix 

elements 𝑃𝛼𝛽(𝐐) for an incident polarization direction 𝛼 and a polarization-analysis 

direction 𝛽 (𝛼, 𝛽 = 𝑥, 𝑦, 𝑧). In practice, this can be achieved from the measurement 

of the two scattering cross-sections associated with neutron spin states |+⟩ (𝜎+
𝛼𝛽
(𝐐)) 

and |−⟩ (𝜎−
𝛼𝛽
(𝐐)), according to the relation: 𝑃𝛼𝛽(𝐐) =

𝜎+
𝛼𝛽
(𝐐)−𝜎−

𝛼𝛽
(𝐐)

𝜎+
𝛼𝛽
(𝐐)+𝜎−

𝛼𝛽
(𝐐) . The coordinate 

frame used in this paper is defined as follows: 𝐱 ∥ 𝐐, 𝐲 ⟂ 𝐐 in the scattering 

plane (𝐤𝑖, 𝐤𝑓 ), and 𝐳 vertical, perpendicular to the scattering plane. Subject to the 

existence of an axial vector in the problem, [34] 𝐏 is in general not collinear to 𝐏0. 

The neutron polarization may undergo a small rotation, and the polarization matrix 

may have off-diagonal elements, in addition to the usual diagonal ones. As shown in 

Refs. [30] and [31], for the coordinate frame previously defined, in the most general 

case the neutron-polarization vector 𝐏 will depend on the combination of up to nine 

different correlation functions, which involve the nuclear (𝑁𝑄) and magnetic (𝑀𝛼
⟂𝑄

) 

amplitude operators (𝛼 = (𝑥, 𝑦, 𝑧)), namely:

𝑁 = ⟨𝑁𝑄𝑁
†
𝑄
⟩𝜔

𝑀𝑦𝑦 = ⟨𝑀𝑦

⟂𝑄
𝑀

𝑦†
⟂𝑄

⟩𝜔
𝑀𝑧𝑧 = ⟨𝑀𝑧

⟂𝑄
𝑀

𝑧†
⟂𝑄

⟩𝜔
𝑀𝑐ℎ = 𝑖(⟨𝑀𝑦

⟂𝑄
𝑀

𝑧†
⟂𝑄

⟩𝜔 − ⟨𝑀𝑧
⟂𝑄

𝑀
𝑦†
⟂𝑄

⟩𝜔)
𝑀+

𝑦𝑧
= ⟨𝑀𝑦

⟂𝑄
𝑀

𝑧†
⟂𝑄

⟩𝜔 + ⟨𝑀𝑧
⟂𝑄

𝑀
𝑦†
⟂𝑄

⟩𝜔
𝑅𝑦 = ⟨𝑁𝑄𝑀

𝑦†
⟂𝑄

⟩𝜔 + ⟨𝑁†
𝑄
𝑀

𝑦

⟂𝑄
⟩𝜔

𝐼𝑦 = 𝑖(⟨𝑁𝑄𝑀
𝑦† ⟩𝜔 − ⟨𝑁†

𝑀
𝑦 ⟩𝜔)
⟂𝑄 𝑄 ⟂𝑄
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𝑅𝑧 = ⟨𝑁𝑄𝑀
𝑧†
⟂𝑄

⟩𝜔 + ⟨𝑁†
𝑄
𝑀𝑧

⟂𝑄
⟩𝜔

𝐼𝑧 = 𝑖(⟨𝑁𝑄𝑀
𝑧†
⟂𝑄

⟩𝜔 − ⟨𝑁†
𝑄
𝑀𝑧

⟂𝑄
⟩𝜔)

in which 𝑁𝑄 = 𝑁1∕2∑
𝑗

𝑏𝑗𝑒
𝑖𝐐⋅𝐑𝑗 (the nuclear scattering amplitude scalar operator), 

and 𝐌⊥𝑄 = 𝑟0𝑁
1∕2∑

𝑗

[
𝐌𝑗 − (𝐐 ⋅𝐌𝑗) ⋅𝐐∕𝑄2] 𝑒𝑖𝐐⋅𝐑𝑗 (the magnetic scattering 

amplitude vectorial operator), with 𝑏𝑗 , the scattering length associated with nucleus 𝑗

(𝑏𝐶𝑜 ≈ 0.25×10−12 cm and 𝑏𝑂 ≈ 0.58×10−12 cm), 𝑟0 ≈ 0.54 ×10−12 cm, and 𝐌𝑗 =
𝐬𝑗 −

𝑖

ℏ

𝐐×𝐩𝑗
𝑄2 depends on both the electron spin (𝐬𝑗) and electron momentum (𝐩𝑗) [22, 

23, 35]. In the above expressions, 𝑁 , 𝑀𝑦𝑦, 𝑀𝑧𝑧 are the standard purely nuclear 

and magnetic terms, 𝑀𝑐ℎ is the chiral term, associated with the antisymmetric 

purely magnetic cross-correlation functions, and 𝑀+
𝑦𝑧

corresponds to the symmetric 

purely magnetic cross-correlation functions. The last four terms are the symmetric 

(𝑅𝑦 and 𝑅𝑧) and anti-symmetric (𝐼𝑦 and 𝐼𝑧) nuclear-magnetic interference (NMI) 

terms, mixing the nuclear and magnetic components. In all these relations, ⟨𝐴𝑄𝐵
†
𝑄
⟩𝜔

represents the Fourier transform on space and time of the pair correlation function ⟨𝐴(𝐑𝑛, 𝑡)𝐵†(𝟎, 0)⟩:
⟨𝐴𝑄𝐵

†
𝑄
⟩𝜔 = 1

2𝜋

+∞

∫
−∞

𝑑𝑡 𝑒𝑖𝜔𝑡
∑
𝑛

⟨𝐴(𝐑𝑛, 𝑡)𝐵†(𝟎, 0)⟩𝑒𝑖𝐐⋅𝐑𝑛

and 𝑀𝛼𝛽 = ⟨𝑀𝛼
⟂𝑄

𝑀
𝛽†
⟂𝑄

⟩𝜔 (𝛼, 𝛽 = 𝑦, 𝑧) are the pure magnetic cross-correlation 

functions, which involve only the magnetic components perpendicular to the 

scattering vector Q. In principle, all these terms can be redundantly determined 

from the measurement of the polarization matrices, by applying the Blume-Maleyev 

formalism. However, the off-diagonal terms, which involve directly the various 

domain populations and the (𝑡, −𝑡) time-reversal symmetry, may easily vanish by 

symmetry. For the diffraction case, the expressions giving the various structure-

factor components are very similar and obtained just by replacing the various 

operators by the corresponding vector components, and the correlation functions ⟨𝐴𝑄𝐵
†
𝑄
⟩𝜔 by simple products 𝐴𝑄(𝐵𝑄)∗, where 𝐴𝑄 and 𝐵𝑄 are two structure-factor 

components, and (𝐵𝑄)∗ is the complex conjugate of 𝐵𝑄. In the following, we will 

define the various elastic magnetic structure-factor components as 𝑀𝛼𝛽 = 𝑀𝛼(𝑀𝛽 )∗

(𝛼, 𝛽 = 𝑦, 𝑧), where 𝑀𝛼 is the Fourier transform of the 𝛼 component of the moment 

distribution.

The correlation functions 𝑀𝑐ℎ, 𝑅𝑦, and 𝑅𝑧 can be determined before anything 

else, just by measuring the polarization creation after scattering from an initially 

unpolarized beam (e.g., by using a configuration with a graphite or copper

monochromator, and an Heusler analyzer, or the other way around), and applying 

the relations:

𝑃0𝑥 =
𝑀𝑐ℎ

𝑁 + 𝜎
(2)
𝑀
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𝑃0𝑦 =
𝑅𝑦

𝑁 + 𝜎𝑀
(3)

𝑃0𝑧 =
𝑅𝑧

𝑁 + 𝜎𝑀
(4)

in which 𝜎𝑀 = 𝑀𝑦𝑦 + 𝑀𝑧𝑧 reflects the total magnetic cross-section. For a purely 

magnetic contribution (i.e., by neglecting the N and NM terms), the following 

relations can be derived for the diagonal and the off-diagonal components:

𝑃𝑥𝑥 ≈ −
𝑃0𝜎𝑀 −𝑀𝑐ℎ

𝜎𝑀 − 𝑃0𝑀𝑐ℎ

(5)

𝑃𝑦𝑦 = −𝑃𝑧𝑧 ≈
𝑀𝑦𝑦 −𝑀𝑧𝑧

𝜎𝑀
𝑃0 (6)

𝑃𝑥𝑦 ≈ 𝑃𝑥𝑧 ≈ 0 (7)

𝑃𝑦𝑥 ≈ 𝑃𝑧𝑥 ≈
𝑀𝑐ℎ

𝜎𝑀
(8)

𝑃𝑦𝑧 ≈ 𝑃𝑧𝑦 ≈
𝑀+

𝑦𝑧

𝜎𝑀
𝑃0 (9)

If a structural component 𝑁 is superimposed to the magnetic ones, in the absence 

of chiral and NMI terms, the diagonal elements 𝑃𝑥𝑥, 𝑃𝑦𝑦, and 𝑃𝑧𝑧 are now given by 

the following relations:

𝑃𝑥𝑥 ≈
𝑁 − 𝜎𝑀

𝑁 + 𝜎𝑀
𝑃0 (10)

𝑃𝑦𝑦 ≈
𝑁 +𝑀𝑦𝑦 −𝑀𝑧𝑧

𝑁 + 𝜎𝑀
𝑃0 (11)

𝑃𝑧𝑧 ≈
𝑁 +𝑀𝑧𝑧 −𝑀𝑦𝑦

𝑁 + 𝜎𝑀
𝑃0 (12)

implying that 𝑃𝑦𝑦 ≠ −𝑃𝑧𝑧. In case of finite NMI and chiral terms, the off-diagonal 

elements are given by the following general expressions:

𝑃𝑥𝑦 ≈ −
𝐼𝑧𝑃0

𝑁 + 𝜎𝑀 +𝑅𝑦𝑃0
(13)

𝑃𝑥𝑧 ≈
𝐼𝑦𝑃0

𝑁 + 𝜎𝑀 +𝑅𝑧𝑃0
(14)

𝑃𝑦𝑥 ≈
𝑀𝑐ℎ + 𝐼𝑧𝑃0

𝑁 + 𝜎𝑀 +𝑅𝑦𝑃0
(15)

𝑃𝑧𝑥 ≈
𝑀𝑐ℎ − 𝐼𝑦𝑃0

𝑁 + 𝜎𝑀 +𝑅𝑧𝑃0
(16)

𝑃𝑦𝑧 ≈
𝑅𝑧 +𝑀+

𝑦𝑧
𝑃0

𝑁 + 𝜎𝑀 +𝑅𝑦𝑃0
(17)

𝑃𝑧𝑦 ≈
𝑅𝑦 +𝑀+

𝑦𝑧
𝑃0

𝑁 + 𝜎𝑀 +𝑅𝑧𝑃0
(18)

which show that 𝑃𝑧𝑥 ≠ 𝑃𝑦𝑥 and 𝑃𝑦𝑧 ≠ 𝑃𝑧𝑦 in the most general case. Relations 

(2)–(18) will be used later for the quantitative analysis of our SNP data in BCAO.
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In most of cases, the intrinsic accuracy of the off-diagonal matrix elements is in 

the range 0.01–0.03. However, some matrix elements (e.g., those involving the 

anti-symmetric correlation function 𝐼𝑧 or the symmetric correlation functions 𝑀+
𝑦𝑧

and 𝑅𝑧) can be determined with improved accuracy (below 0.01) by considering 

the anti-symmetric combination 𝑃 𝑎
𝛼𝛽
(𝐐) = 𝑃𝛼𝛽 (𝐐)−𝑃𝛼𝛽 (−𝐐)

2 = −𝑃 𝑎
𝛼𝛽
(−𝐐), which 

cancels at first order the systematic errors, expected to be invariant in a rotation 

of the sample by 180◦. This trick has been used in our experimental determination 

of some off-diagonal elements of polarization matrices in BCAO. Thus, the SNP 

with CRYOPAD makes possible accurate investigations of magnetic, structural and 

hybrid (magneto-structural) correlation functions, through the measurements of 

polarization matrices as a function of the scattering vector (𝐐) and the energy transfer 

(ℏ𝜔 ≡ Δ𝐸).

3. Experimental

The SNP experiments on BCAO have been mainly performed on TAS IN22, high-

flux instrument with polarized-neutron capabilities installed at the end position of 

the H25, m = 2 supermirror guide, at the Institut Laue Langevin (ILL), Grenoble. 

The unpolarized INS experiments were performed by using pyrolithic graphite (PG) 

(002) monochromator and analyzer, at fixed final neutron wave vectors, 𝑘𝑓 =
1.64 Å−1, 1.97 Å−1, and 2.662 Å−1. The polarized-neutron configuration was the 

following: Variable vertical focusing Heusler-[111] monochromator; Two sets of 

Heusler-[111] analyzers were used: one with no vertical focusing and variable 

horizontal focusing, and another with fixed vertical focusing (optimized for 𝑘𝑓 =
2.662 Å−1) and variable horizontal focusing. The measurements were performed 

at three different final neutron wave vectors 𝑘𝑓 = 1.97 Å−1, 2.662 Å−1, and 

3.84 Å−1. In all cases, a 5-cm long PG filter was placed on the scattered beam 

in order to minimize the higher-order contamination (especially that at 2𝑘𝑓 ). For 

these experiments, we have mainly used CRYOPAD. Some measurements were 

performed by using the more classical Helmholtz-coils set-up. The flipping of the 

neutron polarization was performed by reversing the nutation field (CRYOPAD 

configuration) or by using a Mezei-type flipper (Helmholtz-coils configuration), 

both located on the scattered-beam side. Depending on the contribution (elastic or 

inelastic) under investigation and the type of analyzer used, the flipping ratio 𝜌𝐹
ranged between 15 and 27. The crystal, shaped as a platelet of dimensions 14 ×14 ×
1 mm3 (V ≈ 0.2 cm3) was mounted on the cold finger of a standard ILL-type Orange 

cryostat and aligned with the b-axis perpendicular to the scattering plane, in order to 

survey scattering vectors (𝑄𝑎, 0, 𝑄𝑐). The sample was an as-grown untwined (c/−c) 

single crystal, as documented by the very small intensity of the forbidden (1, 0, −1)
reflection, while the allowed (1, 0, 1) reflection is very strong. The corresponding 

intensity ratio, 20/13000, leads us to conclude on a nearly (99.9%) untwined single 
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Figure 3. Sketch of the (𝐚∗, 𝐜∗) reciprocal-lattice plane, showing the locations of some structural Bragg 
reflections 𝐇𝐍 = (ℎ𝑁 , 0, 𝑙𝑁 ) (closed circles) and their associated magnetic satellites (ℎ𝑁, 0, 𝑙𝑁 )±

(crosses). The polygons around the structural Bragg spots represent the various Brillouin zones.

crystal. In the following, the scattering vectors 𝐐 = (ℎ𝑁, 0, 𝑙𝑁 )±𝐤 associated with 

the magnetic satellites of the structural reflection (ℎ𝑁, 0, 𝑙𝑁 ) will be more compactly 

labeled (ℎ𝑁, 0, 𝑙𝑁 )± (where ℎ𝑁 and 𝑙𝑁 are integers verifying the trigonal extinction 

rule −ℎ𝑁 + 𝑙𝑁 = 3𝑛, 𝑛 integer). A sketch of the (𝐚∗, 𝐜∗) reciprocal-lattice scattering 

plane is shown in Figure 3.

4. Results

In a first step, we have characterized the coherence of the magnetic ordering 

developing in BCAO. The wave-vector dependences of magnetic contributions 

𝑀𝑦𝑦 and 𝑀𝑧𝑧 for several satellite reflections were determined separately from the 

measurements of the spin-flip (SF) and non-spin-flip (NSF) longitudinal cross-

sections 𝜎𝑥𝑥, 𝜎𝑦𝑦, and 𝜎𝑧𝑧, for incident and final neutron polarization selected 

respectively along the three cardinal directions x, y and z. As it is well known from 

standard longitudinal polarization analysis (LPA) [21], in the absence of chiral and 

NMI terms, one has 𝑀𝑦𝑦 = |𝜎𝑥𝑥−𝜎𝑦𝑦| and 𝑀𝑧𝑧 = |𝜎𝑥𝑥−𝜎𝑧𝑧|. Following the notation 

adopted in section 2, we define as 𝑀𝑎∗ , 𝑀𝑏 and 𝑀𝑐 the elastic structure factors 

associated with moment components along the a∗, b and c directions (𝑀𝑎∗𝑎∗ =
𝑀𝑎∗ (𝑀𝑎∗ )∗, 𝑀𝑏𝑏 = 𝑀𝑏(𝑀𝑏)∗ and 𝑀𝑐𝑐 = 𝑀𝑐(𝑀𝑐)∗), respectively. For a given 

scattering vector 𝐐, one has 𝑀𝑦 = 𝑀𝑎∗ sin(𝛼) + 𝑀𝑐 cos(𝛼) (where 𝛼 = (𝐐, 𝐚∗)) 
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Figure 4. Elastic scans along a∗ at T = 1.5 K, (a) across the magnetic zone center at 𝐐 = (0.27, 0, 4.67) =
(0, 0, 6)+ and (b), close to the magnetic zone boundary at 𝐐 = (0.27, 0, 6.1) (b), showing that the magnetic 
scattering extends over the entire Brillouin zone along 𝐜. The solid lines are fit to Lorentzian functions as 
described in the text.

and 𝑀𝑧 = 𝑀𝑏, relations from which one can easily derive the 𝑀𝑎∗𝑎∗ , 𝑀𝑏𝑏 and 𝑀𝑐𝑐

structure factors. As an example, Figure 4(a) shows the dependence on the wave-

vector component along 𝐚∗ of the elastic magnetic contribution 𝑀𝑏𝑏 for satellite 

(0, 0, 6)+ ≈ (0.27, 0, 4.67), while Figure 4(b) shows a similar scan across the 

scattering vector 𝐐 = (0.27, 0, 6.1), located close to the middle point of the (0, 0, 6)+

and (0, 0, 9)+ magnetic satellite reflections. For the former, a narrow peak of width 

(FWHM) Δ𝑞𝑎 ≈ 0.0175 r.l.u., larger than the instrumental resolution, is observed. 

Assuming for 𝑀𝑏𝑏(𝑞𝑎) a simple Lorentzian function of half-width Γ𝑎∗ = 1∕𝜉𝑎∗, after 

instrument-resolution correction (Δ𝑞𝑎
𝑟𝑒𝑠 ≈ 0.013 r.l.u. (FWHM), as determined 

from the (0, 0, 3) and (0, 0, 6) structural Bragg reflections), one obtains a coherence 

length 𝜉𝑎∗ ≈ 150 Å ≈ 30𝑎, which indeed is rather short. On Figure 4 (b), we show a 

𝑄-scan along 𝐚∗ performed across the scattering vector 𝐐 = (0.27, 0, 6.1) (located 

close to the magnetic Brillouin-zone boundary), at a temperature of 1.5 K. A broad, 

purely magnetic contribution representing about 8–9% of the contribution 𝐐 =
(0.27, 0, 4.67) is clearly observed, with a width (FWHM) Δ𝑞𝑎 ≈ 0.084 r.l.u., which 

is much larger than that at 𝐐 = (0.27, 0, 4.67), this being explained as an effect of the 

finite coherence length along 𝐜. A precise value of the interlayer magnetic coherence 

length 𝜉𝑐 has been obtained from a xx-SF 𝑄𝑐-scan across the (0, 0, 6)+ magnetic 

satellite reflection (see Figure 5 (a)), probing the total magnetic contribution. From 

the width (FWHM) Δ𝑞𝑐 ≈ 0.17 r.l.u. (again found larger than the resolution width 

(FWHM) Δ𝑞𝑐
𝑟𝑒𝑠 ≈ 0.12 r.l.u., as measured on the (0, 0, 3) and (0, 0, 6) structural 

reflections), again assuming a lorentzian scattering function of 𝑞𝑐 = 𝑄𝑐 −(6 +𝑘𝑧) of 

half-width Γ𝑐 = 1∕𝜉𝑐 , one has deduced a very short coherence length 𝜉𝑐 =
𝑐

𝜋Δ𝑞𝑐
≈

3𝑐, representing about 9–10 correlated layers, only. Figure 5 (b) shows a zoom of 

unpolarized elastic 𝑄𝑐-scans across the (0, 0, 9)+ satellite reflection performed at 

several temperature located from both sides of the transition temperature, which 
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Figure 5. a) Spin-flip elastic scan along c∗ across the magnetic zone center (0, 0, 6)+, performed with 
the polarization applied and analyzed parallel to the scattering vector (xx configuration). The solid line 
is a fit to a Lorentzian function, as described in the text. b) Unpolarized elastic scan along 𝐜∗ across the 
magnetic zone center (0, 0, 9)+, at several temperatures located from both sides of 𝑇𝑁 ≈ 5.35 K. The 
solid and dashed lines are guide to the eye.

confirm the presence of a magnetic contribution over the full Brillouin zone along 𝐜
at low temperature, and the quasi-2D behavior of the magnetism above 𝑇𝑁 .

The 𝑄-dependences of the 𝑀𝑏𝑏 contribution can be understood by assuming a 

scattering function modeled by an anisotropic Lorentzian function centered at the 

satellite-reflection position, 𝑀𝑏𝑏(𝑞𝑎, 𝑞𝑐) ∝ 𝑓 2(𝑄)∕[1 + ( 𝑞𝑎

Γ𝑎∗
)2 + ( 𝑞𝑐Γ𝑐

)2], where 

𝑞𝑎 = 𝑄𝑎 − 𝑘𝑥, 𝑞𝑐 = 𝑄𝑐 − (6 + 𝑘𝑧), and 𝑓 (𝑄) is the magnetic form factor of 

the Co2+ ions. From the relation giving the 𝑞𝑐-dependence of the width (FWHM) 

along 𝐚∗, Δ𝑞𝑎∗ ≈ 2Γ𝑎∗

√
1 + ( 𝑞𝑐Γ𝑐

)2, one determines for 𝑞𝑐 ≈ 1.43 r.l.u., Δ𝑞𝑎 ≈
0.13 r.l.u., a value which is only in qualitative agreement with the experimental 

determination. Though in principle not essential for such measurements, at least 

the use of the polarized neutron diffraction was crucial to prove unambiguously the 

magnetic nature of contributions, and separate the various magnetic components. As 

previously reported in Refs. [11] and [14], the ordering along the 𝑏-direction appears 

much better established. The Bragg peaks display resolution-limited FWHM, 

implying a magnetic coherence length along the pseudo chains 𝜉𝑏 > 400 Å ( 𝜉𝑏
𝑏

>

80). Obviously, in BCAO a true long-range magnetic ordering is lacking far below 

𝑇𝑁 , both along the 𝑐- and 𝑎∗-axis. The limited coherence lengths 𝜉𝑐 and 𝜉𝑎∗ can 

be accounted for by the existence of numerous stacking-faults and/or low-energy 

defects, resulting mainly from the strongly frustrated and quasi-2D character of 

magnetic interactions in this compound. This tendency is even more pronounced 

in the ferrimagnetic phase between 𝐻𝑐1 and 𝐻𝑐2, for which the coherence length 

along 𝐜 decreases down to one interlayer distance ( 𝜉𝑐
𝑐

≈ 1), while the coherence 

length along 𝐚∗ is only slightly reduced [11, 19].

We have checked carefully the existence of higher-order harmonics of the

modulation, by performing scans along a∗ and c∗. Figure 6 shows two 𝑄𝑎-scans 
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Figure 6. xx-SF scans around the positions of the third harmonic at 𝐐 = (0.19, 0, 4.9) (left panel) and 
fifth harmonic at 𝐐 = (0.36, 0, 4.2) (right panel). The solid lines are guide to the eye.

Figure 7. Unpolarized scans at 𝑘𝑖 = 1.64 Å−1 around the position of the third harmonic at 𝐐 =
(0.19, 0, 1.9) below (𝑇 = 2 K) and above (𝑇 = 10 K) 𝑇𝑁 . The solid lines are guide to the eye.

across the scattering vectors 𝐐 = (0.19, 0, 4.9) (harmonic 3𝐤1) and 𝐐 = (0.36, 0, 4.2)
(harmonic 5𝐤1), which unambiguously show the existence of small and structureless 

contributions, representing respectively about 0.7% and 0.6% of the main satellite 

intensity, more than one order of magnitude smaller than those expected for a perfect 

squared-up modulation (awaited at 11% and 4%, respectively). Unpolarized 𝑄𝑐-scans 

across the scattering vectors 𝐐 = (0.19, 0, 1.9) (corresponding to the third harmonic) 

from both sides of 𝑇𝑁 , show also structureless, essentially flat magnetic signals 

after correction by the Co2+ form factor and the geometrical factors (see Figure 7). 

Clearly, in BCAO there are no long-range ordered third and fifth harmonics. Indeed, 

the existence of such a disorder has an important consequence for the determination 

of the ground-state magnetic structure: Due to the strong broadening of magnetic 

satellites (especially along the 𝑐-axis), the standard integrated-intensity method 

is difficult to apply, this justifying the use of more sophisticated and accurate 
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Table 1. Polarization matrices for the pure nuclear Bragg peaks (0, 0, 3), 
(0, 0, 9) and (1, 0, 1).

Q 𝑷𝜶𝜷 𝒙 𝒚 𝒛

(0, 0, 3)
𝑥 0.881(7) 0.025(4) 0.008(4)
𝑦 −0.005(4) 0.884(7) 0.022(4)
𝑧 −0.009(4) 0.005(4) 0.884(7)

(0, 0, 9)
𝑥 0.838(4) 0.027(2) 0.021(2)
𝑦 0.013(2) 0.834(4) 0.027(2)
𝑧 0.011(2) −0.016(2) 0.836(4)

(1, 0, 1)
𝑥 0.887(8) 0.032(4) 0.009(4)
𝑦 −0.011(4) 0.888(8) 0.021(4)
𝑧 −0.014(4) −0.007(4) 0.890(8)

Table 2. Polarization matrices for the magnetic satellites (0, 0, 0)+ =
(0.265, 0, −1.33), (0, 0, 6)+ = (0.265, 0, 4.67), (0, 0, 9)+ = (0.265, 0, 7.67) and 
(1, 0, 1)− = (0.730, 0, 2.33).

Q 𝑷𝜶𝜷 𝒙 𝒚 𝒛

(0.265, 0,−1.33)
𝑥 −0.914(10) −0.007(5) −0.010(5)
𝑦 −0.004(5) −0.912(10) −0.033(5)
𝑧 −0.026(5) −0.032(5) 0.917(10)

(0.265, 0, 4.67)
𝑥 −0.918(4) 0.022(12) 0.011(12)
𝑦 0.033(12) −0.914(4) −0.065(7)
𝑧 −0.016(5) −0.080(12) 0.910(5)

(0.265, 0, 7.67)
𝑥 −0.919(5) 0.035(14) −0.001(14)
𝑦 −0.026(14) −0.911(4) −0.063(4)
𝑧 −0.017(7) −0.051(14) 0.922(5)

(0.730, 0, 2.33)
𝑥 −0.907(19) −0.033(11) 0.05(11)
𝑦 −0.022(9) −0.895(19) −0.168(12)
𝑧 0.021(10) −0.164(12) 0.864(19)

techniques, like, e.g., the SNP, for the determination of various magnetic structure 

factors.

In Table 1 we give the polarization matrices for the (0, 0, 3), (0, 0, 9) and (1, 0, 1)
pure structural Bragg reflections. For such contributions, one expects no polarization 

change after scattering and thus a pure diagonal polarization matrix with equal 

matrix elements 𝑃𝑥𝑥 ≈ 𝑃𝑦𝑦 ≈ 𝑃𝑧𝑧 ≈ 𝑃0. In the real case, the small off-diagonal 

terms provide us directly with estimates of the accuracy of CRYOPAD (in most of 

cases smaller than ±0.025). Typical polarization matrices for the magnetic satellite 

reflections (0, 0, 0)+ ≈ (0.265, 0, −1.33), (0, 0, 6)+ ≈ (0.265, 0, 4.67), (0, 0, 9)+ ≈
(0.265, 0, 7.67) and (1, 0, 1)− ≈ (0.735, 0, 2.33) are shown in Table 2. Several 

interesting, model-independent informations can be obtained from the qualitative 

analysis of diagonal and off-diagonal terms. First, the fact that for any satellite 

reflections 𝑃𝑥𝑥 ≈ −𝑃0 and 𝑃𝑦𝑥 ≈ 𝑃𝑧𝑥 ≈ 0, implies, after Eqs. (5) and (8), that the 

corresponding elastic chiral terms must be very small (typically 𝑀𝑐ℎ

𝜎𝑀
≪ 0.02), indeed 

a result still consistent with the simple planar helix structure with two equivalent 

domains of opposite (𝐤∕−𝐤) helicities, as previously determined (see Ref. [11]) and 
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Figure 8. 𝑄𝑐-dependence of the 𝑃𝑦𝑧 term at 𝑇 = 1.5 K, for several values of 𝑄𝑎. The various lines are 
calculated as described in the text.

shown in Figure 2. Second, from Eq. (6), the fact to have ∣𝑃𝑦𝑦∣ ≈ ∣𝑃𝑧𝑧∣ ≈ 𝑃0 both for 

scattering vectors almost parallel to 𝐚∗ or 𝐜, implies 𝑀𝑐𝑐 ≪ 𝑀𝑏𝑏 (a result expected 

from the strong planar character), and also 𝑀𝑎∗𝑎∗ ≪ 𝑀𝑏𝑏. The latter result rules 

out the helical structure, since for such a structure one should rather have 𝑀𝑎∗𝑎∗ ≈
𝑀𝑏𝑏. Instead, our SNP results can be accounted for by assuming a quasi-collinear 

structure, with magnetic moments pointing along the b direction, however slightly 

tilted in order to explain the finite value of the 𝑀𝑎∗𝑎∗ component. Third, non-zero 

matrix elements 𝑃𝑦𝑧 and 𝑃𝑧𝑦 (with 𝑃𝑦𝑧 ≈ 𝑃𝑧𝑦) are unambiguously observed for most 

of magnetic satellite reflections. We have also established that 𝑃𝑦𝑧(𝐐) and 𝑃𝑧𝑦(𝐐)
are both antisymmetric functions of 𝐐: 𝑃𝑦𝑧(𝐐) ≈ −𝑃𝑦𝑧(−𝐐) (and a similar relation 

for 𝑃𝑧𝑦). More quantitatively, for the (1, 0, 1)− satellite reflection one obtained the 

rather strong value ∣𝑃𝑦𝑧∣ ≈ ∣𝑃𝑧𝑦∣ ≈ 0.17, whereas for the (0, 0, 9)+ satellite reflection 

(almost parallel to 𝐜), one has determined ∣𝑃𝑦𝑧∣ ≈ ∣𝑃𝑧𝑦∣ ≈ 0.06. The former value, 

in particular, can only be understood from the existence of a finite OP Fourier-

component, associated with a non-negligible canting of magnetic moments out of 

the basal plane, which question the planar character. The 𝑄𝑎 and 𝑄𝑐 dependence of 

matrix element 𝑃𝑦𝑧 is summarized in Figure 8. Following the methodology suggested 

in section 2, these data have been obtained by measuring 𝑃𝑦𝑧(𝐐) and 𝑃𝑦𝑧(−𝐐) (i.e., 

after rotation of the sample by 180◦) and taking their anti-symmetric combination. 

Applying Eqs. (5)–(9) (valid for pure magnetic contributions), 𝑃𝑦𝑥, 𝑃𝑧𝑥, 𝑃𝑦𝑧, 𝑃𝑧𝑦, 𝑃𝑦𝑦

and 𝑃𝑧𝑧 (the matrix elements useful for the structure determination) can be rewritten 

as a function of 𝑀𝑎∗𝑎∗ , 𝑀𝑏𝑏, 𝑀𝑐𝑐 , 𝑀𝑎∗𝑏 and 𝑀𝑐𝑏 structure factors:

𝑃𝑦𝑧 = 𝑃𝑧𝑦 ≈ 2
ℜ(𝑀𝑎∗𝑏) sin(𝛼) +ℜ(𝑀𝑐𝑏) cos(𝛼)

𝑀𝑖𝑝 +𝑀𝑏𝑏

𝑃0 (19)

𝑃𝑦𝑥 = 𝑃𝑧𝑥 ≈ 2
ℑ(𝑀𝑎∗𝑏) sin(𝛼) +ℑ(𝑀𝑐𝑏) cos(𝛼)

𝑀 +𝑀
(20)
𝑖𝑝 𝑏𝑏
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𝑃𝑦𝑦 = −𝑃𝑧𝑧 ≈
𝑀𝑖𝑝 −𝑀𝑏𝑏

𝑀𝑖𝑝 +𝑀𝑏𝑏

𝑃0 (21)

in which 𝑀𝑖𝑝 = 𝑀𝑎∗𝑎∗ sin2(𝛼) + 𝑀𝑐𝑐 cos2(𝛼) + 2ℜ(𝑀𝑎∗𝑏) sin(𝛼) cos(𝛼). The 

experimental data listed in Table 2 and those plotted in Figure 8 immediately tell 

us that ℜ(𝑀𝑎∗𝑏) and ℜ(𝑀𝑐𝑏) should be both finite, whereas ℑ(𝑀𝑎∗𝑏) and ℑ(𝑀𝑐𝑏)
should vanish, as the chiral terms do. In the following, we will consider magnetic 

structures in which the magnetic moments are almost equal in amplitude. This 

hypothesis is justified by several reasons. Firstly, the IP anisotropy is relatively 

weak and should not be relevant, unlike, e.g., for the ANNNI-model case [36, 

37, 38]. Secondly, our measurements have been performed below 2 K, and at 

such low temperatures (for entropy reasons) fixed-length magnetic moments are 

expected. Thirdly, constant-amplitude moments are unambiguously observed for the 

field-induced collinear ferrimagnetic structure at 𝐻 = 0.4 T [11, 19], which is 

described by a similar IP propagation vector, 𝐤𝑖𝑝 = (1∕3, 0) (following the sequence 

…↑↑↓↑↑↓…), and which should have a magnetic energy very close to that of the 

ground-state structure. Yet, any squaring-up of the modulation should give rise to 

odd-harmonics Fourier components, with amplitudes ∣𝑚𝑏
(2𝑝+1)𝑘∣ ≈

𝑚𝑏

2𝑝+1 . For BCAO, 

we think that the extreme weakness of all higher-order harmonic satellites could 

result directly from the short-ranged nature of spin arrangements along the 𝐚∗ and 𝐜
directions. Indeed, the odd harmonics should have a pronounced quasi-2D or even 

quasi-1D character, which should contribute to reduce their intensities much below 

their respective ideal squaring-up values, 𝐼(2𝑝+1)𝑘 ∝
𝑚2
𝑏

(2𝑝+1)2 .

At first, the magnetic structure of BCAO can be inferred by only considering the 

magnetic intensities associated with the wave vector 𝐤1. For this wave vector, the 

magnetic-moment components along 𝐚∗, 𝐛 and 𝐜 can be described by sine-wave 

sequences, following the relations (the origin of phases being taken w.r.t. the 𝑏-axis):

𝑚𝑎∗ (R𝑛𝑖) = 𝑚𝑏 sin(𝛾𝑖) cos(2𝜋k.R𝑛 + 𝜙𝑎
𝑖
)

𝑚𝑏(R𝑛𝑖) = 𝑚𝑏 cos(𝛾𝑖) cos(2𝜋k.R𝑛 + 𝜙𝑏
𝑖
)

𝑚𝑐(R𝑛𝑖) = 𝑚𝑐 cos(2𝜋k.R𝑛 + 𝜙𝑐
𝑖
)

In these relations (which also describe the helical case, by taking 𝜙𝑏
𝑖
= 𝜙𝑎

𝑖
− 𝜋

2 and 

𝛾𝑖 = 𝜋

4 ), 𝐤 is the propagation vector (in r.l.u.), indices 𝑛 and 𝑖 label respectively 

the cell number and the Bravais-sublattice number (𝑖 = 1, 2 for BCAO), 𝜙𝑎,𝑏,𝑐

𝑖
(𝑖 =

1, 2) are the various phase angles for the 𝑖th Bravais-sublattices and 𝛾𝑖 (𝑖 = 1, 2) 

are two tilts w.r.t. the 𝑏-axis, which possibly introduce some non-collinearity in the 

structure. Assuming 𝛾1 and 𝛾2 small, one can derive analytical expressions for the 

various contributions involved in Eqs. (19) and (20) (for the hexagonal unit cell with 

z = 3 chemical formula), for satellite reflections (ℎ𝑁, 0, 𝑙𝑁 )±:

ℜ(𝑀𝑎∗𝑏) ≈
3𝑚2

𝑏 [(𝛾1 + 𝛾2) cos(Ψ𝑎𝑏)𝐶𝑏 + (𝛾1 − 𝛾2) sin(Ψ𝑎𝑏)𝑆𝑏]𝐶𝑎 (22)

2
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ℑ(𝑀𝑎∗𝑏) ≈
3𝑚2

𝑏

2
[(𝛾1 + 𝛾2) sin(Ψ𝑎𝑏)𝐶𝑏 − (𝛾1 − 𝛾2) cos(Ψ𝑎𝑏)𝑆𝑏]𝐶𝑎 (23)

ℜ(𝑀𝑐𝑏) = 3(𝑛+ − 𝑛−)𝑚𝑏𝑚𝑐𝐶𝑏𝐶𝑐cos(Ψ𝑏𝑐) (24)

ℑ(𝑀𝑐𝑏) = 3(𝑛+ − 𝑛−)𝑚𝑏𝑚𝑐𝐶𝑏𝐶𝑐sin(Ψ𝑏𝑐) (25)

𝑀𝑎∗𝑎∗ ≈ 3𝑚2
𝑏
[(
𝛾1 − 𝛾2

2
)2 + 𝛾1𝛾2𝐶

2
𝑎
] (26)

𝑀𝑏𝑏 = 3𝑚2
𝑏
𝐶2
𝑏

(27)

𝑀𝑐𝑐 = 3𝑚2
𝑐
𝐶2
𝑐

(28)

where 𝐶𝑎,𝑏,𝑐 = cos(Φ𝑎,𝑏,𝑐), 𝑆𝑏 = sin(Φ𝑏), with Φ𝑎,𝑏,𝑐 = ±𝜙𝑎,𝑏,𝑐

2 ∓ 2𝜋𝑘𝑥
3 + 2𝜋ℎ𝑁

3

(following 𝐐 = 𝐇𝐍 ∓ 𝐤), 𝜙𝑎,𝑏,𝑐 = 𝜙
𝑎,𝑏,𝑐

2 − 𝜙
𝑎,𝑏,𝑐

1 , Ψ𝑏𝑐 =
[(𝜙𝑐

1−𝜙
𝑏
1)+(𝜙

𝑐
2−𝜙

𝑏
2)]

2 , and 

Ψ𝑎𝑏 =
[(𝜙𝑎

1−𝜙
𝑏
1)+(𝜙

𝑎
2−𝜙

𝑏
2)]

2 . In these expressions, n+ and n− are the populations of 

anti-phase domains of opposite canting angles, 𝛽 = ±arctan(𝑚𝑐

𝑚𝑏

). The various terms 

do not depend explicitly neither on 𝑙𝑁 (the dependences on 𝑄𝑐 of various matrix 

elements are only due to the sin(𝛼) and cos(𝛼) geometrical factors), nor on the 

form factor of Co2+ ions (𝑓 (𝑄) is assumed to be isotropic by lack of more precise 

knowledge). For the sake of completeness, we mention that the antisymmetry in 𝐐 of 

terms 𝑃𝑦𝑧 and 𝑃𝑧𝑦 follows directly from the above equations. The various parameters 

determining the magnetic structure have been derived from the quantitative analysis 

of polarization matrices measured on several satellite reflections.

First, from Eqs. (23) and (25), the smallness of terms ℑ(𝑀𝑎∗𝑏) and ℑ(𝑀𝑏𝑐), 
irrespective of 𝐐, implies that Ψ𝑎𝑏 ≈ 0, Ψ𝑏𝑐 ≈ 0 and 𝛾1 ≈ 𝛾2. Ψ𝑎𝑏 ≈ 0 and Ψ𝑏𝑐 ≈ 0
imply the following relationship between the various phase angles for components 

𝑎, 𝑏 and 𝑐: 𝜙𝑏
1 − 𝜙𝑐

1 = −(𝜙𝑏
2 − 𝜙𝑐

2), and 𝜙𝑎
1 − 𝜙𝑏

1 = −(𝜙𝑎
2 − 𝜙𝑏

2). In other words, 

the phase differences 𝜙𝑖
𝑎 − 𝜙𝑖

𝑏 and 𝜙𝑖
𝑏 − 𝜙𝑖

𝑐 for the Bravais sublattices 1 and 2 are 

alternating.

In a second step, the experimental data for component 𝑃𝑦𝑧 (shown in Figure 8) 

were self-consistently analyzed by applying Eq. (19), combined to Eq. (21) and 

Eqs. (22)–(28). The best fit is realized with the following parameters: 𝜙𝑎 = 95 ±
7◦, 𝜙𝑏 = 83 ±5◦, 𝜙𝑐 ≈ 135 ±10◦, Ψ𝑏𝑐 ≈ Ψ𝑎𝑏 ≈ 0, 𝛾1 ≈ 𝛾2 = 2.5±0.5◦, 𝑚𝑐

𝑚𝑏

= 0.10 ±
0.02, and non-equivalent domain populations, 𝑛+ = 90±5% and 𝑛− = 10±5% (𝑛+ −
𝑛− ≈ 80%), taking 𝑃0 ≈ 0.91 and 2𝜋𝑘𝑥 ≈ 97◦. Consistently, the present 𝜙𝑏 value 

is in good agreement with the previous determination from unpolarized neutron 

measurements, which indeed were mainly probing the 𝑀𝑏𝑏 components [11]. The OP 

moment component amounts to 𝑚𝑐 ≈ 0.25𝜇𝐵 (taking for the IP component 𝑚𝑏 ≈
2.5𝜇𝐵 , after Ref. [11]) and the OP canting angle is 𝛽 = arctan(𝑚𝑐

𝑚𝑏

) = 5.7 ± 0.5◦. 

The various lines in Figure 8 have been calculated from the above parameters. The 

agreement between the calculated curves and the experimental data looks reasonably 

good. However, the fine analysis reveals that the 𝑄𝑎-dependence of 𝑀𝑐𝑏 is better 

accounted than that of 𝑀𝑎∗𝑏. Although the magnetic defects at the origin of the very 

limited coherence length 𝜉𝑎 may explain this difference, it could also mean that the 
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Figure 9. Magnetic moment component along 𝐛 as a function of the distance along the direction 𝐚
(calculated with the parameters resulting from the fit of components 𝑃𝑦𝑧(𝑄𝑎, 𝑄𝑐) and 𝑃𝑧𝑦(𝑄𝑎, 𝑄𝑐)), 
showing the existence of more or less regular defects in the … ↑↑↓↓↑↑ … sequence, separated by 
a distance 𝑑𝑎 ≈ 13𝑎 ∼ 𝜉𝑎

2 . Red closed symbols: Bravais sublattice 1; Blue closed symbols: Bravais 
sublattice 2.

spin arrangement along the 𝑎∗-direction is more complicated. Finally, we correlate 

the well-marked asymmetry between 𝑛+ and 𝑛− to the fact that our sample was an 

as-grown almost untwined (𝐜/−𝐜) single crystal.

The arrangement for the magnetic-moment component along 𝐛 with odd-harmonics 

up to the 9th order is shown in Figure 9. As is can be seen, in this non-ideal case more 

or less regular defects are present (associated with a phase shift of roughly ±2𝜋𝑘𝑥, 

in order to compensate the anomalously small value of the magnetic moment), with 

an inter-defect distance 𝑑𝑎 ≈ 13𝑎 ≈ 1∕4
(𝑘𝑥−1∕4)

𝑎. In BCAO, this distance very likely 

fluctuate and the phase of the modulation is finally lost over distances corresponding 

to the coherence length 𝜉𝑎 ∼ 4𝑑𝑎. This might also explain the lack of long-range 

order of higher-order (3𝐤, 5𝐤, ...) harmonics. Finally, the presence of such more 

or less regular defects explains the existence of an incommensurate propagation 

vector. Thus, the in-plane magnetic structure of BCAO can be described as a stacking 

of quasi-ferromagnetic chains running along to the 𝐛 axis, following the sequence 

… ↑↑↓↓↑↑ … over a finite length scale, involving magnetic moments of almost 

constant amplitude, roughly parallel to 𝐛 and slightly canted away from the (𝐚, 𝐛). 

The ordering of the OP component, driven by the IP one, follows a quite similar 

sequence, giving rise to the idealized magnetic structure reported in Figure 10. We 

will come back to this result latter in the discussion.

The SNP formalism, summarized by the general Blume-Maleyev equations [30, 

31], can be applied to the analysis of the inelastic contributions, as well. More 

precisely, the systematic measurements of diagonal and off-diagonal elements 

of the polarization matrix (especially 𝑃𝑦𝑥, 𝑃𝑧𝑥, 𝑃𝑦𝑧, and 𝑃𝑧𝑦, see Eqs. (5)–(9)), 
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Figure 10. Squared-up collinear magnetic structure of BaCo2(AsO4)2. In-plane (↑ and ↓) and out-of-plane 
(+ and −) magnetic ordering. 𝛾 is the tilt angle w.r.t. the b-axis.

Figure 11. Constant-Q scans in BaCo2(AsO4)2 at 𝑇 = 1.5 K as a function of the reduced wave vector 𝑞𝑎, 
showing the dispersion of magnetic excitations along the a∗ direction. (a): 𝑞𝑎 = 0, 0.1 and 0.2 r.l.u.; 
(b): 𝑞𝑎 = 0.3, 0.4, 0.5 r.l.u. (𝑇 = 1.5 K) and 𝑞𝑎 = 0.5 r.l.u. (𝑇 = 100 K).

may bring interesting new pieces of information, since in principle they allow 

the determination of the whole cross-sections. In BCAO, one of the key points 

is the understanding of the nature of the magnetic excitations, especially their 

relationship with the incommensurate magnetic structure. More specifically, one 

question which should be addressed is to determine whether the magnetic excitations 

are simple spin waves or new, more exotic (e.g., multi-particle bound-state or 

roton-like) excitations. The dispersion of magnetic excitations in BCAO has been 

first determined from both unpolarized and polarized inelastic neutron scattering 

experiments. Typical constant-Q scans obtained within the PG–PG (unpolarized) 

monochromator-analyzer configuration at fixed 𝑘𝑓 = 1.97 Å−1 are shown in 

Figure 11(a) and 11(b), for scattering vectors 𝐐 = (𝑞𝑎, 0, 6.1), with 𝑞𝑎 spanning the 

[0, 0.5] half Brillouin zone. The scan at 𝐐 = (0, 0, 6.1) (see Figure 11(a)) shows the 

sharp-gap feature at Δ0 ≈ 1.47 meV, and another contribution having a maximum 
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Figure 12. Energy-dependence of the pure-magnetic components 𝑀𝑦𝑦 (a) and 𝑀𝑧𝑧 (b), at the scattering 
vector Q = (0.27, 0, 6.1), showing the almost isotropic character of magnetic excitations and the strong 
anisotropy of the elastic magnetic contributions. The solid lines are fit to a multi-Gaussian functional, as 
described in the text.

intensity at about 3 meV ≈ 2Δ0 and extending up to 6 meV, characteristic of a 

2-particle continuum. The lower-energy contribution, degenerated at small 𝑞𝑎, splits 

into two distinct modes at 𝑞𝑎 ≳ 0.35. The maximum splitting (≈0.4 meV) is observed 

at the Brillouin-zone boundary (𝑞𝑎 = 0.5), as documented by the energy-scan at 𝐐 =
(0, 0, 6.1) (Figure 11(b)). For the latter scattering vector, a third mode peaked at an 

energy of 5.2 meV and extending up to about 7 meV is observed, attributed to the 

dispersion of the 2-magnon continuum. In agreement with previous measurements, 

the structure factor of magnetic excitations is maximum at 𝑞𝑎 ≈ 0 (and not at 𝑞𝑎 ≈
𝑘1𝑥), and decreases rapidly for 𝑞𝑎 ≳ 0.35. Although the magnetic origin of all these 

contributions might follow from their disappearance at high temperature, as shown 

from the scan at 𝐐 = (0.5, 0, 6.1) performed at 𝑇 = 100 K (see Figure 11(b)), 

it has been unambiguously established from polarized neutron inelastic scattering 

measurements. Constant-𝐐 scans performed with the incident and final neutron 

polarization successively parallel to 𝐱, 𝐲 and 𝐳 (LPA configuration) have allowed 

a precise determination of pure magnetic dynamical structure factors 𝑀𝑦𝑦 and 𝑀𝑧𝑧. 

Typical results are shown in Figure 12 for the scattering vector 𝐐 = (0.27, 0, 6.1). For 

this position (almost parallel to 𝐜∗), the energy dependences of magnetic fluctuations 

parallel to 𝐚∗, (𝑀𝑦𝑦, Figure 12(a)), and parallel to 𝐛 (𝑀𝑧𝑧, Figure 12(b)) can be 

determined separately. A sharp (resolution-limited) excitation peaked at 2.2 meV 

is clearly observed in both channels. Figure 13 shows similar data obtained at 

the scattering vector 𝐐 = (0.05, 0, 6.2), located close to the minimum energy of 

the dispersion curve. In agreement with the previous unpolarized measurements, 

a resolution-limited (Δ𝐸𝐹𝑊𝐻𝑀 ≈ 1.1meV), almost-isotropic excitation is observed 

around the energy Δ𝑜 ≈ 1.5 meV. In addition, the scans displayed in Figure 13

show that there is no trace of a ferromagnetic quasi-elastic contribution at 𝐐 =
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Figure 13. Energy-dependence of the pure-magnetic components (a): 𝑀𝑦𝑦 and (b): 𝑀𝑧𝑧, at the scattering 
vector Q = (0.05, 0, 6.2), showing the isotropic character of magnetic excitations at 𝑞𝑎 ≈ 0. The solid 
lines are fit to a Gaussian function, as described in the text.

Figure 14. Dispersion of magnetic excitations along 𝐚∗ in zero field (closed symbols) and under a 
magnetic field of 0.7 T applied along the b-direction (open circles). The red, orange and blue closed 
symbols correspond to new data. The black closed symbols correspond to data taken from Ref. [11]. The 
solid and dashed lines are fit to Eq. (29), as described in the text.

(0.05, 0, 6.2). Finally, the scans depicted in Figures 12(a) and 12(b) establish the 

magnetic nature of the continuum extending up to 6 meV.

Figure 14 summarizes the dispersion of magnetic excitations along the [1 0 0] 

direction. For the sake of comparison, we have also included data in an applied 

magnetic field of 7 kG, taken from Ref. [17]. As previously observed, the minimum 

energy of the excitation spectrum is located at 𝐪 = 𝟎 and not at 𝐪 = 𝐤1. Unexpectedly, 

the dispersion curves of magnetic excitations in BCAO reflect the proximity to 

a ferromagnetic ground state, despite the absence of strong ferromagnetic Bragg 
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scattering along the (0, 0, 𝑄𝑐) reciprocal-lattice line [11, 17]. The dispersion curves 

along the [1 0 0] direction have been analyzed from the following empirical relation:

𝐸(𝑞𝑎) =
√

Δ2
0 + Δ2

1 sin
2(𝜋𝑞𝑎) + Δ2

2 sin
4(𝜋𝑞𝑎) (29)

In zero field, the best fit of experimental data to Eq. (29) (solid line in Figure 14) 

is achieved with the parameters Δ0 ≈ 1.47 meV, Δ1 ≈ 0.6 meV, Δ2 ≈ 2.30 meV 

for the lower-energy mode and Δ0 ≈ 1.47 meV, Δ1 ≈ 0.6 meV, Δ2 ≈ 2.75 meV 

for the upper-energy mode. The dispersion of the maximum energy of the 2-magnon 

continuum can also be reproduced by Eq. (29), with parameters Δ0 ≈ 2.9 meV, Δ1 ≈
0.8 meV and Δ2 ≈ 4.1 meV. The non-conventional behavior of the dispersion of the 

lower-energy modes along [1 0 0] is well documented by the smallness of the Δ1
parameters, this reflecting the quasi absence of a quadratic term (weak stiffness), 

and the flatness of the dispersion curve for 𝑞𝑎 ≲ 0.15 r.l.u., indeed very reminiscent 

of a quasi-1D excitation rather than a quasi-2D one. The situation turns out to be very 

different in magnetic fields 𝐻 > 𝐻𝑐2. As it can be seen in Figure 14, in the saturated 

paramagnetic phase (𝐻 = 0.7 T in the present case), the best fit of data to Eq. (29)

is obtained with the set of parameters Δ0 ≈ 1.0 meV (smaller gap energy), Δ1 ≈
1.7 meV and Δ2 ≈ 3.4 meV, which show that the quadratic term, and consequently 

the propagative character, are recovered.

As mentioned in section 1, the linear spin-wave theory applied to the 𝐽1 − 𝐽2 − 𝐽3
XXZ (planar) model described by Eq. (1) is unable to explain the main features of 

the dispersion curves (especially the gap at 𝑞𝑎 = 0), both for the collinear IC (𝐻 <

𝐻𝑐1) and the ferrimagnetic (𝐻𝑐1<𝐻 < 𝐻𝑐2) structures. Instead, above 𝐻𝑐2 (in the 

saturated paramagnetic phase described by the wave vector 𝐤 = 𝟎), the dispersion 

curves (including the field-dependence of the gap energy at 𝑞𝑎 ≈ 0, Δ0(𝐻) ≈
𝑆
√
6(𝐽1 + 2𝐽2 + 𝐽3)

√
𝑔𝑥𝜇𝐵𝐻) can be quantitatively reproduced by the simple SW 

theory for the 𝐽1 − 𝐽2 − 𝐽3 XXZ model.

In order to quantify the 𝑞𝑎-dependence of spin-dynamics in BCAO (especially 

the anisotropy in spin-space of magnetic fluctuations), we have undertaken the 

determination of full polarization matrices for several inelastic positions covering 

the first Brillouin zone. As examples, we give in Table 3 the polarization matrices 

determined on the inelastic magnetic contributions at 𝐐 = (0, 0, 4.67) and Δ𝐸 =
1.5meV (corresponding to the minimum of the dispersion curve), 𝐐 = (0.27, 0, 4.67)
and Δ𝐸 = 2.1 meV (mostly parallel to c∗, corresponding to 𝐪 ≈ 𝐤1), and finally 

𝐐 = (0.73, 0, 0.8) and Δ𝐸 = 2.3 meV (mostly parallel to a∗). The matrix at 𝐐 =
(0, 0, 4.67) and Δ𝐸 = 1.5 meV has a very simple form: Only 𝑃𝑥𝑥 is not zero (with 

𝑃𝑥𝑥 ≈ −0.90), all the other terms being very small, especially 𝑃𝑦𝑥 and 𝑃𝑦𝑧. However, 

it is worth noting that 𝑃𝑦𝑦 is not equal to −𝑃𝑧𝑧, as it should be for a pure magnetic 

contribution (see Eq. (6)). In order to account for this fact, we have to assume the 

existence of a small structural contribution, 𝑁 , superimposed to the magnetic ones. 
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Table 3. Polarization matrices for several inelastic magnetic contributions.

Q; 𝚫𝑬(𝒎𝒆𝑽 ) 𝑷𝜶𝜷 𝒙 𝒚 𝒛

(0, 0, 4.67); 1.5
𝑥 −0.902(11) 0.000(18) −0.022(19)
𝑦 0.012(19) 0.022(13) 0.027(18)
𝑧 −0.015(18) 0.028(18) 0.035(13)

(0.27, 0, 4.67); 2.1
𝑥 −0.932(13) 0.019(22) 0.015(20)
𝑦 0.008(22) −0.154(15) −0.007(13)
𝑧 0.008(21) 0.000(22) 0.159(15)

(0.73, 0, 0.8); 2.3
𝑥 −0.610(32) * −0.039(13)
𝑦 0.015(13) −0.620(30) −0.074(20)
𝑧 −0.052(22) −0.074(20) 0.745(33)

By applying Eqs. (10)–(12), the 𝑁 , 𝑀𝑦𝑦 (≈𝑀𝑎∗𝑎∗ ) and 𝑀𝑧𝑧 (=𝑀𝑏𝑏) structure factors 

can be determined from the self-consistent analysis of the 𝑃𝑥𝑥, 𝑃𝑦𝑦 and 𝑃𝑧𝑧 terms. 

Taking 𝑃0 ≈ 0.93, one obtained for the additional structural component a ratio 
𝑁

𝑀𝑏𝑏

= 0.025 ± 0.014, which indeed is at the limit of the experimental accuracy, 

and a very small anisotropy ratio 
𝑀𝑦𝑦−𝑀𝑧𝑧

𝑀𝑏𝑏

≈ −0.01 ± 0.010, which implies a ratio 
𝑀𝑎∗𝑎∗
𝑀𝑏𝑏

≈ 0.99. The magnetic fluctuations along 𝐚∗ and 𝐛 are quasi isotropic at 𝐐 =
(0, 0, 4.67) and Δ𝐸 = 1.5 meV, a result which is at first surprising, owing to the axial 

character of the ground-state magnetic structure (we have found 𝑀𝑎∗𝑎∗
𝑀𝑏𝑏

≈ 0.02 for the 

magnetic satellite reflection (0, 0, 6)+). We will come back to this point later. At 𝐐 =
(0.27, 0, 4.67) and Δ𝐸 = 2.1 meV, the polarization matrix is mainly diagonal, within 

the error bars. Matrix elements 𝑃𝑦𝑦 and 𝑃𝑧𝑧 now present finite and opposite values, 

𝑃𝑧𝑧 ≈ −𝑃𝑦𝑦 = 0.157 ± 0.015. Contrary to the matrices determined on the magnetic 

satellite reflections (see Table 2), the 𝑃𝑦𝑧 and 𝑃𝑧𝑦 elements are vanishing small, as 

𝑃𝑦𝑥 and 𝑃𝑧𝑥 are (no antisymmetric chiral correlations). From the values of 𝑃𝑦𝑦 and 

𝑃𝑧𝑧, the ratio 
𝑀𝑦𝑦

𝑀𝑧𝑧

= 0.71 ± 0.02 is deduced, and finally the ratio 𝑀𝑎∗𝑎∗
𝑀𝑏𝑏

= 0.86 ±
0.03 is determined. Similar measurements at a different configuration (essentially 

a different Heusler analyzer and a slightly different energy transfer of 2.3 meV) 

have given a slightly different ratio, 𝑀𝑎∗𝑎∗
𝑀𝑏𝑏

= 0.82 ± 0.03. Thus, the IP magnetic 

structure factors at 𝑞𝑎 ≈ 0.27 are weakly anisotropic, with a mean ratio 𝑀𝑎∗𝑎∗
𝑀𝑏𝑏

=
0.84 ±0.02. Same as for the scattering vector 𝐐 = (0, 0, 4.67), magnetic fluctuations 

exist both along 𝐚∗ and 𝐛. Within the error bars, no extra structural contribution is 

detected at 𝐐 = (0.27, 0, 4.67) and Δ𝐸 = 2.1 meV. However, such a contribution 

was again observed at 𝐐 = (0.27, 0, 3.1) and Δ𝐸 = 2.3 meV, with a quite similar 

intensity ratio, 𝑁

𝑀𝑏𝑏

= 0.03 ± 0.015. For the investigation at 𝐐 = (0.73, 0, 0.8) and 

Δ𝐸 = 2.3meV, we have used the full SNP methodology, prompted by the underlying 

structural contribution which might give rise to non-zero NMI terms, through the 

putative existence of hybrid N–M correlation functions. First, we have measured the 

polarization creation along the three cardinal directions 𝐱, 𝐲 and 𝐳, starting from an 

unpolarized beam (in our case produced by a pyrolithic-graphite monochromator). 

From these measurements, we have determined polarization components, 𝑃0𝑥 =
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Table 4. Off-diagonal matrix elements 𝑃𝑥𝑧, 𝑃𝑦𝑥, 𝑃𝑦𝑧 and 𝑃𝑧𝑦 at the 
scattering vectors Q = (0.73, 0, 0.8) and Q = (−0.73, 0, −0.8), for an energy 
transfer of 2.3 meV. 𝑃 𝑎

𝛼𝛽
and 𝑃 𝑠

𝛼𝛽
are related to the antisymmetric and 

symmetric components, as explained in the text.

𝜶𝜷 𝑷𝜶𝜷 (𝐐) 𝑷𝜶𝜷 (−𝐐) 𝑷 𝒂

𝜶𝜷
(𝐐) 𝑷 𝒔

𝜶𝜷
(𝐐)

𝑥𝑧 −0.039(13) −0.031(12) −0.004(8) −0.035(8)
𝑦𝑥 0.015(13) 0.029(12) −0.007(8) 0.022(8)
𝑦𝑧 −0.035(18) 0.088(17) −0.062(13) 0.026(13)
𝑧𝑦 −0.047(18) 0.129(18) −0.088(14) 0.042(14)

0.008 ± 0.008, 𝑃0𝑦 = 0.009 ± 0.008, and 𝑃0𝑧 = −0.002 ± 0.008. Within the error 

bars, no polarization of the scattered beam could be detected. After Eqs. (2)–(4) in 

section 2, this result implies necessarily that 𝑀𝑐ℎ

𝑀𝑏𝑏

≈ 𝑅𝑦

𝑀𝑏𝑏

≈ 𝑅𝑧

𝑀𝑏𝑏

≈ 0: The magnetic 

antisymmetric (chiral) dynamical contributions and the symmetric inelastic NM 

correlation functions are all vanishing small. The polarization matrix given in Table 3

(bottom) shows several interesting features. From the self-consistent analysis of the 

𝑃𝑥𝑥, 𝑃𝑦𝑦 and 𝑃𝑧𝑧 terms, and by applying Eqs. (10)–(12), the ratio between the OP 

and IP dynamical structure factors is derived, 𝑀𝑐𝑐

𝑀𝑏𝑏

= 0.025 ± 0.005 (taking 𝑃0 =
0.75 ±0.03), consistent with the well-marked planar character found from the neutron 

diffraction measurements. More interesting, the analysis of matrix elements 𝑃𝑥𝑥, 

𝑃𝑦𝑦 and 𝑃𝑧𝑧 at 𝐐 = (0.73, 0, 0.8) and Δ𝐸 = 2.3 meV again reveals the presence of 

a non-negligible nuclear (structural) contribution with an absolute intensity, 𝑁 =
(0.093 ±0.010)𝑀𝑏𝑏, quite similar to the two previous cases if we remember that 𝑀𝑏𝑏

is smaller at this scattering vector. Table 4 lists the 𝑦𝑥, 𝑧𝑥, 𝑦𝑧, and 𝑧𝑦 off-diagonal 

matrix elements for the two opposite scattering vectors 𝐐 = (0.73, 0, 0.8) and 𝐐 =
(−0.73, 0, −0.8), at the same energy transfer Δ𝐸 = 2.3 meV. As emphasized in 

section 2, an accurate value of the anti-symmetric NMI term 𝐼𝑧 can be deduced by 

considering the anti-symmetric combination of the 𝑦𝑥 off-diagonal matrix element 

at scattering vectors ±Q (see Eqs. (15)–(18)). From the experimental values, one 

determines the ratio 𝐼𝑧

𝑀𝑏𝑏

= −0.007 ± 0.008. The 𝐼𝑦 antisymmetric NMI term, 

invariant in a rotation of the sample by 180◦, cannot be determined at a similar 

accuracy, due to the impossibility to cancel the systematic errors. From the 𝑥𝑧

components given in Table 4, one got the average ratio 
𝐼𝑦

𝑀𝑏𝑏

= −0.035 ± 0.008, 

which looks finite within the error bars, but could originate from the systematic 

errors introduced by CRYOPAD. At least this value is not much different than the 

average value ∣𝑃𝑥𝑧+𝑃𝑧𝑥

2 ∣ ≈ 0.036 found from the measurements of the polarization 

matrix on the magnetic Bragg satellite (0.73, 0, 2.33) (see Table 2), expected to 

be null in the present case. Thus, in BCAO the symmetric (𝑅𝑦 and 𝑅𝑧) and the 

antisymmetric (𝐼𝑦 and 𝐼𝑧) NMI terms seem all vanishing small at the accuracy of 

our measurements, this showing the absence of any dynamical cross-correlation 

function coupling the structural and magnetic degrees of freedom, which indeed are 

passively coexisting. We have no clear explanation about the origin of the additional 
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structural contribution detected by SNP at 𝐐 = (0.73, 0, 0.8), which might be due to 

the existence of irrelevant crystallographic defects in the investigated single crystal. 

Finally, we worth note that finite off-diagonal matrix elements 𝑃𝑦𝑧 and 𝑃𝑧𝑦 are also 

detected at the scattering vector 𝐐 = (0.73, 0, 0.8), with 𝑃𝑦𝑧 ≈ 𝑃𝑧𝑦, and roughly 

antisymmetric in 𝐐 (see Table 4). From their antisymmetric combinations, 𝑃 𝑎
𝑦𝑧

and 

𝑃 𝑎
𝑧𝑦

, accurate values of the 𝑃𝑦𝑧 and 𝑃𝑧𝑦 matrix elements have been deduced, ∣𝑃𝑦𝑧∣ ≈
∣𝑃𝑧𝑦∣ = 0.075±0.025. According to section 2, in order to explain such non-zero 

off-diagonal matrix elements, one should invoke the existence of a rather-strong 

correlation function coupling the inelastic OP and IP magnetic fluctuations. In the 

next section, we will prove more quantitatively that in BCAO such a correlation 

function is indeed a quite trivial one, which essentially originates from the strong 

anisotropic character of precessions of Co2+ magnetic moments.

5. Discussion & conclusion

Our comprehensive investigation by SNP and LPA of elastic and inelastic

contributions in BCAO has brought new and very relevant pieces of information 

concerning the magnetic ordering and the spin dynamics of this complicated 

compound. A first unexpected result is the discovery that the magnetic structure 

of BCAO is collinear, with magnetic moments roughly aligned along the 𝑏-axis and 

a non-negligible out-of-plane component, associated with a canting of about 5.7◦

w.r.t. the (𝐚, 𝐛) plane. In BCAO, the magnetic ordering is not very well established 

both along 𝐚∗ (𝜉𝑎∗∕𝑎 ∼ 30) and 𝐜 (𝜉𝑐∕𝑐 ∼ 3), being at much longer range 

along 𝐛. Indeed, there is a puzzling paradox between the apparent disorder of the 

incommensurate ground-state structure along the 𝐚∗ direction, and the existence of 

well-defined (resolution-limited) excitations, displaying a dispersion relation rather 

of ferromagnetic type (energy minimum at 𝑞𝑎 = 0), which questions directly the 

nature of magnetic excitations in BCAO. We have also confirmed the unconventional 

shape of the dispersion relation along the 𝐚∗ direction (absence of quadratic term), 

and established the quasi-isotropic character of the inelastic magnetic response, 

which contrasts with the marked axial character of the spin arrangement. Obviously, 

our SNP results on inelastic magnetic contributions rise-up the question of the 

relationship between the excitation spectrum and the collinear canted ground-state 

structure. This is the subject of the following discussion.

From a general point of view, all the structures involved in BCAO (whether simple 

helix, AF-collinear, ferrimagnetic or saturated paramagnetic) are quasi-2D, or even 

quasi-1D structures, exhibiting both a high degree of degeneracy and a strong 

frustration of exchange interactions. The various structure energies should be very 

close to each other, as it can be inferred from the small values of the various critical 

fields. Taking into account the pseudo-chain character inherent to all structures, the 
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classical structure energy has the simple form, 𝐸𝑠 = 𝐸𝑐 + 𝑒𝑖𝑐 , where 𝐸𝑐 represents 

the energy of an isolated quasi-ferromagnetic chain, and 𝑒𝑖𝑐 is the inter-chain energy. 

For the idealized …↑↑↓↓↑↑↓↓… ground-state structure of BCAO, one has: 𝐸𝐺𝑆
𝑐

=
−2𝑠2(𝐽1 + 𝐽2), and 𝑒𝐺𝑆

𝑖𝑐
= 0, which corresponds to the energy of an assembly of 

isolated ferromagnetic chains, irrespective of 𝐽3. For the ferrimagnetic (Ferri) and 

saturated-paramagnetic (Ferro) structures, the intra-chain classical energies are the 

same: 𝐸𝐹𝑒𝑟𝑟𝑖
𝑐

= 𝐸𝐹𝑒𝑟𝑟𝑜
𝑐

= −2𝑠2(𝐽1 + 𝐽2) = 𝐸𝐺𝑆
𝑐

, the inter-chain classical energies 

being 𝑒𝐹𝑒𝑟𝑟𝑖
𝑖𝑐

= 𝑠2(𝐽13 + 4𝐽2
3 +𝐽3) and 𝑒𝐹𝑒𝑟𝑟𝑜

𝑖𝑐
= −𝑠2(𝐽1 +4𝐽2 +3𝐽3), respectively. The 

weakness of the critical fields 𝐻𝑐1 (∝(𝑒𝐹𝑒𝑟𝑟𝑖
𝑖𝑐

− 𝑒𝐺𝑆
𝑖𝑐

)) and 𝐻𝑐2 (∝(𝑒𝐹𝑒𝑟𝑟𝑜
𝑖𝑐

− 𝑒𝐹𝑒𝑟𝑟𝑖
𝑖𝑐

)), 
implies that 𝑒𝐺𝑆

𝑖𝑐
≲ 𝑒𝐹𝑒𝑟𝑟𝑖

𝑖𝑐
≲ 𝑒𝐹𝑒𝑟𝑟𝑜

𝑖𝑐
(condition indeed not satisfied from the above 

classical energies) and that 𝐽1 + 4𝐽2 + 3𝐽3 ≈ (0.04 − 0.05)𝐽1) is small. The latter 

relation can be quantitatively satisfied by taking the ratios 𝐽2
𝐽1

≈ −(0.04 − 0.05) and 
𝐽3
𝐽1

≈ −(0.27 − 0.28), which are not much different than those determined from 

the analysis of spin-wave dispersions in the saturated paramagnetic phase. Note, 

however, that with all these exchange-parameters sets, the classical ground state 

should be ferromagnetic, in disagreement with the experimental results. Obviously, 

a more accurate treatment of the problem is required, which should at least include 

the quantum corrections in the energy calculation of the different structure as a 

function of 𝐽1, 𝐽2 and 𝐽3. Anyway, the weak effective inter-chain couplings allow 

the rotation, or the change of the magnetic moment length (associated, e.g., with 

a phase shift) of long chain segments at very low energy cost. In particular, for 

the ground-state structure one can show that a ferromagnetic pseudo-chain located 

between ↑ and ↓ pseudo-chains, following the sequence …↑↑↓↓↑↑↗↓↑↑…, can be 

entirely rotated by an arbitrary angle without any cost in energy (assuming the IP 

axial anisotropy term weak). As already mentioned, this feature could explain very 

well the H–T phase diagram of BCAO. The ease of creating low-energy (quasi static) 

defects is also at the origin of the step-like temperature dependence of the staggered 

order parameter, ∣𝐦𝑘(𝑇 )∣. Without demonstration so far, we believe that the high 

degeneracy of the ground state could also be at the origin of the strong 𝑇 2-term in 

the low-T magnetic specific heat, as it is the case, e.g., for the Kagome lattice [39].

On the theoretical side, the classical phase diagram of the 𝐽1 − 𝐽2 − 𝐽3 model on 

the honeycomb lattice has been investigated three decades ago [40]. In a very narrow 

region of 𝐽2∕𝐽1 and 𝐽3∕𝐽1 values, a helical phase described by an IC wave vector 𝐤 =
(𝑘𝑥, 0) was predicted as the ground-state structure, very close to the ferromagnetic 

phase. Exact diagonalizations and linear SW calculations, both for antiferromagnetic 

and ferromagnetic (indeed the BCAO case) n.n. interactions 𝐽1 recently performed 

on the 𝑆 = 1∕2, 𝐽1 − 𝐽2 − 𝐽3 model on the honeycomb lattice have shed some 

light on the role of frustration [41]. Among other predictions, it was conjectured that 

for 𝐽1 > 0, frustration (be it due to 𝐽2 or 𝐽3) could lead to the disappearance of 

the ferromagnetic phase at the expense of a spin-liquid phase with short-range IP 
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correlations and the opening of spin-gaps in the excitation spectrum, which seem 

in qualitative agreement with the experimental results in BCAO. The presence of a 

frustration-enhanced gapped spin-liquid phase for a quantum-spin (spin-1∕2) system 

on the honeycomb lattice has also been predicted by Takano [42] and more recently 

by Bishop et al. [43, 44, 45, 46]. Unfortunately, almost nothing exists for the 𝐽1 −
𝐽2 − 𝐽3 planar model on the honeycomb lattice in applied magnetic field.

Regarding the small OP canting (𝛽 ≈ 6◦) and tilt angles (𝛾 ≈ 2.4◦), they 

clearly highlight the complexity of BCAO. At least, they rule out the simple 

model developed long ago for the Co2+ ion in octahedral, trigonaly-distorted 

environment [47]. Although being able to explain the strong planar anisotropy, 

this model is unable to account neither for the canting, nor for the tilt angle. This 

clearly shows that the solution of this problem demands to go beyond the too simple 

bilinear XXZ Hamiltonian given by Eq. (1), and that higher-order terms (like, e.g., 

the biquadratic, Dzyaloshinski-Moriya or anisotropic exchange terms) must be taken 

into account.

In BCAO, the excitation spectra are rather unconventional and present some puzzling 

features. As previously reported, the excitation spectra of the (zero-field) ground-

state and (field-induced) intermediate ferrimagnetic structures, indeed very similar 

(see Ref. [11]), cannot be explained from the simple linear 2D SW theory. In 

addition, they do not better verify the predictions for an incommensurate modulated 

phase [48]. Instead, the quasi-absence of a quadratic term in the dispersion along 

the 𝑎∗-axis leads us to assume that the small-𝑞 excitations in BCAO are quasi-

localized modes displaying a well-defined spin-gap of energy Δ0 ≈ 1.45 meV. 

The origin of such a strong spin-gap localized at 𝑞𝑎 ≈ 0 remains intriguing and 

quantitatively not understood. Although the presence of a small easy-axis anisotropy 

term (whether on-site or due to anisotropic exchange) favoring an alignment of 

magnetic moments along the 𝑏-axis in BCAO is certain, the magnitude of the 

spin-gap cannot be accounted for by such a term, alone. Considering the mostly 

ferromagnetic character of the spin-excitation spectrum, one should have: Δ0 ≂

6𝑆(𝐽1 +2𝐽2 +𝐽3)
√
1 − 𝛼𝑧

√
∣
𝐽𝑥
1 −𝐽

𝑦

1
𝐽1

∣. In order to account for the gap-energy value, 

one would have to postulate a rather strong IP axial anisotropy of various coupling 

parameters, ∣𝐽
𝑥
𝑛
−𝐽𝑦

𝑛

𝐽𝑛
∣ ≈ 0.08 (𝑛 = 1, 2 and 3). Such a high value is definitively 

inconsistent with the INS results under field, which gave an upper limit at least 

one order of magnitude weaker (IP anisotropy field 𝐻𝑖𝑝
𝑎 ≲ 0.15 T). As suggested 

in Ref. [41] for the strongly frustrated honeycomb lattice, the spin-liquid nature of 

the ground-state could explain the opening of an energy gap in the spin-excitation 

spectrum. However, the value which is predicted by the numerical simulations 

is by far too small. If the excitations in BCAO are really associated with quasi-

ferromagnetic pseudo chains running along the b-axis, whose spins are coupled 

through effective interactions 𝐽 ≈ 𝐽1 +𝐽2 ≈ 40 K (irrespective of 𝐽3), one has Δ0
̃ ≈

𝐽
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Figure 15. Anisotropic moment precessions in BaCo2(AsO4)2 (projection in the (𝐛, 𝐜) plane).

0.42, a value surprisingly very close to the predicted Haldane-gap value (≈0.41) for 

the 𝑆 = 1 antiferromagnetic Heisenberg chain [2]. Although this may be a simple 

coincidence, this remark could in fact reveal the very unconventional and complex 

nature of the gaped mode at 𝐪 = 𝟎.

A quantitative interpretation of our inelastic SNP results (especially the origin of 

the finite 𝑃𝑦𝑧 and 𝑃𝑧𝑦 matrix elements) may emerge from the following simple 

model. In the very realistic case of a magnetic structure with magnetic moments 

mainly aligned along the 𝑏-axis (𝛾 ≈ 0) and canted out of the (𝐚, 𝐛) plane by an 

angle 𝛽 = ±arctan(𝑚𝑐

𝑚𝑏

) (see Figure 15) undergoing strongly-anisotropic precessions 

of pulsation 𝜔0 around their average positions, one can calculate the 𝑃𝑦𝑥 and 

𝑃𝑦𝑧 components. For a given scattering vector 𝐐, neglecting at first the effect of 

𝑘-domains, one can show that the time-dependence of various spin components for 

transverse fluctuations are given by the following equations:

𝑆𝑎∗ = 𝛿𝑆𝑎∗ cos(𝜔0𝑡)

𝑆𝑏 = 𝛿𝑆𝑐 sin(𝛽) sin(𝜔0𝑡)

𝑆𝑐 = 𝛿𝑆𝑐 cos(𝛽) sin(𝜔0𝑡)

The various dynamical structure factor components are calculated by Fourier 

transform in time of the associated spin components:

𝑀𝑖𝑗(𝜔) =
+∞

∫
−∞

𝑆𝑖(𝑡)𝑆∗
𝑗
(0) 𝑒𝑖𝜔𝑡 𝑑𝑡

from which one can derive, by applying Eqs. (8) and (9), expressions for the pure 

magnetic off-diagonal components 𝑃𝑦𝑥 and 𝑃𝑦𝑧:

𝑃𝑦𝑥 = −
2(𝑝+ − 𝑝−)(𝑛+ − 𝑛−) sin(𝛼) sin(𝛽)𝛿𝑆𝑎∗𝛿𝑆𝑐

sin2(𝛼)(𝛿𝑆𝑎∗ )2 + [sin2(𝛽) + cos2(𝛼) cos2(𝛽)](𝛿𝑆𝑐)2

𝑃𝑦𝑧 = −
(𝑛+ − 𝑛−) cos(𝛼) sin(2𝛽)(𝛿𝑆𝑐)2

sin2(𝛼)(𝛿𝑆 )2 + [sin2(𝛽) + cos2(𝛼) cos2(𝛽)](𝛿𝑆 )2
𝑃0
𝑎∗ 𝑐
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in which 𝛿𝑆𝑎∗ and 𝛿𝑆𝑐 represent respectively the (anisotropic) transverse

components along a∗ and c of precessing moments, related to the OP and IP 

dynamic structure factors by the relation, 𝛿𝑆𝑐

𝛿𝑆𝑎∗
∼

√
𝑀𝑐𝑐

𝑀𝑎∗𝑎∗
≈ 0.17, 𝑝+ and 𝑝−

being respectively the proportions of clockwise and anticlockwise precessions. 

The weakness of the 𝑃𝑦𝑥 components (experimentally 𝑃𝑦𝑥 ≈ 0, irrespective 

of 𝐐, see Table 3) can be explained by several factors: 𝑝+ ≈ 𝑝− (symmetry 

clockwise/anticlockwise), 𝛿𝑆𝑐

𝛿𝑆𝑎∗
≪ 1 (planar character of magnetic fluctuations) and 

the small canting (sin(𝛽) ≪ 1).

For 𝐐 almost parallel to a∗ (𝛼 small), our simple model predicts 𝑃𝑦𝑥 ≈ 0 (no chiral 

term 𝑀𝑐ℎ), as experimentally observed, and a finite 𝑃𝑦𝑧 term, directly related to the 

canting angle 𝛽 and the anti-phase domain populations:

𝑃𝑦𝑧 ≈ −
(𝑛+ − 𝑛−)(

𝛿𝑆𝑐

𝛿𝑆𝑎∗
)2

sin2(𝛼) + ( 𝛿𝑆𝑐

𝛿𝑆𝑎∗
)2

sin(2𝛽)𝑃0 (30)

Taking sin2(𝛼) ≈ 0.04, 𝛽 ≈ 6◦, 𝑃0 ≈ 0.75 and 𝑛+ − 𝑛− ≈ 0.8 as parameters in 

Eq. (30), one obtains ∣𝑃𝑦𝑧∣ ≈ 0.07, a value which is in quantitative agreement with 

the experimental determination, ∣𝑃𝑦𝑧∣ ≈ 0.08. For the helical structure depicted in 

Figure 2, assuming equally-populated (k/−k) helicity domains, it is easy to show that 

𝑃𝑦𝑥 = 0 and 𝑃𝑦𝑧 = 0. The observation of finite inelastic 𝑃𝑦𝑧 and 𝑃𝑧𝑦 components is 

very important, since it rules out the helical structure as the ground-state structure 

of BCAO.

For Q almost parallel to 𝐜∗ (case 𝛼 ≈ 𝜋

2 ), one has:

𝑃𝑦𝑧 ≈ −(𝑛+ − 𝑛−)(
𝛿𝑆𝑐

𝛿𝑆𝑎∗
)2cos(𝛼) sin(2𝛽)𝑃0

In this case, the weakness of the observed 𝑃𝑦𝑧 terms (see Table 3) can be explained 

by the conjunction of three factors: ( 𝛿𝑆𝑐

𝛿𝑆𝑎∗
)2 ≪ 1 (planar character of fluctuations), 

sin(𝛽) ≪ 1 (small canting of magnetic moments) and cos(𝛼) ≪ 1. All results 

together, our inelastic SNP measurements on BCAO are quantitatively accounted 

by considering the excitations close to 𝑞𝑎 = 0 as simple precessions, leading us to 

conclude that they are conventional spin-waves.

One puzzling feature of the magnetic excitation spectrum at 𝑞𝑎 ≈ 0 in BCAO 

concerns the quasi-isotropy of magnetic fluctuations, which is barely understandable 

from a single 𝑘-domain axial-type structure as that depicted in Figure 10, unless 

strong longitudinal fluctuations exist, oddly peaked at the same energy than the 

transverse ones. Such fluctuations (which could easily originate, e.g., from

fluctuations of the various phase angles) are generally associated with two-magnon 

excitations, and should rather contribute to the magnetic continuum that has been 

observed between 3 and 5 meV. Alternately, the very weak anisotropy of dynamical 
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Figure 16. Projection along the 𝐜-direction of the k-domain structure in BaCo2(AsO4)2. The arrows 
indicate the various moment directions. For spin wave-like excitations, the magnetic fluctuations are 
quasi-2D and perpendicular (transverse) to the magnetic moments.

structure factors 𝑀𝑎∗𝑎∗ and 𝑀𝑏𝑏 for 𝑞𝑎 ≲ 0.15 r.l.u. can be explained by taking into 

account the 𝑘-domain structure, sketched in Figure 16. For a given wave vector 𝐪, 

the magnetic response will be the superposition of several modes of energies 𝐸(𝐪), 
𝐸(𝐪 ± 𝐤𝟏), 𝐸(𝐪 ± 𝐤𝟐) and 𝐸(𝐪 ± 𝐤𝟑), with 𝐸(𝐤𝟏) = 𝐸(𝐤𝟐) = 𝐸(𝐤𝟑). For a quasi-

collinear arrangement with magnetic moments pointing mainly along the b-axis, by 

assuming weakly 𝑞𝑎-dependent dynamical structure factors and a weak dispersion 

of excitations (as it is in BCAO, at least below 0.15 r.l.u.), one has 𝑀𝑎∗𝑎∗ ≈
𝑀0[𝑁1 + (𝑁2 + 𝑁3)cos2(2𝜋∕3)] sin2(𝛼) and 𝑀𝑏𝑏 ≈ 𝑀0(𝑁2 + 𝑁3)sin2(2𝜋∕3), 
where 𝑀0 is the dynamical structure factor at 𝑞𝑎 ≈ 0 and 𝛼 = (𝐐, 𝐚∗), as usually. 

In these relations, 𝑁𝑖 (𝑖 = 1, 3) are the various 𝑘-domain populations, and we 

have made use of the fact that the fluctuations are transverse. As anticipated in 

section 4 (SNP on the spin-dynamics), the 𝑘-domain structure partly restores the 

isotropy of magnetic fluctuations, and the experimental ratio at 𝑞𝑎 ≈ 0, 𝑀𝑎∗𝑎∗
𝑀𝑏𝑏

≈ 1

can be accounted if 𝑁1 ≈ 1∕3, and 𝑁2 + 𝑁3 ≈ 2∕3 (𝑁1 − 𝑁2+𝑁3
2 ≈ 0). At 

the scattering vector 𝐐 = (0.27, 0, 4.67), for which sin2(𝛼) ≈ 0.91, one has the 

ratio 𝑀𝑎∗𝑎∗
𝑀𝑏𝑏

≈ 0.91, which does not reproduce quantitatively the experimental ratio 
𝑀𝑎∗𝑎∗
𝑀𝑏𝑏

≈ 0.84. The additional reduction factor, larger and larger as 𝑞𝑎 → 0.5 (we 

found 𝑀𝑎∗𝑎∗
𝑀𝑏𝑏

≈ 0.57 at 𝐐 = (0.5, 0, 4.67), for which sin2(𝛼) ≈ 0.75) likely originates 

from the 𝑞𝑎-dependences of structure factors associated with the various domains. 

Unfortunately, any more quantitative comparison would require to dispose of more 

comprehensive calculations of magnetic excitation spectra in BCAO (including the 

𝑘-domain effects), a task which is clearly out the scope of this paper.

For the sake of completeness, we have also investigated the effects of 𝑘-domains on 

the off-diagonal 𝑃𝑦𝑥 and 𝑃𝑦𝑧 terms. Since there are a priori no correlations between 
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the fluctuation components belonging to two different 𝑘-domains, 𝑃𝑦𝑧 will be given 

by the following relation:

𝑃𝑦𝑧 =
𝑁1𝑀

+
𝑦𝑧1

+𝑁2𝑀
+
𝑦𝑧2

+𝑁3𝑀
+
𝑦𝑧3

𝑁1(𝑀𝑦𝑦1
+𝑀𝑧𝑧1

) +𝑁2(𝑀𝑦𝑦2
+𝑀𝑧𝑧2

) +𝑁3(𝑀𝑦𝑦3
+𝑀𝑧𝑧3

)

in which the 𝑀𝑖𝑗𝑛
(𝑖, 𝑗 = 𝑦, 𝑧) are the various magnetic cross-sections associated with 

domain 𝑛 (𝑛 = 1, 3). With the same assumptions, one can easily derive the expression 

giving the 𝑃𝑦𝑧 element in the case of a scattering vector 𝐐 almost parallel to 𝐚∗ (case 

sin(𝛼) ≈ 0), in presence of 𝑘-domains. Assuming 𝑛+ − 𝑛− identical for the three 

𝑘-domains, after some trivial algebra, one obtains:

𝑃𝑦𝑧 ≈ −2(𝑛+ − 𝑛−)(𝑁1 +
𝑁2 +𝑁3

2
) tan(𝛽)𝑃0

which depends directly on the various 𝑘-domain populations. Taking into account 

that 𝑁1 ≈ 𝑁2+𝑁3
2 ≈ 1

3 , the effects of 𝑘-domains conduce to a reduction of the 𝑃𝑦𝑧

element by a factor of about 2/3. With the above parameters, one calculates 𝑃𝑦𝑧 ≈
0.08, a value which is again in good quantitative agreement with the experimental 

results. For 𝐐 almost parallel to 𝐜∗ (case cos(𝛼) ≈ 0), the 𝑃𝑦𝑥 and 𝑃𝑦𝑧 polarization-

matrix elements are given by the following relations:

𝑃𝑦𝑥 ≈ −2(𝑝+ − 𝑝−)(𝑛+ − 𝑛−)(𝑁1 +
𝑁2 +𝑁3

2
) sin(𝛽)

𝛿𝑆𝑐

𝛿𝑆𝑎∗

𝑃𝑦𝑧 ≈
√
3
2

(𝑁2 −𝑁3)𝑃0

As for the previous case, 𝑃𝑦𝑥 ≈ 0, and the 𝑃𝑦𝑧 term is directly related to the difference 

𝑁2 −𝑁3, and vanishes if the 𝑘-domains are equally populated. In order to account 

for the experimental value of 𝑃𝑦𝑧 for 𝐐 = (0, 0, 4.67) (≲0.027, see Table 3), one has 

to assume that in BCAO ∣𝑁2 −𝑁3∣ ≲ 3%.

To summarize the discussion of SNP results on the spin dynamics in BCAO, within 

the simple picture of precessing magnetic moments, the finite inelastic 𝑃𝑦𝑧 and 

𝑃𝑧𝑦 matrix elements appear to be just a consequence of the existence of a trivial
correlation coupling the anisotropic IP and OP components, through the precession 

of canted Co2+ magnetic moments. In BCAO, this correlation (indeed inherent 

to any spin wave) is enhanced by the strong planar character. Indeed, this forced
correlation reveals no newer pieces of information than those already known from 

the ground-state structure (e.g., the canting of magnetic moments). As disappointing 

it may appear, our results lead us to conclude unambiguously that the gaped low-

energy excitations which have been observed in BCAO close to 𝑞 = 0 are spin 

waves associated with pseudo-ferromagnetic, weakly-coupled chains, the existence 

of an incommensurate ground-state structure being marginal in the problem. Finally, 

in spite of our experimental efforts, the understanding of their dispersion relation, 

especially the gap-energy value, still remain an open problem.
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