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Centralized markets are often considered as being more efficient than
bilateral exchanges, based on the fact that information is uniformly
spread among all the agents. However, the influence of trust on
the outcome of decentralized markets has been underlined by many
authors. We present an empirical study of the distinctive Boulogne-
sur-Mer fish market (where both buyers and sellers can choose to
trade by either bidding or bargaining), focused on the interactions
among agents. The approach we adopt derives from the studies of
mutualistic ecosystems, where the agents are of two different types
(like in plants - pollinators networks) and the interactions only take
place between agents of different kind, bringing naturally a benefit
for both. In our context, where the two kinds of agents are buyers
and sellers, our study shows that their interactions, not only bring
the economic benefits for the directly involved agents, but they also
contribute to the stability of the market. Our results help to under-
stand the surprising coexistence of the two forms of markets in the
Boulogne sur Mer fish-market.

social interactions ‘ trust ‘ mutualistic ecosystems | complex networks appli-
cations

Introduction

H ow do social interactions influence the outcomes of the
economic exchanges ? While it is clear that human be-
ings rely on cooperation with others for their survival [1], eco-
nomic literature mainly supports the idea that auction mar-
kets, which imply a competition among buyers without direct
social interactions with the sellers, are the most informational
efficient way of organizing the exchanges. The information is
the same for all the actors and there is no possibility of arbi-
trage [2]. Following on, a vast literature [3] has promoted the
auction theory. More recent articles [4,5] underline that, when
goods are heterogeneous and there exists no signal of quality, a
decentralized mechanism (bilateral transactions) allows people
to gather information and better evaluate the intrinsic quality
of goods.

It is largely agreed that social networks underlie markets
[6-8].

The stability of markets is essential to insure population wel-
fare. This condition, (concerning the food markets) is one of
the four pillars of food security [9]. Then, if networks underlie
markets, their robustness should be studied as a necessary con-
dition for markets stability. It is well known in network theory
that the robustness of a network face to errors or attacks is
strongly related to its topology, therefore we concentrate our
study on the statistical properties of market’s interaction net-
work.

Among other food markets, European fish markets are
nowadays in a critical situation due to the scarcity of the re-
source which leads to fishing catch limits and quotas. The
Boulogne-Sur-Mer Fish Market, the most important one in
France in terms of quantity, is an excellent case study. This
old daily market, which had operated historically in a decen-
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tralized way, was led by EU regulations to adopt a centralized
structure. This new way of functioning was firmly rejected
by economic actors and, in 2006, it was finally admitted to
allow the auction and bilateral negotiation sub-markets to co-
exist in the same place. Every morning, when the buyers
and the sellers (the fishermen’s boats) arrive on the market,
they can choose to trade through an auction process or to ex-
change through pairwise transactions. In this paper we present
a comparative data-based study centered on the interactions
between actors, of both sub-markets. For several reasons, our
dataset is ideal for our purposes. Detailed data concerning the
daily transactions is available, allowing us to compare the be-
havior of actors in both sub-markets under similar economic,
seasonal, climatic and social conditions, which reveals the im-
portance of the social interactions on their economic strate-
gies. The sample covers the period of reorganization, where
the auction market split between a bilateral market and an
auction one. We are then able to follow the different agents
strategies: exploring the two sub-markets before adopting a
strategy, preferring one of the two sub-markets or switching
regularly.

The observed persistence of both sub-markets raises the
question on the conditions of their stability. In other words, if
the auction market is more efficient, why did it not outshine
the bilateral one, leading to its extinction? One explanation
could be related to the heterogeneity of the goods and a pos-
sible specialization of each sub-market (one selling the high
quality/ high prices goods and the other specialized in low
quality /low prices merchandise). However, this explanation
does not seem to hold. In a previous article (cf. [10]), it has
been shown that the probability of selling at a given price
has a very similar distribution in both sub-markets. Around
80 different species are traded at Boulogne s/mer and all of
them are sold on both markets. While some people (buyers
or sellers) favor one market or the other, some others switch
regularly, insuring that, in average, the same global quantities
are sold on both markets (40% on the auction market, 60%
on the bilateral one). In what follows, we investigate the role
of agents’ behavior and their social concerns on the stabil-
ity of this organization. In the auction mechanism, a neutral
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seller trades with buyers who compete against each other to
get different units of a good. Decentralized exchanges, which
allow pairs of non anonymous people to discuss and bargain
before trading through frequent matching (as it is the case in
a daily market), can easily bring out trust and loyalty behav-
iors. We explore through an empirical analysis the influence
of trust and the emergence of loyal behaviors between buyers
and sellers searching for stylized facts that might appear as
characteristic of each sub-market.

Interactions among actors can be mapped on a bipartite
complex network, where the nodes are of two different kinds
(in this market, people are either buyers or sellers) and the
links, that stand for the interactions, only connect nodes of
different kinds.

Our data also allows us to build a network with weighted
links, which describes the number of contacts of any pair of
actors during the considered period, for each market. One
originality of this study is to adopt an approach inspired from
studies of mutualistic systems in Ecology to describe the dif-
ferences in the market allocations coming from different prices
mechanisms. A similar approach has been applied to the study
import-export, and industrial ecosystems networks [11-14]. In
mutualistic ecosystems like, plants-pollinators, or plants-seed
dispersers networks, the interactions between two actors of dif-
ferent types bring a mutual benefit to both. The pattern of
interactions observed in such systems is far from being ran-
dom. Instead, it displays a particular structure called nested-
ness. This particular topology of the network is such that if
the columns (rows) of the bipartite adjacency matrix are or-
dered in decreasing degree, then the rows (columns) appear to
be ordered in the same way. So when species are ordered by
decreasing degree, the contacts of a given species constitute a
subset of the contacts of the preceding ones, thus leading to
an adjacency matrix where all the contacts are located in a
corner [15,16] (see SI for details).

We investigate if a similar pattern, revealing some degree
of organization (as opposed to a uniform distribution of con-
tacts), is observed in either of the studied sub-markets.

A parsimonious analysis of networks’ properties shows that
the structures of the social interactions involved in both sub-
markets are different. In order to detect a signal of trust in
our data, we define a loyalty index measuring the frequency of
the interaction between the different couples of actors in both
market organizations. The distribution of this loyalty index
clearly depends on the type of sub-market; while it looks scale
free in the decentralized (bilateral negotiation) sub-market, it
shows a sharper decrease in the auction one, suggesting that
for the latter, there is a characteristic value of loyalty such
that the number of couples having a larger value decays very
fast.

Material and Methods

Description of the data-set. Since 2006, when the co-
existence of both sub-markets started, an electronic detailed
register of daily transactions on the Boulogne sur Mer Fish
Market, is kept. For each transaction, the identification of the
involved buyer and seller, the amount and quality of the ex-
changed goods and the price are registered. A seller ¢ and the
buyer j may hold several transactions in the same day (they
may exchange different lots of fish at different prices). In this
work, following [10] we coarse-grain daily transactions, and
we consider that a seller ¢ and a buyer j hold one contact in
day d if they have performed at least one transaction that day
regardless the price and the exchanged quantities. This sim-
plifying hypothesis is based on previous results cited above,
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which also show that, on average, prices are not significantly
different on the two sub-markets. Hence in order to compare
the individual behavior of actors in both sub-markets, we ne-
glect the price discrimination as a first approximation.

The model From the previously described database, we
build a network of interactions which can be coded into a sim-
ple bipartite matrix, K, whose elements K; ; € [0,1] indicate
if the seller ¢ and the buyer j have interacted or not during
the selected period, and the weighted bipartite matrix, B, of
elements B; ; € N which accounts for the number of contacts
during the chosen period.

These matrices code a lot of information about the inter-
actions among the agents of the market. The degree of an
agent, measured in K, gives the number of different customers
(providers) that a seller (buyer) has in the chosen period. The
strength of an agent, measured in B, gives the total number
of contacts that the agent has during the period, regardless
the chosen counterparts. Comparing them, one can find out
if the strength of a seller (buyer) comes mainly from contacts
with different buyers (sellers) or from repeated contacts with
some preferred group of buyers (sellers).

Nestedness is an indicator of some degree of structure in
the network’s links, which is commonly observed in mutualis-
tic ecosystems. It is opposed to a random uniform distribution
of contacts and reflects a very particular organization. It high-
lights two different behaviors of the agents of each guild. Some
of them are generalists, holding (many) contacts with counter-
parts of the other guild, while others are specialists, holding
contacts mainly with generalist counterparts and rarely with
specialists ones. Therefore, nestedness is not only different
a random organization, it also differs from another common
ordered state described by a block type matrix, which would
indicate niche structure of the market.

The bipartite matrix of a perfectly nested network, when
conveniently ordered in decreasing degree of one guild, shows
a triangular shape, with all its zero and non zero elements
on either side of a curve called extinction curve or isocline of
perfect nestedness (IPN) that can be analytically determined
as a function of the number of rows, n, and columns, m, and
density of contacts, ¢ [17] of the simple bipartite matrix (see
SI for further details).

Several indicators aimed at quantifying nestedness coexist
in the ecologic literature. They are based on different prop-
erties of a nested system, and have different advantages and
drawbacks. In order to avoid bias, in this work we measure the
nestedness of auction and negotiated sub-markets using four
independent indices, each one targeting a different property of
the nested matrix. We use the those indices proposed in the
NED [18] package, plus an alternative measure of nestedness
based on the resistance of the network to targeted attacks. If
some species one guild are eliminated from the system, then
the counterparts that remain without any contact will also
disappear (secondary extinctions) and eventually the whole
system may collapse. Robustness is the capacity of the sys-
tem to resist to such attacks. The NIR, Nesting index based
on the robustness of the network [19] exploits the fact that a
nested system reacts very differently to attacks consisting in
the suppression of nodes of one guild in increasing or decreas-
ing degree order(see SI for more details).

An indication of trust may be obtained by measuring the
frequency of contacts between any two agents. We define a
loyalty matriz based on the weighted bipartite matrix B:

2 X Bij
i,j =
S; + Sj

(1]

Footline Author
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where s; = Zj B;,; is the strength of agent i. Notice that
L;; = 1 if seller ¢ and buyer j only transact among them-
selves and L;; << 1 if if seller ¢ and buyer j transact much
less between themselves than with others in the same period.

Results

We have analyzed the properties of the simple bipartite ma-
trix, K, and the weighted bipartite matrix, B, both in a global
and in a detailed time scale, through the study of the networks
obtained for both markets using not only the data integrated
over all the considered period (18 months) but also discrimi-
nating it over the seasons and daily. This multiscale approach
is useful because on one hand, data integrated over the whole
period lead to matrices of larger size, allowing for the study
of the statistical properties of the system and on the other,
zooming into chosen periods (from seasonal to daily) gives
information about the interaction’s structure that could be
washed out by the coarse-graining procedure.

Focusing on the structure of the interactions among agents
brings valuable information about the agent’s behaviour in
each market.

Degree distributions: the number of partners. The
degree of a seller (buyer) gives the number of different cus-
tomers (providers) the considered actor has, while the strength
of a seller (buyer) measures the number of contacts that actor
has held during the considered period (with the same or with
different counterparts).

Fig. compares the degree distributions of buyers and sellers
for the two sub-markets. The degree distribution for buyers
(top) does not show any particular structure in any of the two
sub-markets, looking like a uniform distribution with large
fluctuations. However, high degrees are more frequent in the
bilateral sub-market, which may be understood as a signature
for the exploration phase of the buyers. When they enter this
market they diversify the providers before choosing their pre-
ferred partners. This assumption will be comforted later by
the comparison with the strength distribution.

Conversely, the sellers’ degree distributions (bottom) of the
two sub-markets are very different. The bilateral sub-market
shows a left-skewed distribution, with a maximum around 60
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Fig. 2. Strength distributions for both sub-markets (left auction, right bilateral
negotiation). Top panels, buyers degree, bottom panels sellers’ degree. Bin size is the
same (200) for all the panels.

customers, showing that about half of the sellers have many
different customers, while for the auction market the distri-
bution seems again, rather uniform with large fluctuations.
This reflects the fact that, in the auction market sellers loose
control of the transactions once the minimum price for their
goods has been fixed, while, in the bilateral market, sellers can
adapt their strategy to attract more customers.

Strength distribution: the number of transactions. In
order to understand the following graphs, a rough estimation
of the maximum number of transactions is helpful. In these
markets there are typically 200 sellers and 100 buyers, and the
full period covers 18 months, which is about 450 working days
(the market does not function on Sundays). So a seller who is
present all the market days and deals with all the buyers each
day, will have at most a degree of kM4% =~ 100 and strength
of sMAX ~ 100 x 450 = 45000. For a buyer in the same max-
imal conditions the degree will be of k4% ~ 200 and the
strength of s,J)V[AX ~ 90000. The observed strength values are
much lower because the actors are not present every day in
the market, during the considered period.

Fig. shows that buyers’ strength distribution are qualita-
tively similar for both sub-markets, except for the fact that
the tails are much longer in the bilateral sub-market, show-
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Flg. 3. Scatter plots of the strength vs. the degree correlation; open squares:

bilateral sub-market market; full circles: auction sub-market. Upper panel: sellers,
lower panel: buyers

PNAS | lIssue Date | Volume | Issue Number | 3



“Auct'neg” — 2017/3/8 — 13:44 — page 4 — #4

ing the existence of some buyers that have carried out a large
number of transactions during the whole period. Comparing
with the values of the buyers’ degree distribution it appears
clearly that those buyers have dealt repeatedly with the same
sellers.

On the other hand, the comparison of sellers’ strength dis-
tributions of the two sub-markets is particularly interesting.
While in the auction sub-market the distribution is uniform
(except for peak at a very low number transactions), the bilat-
eral sub-market distribution is is Poisson-like, with an impor-
tant fraction of sellers who manage to have many transactions
during the period. The comparison with the values given by
the degree distribution of sellers, reveals again that, in aver-
age, they must trade repeatedly with the same customers.

Fig. shows the scatter plots of the strength vs. the de-
gree correlation in each sub-market. The sellers’ curve grows
much faster in the bilateral sub-market than in the auction
one, indicating that the sellers have loyal customers that come
repeatedly to transact with them. The buyers’ curve is also
interesting because it reveals there is an ”exploratory” phase
in the bilateral sub-market, where the buyers multiply the
contacts with different providers (high degree and not so high
strength) looking for those that are the most suitable for their
needs.

Loyalty index: a signature of trust In order to under-
stand the different results obtained for both sub-markets it
is interesting to consider the intrinsic differences in the social
relations among the economic actors in each of them. The loy-
alty matrix defined in eq. 1 is able to grasp these differences.
While in the auction sub-market the buyer-seller interaction
is mediated by the auctioneer, in the bilateral one, buyers
can exchange directly with the sellers about the quality of the
goods and the conditions of the exchange. Indeed, buyers seek
for the trading conditions that suit them the most, through
the experience they obtain after repeated exchanges.

Fig. (left panels) shows the distribution of the loyalty for
both markets. The negotiated market has both a larger tail
and a larger number of couples with small loyalty index ( 50%
over the auction market). These curves are measured over the
whole period, so the excess of couples with small loyalty index
in the negotiated market is again a signature of the ”trials”
done by buyers when they first join the market and the longer
tail comes from the couples that establish as trading partners
in the long run. These repeated interactions may also help the
sellers to adapt their strategies.

Interestingly, the cumulative distributions of loyalty of these
sub-markets (right panels) are qualitatively different. In the
auction market, there are two different regimes: the number
of couples having low and average loyalty values varies slowly
until a critical value over which this number decreases very
quickly. On the contrary for the bilateral market there is not
such a characteristic critical value setting a change of regime.
The cumulative distribution behaves as a power law distribu-
tion with a finite-size cutoff.
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The nested structure of bipartite matrices Applying
the tools developed to study mutualistic ecosystems, we in-
vestigate the structure of the interactions in both markets.
The rationale behind this analysis is to search, in the most
parsimonious way, for the traces of the actors’ behavior in
these two different market frameworks.

In mutualistic ecosystems, the observed nested structure of
the bipartite matrices describing the network, is known to con-
tribute to their robustness and stability [20]. We have then
analyzed the K matrices of both markets using different met-
rics developed for the study of ecosystems noting, however,
that the densities of contacts of both markets measured over
the whole period (¢ ~ 40 — 50%) are much higher than those
typical of mutualist ecosystems, which are more than one or-
der of magnitude lower. The results are displayed in Table 1,
where for each index we compare with the nestedness value
obtained for a set of random matrices of the same size and
number of contacts.

All the indices (Table 1) show an important degree of nest-
edness in both sub-markets thus revealing the existence of gen-
eralist buyers and sellers along with some specialists of both
guilds that mostly interact with generalists. This fact also
excludes a block type adjacency matrix, which would have cor-
responded to a market segmented into "niches” of interaction
among groups of buyers and sellers that only interact among
themselves. Such a case would have led to very low values, in
particular, of NODF index (see SI for details). Then, though
the existence of some groups of specialized buyers and sellers
cannot be excluded, they are not dominant in the structure of
interaction of these markets.
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Fig. 4. Loyalty index, negotiated (auction) sub-market data is shown in upper

(lower) panels. Left panels, loyalty distribution, right panels cumulative loyalty distri-
bution.
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Table 1. Nestdness measurement for both sub-markets, data corresponding to the whole period. Different indices have
been used, N;: number of sellers, N,: number of buyers,¢ density of contacts. For each index X, the comparison with the
average nestedness index calculates over 100 matrices of the same parameters is given, indicated as X (rand). Recall that
nestedness is important when T4p and BRS are low and NODF is high compared to the corresponding random cases.

Sub-market | Ny | N, ) Tap Tap(rand) NODF | NODF(rand) | BRS BRS(rand)
Auction 195 | 100 | 40.2 | 8.5 85.13 £ 0.69 81.486 40.62 £+ 0.25 1336 | 4381.16 + 23.016
Bilateral 207 | 93 | 52.6 | 15.9 | 84.662 £ 0.69 82.615 52.451 £ 0.295 | 1636 | 4493.54 £+ 25.324

Fig. 5 shows the bipartite matrices K of both sub-markets
for the whole studied the period. They are ordered so as to put
in evidence the nested structure (if any). Both guilds appear
ordered by decreasing degree, with the maximum degree on
the top-left corner. The resulting structure clearly shows that
the interactions are not randomly distributed in a uniform way
in any of these sub-markets.

Fig. 5. Bipartite interaction matrices ordered with the highest degrees of rows
and columns on top and left respectively, Black dots correspond to Kj;; = 1. Left
panel: auction market, right panel: negotiated market.

We have also studied daily matrices using the nesting index
based on robustness described in [19]. This index studies how
the system resists to two extremes targeted attacks. In the at-
tack strategy called decreasing degree removal (DDR) actors of
one type (either buyers or sellers) are removed in order, start-
ing from those of higher degree, and the actors of the other
kind that are left without any contact are considered as having
disappeared from the market (secondary extinctions). The At-
tack Tolerance Curve (ATC) gives the fraction of actors of one
kind that remain in the market as a function of the fraction
of removed actors of the other type. The extreme opposite at-
tack strategy, called increasing degree removal (IDR), consists
in the same procedure but now the actors to be removed are
chosen in increasing degree order.

Fig. (upper panel) compares the fraction of sellers that
remain in the market as buyers are removed applying both
the DDR and IDR strategies. It can clearly be observed that
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corresponding to Friday, week 16, April, 2007 (Fridays are days of an important ac-
tivity in the market). Upper panel: ATC for sellers. Open symbols correspond to the
IDR strategy, and full symbols to the DDR strategy. Squares correspond to negotiated
market data and circles to auction market data. Lower panel: ATC for buyers. Same
symbols as in upper panel. In the insets the same curves with the same notation
for the same system after 1000 randomization steps (ATCs for data corresponding to
other Fridays of April of 2006 and 2007 can be found in SI). Color online.

for the DDR strategy, the ATC of the bilateral sub-market
decreases faster than the ATC for the auction one, as buyers
are removed. The area between the ATCs corresponding to
the two attack strategies, which is proportional to the nesting
index, is larger in the case of the bilateral sub-market (see SI
for details).

PNAS | lIssue Date | Volume | lIssue Number | 5
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The lower panel of Fig shows the ATC for buyers. Again we
observe that the area between the curves corresponding to the
two attack strategies is larger for the bilateral market, thus
giving a larger nested index also for buyers in this market.

Interestingly, for the auction markets the ATC for sellers de-
creases very slowly even for the DDR strategy, indicating that
an important fraction of the buyers should be removed before
an important effect is observed for the sellers. Moreover, the
DDR ATC curves for sellers, are step-wise while those for buy-
ers are not (lower panel). This means that when high degree
buyers are removed (absent from the market), most of the sell-
ers may still find customers, while as sellers disappear, buyers
are immediately affected. This effect is dominant in the auc-
tion sub-market, where a removal of about 50% of the buyers
affects the sellers very little. This behavior reflects the dif-
ferent constraints for buyers and sellers in the market. While
the former may change markets during one sales journey the
latter must choose one market and stay there for the day. It
is then easier for sellers to find customers (and so remain in
the market) than the other way round.

As the density of contacts in these sub-markets is much
higher than in mutualists ecosystems, the sensitivity of this
nesting indicator is diminished. However it must be noticed
that in all the cases the nesting coefficient (cf. the area among
the IDR and DDR curves) is much larger than the one corre-
sponding to randomized matrices (in the insets) of the same
characteristics as the observed ones, thus indicating again that
the structure of interactions is not random (see SI).

Discussion

We have performed a data based study of the interaction net-
works of the two coexisting sub-markets (auction and bilateral
negotiation) of the Boulogne-sur-Mer fish-market, searching
for stylized facts on agent’s behavior and market structure.
By applying tools issued from the study of mutualistic ecosys-
tems, we observe that both submarkets are nested, though
much denser than the ecologic systems. Moreover, we observe
that the densities of contacts corresponding to the whole pe-
riod and to daily data are quite different. While density is
quite high for both markets when the whole period database
is analyzed (50% for bilateral negotiation and 40% for auc-
tion), it is much lower, and with an inverted tendency, for
daily matrices (10% and 20% respectively) thus affecting the
nesting indices. In other words, at a daily level, the proportion
of couples trading on the auction market is larger than in the
bilateral negotiation one, and when data is integrated in the
whole period, it is the negotiated market who has more trad-
ing couples. This can be understood recalling that the degree
distribution of buyers in the negotiated sub-market shows a
longer tail than in the auction one, revealing that a ”search-
ing phase” takes place in the former. This means that when
buyers enter the bilateral sub-market, they first search for the
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American Economic Review.
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partners that suit them most, privileging interactions with
them, afterwards. We also observe that the size of daily ma-
trices is larger in the bilateral negotiation sub-market than
in the auction one. So each day the affluence in the former is
higher (the corresponding matrices are larger) but the number
of trading couples trade is smaller (the corresponding matrices
are sparser). From these observations, one can conclude that,
in the bilateral negotiation sub-market, the trading couples
are necessarily different from day to day so that, when su-
perposing all the daily matrices in order to obtain the binary
matrix of the whole period, its density of contacts appears to
be larger.

The ATC curves show that the auction market is more ro-
bust. Almost 50% of the high degree buyers can be removed
in daily matrices, without significantly affecting the fraction
of sellers that will still hold at least one contact. For the ne-
gotiated market, removing the same fraction for buyers leaves
a larger fraction of sellers without any contact. Certainly, this
does not mean that removing those buyers is innocuous for
the auction market, as this may affect the amounts exchanged
or the prices. Instead, it reveals the importance of the so-
cial relationships between actors in the negotiated market. As
sellers are fixed for the day, if the buyers that are loyal to
them do not attend the market, those sellers do not find their
counterparts.

The defined loyalty index measures the proportion of con-
tacts between a given couple of agents with respect to the
total amount of contacts of both, as an indicator of the trust
existing inside that couple. Its cumulative distribution shows
two regimes for the auction sub-market: for low values of loy-
alty, the cumulative distribution decreases slowly and a critical
value of loyalty, beyond which it decreases very quickly, can
be determined. On the contrary, the distribution of loyalty in
the bilateral sub-market looks like a power law with no typical
scale of loyalty.

Conclusion In spite of the widely accepted statement that
auction markets are more efficient than bilateral negotiation
ones, the case of Boulogne sur Mer Fish Market, where there
is no signal of quality of the goods, shows that both market
organizations coexist without one taking over the other. Our
study provides a measurement of social interactions which en-
lightens, how they help to reinforce trust in the bilateral ne-
gotiation market, thus resulting in a mutual benefit for both,
buyers and sellers, which compensates for the lack of infor-
mation and the initial effort that is needed to build trust. It
also shows empirical evidence supporting the efficiency of the
auction market, which resists better to the extreme case of the
absence of high degree buyers. Instead of one sub-market tak-
ing over the other, the advantages offered by each sub-market
seem to increase the stability of the whole.
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1 SI Materials and Methods

1.1 Nestedness definition

Nested networks are commonly observed in Ecology, characterizing the inter-
action patterns of mutualist ecosystems like plant-pollinator or plant-seed dis-
persers networks. These networks have nodes of two different kinds (plants and
animals) and the interactions take place only between nodes of different nature,
leading to a bipartite adjacency matrix. This kind of interaction structure is
also typical of markets, where the two kind of nodes are buyers and sellers and
the interactions we are interested in (trading) only involve nodes of different
kind.

A bipartite matrix is said to be nested if by ordering its columns (rows) in
decreasing degree, rows (columns) become automatically ordered in the same
way. Then, such matrix shows a triangular shape, with all its non zero ele-
ments on the same side (below or above depending in the labeling of axes) of
a curve called extinction curve or isocline of perfect nestedness (IPN), that is
schematically shown in Figure ST 1.

In this situation the counterparts of a column (row) element of degree kq
belong to a subset of the counterparts of a column (row) element of higher
degree ko > k1. This sequential inclusion of the contacts of the different actors
like for the typical Russian "matryoshka” dolls, is at the origin of the name
"nestedness” .

This particular network order implies that the system is composed on one
hand of generalists actors which diversify their counterparts, interacting most of
the possible counterparts, and on the other, of specialist actors which preferably
make contacts with generalists.

This pattern of connections is clearly not random, however it is not the only
ordered pattern. An extreme opposite ordered pattern is the one given by a
block matrix. The network is segmented in niches of interaction and it is not
possible to find generalists.

1.2 Nesting measurements description

We briefly describe here the principal characteristics of the indices used in this
work in order to quantify nestedness.
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Figure 1: Schematic view of a perfectly nested bipartite matrix. The highest
degree species are in the left down corner, such that all the contacts lie under the
curve IPN. In this way the contacts of any species are a subset of the contacts
of the preceeding ones (see species of degrees k; and ks

e The Atmar and Patterson Temperature, Typ [1]

Mapping the bipartite adjacency matrix into a continuous rectangle, the
analytic expression of the IPN can be obtained in terms of two continuous
variables a € [0,n] and p € [0, m] which constitute the continuous approx-
imation to the discrete labels of the columns and rows of the adjacency
matrix respectively. This approximation is expected to be correct in the
limit of very large systems. Then, the non zero elements of the adjacency
matrix correspond, in the rectangular surface of size m X n to an area
proportional to the density of contacts ¢ = L/(m X n), where L is the
total number of links. This area may be assumed to be colored and so
the empty area represents the amount of zero elements of the adjacency
matrix. The IPN is determined by m, n and ¢ [2].

Real systems, are not perfectly nested. The Ty p measures the distance,
along the diagonal of the continuous approximation of the matrix, of the
misplaced points (presence or absence of a contact over or under the IPN
respectively). The T p will be large if there are several '1s’ and zeroes on
the wrong side of the IPN. It will be even larger if those misplaced points
are located far from the IPN. So the lowest the measure of the T4p of a
given system the more nested it is.

The Tap is known to have several drawbacks. The lack of normalization,
its dependency on the density of contacts, ¢, and on the size and the eccen-
tricity of the matrix, (how different m and n are), makes the comparison
among different systems quite difficult. However it is largely used in order
to compare the nestedness of an observed network with null models.

e The NODF index, which stands for Nestedness metrics based on overlap



and decreasing fills, measures the average percentage of shared contacts
of pairs of rows (columns) that have an ordered decreasing degree [3],
leading to two values (one for rows and another for columns) which give
an indication concerning the contribution of rows and columns to the
observed ordered structure. This metrics measures the overlaps between
all the possible pairs of rows (columns) only in the case where the pair
is ordered in decreasing degree, otherwise it assigns a null value to the
overlap. For these metrics the higher the NODF index the more nested is
the system.

It is important to notice that NODF correctly assigns a very low nestedness
value to modular networks (because, in general, elements within the same
block have similar degree), but it may give a false negative (a low value) in
the case of a nested network with multiple multiple rows (columns) with
the same degree.

The BSD index, (Brualdi and Sanderson Discrepancy), starts from a
matrix in its maximum packing state, which corresponds to the best or-
dering of rows and columns compatible with the real contacts, and it
measures the number of discrepancies (absences or presences) that should
be 'corrected’ in order to produce a perfectly nested matrix with the same
parameters [4]. This index compares the real matrix with a perfectly
nested one of the same parameters (n, m and ¢), however some ambiguity
remains in the initial ordering when several possibilities exist (typically in
the case of rows or columns with the same degree). As for the Typ, the
lower the value of the index the more ordered the system is.

The NIR, Nesting index based on the robustness, introduced in [5],
does not require the calculation of a theoretical IPN. It is based on the
reaction of the network to targeted attacks. If some nodes of the same
kind are eliminated from the network (primary extinctions), the nodes of
the other kind that were connected with them, will loose links and may
become disconnected from the network. In the ecological literature, it is
said that the species represented by such nodes become extinct (secondary
extinctions). As this process of removal goes on, the whole system may
collapse. Robustness is the capacity of the system to resist to such attacks.

There are different ways of attacking a complex network, which are, in
general, very robust face to random attacks. Two extreme strategies are
considered to define the NIR. In the first one, the agents of one guild are
removed in decreasing degree order (DDR), and in the second, they are
removed in increasing degree order (IDR).

In ecological context the Attack tolerance curve (ATC) [6] [7] represents
the fraction of species of one guild that survive, as species of the other
guild are eliminated following a chosen strategy. In our context, the ATC
gives the fraction of agents that remain in the market (they still find
counterparts to deal with), as a function of the fraction of the removed
counterparts.

The shape of the ATC depends on the chosen attack strategy. Moreover,
for ecologic systems, which usually have a low density of contacts (¢ <<
1), the curvature of the ATC depends, for the (DDR) strategy, on the



degree of nestedness of the system: it is concave for nested systems and
convex for random ones. Figure 2 shows the different typical behaviors of
the ATC. Three different networks with the same parameters (n, m, ¢) are
shown and for each one of the two extreme strategies considered, where
open symbols correspond to IDR strategy and full symbols to the DDR
one.

Fraction of surviving columns

0,0 0,2 0,4 0,6 0,8 1,0
Fraction of attacked rows

Figure 2: Attack Tolerance Curves for three different networks having the same
parameters: triangles correspond to the real mutualist ecosystem of Clemens
and Long [?], squares to a randomization of this system and circles to an
artificial a perfectly nested network of the same size. Open and full circles
correspond to the IDR and DDR attack strategies respectively.

The circles correspond to a perfectly ordered network, for IDR, attack, as
the row elements are removed starting for the one of lowest degree, the col-
umn elements remain unaltered until the last row element (the generalist)
is removed. The area under this curve is Rypr = 1, so a perfectly nested
network is very robust face to this attack. For the DDR attack, a sudden
collapse of the ATC is observed since the very first removal, because the
first removed row element is the generalist. As the axis of the ATC gives
the fraction of remaining and removed nodes, the area under this curve is
Rppr = ¢.

The open and full squares represent the ATCs corresponding to a random
network with the same parameters, when the system is attacked with the
IDR and the DDR strategies respectively, and the open and full triangles
correspond to the same two attacks performed on a real network. The area
between the ATCs corresponding to the two extreme attacks is maximum
when the network is perfectly nested and minimum in the case where
it is completely random. The real networks are never perfectly nested
and the area between the two corresponding ATCs lies between these two
extremes. The nesting coefficient can be defined as :
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NIR — Ripr — Rppr (1)

l1-9¢

where R;pr(ppr) represents the area under the ATC corresponding to the
performed attack. As NODF, this method also measures the contribution
to nestednes separately for rows and columns. A global index is then
obtained by the weighed mean of both contributions.

This method gives a correctly normalized index, with N=1 for the perfectly
nested network. Moreover it provides the ATCs corresponding to each
attack strategy, which allows for a qualitative comparison of the robustness
of the studied system with that of a randomized network of the same size.

However one must notice that this index looses sensitivity as the density
of states approaches ¢ = 50%, for this reason is not a good indicator for
the analysis of our data coarse grained over the whole period (see Table 1
in the article).

SI Results

Figures 3 and 4 show the ATCs for sellers and buyers for all the Fridays of
April 2006 and 2007. They correspond to days of intense activity in the market,
leading most of the time, to matrices of reasonable size. Table 1 shows the
values of the parameters and the obtained nesting index for both markets for

each day.

Year | Market | week | sellers | buyers | density (%) | NIR
14 96 59 8.8 0.48

15 55 50 11.6 0.48

Bilateral 16 71 52 9.3 0.56

17 70 59 11.8 0.57

2006 14 40 46 21.9 0.31
15 14 40 20.3 0.56

Auction 16 18 48 19.6 0.49

17 14 44 29.3 0.36

14 56 54 14.1 5.53

15 53 51 10.1 0.47

Bilateral 16 29 46 17.2 0.56

17 59 52 11.6 0.51

2007 14 22 41 26 0.44
15 55 55 16.1 0.51

Auction 16 22 49 27.9 0.37

17 42 50 15.2 0.4

Table 1: Network parameters and NIR index for daily data, corresponding to
the four Fridays of April 2006 and 2007, for both sub-markets.
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Figure 3: Attack tolerance curves (ATC) for market matrices corresponding to
the four Fridays of April 2006. Upper panels ATC for sellers, lower panels ATC
for buyers. Open symbols correspond to the IDR attack strategy, full symbols
to the DDR attack strategy. Squares correspond to bilateral sub-market data,
circles correspond to auction sub-market data. Color online

It is interesting to observe that though the matrices corresponding to the
auction market are in general smaller than those corresponding to the bilateral
one, they are also denser. So there are less actors but they trade more. This
is consistent with the notion of efficiency associated to the auction market.
As bilateral negotiations, take time, then the number of interactions is lower.
A day by day comparison of the network of each market, indicates with the
exception of week 15, where the NIRqyct > NIRpiqt, auction market, is in
general, less nested than the bilateral one. We do not have a clear explanation
for this phenomenon, and one must be prudent in the interpretation because
daily matrices are smaller and then, statistically less significant, however we just
notice that the Friday of week 15 was Easter Friday in 2006 and the first after
Easter in 2007, which is a particular period for the fish demand in countries of
christian tradition. More data would be needed to verify if this fact is related
to the observed anomaly.

Interestingly, a comparison of the ATCs for sellers shows that only the curva-
tures corresponding to the auction market curves are always concave, is expected
for the random networks, while bilateral market n curves have a convex or null
concavity in general. This effect is less clear for buyers, reflecting the fact that
sellers have an active role in the bilateral market, which is not present in the
auction one.
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Figure 4: Attack tolerance curves (ATC) for market matrices corresponding to
the four Fridays of April 2007. Upper panels ATC for sellers, lower panels ATC
for buyers. Open symbols correspond to the IDR attack strategy, full symbols
to the DDR attack strategy. Squares correspond to bilateral sub-market data,
circles correspond to auction sub-market data. Color online
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