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ABSTRACT

The aim of this paper is to:
- develop a method of analysis and evaluation of the software reliability,
- apply these methods in order to (i) follow up the evolution of reliability during the test phases, (ii)
plan the maintenance effort and (iii) predict the reliability of the Brazilian switching system:
TROPICO-R in operational life.

This method is primarily based on the results of reliability growth tests. Reliability data
(concerning validation test, field trial and operational life phases) are then partitioned according to
these results and two kinds of reliability growth models are applied according to the data rend. When
the data exhibit reliability decay followed by reliability growth, an S-Shaped model is applied in order
to predict the evolution of the cumulative number of failures which can be used for test and
maintenance planning. In operational life, the hyperexponential model allows to predict the software

residual failure rate that can be used as a qualification index for the software product.
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INTRODUCTION

Quality control is one of the key factors in the success of a project which must meet stringent
reliability requirements. Quality control techniques consist of the analysis of failure data and the
quantitative evaluation based on reliability models.

Evaluation of the reliability of computer based systems requires paying particular attention to

the hardware, the software and the system as a whole.

The software reliability is evaluated so that:
- in terms of the product itself, the software reliability satisfies the requirements of system
specifications,
- in terms of the production process, the development can be managed in order to obtain a dependable

software within the scheduled delays.

Management of the development/maintenance requires realistic time schedules of life cycle
phases: test, qualification and maintenance phases for instance. To do this, it is necessary to evaluate
continually the reliability attained following the debugging effort in order to review the initial
planning. Reliability techniques allows assessment of resource allocation, quantification of the
development/maintenance efficiency and monitoring of the reliability growth in order to ensure that

the software reaches a sufficient level of quality within the schedules and planned costs.

During the operational life it is important to have confidence in the service delivered by the
system and to show quantitatively that the software has reached the required level of reliability.
Software quality objectives can be stated by means of usual reliability measures such as the mean time
to failure or the failure rate; reliability modeling and evaluation help estimate these quality measures

from the observed failure data.

In this paper an evaluation method is proposed for software reliability analysis and prediction.
It is illustrated through the application to the TROPICO-R switching system (which is a telephone

switching system). It will be shown (i) how reliability growth models can help manage of the
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development and maintenance processes, and (ii) how these models can be employed to estimate the

software failure rate in operational life.

The data regarding the software failures detected in the TROPICO-R system were recorded in
appropriate Failure Report (FR) sheets drawn up by the product development and follow-up
engineers. 461 software FRs have been established during 27 months including the last two phases of
the development (validation and field trial tests) and operational life (during which fifteen sites were

installed).

This paper presents the method used to follow up the software reliability of the TROPICO-R
switching system during the development and operational life phases (this method is more general in
purpose and can be applied to other systems). Section 2 deals with the evaluation method, more
specifically (i) the reliability growth tests and (ii) the choice of the evaluation model. The following
section describes the test environment and the failure data recorded. The application of the models to
the TROPICO-R failure data and their use as an aid tool for planning and reliability prediction are

addressed in section 4.

1. RELATED WORK

Numerous papers deal with software reliability growth modeling and evaluation. However,
papers following a global method are rare [15]. A theoretical method for the statistical aspects study
has been given in [5, 23] and application examples can be found in [11, 13 or 27] .

Theoretical aspect concerning reliability trend tests are studied in [3,7] and their application to real
data can be found in [17].

Definition and application of the reliability growth models have been discussed in numerous papers
such as [1,12, 16, 18 or 23].

Application to concrete cases are much fewer since results are often confidential. However there are
interesting applications of reliability growth models in [2, 8, 9, 22].

The above list of references is not exhaustive, only few ones are listed in order to give an idea about

the work that has already been achieved in this field.



2. EVALUATION METHOD

The method of analysis and evaluation of the software reliability corresponds to the global
method defined in [16] and [17]. It consists of two main stages:
- thorough analysis of the system and the data collected,

- reliability trend analysis and software reliability prediction.

As in the case of any reliability study, the first stage basically consists of gathering information on the
system itself, the functions to be performed, the system structure and utilization environment, the life
cycle phases under study, the software correction and the maintenance policies, the manner in which
data is (or have been) collected... This stage is system related and has to be adapted to the nature of

the system being studied.

The second stage is more systematic and is applicable to any software data. It is a two step process:

- first, a preliminary data processing provides (i) qualitative information on the software behavior and
(ii) useful quantitative information on the evolution of reliability (i.e. trend analysis of the collected
data), in order to perform the model applications,

- then, reliability growth models are applied.

This section consists of extending the work presented in the previous references. It will consist of:

- the Laplace test which is well-suited to testing the growth of the random variable: rime berween
failures and which will be adapted to the random variable: number of failures, the latter form is more
suitable to a great number of collected data (as in the case of the TROPICO-R),

- the notion of local and global reliability growth which will be introduced,

- two kinds of reliability growth models which will be used depending on the measures to be
evaluated and the objectives of the evaluation: (i) development/maintenance management and planning

or (ii) reliability in operational life.

It is worth noting that these objectives lead to consider two different random variables :
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- for maintenance management and planning, the random variable will be the number of failures per
unit of time,

- for reliability evaluation, the random variable "interval between failures" is more suited to estimate
the MTTF (Mean Time To Failure) of the software or its failure rate.

These two random variables are not independent: the first one can be deduced from the second one

(the inverse is not true). the second form needs more precise data collection.

2.1.Trend Analysis

Existing reliability growth models allow to model three kinds of reliability behavior according
to the nature of the Rate of OCcurrence Of Failures (ROCOF) which is the number of failures per unit
of time:
- reliability growth with a decreasing ROCOF tending to zero when t tends to infinity [12, 14, 21],
- reliability growth with a decreasing ROCOF tending to a non zero value when t tends to infinity [17,
18],
- reliability decay prior to reliability growth, i.e., the number of failures per unit of time first increases
and then decreases to zero (the ROCOF is bell-shaped): these models [10, 28] are called S-Shaped

models because the curve representing the cumulative number of failures is S-shaped.

It is therefore very important to identify the trend (growth/decay) in order to use the appropriate
reliability growth models. The Laplace test, proposed in [3], can be used for this purpose. This test
was developed for the random variable interval between failures, when the random variable is the
number of failures per unit of time, the expression of the Laplace test factor u(k) at time unit k can be
deduced as suggested in [7, p.54]. The details of u(k) establishment are presented in the annex. This

factor is then given by:

u(k)=i_—, k=2,...,p

w
]
Y

where: c=



k-1
m=—5—

p: is the total number of units of time,
yk : the cumulative number of failures up to the ki time unit,

n; : the number of failures during the ith time unit,

The positive values of u(k) indicate a decay of the software reliability whereas negative values indicate

reliability growth.

The factor u(k) is evaluated among all the data collected up to the considered time unit: it
indicates the global variation of reliability. It is worth noting that even in the presence of global
reliability growth (decay), local reliability decay (growth) may occur. Local fluctuations can be
detected by studying the variation of u(k): when u(k) is positive and tends to decrease it suggests a
decrease in the number of failures observed over the considered period which means that, locally,
reliability tends to increase although a global decay is observed.

This is summarized in figure 1 where the units of time during which the local tendency of u(k)
changes correspond to inflexion points of the curve giving the cumulative number of failures.

Two types of tendency changes (inflexion points) can be distinguished:

- type 1: corresponding to the transition A-B which is common and expected during testing and
validation phases,

- type 2: corresponding to the transition C-D which denotes a reliability regression, i.e., an increasing
number of detected failures per unit of time.

It is worth noting that the evolution of the ROCOF indicates the local reliability growth or decay only.

Local reliability growth or decay may result from:
- dependency of faults: some software faults can be masked by others, i.c. they cannot be
activated as long as the latter are not removed [25],
- the variation in time delay between the detection of an error and its removal; this delay is
closely dependent on the nature of the activated faults: some faults are more difficult to

identify than others and take longer time to be removed,
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- the variation in the utilization environment: the variation in the testing effort during the

debugging phase, the changing in the test sets, the adding of new sites during the operational

life...
u(k)
4
\ Local tendency changes
\
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\
]
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\ \
\ ]
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RG : Reliability Growth RD : Reliability Decay

Figure 1 - Trend analysis using Laplace test and the ROCOF evolution.

These phenomena can act either separately or in combination.

Reliability regression can also result from slight specification changes.



2.2. Reliability growth models
The choice of the reliability growth model to be applied depends on a great extent on (i) the

objectives of the study as well as on (ii) the nature of the trend displayed by the collected data.

With respect to the objectives, they are generally expressed in terms of measures. When the
software is in operation, two kinds of measures are useful:

a) from the user's viewpoint: the mean time to the next failure (or the failure rate of the next failure),
or/and the expected residual failure rate of the software in operational life in order to evaluate the
reliability of the whole system,

b) from the designer's viewpoint: the expected number of failures among all the installed sites and
then the number of corrections to be introduced in the software in order to estimate the

maintenance effort still needed.

When the software is under development, the interesting measures are:
¢) the evolution of the number of detected faults in the software in response to the test and
debugging effort,
d) the expected number of failures for the following periods of time so as to plan the test effort and

thus the time and the numerical importance of the test team.

Objective a can be reached through a model allowing evaluation of the mean time to (or the failure rate
of) next failure and particularly the residual failure rate expected in operational life; the
hyperexponential model [17, 18] seems the only suitable model enabling evaluation of the second
measure. In fact all the other existing models assume that the failure rate tends to zero when t tends to

infinity (nil residual failure rate in operational life).

Objectives b, ¢ and d can be obtained through a model based on counting; in this case Non
Homogeneous Poisson Process models (NHPP) seem suitable. Many NHPP models have been
developed, our choice goes to three among them allowing three kind of reliability growth tendency to

be modeled :
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- the exponential model [12], allowing to model a continuously decreasing ROCOF tending to zero
when t tends to infinity,

- an S-shaped [28] model, due to its ability to model a reliability decay prior to undergoing reliability
growth; it can thus be applied to an observation period where the trend test has the form of the A-B-C
period of figure 1,

- the hyperexponential model, due to its ability to predict the steady behavior in operational life.

The advantage of the NHPP models is that they are relatively independent of many hypotheses
necessary for the derivation of several models which have been published, for instance no

relationship between failures and corrections is assumed,

The hyperexponential and exponential models can only be applied to data displaying reliability
growth: that is, period C of figure 1. However, in figure la, global reliability decay for A and B is
due to the data corresponding to A, if the latter are not considered for the evaluation, B will display
local and global reliability growth. These models can thus be applied to period B if the data
corresponding to period A are not taken into account. Nevertheless, applying the models only in case
of reliability growth (periods B and C) leads to discarding data pertaining to A and D from any data

set, therefore prediction is delayed until observing a period such as B or C is observed.

The expression of the ROCOF of these models is as follows:

Exponential : h(t) = N @ e-Pt, parameters: N, @, (D

S-Shaped : h(t) = N ®2 t Pt parameters: N, @, )

Wy Zq e 21t + wy Zy e 22t
0, e Z1t + @, e-Z2t

Hyperexponential:  h(t) = , (3)

with 0<®;<1,0<m<let 0 +wy=1.

Let ®; = o and 03 = 1- @ = ®. The corresponding ROCOF continuously decreases from an initial

value (WZ1 + ®Zy) to As = inf {Z{,Z,} which is the residual failure rate of the software.
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The MTTF; which is the expected time to failure i, given that failure (i-1) occurred at time s, is:

w (0]
= exp (-Z1 s) +5— exp (-Z2 s)
MTTE; = 1 2

4)
o exp (-Z1 s) + @ exp (-Z3 s)

The relevant features of this model are:

- the rate of decrease with respect to time is adjustable through parameter (®, Z;, Z,) tuning
(figure 2),
- the fact that it asymptotically tends towards a non zero limit Ag,

- the fact that it also enables availability growth modelling {17, 18].

— C1 == C2 - C3

0.01T

0.009 +

0.008 +

0 007 + g on R0t e A—S

0.006 +

0.005 —HHHHHHHIHHHHIHH
1 100 200 300 400 500 600 700 800 900 100¢

Curve (0] Z1 V)
C1 0.1 710-2 710-3
C2 0.5 2 10-2 710-3
C3 0.9 1.4 10-2 7103

Figure 2 : Hyperexponential model ROCOF for a set of chosen parameters.

The generalization of this model would be to take :

k
zmi Z; e-Zit k
h(t) = ‘=1k— with Y o; = 1, k> 2.
Y w; e-Zit =1
i=1
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2.3. Model validation

A model can be analysed according to its repetitive and predictive capabilities:
- repetitive capability: indicates the ability of a model to reproduce the observed behavior of the
software,
- predictive capability: indicates the extent to which the model, based on the observed data up to a

given time, correctly predicts the failure behavior in the future.

This paper deals with the predictive features; repetitive features concerning the TROPICO-R

application are given in [5].

Prediction of the failure behavior after a given time interval is based on failure data observed
among this interval. The predictive capability is evaluated in the following manner:

1 use the failure data observed up to the time unit i=j (or a subset, say from i=k up to i=j), from
which the failure behavior will be predicted,

2 estimate the unknown parameters of the model using this subset of data,

3 evaluate H(i), the expected cumulative number of failures up to unit time i, i>j,

4 evaluate the residue i.e., the mean error between the observed failure data and those foreseen
by the model for time units i, j<i<p (yj - H(i)):

P .
> lyi- HO!
i=k

Exp= k=j+1 5)

P ’
Steps 1 to 3 represent the so called prediction system [1].

The previous steps can be adapted to the case where the random variable is the time between failures,
the residue in this case being equal to : (t-MTTF;) where t; is the observed time between failure (i-1)
and failure i, and MTTF; the estimated one. In this case, the relative residue Rx n will be evaluated:

S (4 - MTTF)

i=k .
Rin = S k > j+1 (6)

where S; is the time of occurrence of failure i.
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Expression (5) enables to check whether the model gives results close to the observed ones; on the
other hand, expression (6) enables to see the bias in the evaluation: a positive residue means that
globally the model underestimates or overestimates the times between failures.

These choices are mainly due to the very nature of the random variables: yj or ;.

2.4. Conclusions
The results issued from the the Laplace test application are interesting for two reasons :

- they allow to follow up the evolution of the reliability of the software and in case of reliability decay,
one has to explain the reasons for the regression and try to react to the non explained phenomena,
- the inflexion points allow to partition data into subsets (called stages in the sequel) and to apply
"reliability growth models" to these stages in order to enhance the quality of the estimation; type 2
inflexion points constitute the boundaries between these stages:

+ an S-Shaped model is applied to data situated between two type 2 inflexion points and

contains a type 1 inflexion point,
» models corresponding to reliability growth only are applied to data from a type 2

inflexion point to a type 1 inflexion point.

The idea of dividing data into subsets have been used in [15, 16 and 17] and in [26] (in an empirical
way, for the latter), however the Laplace test used in the preceding manner helps this partition: it tells

where it is better to do that.
3. TROPICO-R TEST ENVIRONMENT AND FAILURE DATA

3.1. Test Programme

The software test programme for TROPICO-R is a four-step process: (i) unit test, (ii)
integration test, (iii) validation test,and (iv) field trial. The first three steps correspond to the test
phases usually defined for the software life cycle. The last step consists of testing a prototype in a real

environment that therefore approaches the normal operating environment. It uses a system
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configuration (hardware and software) that has reached a sufficient level of quality after completing
the laboratory testing programme.
The test programme carried out during validation test and field trial is decomposed into four tests:

1. fur'lctional tests verify the correct operation of all the specified telephone, maintenance and
operation functions.

2. quality tests ensure that a specified rate of call loss is not exceeded. Call loss may be due either
to a failure in the software and/or hardware of the system or to missing call resources (due to
resource failure or because all the resources are already in use). At the beginning of the test we
ensure that all the resources needed for making the calls available so any lost call can only be
due to the failure of the software and/or hardware.

3. performance tests ensure the compliance with the quality of service requirements under a
nominal traffic.

4. overload tests check the correct operation of traffic overload control mechanisms so that the
calls accepted by the telephone exchange subject to this exceptional traffic comply with the

specified quality of service.

The description of the whole quality control programme for TROPICO-R is given in [29 and 30].

3.2. Failure Report (FR)
The handling of failure data that affect the TROPICO-R product is achieved by utilizing an
appropriate FR sheet. The FR contains the following information:
- date of failure occurrence,
- origin of failure: the system configuration in which the failure was detected and the conditions
of occurrence,
- type of FR: hardware, software, documentation and the affected modules,
- analysis: identification and classification of the fault which led to the failure (coding,
specification, interface,...),
- solutions: those proposed and the solution retained,

- modification control: control carried out by the person in charge of the module,
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- edition control: control of the corrected modules,

- regression testing: results of the tests applied to the corrected module(s).

Only one FR is kept per detected failure: rediscoveries [2] are not recorded. In other words, if
several FRs, caused by the same fault, are drawn up by different testing groups only, one FR is
entered into the data base: generally the first one to be reported. In fact an FR is both a failure report
and a fault (or a correction) report since it also contains the information on the fault that caused the

failure.

Only software failures that can be simulated on the prototype are recorded: detected failures

which are not reproducible are returned to the original site for more information.

Two software versions of the TROPICO-R switching system have been developed: a 1500 and
a 4096 subscribers version. The failure data that have been analysed correspond to the former version.

The software volume is about 300K written in Assembly language.

3.3. TROPICO R failure data

The cumulative number of failures per periods of ten days (units of time) are indicated in
figure 3: data corresponding to the validation test go from time unit 1 up to 30, the field trial test goes
from time unit 31 up to 42. The validation test lasted about ten months and resulted in 297 corrections.
The field trial was performed for four months and led to 55 corrections whereas during the first year
of operation 108 corrections were achieved.
Time corresponds to calendar time excluding vacation periods. Even though execution time seems

more suitable than the calendar time [23], it was not easy in our case to obtain this information® .

The software of the TROPICO-R is divided into several implementation modules. Some modules (such as the
Operational System modules) are more executed than other (e.g. the application modules). As the TROPICO-R is
a distributed system, it is very difficult to evaluate the CPU time expend by the software system. Accordingly it
is useful to adopt calendar time as the time basis for the reliability evaluation. During the validation phase there
was only one prototype operating all day long, so we can consider calendar time as a good time basis.
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4. EVALUATION OF TROPICO-R RELIABILITY

The method of evaluation proposed begins with the analysis of the trend of the failure data
before determinating which reliability model will be used during the reliability growth analysis.

4.1. Application of the Laplace trend test

The Laplace test is first applied to the whole set of data, the results are shown in figure 4.

Time unit | Validation Time unit Field trial | Time unit Operation
1 1 31 301 413 356
2 8 32 302 4 367
3 36 3 310 45 373
4 45 H 317 46 373
b 60 3H 319 47 378
6 T4 36 323 48 381
7 8 37 324 49 383
8 98 3 338 50 384
9 106 39 342 51 384
10 115 40 345 52 387
1 120 41 350 53 387
12 134 42 352 54 387
13 139 - - 55 388
14 142 - - 56 393
15 145 - - 57 308
16 153 - - 58 400
17 167 - - 59 407
18 174 - - 60 413
19 183 - - 61 414
20 196 - - 62 417
21 200 - - 63 419
22 214 - - 64 420
23 223 - - 65 429
24 246 - - 66 440
P+ 257 - - 67 443
2% 2717 - - 68 448
27 283 - - 69 454
8 286 - - 70 456
2 292 - - 71 456
30 297 - - 72 456

73 457
74 458
5 459
76 459
T 459
78 460
/i) 460
80 460
81 461

Figure 3 - Cumulative number of failures per periods of 10 days
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This figure gives the Laplace factor u(k) v.s. k, the number of time unit, and where a high

global reliability growth can be noticed at the end of the observation period.

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76
6.00

4.00
2.00
0.00
-2.00 4

-4.00 1
-6.00 T
-8.00 t
-10.00 +

Validation & field trial Operation

Figure 4 - Result of Laplace trend test for the whole set of data.

The results obtained separately for each phase (using data pertaining specifically to the phase

considered), are shown in figure 5, and presented in a chronological order.

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

Validation Field trial Operation

Figure 5 - Results of Laplace trend test for each phase

It is interesting to comment both figures at the same time:
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- at the beginning of the validation, a reliability decay took place, as a result of the correction of
28 faults during the third unit of time whereas only 8 faults were removed during the first two
time units and 24 during the next two time units; applying the trend test without considering
the data belonging to the three first time units leads to a negative Laplace factor for the whole
period (however the shape of the u(k) curve is not changed),

- the local reliability decay from k=14 to k=25, was induced by the changes in nature of the tests
within the validation phase: this period corresponds to the application of the quality and the
performance tests after the functional tests in the previous period; this decay is due to their
dynamic nature (traffic simulation) which have activated new parts of the program,

- transitions from validation to field trial and from field trial to operation did not give rise to a
reliability discontinuity: reliability was still improving,

- figure 3 indicates that from k=55 up to k=70 reliability growth tends to diminish: u(k) is
almost constant, suggesting a local reliability decay; this behavior is reinforced when
considering the trend results obtained for operational data only in figure 4 where reliability
decay is more evident; from k=70 this trend is reversed; this failure behavior is directly related
to the number of installed exchanges over the periods considered (see figure 6), during which
about twelve exchanges have been installed and the number of failures reported by the users
increased; by time unit 70, the 4096 version has been released and no new 1500 version has

been installed, which corresponds to the period of local reliability growth (less failures

reported).
15
10
5
0 ™ T T T T T T 1
30 40 50 60 70
Field trial Operational life

Figure 6 - Number of installed sites per unit of time
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These results show that the systems installed have reached a sufficient level of quality after the new
software releases which incorporate the necessary corrections. It is worth noting that, for the same
calendar time used as reference in the sequel, the increase of the running software copies lengthens
the software execution time. Reliability decrease does not necessarily mean that the software is less
reliable, however it implies an increase in the maintenance effort that must be considered for

maintenance planning.

4.2. Model application

The results of the trend analysis evidence changes in the trend over the considered phases and
two periods of reliability decay have been identified. These results will guide the model application
stage: (i) the exponential model will not be used given its inability to deal with reliability decay [6],
(ii) only S-Shaped model (SS) will be applied to follow up the number of detected failures. The
hyperexponential model (HE) will be applied at the end of operational life in order to estimate the

residual failure rate of the software.

4.2.1. Model application to the whole data

Let us apply the SS model to validation data: data from k=1 to k=8 are used to estimate the
model parameters and predict the cumulative number of failures. Results are given in figure 7 where
N(i) denotes the observed cumulative number of failures up to unit time i and H(i) the estimated one.
Predictions are very good up to k= 15 following which they rapidly become extremely inaccurate.
Indeed k=14 corresponds to a type 2 inflexion point, the model cannot predict this change and, as a

result, it continues to assume reliability growth underestimating the cumulative number of failures.

The same thing can be done with operational data: the cumulative number of failures after

k=55 is more and more underestimated (figure 8).

These two model applications show that the S-Shaped model cannot follow the modifications

in trend due to type 2 inflexion points. According to § 2.4, data will be partitioned into stages.
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Data corresponding to validation and field trial are thus divided into two stages:

S1: data up to k=14 for which u(k) is continuously decreasing.

1— NG) == H@G)

300 4
250 4
200
150 1
100 -
50 -
0 4+t

Figure 7: Application of the S-Shaped model to validation data.

- NG) - H(@)

470 A

410 -

370 /i"’y

Figure 8: Application of the S-Shaped model to operational data.

S2: data counted from k=15 up to the end of field trial testing, for which u(k) is continuously

increasing and then continuously decreasing.

Data corresponding to operation are also divided into two stages:
S3: data from k=43 up to k=54 for which u(k) is continuously decreasing.
S4: data counted from k=55 up to the end of the observation period, for which u(k) is

continuously increasing and then continuously decreasing.
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Reliability growth models will be applied according to these stages. Previous predictions for S1 and
~ S3 remain valid.

4.2 2 Validation and field trial phases

Figure 9 shows the cumulative number of failures estimated by the S-Shaped model (C1, C2,

C3) and the cumulative number of observed failures N(i), where:

C1  prediction for S1 achieved from the failure data recorded over the first eight units of time of
S1, k=1 to k=8,

C2  prediction for S2 performed using the failure data recorded up to 2 time units after the type 1
inflexion point which corresponds to time unit 25 (i.e., data from k=15 up to k=27 of S2),

C3  prediction for S2 performed using data including 4 time units after the inflexion point (i.e.,

data from time unit 15 up to 29 of S2).

— N@{) =~ C2 = C = C1

1 5 9 13 17 21 2 29 33 37 41

S1 | S2
Eog.14 E2g.42 E3042
C1 2.6
C2 28.4 31.2
C3 5.8

Figure 9 -Validation and field trial prediction using the Laplace test results.
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The accuracy of the prediction is given by the mean prediction errors which are indicated by the table

of figure 9. C1 and C3 have low residue whereas C2 has a relatively high residue.

The last prediction (C3) yields remarkable results over approximately 4 months (13 units of time of

ten days each).

How to use these results during validation?

From data corresponding to the first two months and a half of validation (k=1 to 8), curve
C1 indicates that if the same kind of tests is continued (i.e. functional tests) these tests will be
inefficient from the 12th or 13th unit of time (one month later) since H(i) will reach a stable value. In
other words, the number of detected failures per unit of time will reach an extremely low value at this

stage, the designer can thus plan to change the type of tests to be applied the following month.

From time unit 14, quality and performance tests were applied leading to a reliability decrease. Since a
change in the tendency is observed, prediction will not be very accurate. Some time is therefore
needed prior to applying any reliability model. Indeed, these models can only be applied again when
reliability growth is noticed, that is, in our particular case, after the next inflexion point.

Curves C2 and C3 indicate that the best predictions are obtained when applying models 4 units of
time after tendency change.

The shape of H(i) is more interesting than the precise values of the figures: both curves show that for
k=41 (date scheduled for software release), H(i) will begin to be stabilized, meaning thus that the

software will not be in a stable state at the beginning of the operational life. This was confirmed later.

4.2.3 Operational life phase

When the software is in operation, two kinds of measures are interesting: the number of
failures over all the installed sites in order to estimate the maintenance effort to be made during the
operational life and the failure rate of one site in order to evaluate the whole system failure rate

(i.e., hardware and software). These two measures are successively addressed in the sequel.
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4.2.3.1 Maintenance effort prediction

The maintenance effort can be estimated through the evaluation of the number of corrections to
be performed on the software for the next period of time. Since the RFs are at the same time failure
and correction report, the number of corrections is estimated through the application of a "reliability
growth model" to the collected data over all the installed sites, i.e. the corrections achieved on the
software product.

The prediction of the cumulative number of failures applied to the operational life failure data is given
in Figure 10 where (C4, C5, C6) are estimated using the SS model and N(i) the cumulative number
of observed failures (i.e., achieved corrections):

C4  prediction for S3 based on the first eight units of time of S3, k=43 to k=50,

C5  prediction for S4 carried out from the failure data recorded from k=55 to k=73, that is, 2 time

units following the type 1 inflexion point (k=71, figure 5),

C6  prediction for S4 carried out from the failure data recorded from k=55 to k=75, that is, 4 time
units following the type 1 inflexion point.

C5 and C6 are very close to each other and the difference in the residue is not significant. Both show

that from the 75th unit of time H(i) is almost linear and that the hyperexponential model can be applied

from this stage in order to predict the residual failure rate.

Application of the SS model until time unit 90 (three months after the considered period) indicates that
for the whole installed sites, the expected number of corrections to be performed is about 2
corrections the next month and 1 correction per month for the next two months, i.e., 4 corrections

during the next quarter. This estimation was confirmed later.

4.2.3.2 Failure rate and mean time between failures in operational life

In order to evaluate the failure rate and the mean time between failures, the random variable

interval between failures has to be considered.
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— N(i) enm! 05 209000, C6 — C4
470 -
450 +
430 ¢
410 -
390 4
370 -
w)fiillIllllllllllllllllllllIlllll'Tlllll
43 47 51 5 59 63 67 71 75 79
S3 | S4
Es155 | E7a81 E7681

C4 1.8

C5 4.3 5.3

Cé6 3.5

Figure 10 -Operational prediction using the Laplace test results.

The S-Shaped model was applied using data gathered in an increasing number of sites in order

to have an idea of the number of corrections to be performed on the software product. When the
MTTF is addressed, the user is interested in the reliability of one site using all the collected data. Data
have thus been modified so as to integrate the number of installed sites. Figure 11 gives, from left to
right, the observed intervals between failures (in days) for one site (an average site) during the last

months of operation where 34 corrections took place.

14 14 0* 0 14 14 42 0 0 14 0 0
42 42 14 0 90 15 0 15 120 15
90 0 0 0 90 30 420 180 90 555 480

* k successive zeros mean that (k+1) failures took place in the same day.

Figure 11 - Time (in days) between failures during the last months of operation.
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Laplace test
The Laplace test is then applied to this subset (the considered random variable is the time
between failures). The results are given in figure 12 and indicate an almost steady reliability at the
beginning of this period (with u(k) oscillating between +2 denoting a low reliability decay and -2
denoting a low reliability growth) followed by a relative reliability growth. The time axis is added to
the figure in order to show the correspondence between the failures and their occurrence time, this
figure is in accordance with figure 5 (considering results for k = 65 to k = 71).
The growth of reliability at the end is mainly due to the last five observations for which the
mean observed time between failures is about 345 days for an average site whereas it was about 24
for the previous five observations. These intervals are 23 days and 1.6 days respectively for the 15

installed sites.

429 433 437 441 445 49 453 457 461

2 /\ —+— gttt —t—t—t Number of failures

unit of time

k=65 k=69 k=81

Figure 12 - Laplace factor for the last months of operation.

HE model application

The results of the HE model application to the considered period are summarized in figure 13
where the prediction is done step by step: data from i=441 to i=j-1 are used to estimate model
parameters and MTTF;j. It can be seen that the model gives very pessimistic (and bad) results for the
last five data (as prescribed by the Laplace test results). The residue goes from 0.65 when considering
these data to 0.10 without these data.

The estimated residual failure rate Ag is 3.4 10-4/h (8.3 10-3/day), i.e. one failure every 4

months per site. This time interval is much lower than the one observed at the end of the considered
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period (which corresponds to about one failure every 345 days, for an average site during the last five
data).
Considering the 15 installed sites, this means 15 failures per 4 months for all the sites or one failure

every eight days, to be compared to one failure every 23 days.

i ti MTTF;
441 42 23.35
442 14 38.52
443 0 28.77
444 90 18.77
445 15 36.05
446 0 32.23
447 15 27.23
448 0 25.56
449 120 22.41
450 15 32.87
451 90 31.16
452 0 36.22
453 0 33.38
454 0 30.91
455 90 28.77
456 30 32.71

. 457 420 32.54

458 180 54.78

459 90 61.64

460 555 62.81

461 480 88.03
R441,456 = 0.10 R441,461 = 0.65

As = 8.3 10-3/day

Figure 13- Results of the HE model application.

The estimated residual failure rate without taking into account the last data is about 3 10-2/day
(i.e., 1.25 10-3/h). Although in accordance with the observed one during this period it may seem
very high. One way to use these results is as follows: the residual failure rate may be considered very
high, if this is so the users may ask the designer to enhance the software reliability, the latter has thus
to develop new test sets, these tests can either be run in the laboratory or on some installed sites in

parallel with normal system utilization.

It can be noticed that the HE model experiences great difficulties in following a sharp and

sudden reliability growth: it underestimates the last time between failures and over-estimates the
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residual failure rate. In order to overcome these difficulties, data will be partitioned into two sets as
for the SS model:

S5: data from 427 up to 447 for which reliability growth is difficult to ascertain.

S6: data counted from 448 for which reliability growth is clear.

Application of the HE model to S6

The results obtained when using data from 448 to 453 to estimate the parameters of the model
for the first step (figure 14) are better than the previous one: prevision for the last observations are

better and the residual failure rate seems more realistic.

i ti MTTF;j
454 0 37.50
455 90 32.14
456 30 39.37
457 420 38.33
458 180 323.89
459 90 279.01
460 555 216.17
461 480 298.43

R454,456 = 0.3]

As = 2.98 10-3/day

Figure 14 - Results of the HE model application to S6.

The residual failure rate is about 1.3 10-4/h (2.98 10-3/day) for one site, i.e., one failure every
336 days which is more in keeping with the time between failures observed at the end of the data set
and later also.This failure rate is quite high when compared to the hardware failure rate which is about
4 10°6/h. Indeed, the hardware is fault-tolerant and the failure rate corresponds to failures leading to
system unavailability, whereas the software is not fault-tolerant and all the consequences of the
failures on the delivered service are included in this figure. It is worth noting that most of the software
failures do not lead to system unavailability or call loss. Collected data have thus to be partitioned into
subsets according to failure consequences on the delivered service, the HE model will be applied to
each of the subsets in order to evaluate the contribution of the software to the whole system
unavailability. To do this a thorough analysis of the failure reports is needed in order to see what are

the effects of each failure; this analysis has not been undertaken yet. Application of the same approach
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to software failure data concerning another switching system [16] showed that the failure rate leading

to system unavailability is about 5% of the global software failure rate.

4.3. Practical recommendations
What precedes leads to the following practical recommendations :
- depending on the nature of the collected data (concerning failures or corrections or both of them) and
the objectives fixed, two kinds of dependability measures can be derived :
« the number of corrections to be performed during test or operational life,
o the failure rate of the software,
- the evaluation method does not depend on the evaluated measure and can be summarized by the
following steps :
1. apply the Laplace test trend to the collected data,
2. identify the periods of reliability growth and the periods of reliability decay,
3. if a reliability growth trend is observed then apply an appropriate model to forecast
dependability measures as long as the model assumptions are verified,
4. if local reliability decay is noticed then apply an S-Shaped model to the data set
including the inflexion point, the predictions stand a good chance of being more
accurate,

5. for the next collected data, proceed with the analysis in the same way, from step 1 to 4.

5. CONCLUSIONS

Software reliability growth models constitute an important aid tool for test/maintenance
planning and reliability evaluation when used with reliability trend tests.

Two models, that are, the hyperexponential and the S-shaped models, have been applied to
the failure data of the TROPICO-R telephone switching system. These models have been analyzed

according to their predictive capabilities.

The results obtained show that:
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+ the trend test is a major tool for guiding the partitioning of failure data according to the
assumptions of model reliability growth; it also indicates the unit of time from which the
occurrence of future failures can be predicted more accurately, N

« the prediction approach proposed for the validation and the field trial phases yields good
results over a time period of a few months, showing that reliability modeling constitutes a
major aid tool for test/maintenance planning and follow up,

+ the residual failure rate prediction given by the hyperexponential model is in accordance with

the observed failure data at the end of the considered period.

Unfortunately, since the TROPICO-R 1500 version is no more produced, failure data collection
is no more achieved for this system and it is not possible to check the accuracy of the predictions. Our
current work concerns the TROPICO-R 4096 version and is directed towards:

« the application of reliability growth models to hardware design failures recorded during the
test and operational phases in order to have a system reliability model to guide
test/maintenance planning and follow up,

« the analysis of software components failure data in order to deduce system dependability from

the components measured reliability.
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ANNEX

LAPLACE FACTOR DERIVATION

The expression of the Laplace factor u(k) when the random variable considered is the
cumulative number of events (failures for our purpose) is derived as indicated in [7, p. 54].
Let us consider k time intervals of equal length h and let :
Ni  be the random variable that represents the number of events occurred in the time interval
[G-Dh,ih], i=1,... k.
ni the realization of Ni, i.e., the number of events occurred in the time interval
[(i-1)h,ih], i=1,... .k,
The occurrence of the events follow a non-homogeneous Poisson process whose occurrence
rate is given by the expression:
A1) = eat+bt (Al)
If b=0 the Poisson process becomes homogeneous and the occurrence rate is time independent.

If we observe k time intervals, the likelihood is :

ih nj
X X [(i- )%(u) duil ih
Lk) = [T P{N;=n3) =] ~ exp| - { l(u)du) (A2)
i=1 i=1 1- G-Dh

For the occurrence rate (A1), the likelihood becomes:

k
. (ebh )N caN+bh 2, (i-1)n, [ea “ ebkh)] h N_k | .
k) = Nﬁ exp 5 , where -;nl (A3)
bN TTni! =

i=1
Thus the conditional probability density function of the observations, given that N events have

occurred in k time intervals, is obtained dividing expression (A3) by the probability:
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kh N
K [J Aa) du]

kh
Pk) = P{i=zl nj=N} = — N exp(- J l(u)du)

The result is given by (A4) and only depends on the b variable:
k

Y (i-1)nj
N! (ebh .1)N gbh & M2/

L(k)
Pk - & (A4)
(ePkh )N T n;!
i=1
The conditional log likelihood L(b) is, from (A4):
k k
L (b) =log N! -log [ ] ni! + bh) G-Dnj + N [log(ePP -1) - log(ebkh -1)]
i=1 i=1
so that:
k bh bkh
hY (i-1nj + N[ }t‘;’] ; k;fh :| , b0
' dL(b) i=1 e’n.1 e -1
L'b)=——=) & (A5)
db . Nh(k-1)
hy (-1)n; - > ,b=0
i=1
and the information function 7 (b), is:
cbh Kk2ebkh
[(ebh -1)2 " (ebkh -1)2] den
1 (b)=E{-L"(b)}= (A6)
Nh2(k2-1)
—z ,b=0

Under the null hypothesis b=0 (constant occurrence rate), the statistics:
k

Y G-ny
i=1 (k-1)

L TN 2

V1 (0) u
V12N

is approximately normal distributed with zero mean and unit variance.

u(k) =

Positive value of u(k) means that the considered statistics is above the mean and therefore
indicates b>0, i.e. an occurrence rate increasing with time. On the other hand, negative value of u(k)

suggests b<0 (a decreasing failure rate).
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| A Method for Software Reliability

Analysis and Prediction Application
to the TROPICO-R Switching System

Karama Kanoun, Marta Rettelbusch de Bastos Martini, and Jorge Moreira de Souza

Abstraci— It is well-known that no particular reliability growth model
is “superior” in predicting software behavior of any software system
under any circumstances. The work presented in this paper allows the
already existing models to give better predictions since they are applied to
data displaying trends in accordance with their assumptions. The method
proposed is primarily based on the analysis of the trend exhibited by the
data collected on the program (which is determined by reliability growth
tests). Reliability data are then partitioned according to the trend and
two types of reliability growth models can be applied: 1) when the data
exhibit reliability decrease followed by reliability growth, an S-shaped
model can be applied and 2) in case of reliability growth mest of the other
existing reliability growth medeis can be applied. The hyperexponential
model aliows prediction of the software residual failure rate in operation,
this failure rate being used as a qualification index for the software
product. The proposed method is illustrated through its application to the
Brazilian Electronic Switching System (ESS), TROPICO-R.

Index Terms—Reliability growth, reliability prediction, software relia-
bility, software reliability modeling, trend analysis.

1. INTRODUCTION

UALITY control is one of the key factors in the success of

a project having to meet stringent reliability requirements.

Among quality control techniques, the analysis of failure
data and quantitative evaluation based on reliability models are
of prime importance.

Evaluation of the reliability of computer based systems re-
quires paving particular attention to the hardware, the software
and the system as a whole.

Software reliability is evaluated so that:

* in terms of the product itself, it satisfies the requirements of
system specifications (if such specifications exist);

* in terms of production process, the development can be
managed to obtain a “dependable™ software within the
allowed delays.

Management of the development/maintenance requires real-
istic time schedules for life cycle phases (e.g., test, vahdation,
and mamntenance phases). To do this, it is necessary to evaluate
continually the reliability attained following the debugging effort
n order to review the initial planning. Reliability techniques
allow assessment of resource allocation. quantification of the de-
velopment'maintenance efficiency, and monitoring of reliability
growth so as to make sure that software reaches a sufficient level
of quality within schedules and planned costs.

Manuscript received December 20. 1989; revised November 28, 1990
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K Kanoun 1s with LAAS-CNRS. 7 Avenue du Colonel Roche, 31400
Toulouse. France
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During operational life it is important to be confident in the
service delivered by the system and to show quantitatively that
the required level of software reliability has been attained (if
this level has been defined). Software quality objectives can be
stated by means of usual reliability measures such as mean time
to failure or failure rate: reliability modeling and evaluation help
estimate these quality measures from the observed failure data.

In this paper an evaluation method is proposed for software
reliability analysis and prediction. It is illustrated by applying it to
TROPICO-R ESS. It is shown 1) how reliability growth models
can help manage development and maintenance processes, and
2) how these models can be emploved to estimate the software
failure rate in operational life.

The data regarding software failures detected in the TROPICO-
R system were recorded in appropriate Failure Report (FR) sheets
drawn up by the product development and follow-up engineers.
Four hundred and sixty-one software FR's were established over
27 months including the last 2 phases of development (validation
and field trial tests) and operational life (during which 15 sites
were installed).

This paper is divided into four sections. Section II gives
an idea about the work already published in the field. Sec-
tion IIl deals with the evaluation method, more specifically
1) reliability growth tests (primarily Laplace test) and 2) the
choice of evaluation models and the associated validation criteria.
The following section describes the test environment and the
failure data recorded on the TROPICO-R. The application of
the models to the TROPICO-R failure data and their use as
a tool for planning and reliability prediction are addressed in
Section V. The Laplace factor expression is derived in Appendix
A and Appendix B presents the reliability growth models used
in Section V.

II. RELATED WORK

Numerous papers deal with software reliabilitv growth model-
ing and evaluation. However, papers following a global method
are seldom found [16]. Methods of data collection and statistical
analysis of data are given in [S], [25] and application examples
can be found 1n {11]. [14]. or [29].

Theoretical aspects concerning reliability trend tests are stud-
ied in [3], [4], [7] and their application to real data can be found in
[17]. Definition and application of the reliability growth models
have often been discussed, see for example [1], [12]. [16]. [19].
or [25]. Applications to concrete cases have seldom been reported
since results are often confidential. However, several interesting
applications of reliability growth models can be found in [2],
(8], [9], [16]. [24].

Other aspects concerning software reliability evaluation can
be found in [20], [23], and [26], for example. The above list

0098-5589/91/0400-0334501.00 © 1991 IEEE
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of references is-not exhaustive. It-is only intended to show what
has already been achieved in this field: note that numerous papers
analyzed the data collected and published by Musa in [24].

I11. EvaLuaTioN METHOD

The method of analysis and evaluation of the software relia-
bility corresponds to the global method defined in [16] and [17].
It consists of two main stages:

* thorough analysis of the system and the data collected:;
» reliability trend analysis and software reliability evaluation.

As in any reliability study, the first stage basically consists of
gathering information on the system itself, the functions to be
performed, the system structure and the utilization environment,
the life cycle phases under study, the software correction, and
the maintenance policies. the manner in which data are (or have
been) collected. Qualitative data processing provides interesting
information (e.g., the nature of faults, the consequence of their ac-
tivation, their evolution along the considered period, distribution
of faults among the different components). This stage is system
related and has to be adapted to the nature of the studied system.

The second stage is more systematic and applicable to any
software data. [t is a two-step process involving:

* first, a preliminary data processing providing quantitative in-
formation on the evolution of reliability (i.e., trend analysis
of collected data), before model applications;

* then, reliability growth model application; the selection of
the reliability growth model depends to a great extent on 1)
the objectives of the study as well as on 2) the nature of the
trend dispiayed by the collected data.

This section focuses on the last stage and aims to extend the
work presented in [15] and [16]. It will consist of:

« stating of the objectives of software reliability evaluation;

* adapting the Laplace test to the random variable: number of
failures and introduction of the notion of local and global
reliability growth;

* presenting the various types of reliability growth models
and validation criteria;

« discussing the way in which reliability growth models can
be applied in a predictive manner.

A. Reliability Evaluation Objectives

The objectives of reliability evaluation are generally expressed
in terms of measures. When the software is in operation, two
types of measures are useful:

a) from the user’s viewpoint: the mean time to failure, MTTF
(or failure rate of the next failure), and/or the expected
software residual failure rate in operational life so as to
evaluate the reliability of the whole system;

b) from the designer’s viewpoint: first the expected number of
failures among all instailed systems and then the number
of corrections to be introduced in the software to estimate
the maintenance effort still needed.

When the software is under development, interesting measures

are:

c) the evolution of the number of detected faults in the
software in response to the test and debugging effort;

d) the expected number of failures for the following periods
of time so as to plan the test effort and thus the time and
the numerical importance of the test team.

It is worth noting that these objectives lead to considering two

different random variables :

+ for maintenance and test mamagement and planning, the
random variable will be the number of failures per unit of
time;

« for reliability evaluation, the random variable “interfailure
time” is more suited for estimating the MTTF of the software
or its failure rate.

These two random variables are not independent: by knowing
the interfailure times it is possible to obtain the number of
failures per unit of time (the second form needs less precise
data collection). Both of them are considered below.

B. Trend Analysis

Existing reliability growth models allow to model either relia-
bility growth with a decreasing ROCOF (Rate of OCcurrence Of
Failures) or reliability decrease prior to reliability growth, i.e.,
the number of failures per unit of time first increases and then
decreases to zero (the ROCOF is bell-shaped); these are called
S-shaped models [10], [30] because the curve representing the
cumulative number of failures 1s S-shaped.

It is therefore very important to identify the trend
(growth/decrease) in order to use the appropriate reliability
growth models. Several trend tests can be used, either graphical
or analytical [4], [17]; we selected the Laplace test, proposed in
[3], (4], [7] and extended in [17]. This test was developed for
the interfailure time random variabie, when the random variable
is the number of failures per unit of time, the expression of
the Laplace test factor u(k) at time unit & can be deduced as
suggested in [7, p.54]. The details of the derivation of u(k)are
presented in Appendix A. Then, this factor is given by

u(k):-c—%’_—’f-. k=2.-.p
V ove
where
k
S (- n,
_ =1
CTTNm
k-1
m=—

2
p is the total number of units of time.

n, is the number of failures during the :th time unit.
N(k) is the cumulative number of failures up to the
kth time unit

k
N(k) = n,

Positive values of u(k) indicate a decrease of the software
reliability whereas negative values indicate reliability growth [3].
The Laplace test can be used with confidence levels to accept or
reject the hypothesis: no reliability trend versus reliability trend;
however in our case it is used as an indicator for reliability growth
or decrease; moreover it is adapted to identifying global and local
trends in the following manner.

The factor u(k) is evaluated among all the data collected up to
the time unit since it indicates the giobal variation of reliability.
It is worth noting that even in the presence of global reliability
growth (decrease), local reliability decrease (growth) may occur.’

! Global: versus all data collected from the beginning of the observation
penod to the considered unit of time. Local: versus the data observed dunng
some units of time just before the umit of time considered.
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Fig. 1. Trend analysis using Laplace test and ROCOF evolution.

Local fluctuations can be detected by studying the variation of
u(k): when u(k) is positive and tends to decrease, it suggests a
decrease 1n the number of failures observed over the considered
period which means that, locally, reliability tends to increase
- although a global decrease is observed.

This is summarized in Fig. 1, where the units of time during
which the local tendency of u(k) changes correspond to the
inflexion region (called inflexion point) of the curve giving the
cumulative number of failures.” The evolution of the ROCOF
indicates local reliability growth or decrease only.

Two types of tendency changes (inflexion points) can be
distinguished:

* type 1: corresponding to transition A-B, which is common

and expected during testing and validation phases;

« type 2: corresponding to transition C-D, which denotes a

reliability regression, i.e.. an increasing number of detected
failures per unit of time.

Reliability trend changes may result from a great vanety of
phenomena, such as:

* dependency of faults: some software faults can be masked
by others, i.e., they cannot be activated as long as the latter
are not removed [27]:

* variation in time delay between the detection of an error and
its removal; this is closelv dependent on the nature of the
activated faults: some faults are more difficult to identify
than others and take longer ime to be removed;

* variation in the utilization environment: the variation in the
testing effort during debugging, change in test sets, addition
of new sites during the operational life;

» slight specification changes.

These phenomena can act either separately or concurrently

2The curve was smoothed to show the main periods of time: some small
(and very local) fluctuations due to the random nature of data may take place,
these fluctuations are normal and will not be considered 1n the following. We
only consider those trend changes which occur during a relatively long penod
of time.

C. Selection and Validation of Reliability Growth Models

The reliability growth model to be applied depends on the
objectives of evaluation presented in Section III-A and on the
nature of the trend. Objective a (evaluation of MTTF and
residual failure rate) can be reached through a model allowing
MTTF evaluation, such as the models of Jelinski-Moranda [13],
Littlewood—Verral [22], or Keiller-Littlewood [18]. With respect
to the residual failure rate expected in operational life, the
hyperexponential model [17], [19], [21] is the only suitable
model. In fact, most other existing models assume that the failure
rate tends to zero when ¢ tends to infinity (nil residual failure
rate in operational life).

Objectives b, ¢, and d (test planning and maintenance effort)
can be obtained through a model based on counting; in this case
nonhomogeneous Poisson process models (NHPP) seem suitable.
The advantage of the NHPP models is that they are relatively
independent of many hypotheses necessary for the derivation of
several published models, for instance, no relationship between
failures and corrections is assumed.

Many NHPP models have been developed, allowing three
types of reliability tendency to be modeled:

* decreasing ROCOF tending to zero when ¢ tends to infinity
(e.g., the exponential [12] or logarithmic models [25]);

* decreasing ROCOF iending to a nonzero value when ¢ tends
to infinity (allowing steady behavior in operational life to
be evaluated): the hyperexponential model;

* ROCOF increasing prior to undergoing ROCOF decreasing;
it can thus be applied to an observation period where the
trend test has the form of the A-B-C period of Fig. 1.

The first two types of models yield better results when applied
to data displaying reliability growth: that is, period C of Fig. 1.
However, in Fig. 1(a), global reliability decrease for A and B is
due to the data corresponding to period A; if the latter are not
considered for evaluation purposes, period B will display local
and global reliability growth. These models can be applied to
period B if the data corresponding to period A are not taken into
account. Nevertheless, applving the models in case of reliability
growth only (periods B and C) leads to discarding data pertaining
to A and D from any data set, therefore prediction is delaved until
observing a period such as B or C is observed.

Model Validation: A model can be analyzed according to its
retrodictive and predictive capabilities:

* retrodictive capability: the ability of a model to reproduce
the observed behavior of the software,

* predictive capability- the extent to which the model. based
on the observed data up to a given time, correctly predicts
the failure behavior in the future.

This paper deals with the predictive features; retrodictive
features concerning the TROPICO-R application are given in [6].

Prediction of the failure behavior after a given time interval
is based on failure data observed in this interval. The predictive
capability is evaluated in the foliowing manner.

1) Use the failure data observed up to the time umt ¢ = j — 1
to estimate the unknown parameters of the model (model
calibration).

2) Evaluate H(z), the expected cumulative number of failures
up to unit time .2 > J.

3) Evaluate the residue, i.e., the mean error between the
observed number of failures, N(z), and that foreseen by
the model, H(¢), for time units 7,§ < ¢ < p:
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Operations 1 and 2 represent the so-called prediction system [1].
When the random variable is the interfailure time, operations
2 and 3 have to be adapted; in this case the residue is equal to:
(¢.-MTTF,) where ¢, is the observed time between failure (¢ — 1)
and failure 2, and MTTF, the esumate. The relative residue R, ,
will be evaluated:

3 (¢, — MTTF,)
1=y
Rl‘" - Sn _ S] i (7)
where S, is the time of occurrence of failure ;.

When the random variable is the interfailure time, the Kol-
mogorov—Smirnov distance [1], {7] can also be used as a test of
goodness of fit of the considered model.

Equation (1) enables us to check whether the model yields
results close to the observed ones; on the other hand, (2) permits
us to see the bias in the evaluation: a positive residue (resp.
negative) means that globally the model underestimates (resp.
overestimates) interfailure time. These choices are mainly due to
the very nature of the random variables: N(z) or ¢,.

D. How to Obtain Predictions of Future Reliability

In a predictive situation, statements have to be made regarding
the future reliability of software, and we can only make use of
the information available at that time. A trend test carried out on
the available data helps choose the reliability growth model(s)
to be applied and the subset of data to which this (or these)
model(s) will be applied.

The models are applied as long as the environmental conditions
remain significantly unchanged (changes in the testing strategy,
specification changes, no new system installation ... ). In fact
even in these situations, reliability decrease may be noticed.
Initially, one can consider that it is due to a local random
fluctuation and that reliability will increase some time in the
near future: predictions are still made without partitioning data.
If reliability keeps decreasing, one has to find out why and
new predictions may be made by partitioning data into subsets
according to the new trend displayed by the data.

If a significant change in the development or operational
conditions takes place, great care is needed since local reliability
trend changes may result, leading to erroneous predictions. New
trend tests have to be carried out:

« if there is insufficient evidence that a different phase in the
program’s reliability evolution has been reached, application
of reliability growth models can be continued;

* if there is an obvious “reliability decrease,” reliability growth
models application has to be stopped until a new reliability
growth period is reached again; the observed failure data
have to be partitioned according to the new trend.

1) Number of Models to Be Applied: With respect to the num-
ber of models to be applied, previous studies indicated that there
is not a “universally best” model and suggest that we “try several
models and examine the quality of prediction being obtained
from each” and that even doing so, we “are not able to guarantee
obtaining good predictions...” [1], [18]. During development, it
is not always possible to apply several models, because of lack
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of time, experience, and analytical and practical tools. Usually
peopie only apply one, two, or three models to their data. Anal-
ysis of the collected data and of the environmental conditions
helps us understand the evolution of software reliability, and
data partitioning into subsets helps us improve the quality of
the predictions [15], [28].

2) Model Calibration: The model may be calibrated either
after each new observed data (step-by-step) or periodically after
observation of a given number of failures, say y, (y-step ahead).
Step-by-step predictions seem more interesting. But, in practice,
this may be not feasible, particularly in an industrial environment
when the predictions are made by a team different from the
development team and the collected data are not always available
immediately. In operation. longer interfailure times allow step-
by-step predictions.

E. Conclusion

The results of Laplace test application are interesting, as:

e they allow follow-up of the evolution of the reliability of
the software;

« the inflexion points allow data to be partitioned into subsets
(called stages) and reliability growth models to be applied
to these stages enhance the quality of the estimation made;
type 2 inflexion points constitute boundaries between these
stages. In a predictive situation:

— an S-shaped model is applied to data including a
type 1 inflexion point (reliability decrease followed
by reliability growth);

— models corresponding to reliability growth can be
applied to data from a type 1 inflexion point to a
type 2 inflexion point (reliability growth region).

The idea of dividing data into subsets has been used in [15],
[16], [17], and [28] (empirically, in the latter case); however, the
Laplace test used in the preceding manner helps this partition: it
tells you where to do it.

IV. TROPICO-R Test ENVIRONMENT AND FAILURE DATA

A. Test Program

The software test program for TROPICO-R is a four-step
process: 1) unit test, 2) integration test, 3) validation test, and 4)
field trial. The first three operations correspond to the test phases
usually defined for the software life cycle. Field trial consists
of testing a prototype in a real environment, which approaches
the normal operating environment. It uses a system configuration
(hardware and software) that has reached a sufficient level of
quality after completing the laboratory testing program.

The description of the whole quality control program for
TROPICO-R is given in [31] and [32]. The test program carried
out during validation test and field trial is decomposed into four
tests:

1) Functional tests verify the correct operation of all specified
telephone, maintenance, and operation functions.

2) Quality tests ensure that a specified rate of call loss is
not exceeded. Cail loss may be due either to a failure
in the software and/or hardware of the system or missing
call resources (resource failure or all resources are already
used). At the beginning of the test we ensure that all
resources needed for calls are available so that any lost
cail can only be due to software and/or hardware failure.
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3) Performance tests ensure compliance with the quality of
service requirements under a nominal traffic.

4) Overload tests check the correct operation of traffic over-
load control mechanisms so that the calls accepted by
the telephone exchange subject to this exceptional traffic
comply with the specified quality of service.

B. Failure Report (FR)

Handling of failure data affecting the TROPICO-R product is
achieved through use of an appropriate FR sheet containing the
following:

» date of failure occurrence;

* origin of failure: the system configuration in which the

failure was detected and the conditions of occurrence;

* type of FR: hardware, software, documentation, and the

affected modules;

+ analysis: identification and classification of the fault which

led to the failure (coding, specification, interface, ... );

» solutions; the proposed solutions and those retained;

* modification control: control carried out by the person in

charge of the module;

« edition control: control of the corrected modules;

* regression testing: results of the tests applied to the corrected

module(s).

Only one FR is kept per detected failure: rediscoveries [2] are
not recorded. In other words, if several FR’s, caused by the same
fault, are drawn up by different testing groups, only one FR is
entered into the database: generaliy the first one. In fact, an FR
is a failure report as well a fault (or correction) report since it
also contains information on the fault that led to failure.

Two TROPICO-R ESS software versions have been developed,
namely 1500 and 4096 subscriber versions. The analyzed failure
data correspond to the former version. Software volume is about
300 kb written in Assembly language.

C. TROPICO R Failure Data

The cumulative number of failures per periods of ten days
(units of time) is indicated in Fig. 2: data corresponding to the
validation test go from time unit 1 to 30, the field trial test goes
from time unit 31 to 42. The validation test went on for about
ten months and resulted in 297 corrections. The field trial was
performed for four months and led to 55 corrections, whereas 108
corrections were made during the first year of operation. Time
corresponds to calendar time excluding vacation periods. Even
though execution time seems more suitable than the calendar
time [25], it was not easy to obtain this information® in our case.

V. EvaLuation oF TROPICO-R RELIABILITY

When this study took place, all the failure reports were
available. and it was not possible to apply the method presented
in Section 2 in a truly predictive situation. However, we have
tried to show how the results would have been used in real time.

First, the Laplace test is employed to identify the trend. Then,
reliability growth models are used to predict the number of fail-
ures and the residual failure rate in operation. The characteristics

3TROPICO-R software is divided mto several implementation modules.
Some modules (such as the Operational System modules) are more executed
than other (e.g application modules). As TROPICO-R is a distributed system,
it 1s very difficult to evaluate CPU time. Accordingly it 1s useful to adopt
calendar time as the time basis for the rehiability evaluation During the
validation phase there was only one prototype working all day Jong. so that
calendar time can be regarded as a good time basis.

Validation tield trial Operation
Time unit CNF Time umt CNF Time unit | ~— CNF
1 7 31 301 43 356
2 8 32 302 44 367
3 36 33 310 45 373
4 45 34 317 46 373
5 60 35 319 47 378
6 74 36 323 48 381
7 82 37 324 49 383
8 98 38 338 50 384
9 106 39 342 51 384
10 115 40 345 52 387
11 120 4] 350 53 387
12 134 42 352 54 387
13 139 55 388
14 142 56 393
15 145 57 398
16 153 58 400
17 157 59 407
18 174 60 413
19 183 61 414
20 196 62 417
21 200 63 419
22 214 64 . 420
23 223 65 429
24 246 66 440
25 257 67 443
26 277 68 448
27 283 69 454
28 286 70 456
29 292 71 456
30 297 72 456
73 457
74 458
75 459
76 459
77 459
78 460
79 460
80 460
81 461

Fig. 2 Cumulative number of fallures (CNF) per penods of 10 days

(lime unit)

1 6 11 16 21 26 31 36 41 46 51 5 6] 66 71 76

HH R Time ui
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Fig 3. Result of Laplace trend test for the whole set of data.

of the S-shaped model! and the hyperexponential models are given
in Appendix B.

A. Application of the Laplace Trend Test

First. the Laplace test is applied to the whole set of data. The
results are displayed in Fig. 3. which gives the Laplace factor
u(k) versus k, the number of ume unit, and where a high global
reliability growth can be noticed at the end of the observation
period.

The results, obtained separately for each phase (using data
pertaining specifically to the phase considered), are shown in
Fig. 4, and are presented in chronological order.

It is interesting to comment on both figures at the same time:

* at the beginning of the validation, “an apparent” rehability

decrease took place as a result of the correction of 28
faults during the third unit of time, whereas only 8 faults
were removed during the first two time units and 24 during
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Fig. 5. Number of installed sites versus time.

the next two time units; applying the trend test without
considering the data belonging to the three first time units
leads to a negative Laplace factor for the whole period
{however the shape of the u(k) curve is not changed);

* the local reliability decrease from £ = 14 to k£ = 25 was
induced by the changes in nature of the tests within the
validation phase: this period corresponds to the application
of the quality and the performance tests after the functional
tests in the previous period; this decrease is due to their
dynamic nature {traffic simulation) which has activated new
parts of the program;

* transitions from validation to field trial and from field trial
to operation did not give rise to a reliability discontinuity:
reliability was still improving;

* Fig. 3 indicates that from k& = 55 up to k = 70 reliability
tends to be stabilized: u(k) is almost constant, suggesting a
local reliability decrease; this behavior is reinforced when
considering the trend results obtained for operational data
only in Fig, 4, where reliability decrease is more evident;
from k& = TO this trend is reversed; this failure behavior is
directly related to the number of installed exchanges over
the periods considered (see Fig. 5), during which about 12
exchanges were installed and the number of failures reported
by the users increased; by time unit 70, the 4096 version had
been released and no new 1500 version had been installed,
which corresponds to the period of local reliability growth
(fewer failures reported).

These results show that the systems installed have reached a
sufficient level of quality after the new software releases which
incorporate the necessary corrections. It is worth noting that, for
the same calendar time used as a reference in the following,
the increase in the number of software copies is equivalent to a
stress test in terms of execution time. Reliability decrease does
not necessarily mean that software is less reliable, however it
does imply an increase in the maintenance effort that will have

N@), H@)

Time unit
Eg,14 = 2.6

Fig. 6. Application ot the S-shaped model to validation data.
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Fig. 7. Application of the S-shaped model to operational data.

to be taken into consideration for maintenance planning.

B. Model Application
The results of the trend analysis evidence changes in the trend
over the considered phases and two periods of reliability decrease
have been identified. These results guide the model application:
+ an S-shaped model (SS) is applied to follow up the number
of detected failures;
+ the hyperexponential model (HE) is applied at the end of
operational life in order to estimate the residual failure rate
of the software.

1) Model Application to the Whole Data: Let us apply the SS
model to validation data: data from £ = 1 to & = 8 are used to
estimate the model parameters and predict the cumulative number
of failures. Results are given in Fig. 6 where N(i) denotes
the observed cumulative number of failures up to unit time 2
and H(3) the estimated one. Predictions are very good up to
k = 15 following which they soon become highly inaccurate.
Indeed, & = 14 corresponds to a change in the condition of use
(type 2 inflexion point), the model cannot predict this change
and, as a result, it continues to assume reliability growth and
underestimates the cumulative number of failures.*

The same may apply to operational data: the cumulative
number of failures after £ = 55 is increasingly underestimated
(Fig. 7).

These two model applications show that the S-shaped model
cannot follow the modifications in trend due to type 2 inflexion
points. According to the previous section, data will be partitioned
into stages.

4 Step-by-step prediction from & = 9 does not significantly improve the
results up to k& = 14 (the residue 1s not affected); however better results are
obtamed after & = 15 but they are still erroneous due the type 2 inflexion
point,
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Fig. 8. Validation and field tnal prediction using Laplace test results.

Data corresponding to validation and field trial are thus divided
into two stages (S1 and S2):
S1: Data up to &k = 14 for which w(k) is continuously
decreasing.
S2: Data counted from &k = 15 up 1o the end of field trial
testing.
Data corresponding to operation are also divided into two
stages (S3 and S4):

S3: Data from &k = 43 up to & = 54 for which u(k) is
continuously decreasing.

S4: Data counted from £ = 55 up to the end of the observation
period.

Reliability growth models are applied according to these

stages.

2) Validation and Field Trial Phases: Fig. 8 shows the cumu-
lative number of failures estimated by applying the S-shaped
model three times to different data sets (C1, C2, C3) and the
cumulative number of observed failures N(z). where:

C1: Prediction for S1 from the failure data recorded over the

first eight units of time of S1, A = 1to k = &.

C2. Prediction for S2 using the failure data recorded up
to 2 time units after the type 1 inflexion point which
corresponds to time unit 25 (i.e., data from k = 15 up
to k = 27 of S2).

C3: Prediction for S2 using data including 4 time units after
the inflexion point (i.e.. data from time unit 15 up to 29
of S2).

Prediction accuracy is given by mean prediction errors listed
in Fig. 8. C1 and C3 have a low residue whereas C2 exhibits a
relatively high residue.

The last prediction (C3) yields remarkable results over approx-
imately 4 months (13 units of time of 10 days each): the mean
error is 5.8 and points to a relative error between ime units 30

3~

and 42 which is less than 5. the latter being less than 2%.

How 10 Use These Results During Validation

From data corresponding to the first two and a half months
of validation (k = 1 to 8), curve C1 indicates that if the same
type of tests is continued (i.c.. functional tests) these tests will be
inefficient from the 12th or 13th unit of time (one month later)
since H () will reach a stable value. In other words, the number
of detected failures per unit of time will reach an extremely low
value at this stage. The designer can thus plan to change the type
of tests to be applied in the following months.

[-— NGy oo C5 = (6 =— C4
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[o:] 4.3 3.3
Co 3.5

Fig. 9. Operational prediction using Laplace test results.

From time unit 14, quality and performance tests were applied
leading to a reliability decrease. Since the condition of use are
changing (inducing local tendency changes), prediction will not
be very accurate. Some time is therefore needed prior to applying
any reliability model. Indeed, these models can only be applied
again when reliability growth is noticed, that is, in our particular
case, some units of time after the next inflexion point (since
curves C2 and C3 indicate that the best predictions are obtained
when applying models, 4 units of time after tendency change).

The shape of H(7) is more interesting than the precise values
of the figures: both curves show that for & = 41 (date scheduled
for software release), H (i) will begin to be stabilized, meaning
that the software will not be in a stable state at the beginning of
operational life. This was confirmed later.

3) Operational Life Phase: When the software is in operation,
two types of measures are interesting, that is: the number of
failures over all the installed sites to estimate the maintenance
effort to be made during the operational life and the failure rate of
one site 1o evaluate the whole system failure rate (i.e.. hardware
and software). These two measures are successively addressed
below.

a) Maintenance Effort Prediction: Maintenance effort can
be estimated through evaluation of the number of corrections
10 be performed on the software during the next period of time.
Since FR's are failure as well as correction reports, the number of
corrections 1s estimated by applving a “reliability growth model”
to the collected data over all installed sites, i.e., corrections made
on the software product.

The prediction of the cumulative number of failures applied
to the operational life failure data is given in Fig. 9 where (C4,
C5, C6) are estimated by application of the SS model to three
different data sets and N(7) the cumulative number of observed
failures (i.e., corrections made)

C4: Prediction for S3 based on the first eight units of time of
S3, k= 143 10 k = 50.

C5: Prediction for S4 based on the failure data recorded from
k = 55 to k = 73, that is, 2 time units following the type
1 inflexion point (k = 71. Fig. 4).

C6: Prediction for S4 based on the failure data recorded from
k =53 1t0 k = 75, that is, 4 time units following the type
1 inflexion point.

CS and C6 are very close to each other and the difference in
residue is not significant. Both show that from the 75th unit of
time H(z) is almost linear and that the hyperexponential model
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* k successive zeros mean that (k+1) falures 100k place the same day.

Fig. 10. Interfailure times during the last months of operation (in days).

can be applied from this stage in order to predict the residual
failure rate.

Application of the SS model until time unit 90 (three months
after the considered period) indicates that for the whole installed
sites, the expected number of corrections to be made is about 2
during the next month and 1 per month for the next two months,
i.e., 4 corrections during the next quarter. This was confirmed
later.

b) Failure Rate and Mean Time between Failures in Operational
Life: To evaluate the failure rate and mean time between failures.
the random variable interfailure time has to be considered.

The S-shaped model was applied using data gathered in an
increasing number of sites in order to determine the number of
corrections to be performed on the software product. When the
MTTF is addressed, the user is interested in the reliability of one
site using all the collected data. Data have thus been modified
S0 as to integrate the number of installed sites. Fig. 10 gives the
observed interfailure times ¢, (in days) for one site (an average
site’) during the last months of operation where 34 corrections
were made. X

Laplace Test: The Laplace test is then applied to this subset
(the considered random variable is the interfailure time). The
results are given in Fig. 11 and indicate an almost steady
reliability at the beginning of this period (with u(k) oscillating
between +2 denoting a low reliability decrease and —2 denoting
a low reliability growth) followed by a relative reliability growth.
The time axis is added to the figure in order to show the
correspondence between failures and their time of occurrence
and to allow comparison to Fig. 4.

5The conditions of operation of a telephone exchange may vary greatly
according to the traffic characteristics and the number of sites. Unfortunately
data related to traffic change and to the environment are not available for this
system. Also farlure data do not give the identfication of that site where the
farlure occurred. This is why it was assumed that all sites are submutted to the
“same” environmental conditions and an average site is one of these identical
sites. A more refined evaluation would certainly be obtained by taking nto
account the different types of use. The notion of an “average site” has also
been introduced in [25].

248 433 437 41 445 M9 453 47 461

Number of falures
7 Time unnt
k=65 k=69 k=81
Fig 11 Laplace factor for the last months of operation.

i i MTTF;
7 42 2335
442 4 38 52
U3 0 28.77
444 %0 .77
245 15 36.05
446 0 32.23
247 15 27.23
44 0 25.56
449 120 22.41
45 15 32.87
45 X 3116
452 0 36.22
453 33.38
454 30.9
455 Ei 28.77
456 X 327
457 420 32.54
458 180 54.78
459 %0 61.64
460 555 62,
461 480 88.03

Ra41,461 = 0.65 Raq1,436 = 0.10
Kol S 0.56

T Ay =83 10°Yday

Fig. 12. Results of the HE model application.

Reliability growth at the end is mainly due to the last five
observations for which the mean observed interfailure time is
about 345 days for an average site whereas it was about 24 for
the previous S data. These intervals are 23 days and 1.6 day,
respectively, for the 15 installed sites.

HE Model Application: The results of the HE model applica-
tion to the considered period are summarized in Fig. 12, where
the prediction is done step-by step: data from j = 428 to ; = ;—1
are used to estimate model parameters and MTTF,. It can be seen
that the model gives very pessimistic (and bad) results for the
last five data (as prescribed by Laplace test results).

The residue varies from 0.65 when considering these data to
0.10 without these data.

The Koimogorov—Smirnov distance is 0.56 which is not good,
since the result is significant at the 1% level.

The estimated residual failure rate A, is 3.410~%h
(8.3107%/day), i.e., one failure every 4 months per site. This
time interval is much less than that observed at the end of
the considered period (which corresponds to about one failure
every 345 days, for an average site during the last five data).
Considering the 15 installed sites, this means 15 failures for the
next 4 months for all the sites or one failure every 8 days, to
be compared to the obseved one which is about 1 failure every
23 days.

The estimated residual failure rate without taking into account
the last data is about 310~%/day (i.e., 1.251073/h); although in
accordance with the observed failure rate during this period it
may seem very high. These results may be used as follows. The
residual failure rate may be considered as very high; if this is so
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i ti MTTF;
454 0 37.50
455 90 32.14
456 30 39.
457 420 38.
458 180 323.89
459 90 279.01
460 555 216.17
461 480 298 43

R454 461 = 0.31
Kol Smumov d 029

4 = 2.98 10-3/day

Fig. 13. Results of the HE model application to S6.

the users may ask the designer to enhance software reliability,
and the latter has to develop new test sets that can be run either in
the laboratory or on some installed sites in paralle] with normal
system utilization.

It can be pointed out that the HE model experiences great
difficulties in following a sharp and sudden reliability growth: it
underestimates the last interfailure times and overestimates the
residual failure rate (this property is also true for other reliability
growth models, as shown in [15]). To overcome these difficulties,
data will be partitioned into two sets, as for the SS model.

S5: Data from 428 up to 447 for which reliability growth is

difficult to ascertain.

S6: Data counted from 448 for which reliability growth is

clear.

Application of the HE Model 10 $6° The results obtained when
using data from 448 to 453 to estimate the parameters of the
model (Fig. 13) are better than the previous ones. Predictions
for the last observations are better (the residue is lower, the
Kolmogorov-Smirnov distance is better, and the result is sig-
nificant at the 20% level) and the residual failure rate seems
more realistic.

The residual failure rate is about 1.3107/h (2.9810~*/day) for
one site, i.e.. one failure every 336 days. This is more in keeping
with the interfailure times observed at the end of the data set
and subsequently. This failure rate is quite high compared to
the hardware failure rate which is about 410~%/h. Indeed. the
hardware is fault-tolerant and the failure rate corresponds to
failures leading to system unavailability, whereas the software is
not fault-tolerant and all the consequences of the failures on the
delivered service are included in this figure. It is worth noting that
most of the software failures do not Jead to system unavailability
or call loss. Collected data thus have 1o be partitioned into subsets
according to failure consequences on the delivered service. The
HE mode] will be applied to each of the subsets in order to
evaluate the contribution of the software to the whole svstem
unavailability. To do this, a thorough analysis of the failure
reports is needed to asceriain the effects of each failure: this
analysis has not yet been undertaken. Application of the same
approach to software failure data concerning another ESS [15],
[16] showed that the failure rate leading to system unavailability
is about 5% of the global software failure rate.

VI. CoNCLUSIONS

Software reliability growth models are an important aid to
test/maintenance planning and reliability evaluation. However,
it is well-known that no particular model is better suited for
predicting software behavior for all software systems in any
circumstances. Our work helps the already existing models to
give better predictions since they are applied to data displaying
trends in accordance with their assumptions.

With respect to the application of the proposed method to the
failure data of the TROPICO-R ESS. two models. namely, the
hyperexponential and the S-shaped models, have been analyzed
according to their predictive capabilities.

The results obtained show that:

* the trend test helps partition the observed failure data
according to the assumptions of reliability growth models; it
also indicates the segment of data from which the occurrence
of future failures can be predicted more accurately;

* the prediction approach proposed for the validation and the
field trial phases yields good results over a time period of a
few months, showing that reliability modeling constitutes a
major aid tool for test/maintenance planning and follow up;

* the residual failure rate prediction given by the hyperexpo-
nential model is in accordance with the observed failure data
at the end of the considered period.

Our current work concerns the TROPICO-R 4096 version and

is directed toward:

* the application of reliability growth models 10 hardware
design failures recorded during the test and operational
phases in order to derive a reliability mode! for the whole
system;

* the analysis of software component failure data in order to
deduce system dependability from the components measured
reliability.

APPENDIX A
LAPLACE FactorR DERIVATION

The expression of the Laplace factor u(k) when the random
variable considered is the cumulative number of events (failures
for our purpose) is derived as indicated in [7. p. 54].

Let us consider / time intervals of equal length 4 and let :

N, be the random variable that represents the number of

events that occurred 1n the time interval [(1 — 1)h. /0. . =

1..... k.
n, be the realization of N,, i.e., the number of events that
occurred 1n the time interval [(: — D)h.ik].e = 1..... k.

The occurrence of the events follows a nonhomogeneous
Poisson process whose occurrence rate is given by the equation

Alt) = enmbt, (Al)

If b = 0 the Poisson process becomes homogeneous and the
occurrence rate is time independent. If we observe k& time
intervals. the likelihood is

A
um:Hmm:m

=]

"l 1
[ /\(u)du} "

H =14
n,!

=]

exp | — Alujdu

Le—1uh
(A2)

For the occurrence rate (Al). the likelihood becomes

.

"t N a +bh
(ePh — 1) o bk S{e—=1)n, [e“(l—(“‘")}
exp .

L(k)= = 7
b IIn!
=]

(A3)
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k
where ¥V = Y n,.

=]
Thus the conditional probability density function of the obser~
vations, given that N events have occurred in & time intervals,
is obtained dividing (A3) by the probability

]

=1

P(k)

Ah v
[[ /\(u)du] kb
“7—-exp —/,\(u)du

0

The result is given by (A4) and only depends on the b variable

. x
Lik) N(ebh — 1)V ebk ;(5 - 1in,

= - . (Ad)
P(k) (ebkh — 1)\' Il n!

The conditional log likelihood £(b). is. from (A4),

k
L(b) = log V! — loan,!

=]

k
+ bhz (i = D, + N[log (" — 1) — log (e*** — 1)]

1=)

so that
k
=1
L) = %}’l ={ +N[HS -] b0 (AS)

k .
AY (1= 1)n, = 2=l p =
=]

and the information function Z(b) is

a PR g2.0kk
(ebh_1)7 (ebkhry} . b # 0
A\'h‘z(kz—lz

5 b=0.

I(b) = E{-L"(0)} =

(A6)
Under the null hypothesis b = 0 (constant occurrence rate), the
statistics

k
PN
El O 1=l —_ (k=1
u( k) — ( ) = Y 2
vI(0) V&
12N
are approximately normal distributed with zero mean and unit
variance. A positive value of u(k) means that the considered
statistics is above the mean and therefore indicates b > 0, i.e.,
an occurrence rate increasing with time. On the other hand, a
negative value of u(k) suggests b < 0 (a decreasing failure rate).

APPENDIX B
PRESENTATION OF THE MODELS

The mean function (cumulative number of failures) of the
S-shaped model is given by

H(t) =[1— (1 + ®t)]e™®, (AD
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where the parameters are N and .

The intensity function (ROCOF), which is the derivative of
H(t), is as follows:

h(t) = N®*te™®. (A8)

The inflexion point is situated at ¢ = L.

The expression of the mean function of the hyperexponential
model 1s

H(t) = Lofwe™" + we™!] (A9)

withd € w £1.0<w, <1l.and wy +w, = 1.
Let w; = wand w, = 1 —w = Z: the parameters of the model

are: w. (. and (.
The ROCOF is thus

wCle“"-' +EC2€_:‘:{
weTst 4 Je—dt

h(t) =

(A10)

which is continuously decreasing from an initial value
(«Gi +3¢) to A, = inf ((1. () (X, is the residual failure rate
of the software).

The MTTF,, which is the expected time to failure :, given that
failure ( — 1) occurred at time s, is

Zexp(—Gis) + 5 exp ((,s)
wexp ((1s) + Texp ((s)

The relevant features of this model are:
* the rate of decrease with respect to time is adjustable through
parameter (w.¢;.(;) tuning;
* the fact that it asymptotically tends toward a nonzero limit
Ass
* the fact that it also enables availability growth modeling
{171, [19], [21].

MTTF, =

(Al1)

ACKNOWLEDGMENT

This paper benefitted from discussions with J.C. Laprie
from LAAS. The authors are also grateful to A. Costes and
M. Kainiche from LAAS and to an anonymous reviewer for
their constructive suggestions.

REFERENCES

[1] A.A. Abdel-Ghaly, P. Y. Chan, and B. Littlewood, “Evaluation of
competing software reliability predictions,” [EEE Trans. Software
Eng., vol. SE-12, no. 9, Sept. 1986.

[2] E.N. Adams, “Minimizing cost impact of software defects,” [BM
Res. Division, Rep. RC 8228 (35669), Apr. 11, 1980.

[3] H. Ascher and H. Feingold, “Application of Laplace’s test to
repairable system reliability,” in Proc. 1st Int. Conf. Reliability and
Maintainabulity, Pans, France, June 19-23, 1978, pp. 219-225.

[4] H. Ascher and H. Feingold, Repairable Systems Reliability: Mod-
eling, Inference, Misconceptions and Their Causes (Lecture Notes
in Staustics, Vol. 7), 1984.

[5] V.R. Basili and D. M. Weiss, “Methodology for collecting valid
software engineering data,” [EEE Trans. Software Eng., vol. SE-10,
no. 6, pp. 728-738, Nov. 1984.

(6] M.R. Bastos Martini, K. Kanoun, and J. Moreira de Souza,
“Software reliability evaluation of the TROPICO-R switching
system,” [EEE Trans. Rel., vol. 39, no. 3, pp. 369-379, Aug. 1990.

[7] D.R. Cox and P. A. W. Lewis. The Statistical Analysis of Series of
Events. London: Chapman & Hall, 1978.

[8] P.A. Currit, M. Dyer, and H. D. Mills, “Certifying the reliability of
software,” IEEE Trans. Software Eng., vol. SE-12, no. 1, pp. 3-11,
Jan. 1986.

[9] J. Favrot, C. Lamy, and F. Michel. “Reliability evaluation of
programs for irradiated nuclear fuel testing during the qualification
phase.” Technique et Science Informatiques, vol. 4, no. 2, pp. 209-
223, 1985 (in French).



344

[18]

[19]

120]

[21]

[24]

[25]

[26]

[28]

(29]

30]

131)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 17. NO. 4. APRIL 199]

K. Fukushima and Y. Kishida. “Estimation of the bug curve using
experimental regression analvsis of office automation equipment
software,” in Proc. 5th int. Conf. Reliability and Maintatnabiliry,
Biarritz, France. Oct. 6-10. 1986, pp. 87-91.

R.L. Glass, “Persistent software errors.” IEEE Trans. Sofrware
Eng.. vol. SE-7, no. 2. pp. 162-168, Mar. 1981.

A.L. Goel and K. Okumoto, “Time-dependent error-detection rate
model for software and other performance measures.” JEEF Trans.
Rel.. vol. R-28, no. 3, pp. 206-211. Aug. 1979.

Z. Jelinski and P.B. Moranda, “Software reliabilitv research.” in
Statistical Computer Performance Evaluation. W. Freiberger. Ed.
New York: Academic. 1972, pp. 465-484.

R.K. Iver, S.E. Butner. and E.J. MacClusky, “A statistical failure
load relationship : Results of a multicomputer study.” JIEEE Trans.
Comput.. vol. C-31, no. 5. pp. 696-706, 1982,

K. Kanoun and T. Sabourin. “Software dependability of a telephone
switching svstem.” in Proc. 17th [EEE Int. Symp. Fauli-Tolerant
Computing (FTCS-17), Piusburgh. PA, July 6-—, 1987 pp- 236-
241,

K. Kanoun. J. C. Laprie. and T. Sabourin, “A method for software
reliability growth analysis and assessment.” in Proc. Le Genie
Logiciel ei Ses Applications, Toulouse, France, Dec. 5-9. 1988,
pp. 859-878.

K. Kanoun, “Software dependability growth characterization. mod-
eling and evaluation.” Doctorat és-Sciences dissertation. Institul
National Polvtechnique de Toulouse. France, LAAS Rep. 89-320.
Sept. 1989 (in French).

P.A. Keiller. B. Littlewood. D.R. Miller. and A. Sofer. “Com-
parison of software reliability predictions.” in Proc. 13th IEEE
Int. Symp. Fault-Tolerant Computing. Milano. ltalv, June 1983,
pp. 128-134.

J.C. Laprie. “Dependability evaluation of software svslems in
operation,” IEEE Trans. Software Eng.. vol. SE-10. no. 6. pp. 701 -
714, Nov., 1984,

. “Dependabilitv: A unifving concept for reliable computing
and fault tolerance.” in Resilient Compuring Systems. vol. 2. T.
Anderson, Ed. New York: Collins and Wiley, 1987; also LAAS
Rep. 86-357, Dec. 1986.

J.C. Laprie. K. Kanoun. C. Béounes. and M. Kaaniche. “The
KAT (Knowledge-action-transformation) approach to the modeling
and evaluation of reliability and availability growth,” this issue.
pp. 370-382.

B. Litlewood and J.L. Verral. “A Bavesian rehiability  growth
model for computer software,” J. Rov. Statist. Soc. C. vol. 22
pp. 332-336, 1973,

B. Litlewood, “Software reliabilinn model for modular program
structure,” JEEE Trans. Rel.. vol. R-28. no. 3. pp. 241-246. Aug.
1979,

J.D. Musa, “Software reliability data.” Data and Analysis Center
for Software. Rome Air Development Center (RADC). Rome, NY.
1979.

1.D. Musa er al.. Software Reliabilinv Measurement. Prediction
Application. New York: McGraw-Hill International, 1987.

P.M. Nagel and J. A. Skrivan. “Software reliability: Repetitive run
expenimentation and modeling.” Boeing Computer Service Co..
Seattle. WA, Rep. BCS 98124, Feb. 1982,

M. Ohbz and S. Yamada. “S-shaped software reliability growth
models.” in Proc. 4th Int. Conf Reliability and Maintainabiliry.
Perros Guirec, France. 1984. pp. 430-436.

Y. Tohma er al. “Structural approach to the estimation of the
number of residual software faults based on the hyper-geometric
distribution.” [ELE Trans. Software Eng.. vol. 15. no. 3. pp. 345-
355, Mar. 1989,

R. Troy and Y. Romain. “A statistical methodology for the study
of the sottware failure process and its application to the ARGOS
Center.” JEEE Trans. Software Eng.. vol. SE-12. no. O. pp. 965-
978, Sept. 1986.

S. Yamada and M. Ohba. “S-shaped reliability growth modeling
for software error detection.” IEEE Trans. Rel., vol. R-22. no. 5
Pp- 475-478, Dec. 19R3.

B. Vianna. “R&D at TELEBRAS-CPgD: The TROPICO svstemn.”
n Proc. Int. Conf. Communications (1CC 85), Philadelphia. PA.
June 1988, pp. 622-626.

B. Vianna. E. C. Cunha, and F.F. Boin. “Hardware quality control
in the TROPICO system.” in Proc. Int, Conf. Commumications (ICC
&88), Philadelphia. PA, June 1988, pp. 632-636.

Karama Kanoun received the Certified Engi-
neer degree from the National School of Civil
Aviation, Toulouse, France. in 1977, and the
Doctor-Engineer and Doctor-es-Science degrees
from the National Institute Polytechnique of
Toulouse in 1980 and 1989, respectivelv.

She is currently Chargée de Recherche at
LAAS-CNRS, Toulouse. She joined LAAS in
1977 as a member of the Fault-Tolerance and
Dependable Computing group. She has con-
ducted several research contracts and has been a
consultant for several French companies and for the International Union
of Telecommunications. Her current research interests include modeling
and evaluation of computer system dependability. considering hardware
as well as software. Her Doctoral és-Science dissertation is devoted
entirely to software dependability growth characterization. modeling, and
evaluation, including theoretical as well as practical aspects.

Dr. Kanoun is a member of the working group of the European
Workshop on Industrial Computer Systems (EWICS): “Technical Com-
mittee 7—Reliability. Safety, and Security™ and a member of the AFCET
working group on dependability of computing svstems.

Marta Rettelbusch de Bastos Martini received
the Electric Engineer degree from Pard Federal
University in 1980, the M.S. degree from Camp-
inas State University—UNICAMP in 1983. and
18 currently working on the Doctorate degree in
electric engineering.

She has been working in hardware and soft-
ware reliability for six vears as a researcher
on the TROPICO project at TELEBRAS R&D
Center, Campinas, Brazil. and is a member of
the Quality Assurance team.

Jorge Moreira de Souza received the B.S.
and M.S. degrees in electric engineering from
the Catholic University of Rio de Janeiro in
1971 and 1975, respectively, and the Doctor
es-Sciences degree in 1981 from the Institul
National Polvtechnic de Toulouse, France.

He spent a sabbatical year at the Laboratoire
d’Automatique et d’Analyse des Systemes of
CNRS. Toulouse. in 1988 as an invited re-
searcher, He is responsible for the Quality As-
surance Group of the Switching Department of
TELEBRAS Research and Development Center. Campinas, Brazil, His
current interests are switching systems and performance and reliability
evaluation,



