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ON THE FACES OF THE TENSOR CONE

OF SYMMETRIZABLE KAC-MOODY LIE ALGEBRAS

by

Shrawan Kumar & Nicolas Ressayre

Abstract. — In this paper, we are interested in the decomposition of the tensor
product of two representations of a symmetrizable Kac-Moody Lie algebra g, or more
precisely in the tensor cone of g. As usual, we parametrize the integrable, highest
weight (irreducible) representations of g by their highest weights. Then, the triples
of such representations such that the last one is contained in the tensor product
of the first two is a semigroup. This semigroup generates a rational convex cone
Γ(g) called tensor cone. If g is finite-dimensional, Γ(g) is a polyhedral convex cone.
In 2006, Belkale and the first author described this cone by an explicit finite list
of inequalities. In 2010, this list of inequalities was proved to be irredundant by
the second author: each such inequality corresponds to a codimension one face. In
general, Γ(g) is neither polyhedral, nor closed. Brown and the first author obtained a
list of inequalities that describe Γ(g) conjecturally. Here, we prove that each of these
inequalities corresponds to a codimension one face of Γ(g).

Résumé (À propos des faces du cône tensoriel d’une algèbre de Kac-
Moody)

Dans cet article, nous nous intéressons à la décomposition du produit tensoriel de
deux représentations d’une algèbre de Kac-Moody symétrisable g, et plus précisément
au cône tensoriel de g. Comme d’habitude, nous paramétrons les représentations
irréductibles intégrables et de plus haut poids par ledit plus haut poids. Alors, les
triplets de telles représentations telles que la troisième s’injecte dans le produit ten-
soriel des deux premières est un semi-groupe. Ces triplets engendrent un cône convexe
rationnel Γ(g) que nous appelons le cone tensoriel. Lorsque g est de dimension finie,
Γ(g) est un cône convexe polyédral. En 2006, Belkale et le premier auteur ont décrit
ce cône par une liste finie explicite d’inégalités linéaires. En 2010, le second auteur a
montré que cette liste d’inégalités n’est pas redondante : chaque inégalité correspond
à une face de codimension un. En général, Γ(g) n’est ni fermé, ni polyédral. Brown
et le premier auteur ont obtenu une liste d’inégalités qui décrit conjecturalement le
cône Γ(g). Nous montrons ici que chacune de ces inégalités correspond à une face de
codimension un de Γ(g).
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1. Introduction

Let A be a symmetrizable irreducible GCM (generalized Cartan matrix) of size l+1.
Let h ⊃ {α∨

0 , . . . , α
∨
l } and h∗ ⊃ {α0, . . . , αl} =: ∆ be a realization of A over the

complex numbers C. We fix an integral form hZ ⊂ h containing each α∨
i , such that

h∗Z := Hom(hZ,Z) contains ∆ and such that hZ/
⊕

i Zα
∨
i is torsion-free.

Set h∗Q = h∗Z ⊗Q ⊂ h∗, P+,Q := {λ ∈ h∗Q : 〈α∨
i , λ〉 ≥ 0 ∀i}, and P+ := h∗Z ∩ P+,Q.

Let g = g(A) be the associated Kac-Moody (KM) Lie algebra over C with Cartan
subalgebra h. For λ ∈ P+, L(λ) denotes the (irreducible) integrable, highest weight
representation of g with highest weight λ. Define the (rational) tensor cone as

Γ(g) := {(λ1, λ2, µ) ∈ P
3
+,Q : ∃N ≥ 1 such thatL(Nµ) ⊂ L(Nλ1)⊗ L(Nλ2)}.

The aim of this paper is to describe facets (codimension one faces) of this cone.
Before describing our result, we recall from [BK14] a conjectural description of Γ(g),
due to Brown and the first author. We need some more notation.

Fix {x0, . . . , xl} ∈ h to be dual of the simple roots: 〈αj , xi〉 = δji . Let Q =
⊕l

i=0 Zαi

denote the root lattice. Let X = G/B be the standard full KM-flag variety associated
to g, where G is the ‘minimal’ Kac-Moody group with Lie algebra g and B is the

standard Borel subgroup of G. For w in the Weyl groupW of G, let Xw = BwB/B ⊂
X be the corresponding Schubert variety. Let {εw}w∈W ⊂ H∗(X,Z) be the (Schubert)
basis dual (with respect to the standard pairing) to the basis of the singular homology
of X given by the fundamental classes of Xw.

Let P ⊃ B be a (standard) parabolic subgroup and let XP := G/P be the corre-
sponding partial flag variety. Let WP be the Weyl group of P (which is, by defini-
tion, the Weyl group of the Levi L of P ) and let WP be the set of minimal length
representatives of cosets in W/WP . The projection map X → XP induces an injec-
tive homomorphism H∗(XP ,Z) → H∗(X,Z) and H∗(XP ,Z) has the Schubert basis
{εwP}w∈WP such that εwP goes to εw for any w ∈ WP . As defined by Belkale and
the first author [BK06, §6] in the finite-dimensional case and extended by the first
author in [Kum08] for any symmetrizable Kac-Moody case (see [BK14, §,7] for more
details), there is a new deformed product ⊙0 in H∗(XP ,Z), which is commutative and
associative. Now, we are ready to state Brown-Kumar’s conjecture [BK14].
Conjecture 1.1. — Let g be any indecomposable symmetrizable Kac-Moody
Lie algebra and let (λ1, λ2, µ) ∈ P 3

+. Assume further that none of λj and µ are W -
invariant and
µ−

∑2
j=1 λj ∈ Q. Then, the following are equivalent:

(a) (λ1, λ2, µ) ∈ Γ(g).
(b) For every standard maximal parabolic subgroup P in G and every choice of

triples (w1, w2, v) ∈ (WP )3 such that εvP occurs with coefficient 1 in the deformed
product

εw1

P ⊙0 ε
w2

P ∈
(

H∗(XP ,Z),⊙0

)

,

the following inequality holds:

(IP(w1,w2,v)
) λ1(w1xP ) + λ2(w2xP )− µ(vxP ) ≥ 0,

where αiP is the (unique) simple root not in the Levi of P and xP := xiP .
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Note that if λ1 isW -invariant, L(λ1) is one-dimensional and hence L(λ1)⊗L(λ2) is
irreducible.

In the case where g is a semisimple Lie algebra, Conjecture 1.1 was proved by
Belkale and the first author in [BK06]. The following result is due to the second
author.
Theorem 1.2 ([Res21]). — In the case where g is affine untwisted, Conjecture 1.1
holds.

The conjecture in the general symmetrizable case is still open. But it is conceivable
that the inductive proof in the case of affine g obtained by the second author might
be amenable to handle the general symmetrizable case.

Let us come back to the case where g is semisimple. Then, Γ(g) is a closed
convex polyhedral cone, and Conjecture 1.1 (Belkale-Kumar’s theorem) describes Γ(g)
in (h∗Q)

3 by (finitely many) explicit inequalities. (Recall that a rational cone C is called
convex if for x, y ∈ C and 0 < α < 1, α ∈ Q, αx+(1−α)y ∈ C.) In the case of g = sln, a
larger set of inequalities describing Γ(g) was conjectured by Horn [Hor62] and proved
by Klyachko [Kly98] (combining the saturation result of Knutson-Tao [KT99]). A
larger set of inequalities describing Γ(g) for any semisimple g was known earlier (see
[BS00]). The irredundancy of the above set of inequalities IP(w1,w2,v)

was proved by

Knutson-Tao-Woodward in type A [KTW04] and by the second author in general
[Res10]. (See [Kum14, §1] for more details on the history.) The irredundancy asser-
tion is the statement that each inequality IP(w1,w2,v)

in Conjecture 1.1 corresponds to a

face of Γ(g) of codimension one. The aim of this paper is to extend this result to any
symmetrizable Kac-Moody Lie algebra. We, in fact, prove the following (stronger)
result for any (not necessarily maximal) standard parabolic subgroup P .
Theorem 1.3. — Let g be any indecomposable symmetrizable Kac-Moody Lie
algebra. Let P be a standard parabolic subgroup in G and let (w1, w2, v) ∈ (WP )3 be
a triple such that εvP occurs with coefficient 1 in the deformed product

εw1

P ⊙0 ε
w2

P ∈
(

H∗(XP ,Z),⊙0

)

.

Then, the set of (λ1, λ2, µ) ∈ Γ(g) such that for all αj 6∈ ∆(P ),

(Ij(w1,w2,v)
) λ1(w1xj) + λ2(w2xj)− µ(vxj) = 0

has codimension ♯(∆\∆(P )) in Γ(g), where ∆(P ) ⊂ ∆ is the set of simple roots of
the Levi subgroup L of P .

Let C denote the cone determined by the inequalities in Conjecture 1.1. For P
maximal, Theorem 1.3 implies that if one removes any of the inequalities IP(w1,w2,v)

,

the cone thus obtained is strictly larger than C.
Theorem 1.3 implies that C is locally polyhedral. This property of C plays an impor-

tant role in the inductive proof of Theorem 1 from [Res21]. (Note that in [Res21],
the local polyhedrality is proved in a totally different way.) As a consequence, one can
hopefully think about Theorem 1.3 as a first step towards a proof of Conjecture 1.1.

Combining Theorems 1.2 and 1.3, we get the following.
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Corollary 1.4. — For any untwisted affine Kac-Moody Lie algebra g, the inequal-
ities IP(w1,w2,v)

in Conjecture 1.1 give an irredundent and complete set of inequalities

determining the cone Γ(g).
To prove Theorem 1.3 we will use (geometric) Theorem 1.5 below. Let us introduce

some more notation.
Fix a standard parabolic subgroup P of G. For w ∈WP , we set

∆−(w) = {α ∈ ∆ : ℓ(sαw) = ℓ(w) − 1},

and

∆+(w) = {α ∈ ∆ : ℓ(sαw) = ℓ(w) + 1 and sαw ∈W
P },

where sα is the (simple) reflection corresponding to the (simple) root α. It is easy to
see that for any α ∈ ∆−(w), sαw ∈WP .

Let B− denote the Borel subgroup of G opposite to B. Consider the flag ind-variety
X := (G/B−)2 × G/B and PicG(X ) the group of G-linearized line bundles on X .

For λ ∈ h∗Z, denote the line bundle L−(λ) := G ×B−

Cλ over G/B− (resp. L(λ) :=
G×B C−λ over G/B) associated to the principal B−-bundle G→ G/B− (resp. the
B-bundle G → G/B) via the one-dimensional representation Cλ of B− given by the
character eλ uniquely extended to a character of B− (resp. the representation C−λ

of B given by the character e−λ).
Fix (λ1, λ2, µ) ∈ P 3

+. By an analogue of the Borel-Weil theorem for any Kac-
Moody group G (cf. [Kum02, Corollary 8.3.12]), the G-linearized line bundle
L := L−(λ1)⊠ L−(λ2)⊠ L(µ) on X is such that the dimension of the space H0(X ,L)G

of G-invariant sections is the multiplicity of L(µ) in L(λ1)⊗L(λ2) (cf. [BK14, Proof
of Theorem 3.2]). From this we see that Γ(g) is a convex subset of P 3

+,Q.

Fix (w1, w2, v) ∈ (WP )3 as in Theorem 1.3 and let L ⊃ T denote the standard
Levi subgroup of P , where T is the standard maximal torus of G with Lie algebra h.
The base point B/B in G/B is denoted by o. Similarly, o− = B−/B−. Set

x0 = (w−1
1 o−, w−1

2 o−, v−1o) ∈ X .

For α ∈ ∆+(w1), we set

xα,1 = (w−1
1 sαo

−, w−1
2 o−, v−1o) ∈ X .

Similarly, we define xα,2 associated to α ∈ ∆+(w2). For α ∈ ∆−(v), we set

xα,3 = (w−1
1 o−, w−1

2 o−, v−1sαo) ∈ X .

For any (α, i) as above, we denote by ℓα,i the unique T -stable curve in X containing x0
and xα,i; then ℓα,i ≃ P1 and x0 and xα,i are the two T -fixed points in ℓα,i. Explicitly,

ℓα,1 =
(

w−1
1 P−

α o
−, w−1

2 o−, v−1o
)

⊂ X ,

where P−
α is the minimal (opposite) parabolic subgroup containing B− and sα. Simi-

larly, ℓα,2 and ℓα,3 can be described explicitly.
Consider now

C = Lw−1
1 o− × Lw−1

2 o− × Lv−1o,

acted on by L diagonally.
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Theorem 1.5. — Let P and (w1, w2, v) ∈ (WP )3 be as in Theorem 1.3.
Fix (λ1, λ2, µ) ∈ (h∗Z)

3 such that

∀αj 6∈ ∆(P ), λ1(w1xj) + λ2(w2xj)− µ(vxj) = 0.

Let L := L−(λ1)⊠L−(λ2)⊠L(µ) denote the associated line bundle on X . We assume
that, for any i = 1, 2 and α ∈ ∆+(wi), the restriction of L to ℓα,i is nonnegative.
Similarly, we assume that for any α ∈ ∆−(v) the restriction of L to ℓα,3 is nonnega-
tive.

Then, the restriction map induces an isomorphism:

H0(X ,L)G ≃ H0(C,L)L.

To prove Theorem 1.3, we have to produce line bundles L on X having nonzero
G-invariant sections and satisfying the equalities (Ij(w1,w2,v)

). To do this we start with

a line bundleM on X whose restrictionM|C admits an L-invariant section σ. Now,
we want to extend σ to a regular G-invariant section on X . The first step is to extend
σ to a rational G-invariant section. Even though this rational section can have poles,
we are able to kill them by adding an explicit line bundle L′ to M. An informed
reader will notice that the strategy is similar to the one used by the second author in
[Res10]. Nevertheless, there are numerous difficulties because of infinite-dimensional
phenomena. For example, we have no abstract construction of line bundles arising
from divisors; the order of a pole along a divisor is not so easy to define (and even
if it is defined, such an order could be infinite) etc. In this paper, we overcome these
difficulties by making various constructions more explicit which extend to our infinite-
dimensional situation.

Acknowledgements. — The first author is supported by NSF grants. The second
author is supported by the French ANR project ANR-15-CE40-0012.

2. Zariski’s main theorem

We recall a consequence of the Zariski’s main theorem for our later use.
Proposition 2.1. — Let f : Y −→ Z be a proper birational morphism between two
quasiprojective irreducible varieties. We assume that we have an open subset Ỹ of Y
such that f(Y \Ỹ ) has codimension at least two in Z and that Z is normal. Let L be
a line bundle over Z.

Then, f∗ : H0(Z,L) → H0(Y, f∗(L)) and the restriction map r : H0(Y, f∗(L)) →
H0(Ỹ , f∗(L)) are both isomorphisms.
Proof. — To prove that f∗ is an isomorphism, use the proof of Zariski’s main theorem
as in [Har77, Chap. III, Corollary 11.4].

To prove that r is an isomorphism, consider the following commutative diagram:
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H0(Z,L) H0(Z\f(Y \Ỹ ),L)

H0(Y, f∗L) H0(Y \f−1(f(Y \Ỹ )), f∗L)

H0(Ỹ , f∗L).

β
∼

f∗ ≀ f∗≀

r1
∼

r r2

In the above diagram, β is an isomorphism since f(Y \Ỹ ) is of codimension ≥ 2
and Z is normal. Thus, r1 is an isomorphism. Further, since r1 is an isomorphism and
r and r2 are injective, r is an isomorphism as well.

3. The span of the cone

Before being interested in the faces of Γ(g), we describe the span of it.
Proposition 3.1. — The tensor cone Γ(g) (which is, by definition, a rational cone)
has nonempty interior in the following rational vector space

E = Eg := {(λ1, λ2, µ) ∈ (h∗Q)
3 : λ1 + λ2 − µ ∈ SpanQ(∆)}.

Observe that E has dimension 2 dimh+ ♯∆.
Proof. — If (λ1, λ2, µ) ∈ Γ(g) then some integral multiple N(λ1 + λ2 − µ) belongs to
the root lattice. Hence,

(1) Γ(g) ⊂ E.

Note that, for λ, µ in P+, the point

(2) (λ, µ, λ+ µ) ∈ Γ(g).

We claim that for any simple root αi ∈ ∆,

(3) (ρ, ρ, 2ρ− αi) ∈ Γ(g),

where ρ ∈ h∗Z is any element satisfying ρ(α∨
i ) = 1 for all the simple coroots α∨

i . Indeed,
fix a highest weight vector v+ in L(ρ) and a nonzero ej (resp. fj) in gαj

(resp. g−αj
)

for any simple root αj with [ej , fj] = α∨
j , where gα denotes the corresponding root

space. Consider the element in L(ρ)⊗ L(ρ):

v = fiv+ ⊗ v+ − v+ ⊗ fiv+.

Clearly, ejv = 0 for any j 6= i. Also,

eiv = (eifiv+)⊗ v+ − v+ ⊗ (eifiv+)
= α∨

i v+ ⊗ v+ − v+ ⊗ α
∨
i v+

= 0.

It follows that v is a highest weight vector. But its weight is 2ρ − αi, proving (3).
Combined with (2), we get

(4) (0, 0, αi) ∈ 〈Γ(g)〉, ∀αi ∈ ∆,
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where 〈Γ(g)〉 is the Q-span of Γ(g) in (h∗Q)
3 . Now, by (2) and (4), Γ(g) spans E.

4. On some translated Richardson varieties

Fix a standard parabolic subgroup P of G with Levi subgroup L ⊃ T , where T is
the (standard) maximal torus of G with Lie algebra h. For w ∈WP , let

Xw
P := B−wP/P ⊂ XP and XP

w := BwP/P ⊂ XP

be respectively the opposite Schubert variety and the Schubert variety associated to w.
Proposition 4.1. — Fix (w, v) ∈ (WP )2 and α ∈ ∆ such that

i. v ≥ w;
ii. v̄ := sαv ≤ v;
iii. v̄ 6≥ w.

Then, Xw
v (P ) := XP

v ∩X
w
P = sαX

P
v̄ ∩X

w
P .

In particular, X̊P
v̄ ∩ sαX̊

w
P is nonempty.

Proof. — The inclusion sαX
P
v̄ ∩X

w
P ⊂ Xw

v (P ) is clear. Moreover, Xw
v (P ) is an irre-

ducible closed subvariety ofXP
v of dimension ℓ(v)−ℓ(w) (cf. [Kum17, Proposition 6.6]

and use the surjectivity of Xw
v (B) onto Xw

v (P )). Since sαX
P
v̄ ∩X

w
P is closed in XP

v ,
it is sufficient to prove that

(5) dim(XP
v̄ ∩ sαX

w
P ) = ℓ(v)− ℓ(w).

Consider the incidence variety Y with projection on the second factor:

π : Y := {(x, go−) ∈ XP
v ×G/B

− |x ∈ gXw
P } −→ G/B−.

Set Ȳ := Y ∩ (XP
v̄ ×G/B

−) and π̄ the restriction of π to Ȳ.
Observe first that Y and Ȳ are respectively Pα-stable and B-stable closed subsets
of XP

v × G/B− and XP
v̄ × G/B− respectively and that π and π̄ are equivariant,

where Pα is the minimal parabolic subgroup of G containing B and sα. Moreover,
G ×B Y ≃ G ×P (Pv−1o × Pw−1o−)) is ind-irreducible (i.e., admits a filtration by
finite-dimensional irreducible closed subsets). Hence Y is ind-irreducible. Similarly, Ȳ
is ind-irreducible. Since XP

v is projective, π is proper. Similarly, π̄ is proper. Hence
their images are closed.

Since v ≥ w, o− ∈ Imπ. Hence, π is surjective.
Since v̄ 6≥ w, o− 6∈ Im π̄. Hence, Im(π̄) ⊂

⋃

β∈∆Bsβo
−. But, (v̄P/P, sαo

−) ∈ Ȳ .

Indeed vP/P ∈ Xw
P and sαvP/P = v̄P/P ∈ sαXw

P . Hence, Im(π̄) contains Bsαo
− by

B-equivariance. Since Im(π̄) is closed and irreducible, we get

(6) Im(π̄) = Bsαo−.

We now restrict Y over Pαo
−. Consider the action map

ρ : Pα −→ Aut(XP
v ).

The image Pv of ρ is a finite dimensional connected algebraic group of semi-simple
rank one. Consider

Y◦
red := {(x, p) ∈ XP

v × Pv | p
−1x ∈ Xw

P }
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with its two projections p1 and p2 on XP
v and Pv respectively. Moreover, p2 is Pv-

equivariant and hence surjective. Further, Y◦
red is irreducible since so is p−1

2 (e) and
Pv.

Note that p−1
2 (e) ≃ Xw

v (P ) is of dimension ℓ(v)− ℓ(w). Hence,

(7) dim(Y◦
red) = dim(Pv) + ℓ(v)− ℓ(w).

We already observed that (vP/P, e) ∈ Y◦
red. Since Pv · v is dense in XP

v and p1 is Pv-
equivariant, we conclude that p1 is dominant. Then, still using the Pv-equivariance,
we get

(8) dim(p−1
1 (vP/P )) = dim(Y◦

red)− ℓ(v) = dim(Pv)− ℓ(w), by equation (7)

Set

Ȳ◦
red = Y◦

red ∩ (XP
v̄ × Pv).

As observed above, Ȳ 6= Y. Similarly Ȳ◦
red 6= Y

◦
red. Since X

P
v̄ ×Pv is a hypersurface in

XP
v × Pv, we deduce that

(9) dim(Ȳ◦
red) = dim(Y◦

red)− 1 = dim(Pv) + ℓ(v)− ℓ(w)− 1, by equation (7).

Write now Pα = BU−α(C) ⊔ Bsα and Pv = ρ(B)U−α(C) ⊔ ρ(B)sα, where U−α(C)
is the root subgroup of G corresponding to the negative root −α. Let p̄2 denote the
restriction of p2 to Ȳ◦

red, which is ρ(B)-equivariant. The discussion about the image
of π̄ at the beginning of the proof implies that Im(p̄2) = ρ(B)sα. Hence,

(10) dim(p̄2)
−1(sα) = dim(XP

v̄ ∩ sαX
w
P ) = dim(Ȳ◦

red)− dim(ρ(B)sα).

The expected equality (5) follows from (10), (9) and the identity dim(ρ(B)sα) =
dim(Pv)− 1.

To prove the ‘In particular’ statement of the proposition, observe that

X̊P
v̄ ∩ sαX̊

w
P = (XP

v̄ ∩ sαX̊
w
P ) ∩ (X̊P

v̄ ∩ sαX
w
P )

and the last two open subsets are nonempty in the irreducible variety XP
v̄ ∩ sαX

w
P

(by the first part of the lemma).

Corollary 4.2. — Fix (w, v) ∈ (WP )2 and α ∈ ∆ such that

i. v ≥ w;
ii. w̄ := sαw ≥ w ∈WP ;
iii. v 6≥ w̄.

Then, Xw
v (P ) = XP

v ∩ sαX
w̄
P .

Proof. — Set v̄ = sαv. Then, by [12, Lemma 1.3.18 and Corollary 1.3.19], v̄ ∈ WP ;
v̄ ≥ w̄; v < v̄; and v 6≥ w̄. Hence, we can apply Proposition 4.1 to the pair (w̄, v̄) to
get

(11) XP
v̄ ∩X

w̄
P = sαX

P
v ∩X

w̄
P .
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In particular, we have

dim(Xw
v (P )) = ℓ(v)− ℓ(w)

= ℓ(v̄)− ℓ(w̄)
= dim(X w̄

v̄ (P ))
= dim(sαX

P
v ∩X

w̄
P )

= dim(XP
v ∩ sαX

w̄
P ).

Moreover, by [12, Theorem 5.1.3(d)], sαX
w̄
P ⊂ Xw

P . Hence, XP
v ∩ sαX

w̄
P ⊂ Xw

v (P ).
This proves the corollary.

5. Construction of line bundles

Consider a subvariety Z ⊂ X . If G and so X is finite-dimensional, Z can be realized
as the zero set of a section of some line bundle on X if and only if Z has codimension
one. If G is not finite-dimensional, then X is only an ind-variety and the codimension
is not so easy to define. Moreover, even if there exists a filtration X =

⋃

n Xn by
finite-dimensional closed subvarieties such that Z ∩ Xn has codimension one in Xn,
Z is not necessarily the zero locus of a section of some line bundle on X .

Nevertheless, if Z = Fα,i (resp. Z = Ew̄1,w̄2,v̄) as defined by Formula (12) (resp.
(25)) below, we prove in this section that Z is the zero locus of a section of some line
bundle.

5.1. First divisors. — Fix once and for all fundamental weights̟α0 , . . . , ̟αl
in h∗Z

such that 〈̟αi
, α∨

j 〉 = δji .

LetM be a g-module such that, under the action of h,M decomposes as
⊕

µ∈h∗ Mµ

with finite-dimensional weight spaces Mµ. Set M
∨ =

⊕

µM
∗
µ: it is a g-submodule of

the full dual space M∗.
Recall that X = (G/B−)2 × G/B and o± = B±/B±. Consider, for α ∈ ∆ and

i = 1, 2,

(12) Fα,i = {(x1, x2, go) ∈ X : g−1xi ∈ Bsαo−}

with the reduced ind-scheme structure. It is easy to see that Fα,i is ind-irreducible.
Let p1, p2 and p3 denote the projections from X to the corresponding factor. Set,
for i = 1, 2 and α ∈ ∆,

Mα,i = p∗i (L
−
̟α

)⊗ p∗3(L̟α
).

Lemma 5.1. — The space H0(X ,Mα,i) contains a unique (up to scalar multiples)
nonzero G-invariant section σ = σα,i. Moreover, scheme-theoretically,

Fα,i = {x ∈ X : σ(x) = 0}.

Proof. — Our construction ofMα,i and σα,i is completely explicit.
By the analogue of the Borel-Weil theorem for Kac-Moody groups (cf. [Kum02,

Corollary 8.3.12]), we have (cf. [BK14, Proof of Theorem 3.2]):

(13) H0(X ,Mα,i) ≃ HomC(L(̟α)
∨ ⊗ L(̟α),C).
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Observe that

(14) HomC(L(̟α)
∨ ⊗ L(̟α),C) ≃ HomC(L(̟α)

∨, L(̟α)
∗),

since HomC(V ⊗ W,C) ≃ HomC(V,W
∗) for any C-vector spaces V and W . From

the Equations (13) and (14) it is easy to see that H0(X ,Mα,i)
G is one-dimensional

spanned by the inclusion of L(̟α)
∨ in L(̟α)

∗ under the identifications (13) and
(14). We now identify the zero locus of nonzero σ ∈ H0(X ,Mα,i)

G:
Consider the isomorphism

ψ : G×B−

G/B ≃ G/B− ×G/B, [g, ho] 7→ (go−, gho), for g, h ∈ G,

where [g, ho] denotes the B−-orbit of (g, ho). Consider the B−-equivariant line bundle
C̟α

⊗ L̟α
over G/B, where C̟α

denotes the trivial line bundle over G/B with the
B−-action given by the character e̟α . It is easy to see that

(15) ψ∗(L−̟α
⊠ L̟α

) = G×B−

(C̟α
⊗ L̟α

).

Let v− be a fixed nonzero vector of C−̟α
. Consider the section σo of L̟α

over G/B
given by

(16) σo(go) = [g, v∗+(gv+)v−], for g ∈ G,

where v+ is a nonzero highest weight vector of L(̟α) and v
∗
+ ∈ L(̟α)

∗ is given by

v∗+(v+) = 1 andv∗+(v) = 0, for any weight vector v of L(̟α) of weight 6= ̟α.

By the definition of σo, it is a character of B− of weight −̟α and hence 1 ⊗ σo
thought of as a section of C̟α

⊗L̟α
is B−-invariant. Thus, it canonically gives rise

to a G-invariant section σ̂o of G×B−

(C̟α
⊗ L̟α

).
We next claim that the zero set Z(σo) of σo is given by

(17) Z(σo) = B−sαo ⊂ G/B.

By the definition of σo, Z(σo) is left B
−-stable (since v∗+ ∈ L(̟α)

∗ is an eigenvector
for the action of B−). Take w ∈ W . Then,

wo ∈ Z(σo)⇔ v∗+(wv+) = 0

⇔ w̟α 6= ̟α

⇔ w /∈ 〈sβ〉β∈∆\{α}, by [Kum02, Proposition 1.4.2 (a)]

⇔ w ≥ sα,

where 〈sβ〉 ⊂W denotes the subgroup generated by the elements sβ . This proves the
Equation (17) by the Birkhoff decomposition [Kum02, Theorem 6.2.8]. Thus, the
zero set Z(σ̂o) of σ̂o is given by:

Z(σ̂o) = G×B−
(

B−sαo
)

.

Moreover,

ψ
(

G×B−
(

B−sαo
))

= {(x, go) ∈ G/B− ×G/B : g−1x ∈ Bsαo−}.

From this we obtain that Z(σ) = Fα,i set theoretically.
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To prove that Z(σ) = Fα,i scheme-theoretically, it suffices to show that Z(σo)

(which is set theoretically Xsα = B−sαo ⊂ G/B) is reduced.
For any v ∈ W , consider Z(σo) ∩ Xv = Xsα ∩Xv, which is an irreducible subset

of codimension one in Xv. The Chern class of the line bundle L̟α |Xv
is the Schubert

class εsα ∈ H2(Xv,Z). If Z(σo) ∩Xv were not reduced, say

Z(σo) ∩Xv = d(Xsα ∩Xv) (scheme-theoretically) for some d > 1,

then 1
dε

sα ∈ H2(Xv,Z), which is a contradiction. Hence d = 1, proving that Z(σo) ∩
Xv is reduced for any v ∈W . Thus, Z(σo) is reduced, proving the lemma.

5.2. Subvarieties of X from Schubert varieties. — Fix a standard parabolic
subgroup P of G with Levi subgroup L ⊃ T , where T is the (standard) maximal torus
of G with Lie algebra h. For any triple (w1, w2, v) ∈ (WP )3, set

C̄+
w1,w2,v = Pw−1

1 o− × Pw−1
2 o− × Pv−1o ⊂ X ,

and

(18) Ew1,w2,v = G.C̄+
w1,w2,v ⊂ X under the diagonal action of G.

Lemma 5.2. — For any triple (w1, w2, v) ∈ (WP )3, the set Ew1,w2,v is closed and
ind-irreducible in X .
Proof. — Since G and C̄+

w1,w2,v are ind-irreducible (see [Res21, before Lemma 3] and
the argument in the proof of Lemma 5.4), so is Ew1,w2,v. Note that

(19) Ew1,w2,v = {(g1o
−, g2o

−, g3o) ∈ X : g1X
w1

P ∩ g2X
w2

P ∩ g3X
P
v 6= ∅}.

Observe that Ew1,w2,v = X if εvP occurs in εw1

P · ε
w2

P with nonzero coefficient (cf.
[BK14, Porposition 3.5]).

By the following isomorphism

G×B (G/B−)2 −→ X , [g, x] 7→ (gx, gB/B),

it is sufficient to prove that

Ẽ = {(g1o
−, g2o

−) : g1X
w1

P ∩ g2X
w2

P ∩X
P
v 6= ∅}

is closed in X¯s := (G/B−)2 ≃ (G/B−)2 × o. Consider

π¯s : X¯s −→ X¯s,

where

X¯s := {(y, g1o
−, g2o

−, o) ∈ G/P ×X : y ∈ g1X
w1

P ∩ g2X
w2

P ∩X
P
v }

and π¯s is the projection to the last three factors. Note that Ẽ is the image of X¯s and
X¯s is closed in XP

v ×Xs. Consider a filtration X¯s =
⋃

n X
n
¯s
by closed finite-dimensional

subvarieties. Then, π−1
¯s

(Xn
¯s
) is closed in XP

v ×X
n
s . Since X

P
v is projective, it follows

that π¯s(π
−1
¯s

(Xn
¯s
)) is closed in Xn

¯s
. This concludes the proof since π¯s(π

−1
¯s

(Xn
¯s
)) =

Ẽ ∩ Xn
¯s
.
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For w ∈WP , we set X̊w
P = B−wP/P and X̊P

w = BwP/P . Consider, for any triple
(w1, w2, v) ∈ (WP )3,

X := {(gP/P, x) ∈ G/P ×X : g−1x ∈ C̄+}

= {(y, g1o
−, g2o

−, g3o) ∈ G/P ×X : y ∈ g1X
w1

P ∩ g2X
w2

P ∩ g3X
P
v }(20)

and

X̊ := {(y, g1o
−, g2o

−, g3o) ∈ G/P ×X : y ∈ g1X̊
w1

P ∩ g2X̊
w2

P ∩ g3X̊
P
v },

where C̄+ = C̄+
w1,w2,v. Observe that X is closed in G/P × X and it is ind-irreducible

since X = G · (P/P, C̄+).

Consider also the set X̊+ of points (y, g1o
−, g2o

−, g3o) ∈ X̊ such that the linear
map

Ty(g3X̊P
v ) −→ Ty(G/P )

Ty(g1X̊
w1
P

)
⊕ Ty(G/P )

Ty(g2X̊
w2
P

)

is injective, i.e.,

Ty(g1X̊
w1

P ) ∩ Ty(g2X̊
w2

P ) ∩ Ty(g3X̊
P
v ) = (0),

where T denotes the Zariski tangent space.
For v ∈WP , we denote v′ → v if v′ ∈ WP , ℓ(v′) = ℓ(v)− 1 and v′ ≤ v.

Lemma 5.3. — The subsets X̊ and X̊+ are open in X for any triple (w1, w2, v) ∈
(WP )3.

In the definition of X̊ and X̊+ if we replace X̊wi

P (for any i = 1, 2) by any B−-stable

open subset of X̊wi

P ∪ (
⋃

wi→w′
i
∈WP X̊

w′
i

P ) and X̊P
v by any B-stable open subset of

X̊P
v ∪ (

⋃

v′→v,v′∈WP X̊P
v′), then the lemma still remains true.

Proof. — Consider the projection

π : G×4 → G/P ×X , (g, g1, g2, g3) 7→ (gP/P, g1o
−, g2o

−, g3o),

and define X̃ := π−1(X) and
˜̊
X := π−1(X̊). Then,

(21) X̃ = {(g, g1, g2, g3) ∈ G
×4 : gP/P ∈ g1X

w1

P ∩ g2X
w2

P ∩ g3X
P
v },

and

(22)
˜̊
X = {(g, g1, g2, g3) ∈ G

×4 : gP/P ∈ g1X̊
w1

P ∩ g2X̊
w2

P ∩ g3X̊
P
v }.

Define the morphism

β : X̃→ Xw1

P ×X
w2

P ×X
P
v , (g, g1, g2, g3) 7→ (g−1

1 gP/P, g−1
2 gP/P, g−1

3 gP/P ).

Then,
˜̊
X = β−1

(

X̊w1

P × X̊
w2

P × X̊
P
v

)

and hence
˜̊
X is open in X̃. Thus, π being an open map, X̊ is open in X.

We now prove that

X̊+ is open in X̊ (and hence in X).
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By the Equation (22)

(23) π−1(X̊)=
˜̊
X= {(g, g1, g2, g3) ∈ G

×4 :
g−1g1 ∈ Pw

−1
1 U−, g−1g2 ∈ Pw

−1
2 U−, g−1g3 ∈ Pv−1U},

and

(24)
π−1(X̊+) = {(g, g1, g2, g3) ∈ π−1(X̊) :

Tė(g−1g1X̊
w1

P ) ∩ Tė(g−1g2X̊
w2

P ) ∩ Tė(g−1g3X̊
P
v ) = (0)},

where ė := P/P ∈ G/P . Consider the morphism

˜̊
β :

˜̊
X→

˜̊
Xw1,w2,v :=

˜̊
Xw1

P ×
˜̊
Xw2

P ×
˜̊
XP

v , (g, g1, g2, g3) 7→ (g−1
1 g, g−1

2 g, g−1
3 g),

where
˜̊
Xwi

P := B−wiP ⊂ G and similarly
˜̊
XP

v := BvP ⊂ G. Define the finite rank

vector bundle Ei over
˜̊
Xwi

P (i = 1, 2) by

⋃

hi∈
˜̊
X

wi
P

Tė(G/P )/Tė(h
−1
i X̊wi

P )→
˜̊
Xwi

P ,

and similarly the finite rank vector bundle E3 over
˜̊
XP

v by

⋃

h∈
˜̊
XP

v

Tė(h
−1X̊P

v )→
˜̊
Xv

P ,

and a morphism over
˜̊
Xw1,w2,v:

ϕ : π∗
3(E3)→ π∗

1(E1)⊕ π
∗
2(E2)

induced by the canonical inclusion of Tė(h−1X̊P
v ) →֒ Tė(G/P ), where πi is the projec-

tion from
˜̊
Xw1,w2,v to the i-th factor.. The set of points Z ⊂

˜̊
Xw1,w2,v where ϕ is

injective is clearly open. But, it is easy to see that (
˜̊
β)−1(Z) = π−1(X̊+), and hence

π−1(X̊+) is open in
˜̊
X and thus X̊+ is open in X̊. This proves the first part of the

lemma.
The proof for the second (stronger) part of the lemma is identical.

5.3. Divisors from Schubert varieties. — In the remaining part of this Section
5, P is still a standard parabolic subgroup (and not necessarily maximal). We fix
(w1, w2, v) ∈ (WP )3 such that εvP occurs with coefficient 1 in the deformed product

εw1

P ⊙0 ε
w2

P ∈
(

H∗(XP ,Z),⊙0

)

.

In particular, w1, w2 ≤ v.
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5.4. The setting. — By a descent we mean a pair (α, i) ∈ ∆× {1, 2, 3} such that

– i = 1, 2 and α ∈ ∆+(wi), i.e., sαwi ∈ WP and ℓ(sαwi) = ℓ(wi) + 1.
In this case we set w̄i = sαwi, w̄3−i = w3−i and v̄ = v. Or

– i = 3 and α ∈ ∆−(v), i.e., ℓ(sαv) = ℓ(v)− 1.
In this case we set w̄i = wi (for i = 1, 2) and v̄ = sαv.

The set of all descents is denoted by D.
We now aim to prove that

(25) Eα,i := Ew̄1,w̄2,v̄ defined by equation (18)

is the zero set of a section of some G-linearized line bundle on X . To do this, we
consider three different situations of descents:

Type A: Descent (α, i) with i = 1 or 2 such that v = v̄ 6≥ w̄i.

Type B: Descent (α, i) with i = 3 such that v̄ 6≥ wj = w̄j for at least one j = 1, 2.

Type C: Descent (α, i) with 1 ≤ i ≤ 3 such that the relation v̄ ≥ w̄j holds for
both j = 1, 2.

5.5. Type A descents. —
Lemma 5.4. — For a descent (α, i) of type A,

Eα,i := Ew̄1,w̄2,v̄ = Fα,i,

where Fα,i is defined by equation (12).
Proof. — Assume that i = 2. (The proof for i = 1 is identical.) Recall from the
Equation (20):

X := {(y, g1o
−, g2o

−, go) ∈ G/P ×X : y ∈ g1X
w1

P ∩ g2X
w2

P ∩ gX
P
v },

for the triple (w1, w2, v). Consider its analogue for w2 replaced by w̄2 := sαw2:

X′ := X′
α,2 := {(y, g1o

−, g2o
−, go) ∈ G/P ×X : y ∈ g1X

w1

P ∩ g2X
w̄2

P ∩ gX
P
v },

and X′
α,i has a similar meaning, where we place sα in the i-th factor.

Let η : G/P × X −→ X be the projection. By Lemma 5.2, η(X′) = Eα,2 (cf. the
identity (19)) is closed in X and ind-irreducible. Define the open subset of X :

X̊ := {(x1, x2, x) ∈ X : (x1, x) ∈ G.(o
−, o)}.

To prove that X̊ is open in X , use the standard isomorphism G×B− G/B ≃ G/B−×

G/B. Since (o−, sαo
−, o) ∈ X̊ ∩ Fα,2 and Fα,2 is ind-irreducible (cf. §5.1), we have

(26) X̊ ∩ Fα,2 = Fα,2.

Since w1 ≤ v, the Richardson variety Xw1
v (P ) := XP

v ∩ X
w1

P is nonempty. Take
x ∈ Xw1

v (P ). There exists g ∈ G such that g−1x ∈ Xsαw2

P . Then, (o−, go−, o) belongs

to X̊ ∩ η(X′). Since η(X′) is ind-irreducible, we deduce that

(27) X̊ ∩ η(X′) = η(X′).
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By (26) and (27), it is sufficient to prove that

(28) X̊ ∩ η(X′) = X̊ ∩ Fα,2.

But G ×T G/B
− −→ X̊ , [g : x] 7−→ (go−, gx, go) is an isomorphism. Consider the

intersection of X with G/P × o− ×G/B− × o:

X¯s¯s = {(x, go
−) ∈ Xw1

v (P )×G/B− : x ∈ gXw2

P }

and

X′
¯s¯s = {(x, go

−) ∈ Xw1
v (P )×G/B− : x ∈ gX w̄2

P }.

Since X is closed in G/P × X (see above Lemma 5.3), X¯s¯s and X′
¯s¯s

are closed in
Xw1

v (P )×G/B−. Note that

(29) X ∩ (G/P × X̊ ) ≃ G×T X¯s¯s, X′ ∩ (G/P × X̊ ) ≃ G×T X′
¯s¯s

under the maps

δ : [g : (x, ho−)] 7→ (gx, go−, gho−, go)

and X̊ ∩ Fα,2 ≃ G×T Bsαo−. Thus, to prove (28), it is sufficient to prove that

(30) X̂¯s¯s = Bsαo−,

where X̂¯s¯s := {go− ∈ G/B− : Xw1
v (P ) ∩ gXsαw2

P 6= ∅}. By Lemma 5.2, X̂¯s¯s is closed
in G/B−.

By the identity (30), it suffices to prove that X̂ss = Bsαo−. By equation (6)

applied in the setting of Corollary 4.2 for w = w2, we get X̂ss ⊂ Bsαo−. Moreover,

by Corollary 4.2, Bsαo
− ⊂ X̂ss (since XP

v ∩ X
w2

P ∩ gXw1

P 6= ∅ for anyg ∈ G due to
the fact that εvP occurs in εw1

P · ε
w1

P with nonzero coefficient [BK14, Proposition 3.5]).

But since X̂ss is closed in G/B−, we get X̂ss = Bsαo−.

5.6. Type B descents. —
Lemma 5.5. — For a descent (α, 3) of type B such that wj = w̄j 6≤ v̄ (for some
1 ≤ j ≤ 2),

Eα,3 := Ew̄1,w̄2,v̄ = Fα,j ,

where Fα,j is defined by equation (12).
Proof. — Without loss of generality take j = 2. By Lemma 5.2, Eα,3 is closed and
ind-irreducible. Define the open subset of X :

X̊ := {(x1, x2, x) ∈ X : (x1, x) ∈ G.(o
−, o)}.

Since (o−, sαo
−, o) ∈ X̊ ∩ Fα,2 and Fα,2 is ind-irreducible (cf. §5.1), we have

(31) X̊ ∩ Fα,2 = Fα,2.

Since w1 ≤ v̄ := sαv, the Richardson variety Xw1
v̄ (P ) := XP

v̄ ∩X
w1

P is nonempty. Take
x ∈ Xw1

v̄ (P ). There exists g ∈ G such that g−1x ∈ Xw2

P . Then, (o−, go−, o) belongs

to X̊ ∩ η(X′), where X′ := X′
α,3. Since η(X

′) is ind-irreducible, we deduce that

(32) X̊ ∩ η(X′) = η(X′).



16 S. KUMAR & N. RESSAYRE

By (31) and (32), it is sufficient to prove that

(33) X̊ ∩ η(X′) = X̊ ∩ Fα,2.

But G ×T G/B
− −→ X̊ , [g : x] 7−→ (go−, gx, go) is an isomorphism. Consider the

intersection of X with G/P × o− ×G/B− × o:

X¯s¯s = {(x, go
−) ∈ Xw1

v (P )×G/B− : x ∈ gXw2

P }

and its closed subset

X′
¯s¯s = {(x, go

−) ∈ Xw1
v̄ (P )×G/B− : x ∈ gXw2

P }.

Since X is closed in G/P × X (see above Lemma 5.3), X¯s¯s and X′
¯s¯s

are closed in
Xw1

v (P )×G/B−. Note that

(34) X ∩ (G/P × X̊ ) ≃ G×T X¯s¯s, X′ ∩ (G/P × X̊ ) ≃ G×T X′
¯s¯s

under the maps
δ : [g : (x, ho−)] 7→ (gx, go−, gho−, go)

and X̊ ∩ Fα,2 ≃ G×T Bsαo−. Thus, to prove (33), it is sufficient to prove that

(35) X̂¯s¯s = Bsαo−,

where X̂¯s¯s := {go− ∈ G/B− : Xw1
sαv(P ) ∩ gX

w2

P 6= ∅}. By Lemma 5.2, X̂¯s¯s is closed
in G/B−.

By the identity (35), it suffices to prove that X̂ss = Bsαo−. By equation (6)

applied in the setting of Proposition 4.1 for w = w2, we get X̂ss ⊂ Bsαo−. Moreover,
by Proposition 4.1, Bsαo

− ⊂ X̂ss. But since X̂ss is closed in G/B−, we get X̂ss =

Bsαo−.

5.7. Type C descents. — Take a descent (α, i), 1 ≤ i ≤ 3, of type C. Thus,

(i) w̄1 ≤ v̄ and w̄2 ≤ v̄;
(ii) ℓ(v̄) = ℓ(w̄1) + ℓ(w̄2)− 1;
(iii) there exist l1, l2 and l3 in L such that the linear map

l3Tv̄ −→
T

l1T w̄1
⊕ T

l2T w̄2

is injective, where the Zariski tangent spaces

T = Tė(G/P ), T
w̄i = Tė(w̄

−1
i X w̄i

P ), and Tv̄ = Tė(v̄
−1XP

v̄ ).

The above condition (iii) follows from the following lemma.
Lemma 5.6. — For any descent (α, i) of type C, the triple (w̄1, w̄2, v̄) satisfies the
above condition (iii).
Proof. — We first prove the lemma for a descent (α, 1) of type C. By the proof of
[Res21, Lemma 19], there exists l1, l2, l3 ∈ L such that

l3Tv ∩ l1T
w1 ∩ l2T

w2 = (0).

Now, T w1 ⊃ T w̄1 , since

T w1 =
⊕

β∈Φ+
P
∩w−1

1 Φ+

g−β and T w̄1 =
⊕

β∈Φ+
P
∩w̄−1

1 Φ+

g−β,
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where Φ+ is the set of positive roots of the Kac-Moody Lie algebra g and Φ+
P :=

Φ+ \ Φ+(L) (Φ+(L) being the set of positive roots of L). Thus,

l3Tv ∩ l1T
w̄1 ∩ l2T

w2 = (0).

The proof of the lemma for any descent (α, i) of type C for i = 2 or 3 is identical.

Proposition 5.7. — Let (α, i) be any descent of type C. Then, there exist a G-
linearized line bundle Lw̄1,w̄2,v̄ over X of the form Lw̄1,w̄2,v̄ = L−(λ1)⊠L−(λ2)⊠L(µ)
for some (λ1, λ2, µ) ∈ P 3

+ and a nonzero G-invariant section σw̄1,w̄2,v̄ of Lw̄1,w̄2,v̄ such
that

Ew̄1,w̄2,v̄ = {x ∈ X : σw̄1,w̄2,v̄(x) = 0}.

Before we come to the proof of the proposition, we need to prove some preparatory
results.

Let U be the commutator subgroup [B,B] of B and Uo− the open cell in G/B−.
Set

Ω = {(x1, x2, g3o) ∈ X : g−1
3 xi ∈ Uo

− for i = 1, 2}.

It is easy to see that Ω is open in X .
The construction of Lw̄1,w̄2,v̄ and σw̄1,w̄2,v̄ is made in two steps:

(1) construct their restrictions to Ω by using a slice technique to reduce to the case
of finite-dimensional varieties (see Lemma 5.9 below). Now, Ew̄1,w̄2,v̄ corresponds to

the subvariety Ê (see (37) below) of an affine space. Lemma 5.8 proves that Ê is a
closed divisor using Lemma 5.3.

(2) Twist the restriction (Lw̄1,w̄2,v̄)|Ω to avoid components of the zero locus
of σw̄1,w̄2,v̄ in the boundary X − Ω. This step uses Lemmas 5.9 and 5.10 below.

Observe that, by the Birkhoff decomposition [Kum02, Theorem 6.2.8],

(36) X = Ω ⊔





⋃

α∈∆, i=1,2

Fα,i



 .

Consider the group homomorphism θ : U −→ Aut(XP
v̄ ) given by the action and

let Uv̄ be its image. Note that Uv̄ is a finite-dimensional unipotent group. Set

(37) Ê := {u ∈ Uv̄ :
(

uX w̄1
v̄ (P )

)

∩X w̄2
v̄ (P ) 6= ∅}.

Lemma 5.8. — The subset Ê of Uv̄ is a closed irreducible divisor of Uv̄.
Proof. — Consider the closed subset of Uv̄ ×X

w̄2
v̄ (P ):

X̂ := {(u, x) ∈ Uv̄ ×X
w̄2
v̄ (P ) : u−1x ∈ X w̄1

v̄ (P )},

with its two projections p1 and p2 on Uv̄ and X w̄2
v̄ (P ) respectively. Since X w̄2

v̄ (P ) is

projective, p1 is proper. In particular, Ê = p1(X̂) is closed in Uv̄.
Recall the definition of X from the Equation (20) and as defined earlier in the proof

of Lemma 5.2,

X¯s := X ∩
(

G/P ×G/B− ×G/B− × {o}
)

= {(y, g1o
−, g2o

−, o) ∈ G/P ×X : y ∈ (g1X
w̄1

P ) ∩ (g2X
w̄2

P ) ∩XP
v̄ },
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its open subset

X̊1 := X¯s ∩
(

G/P × (U · o−)× (U · o−)× {o}
)

,

and

X̂¯s := π−1
1 (X¯s), where π1 : G×X → G/P ×X is the projection.

Then,

(Bv̄P )× (Pw̄−1
1 B−/B−)× (Pw̄−1

2 B−/B−) ≃ X̂¯s, (g, x1, x2) 7→ (g, gx1, gx2, o).

Hence, X̂¯s is irreducible and thus so is its quotient X¯s. By the condition (i) at the

beginning of subsection 5.7, X̊1 is nonempty. By the condition (iii) at the beginning

of subsection 5.7 and Lemma 5.3, X¯s ∩ X̊+ is a nonempty open subset of X¯s. Since

X¯s is irreducible and X¯s ∩ X̊+ and X̊1 are nonempty open subsets of irreducible X¯s,
their intersection

X̊+
1 := X̊1 ∩ X̊+ is nonempty.

Consider the ind-variety Y = G/P × U × U and the morphism

α : Y → G/P×3, (y, u1, u2) 7→ (u−1
1 y, u−1

2 y, y).

Let Y ′ = Y(w̄1,w̄2,v̄) ⊂ Y be the closed ind-subvariety

Y ′ := α−1
(

X w̄1

P ×X
w̄2

P ×X
P
v̄

)

.

Then, there is an isomorphism

β̂ : X̊1 ≃ Y
′, (y, u1o

−, u2o
−, o) 7→ (y, u1, u2).

In particular, Y ′ is also irreducible. Let

Y ′
+ := β̂(X̊+

1 ) ⊂ Y
′ be the nonempty open subset.

Consider the morphism

q : Y ′ → X̂, (y, u1, u2) 7→ (θ(u−1
2 u1), u

−1
2 y).

Clearly, q is surjective. In particular, we obtain that X̂ is irreducible and hence so is

Ê = p1(X̂).
We now determine the image of p2: Let x ∈ X w̄2

v̄ (P) and let v′ ≤ v̄ be such

that v′ ∈ WP and x ∈ X̊P
v′ . Then, x ∈ Im(p2) if and only if Ux∩X w̄1

P 6= ∅ if and only
if w̄1 ≤ v′ (cf. [Kum02, Lemma 7.1.22]). We deduce that

(38) Im(p2) = X w̄2

P ∩





⋃

w̄1≤v′≤v̄;v′∈WP

X̊P
v′



 .

In particular, it is open in X w̄2
v̄ (P ).

We now analyze the fibers of p2: Let x ∈ Im(p2) and v
′ be as above. Then, p−1

2 (x) is

the set of points u ∈ Uv̄ such that u−1x ∈ X w̄1

P . It is the pullback of X̊P
v′ ∩X

w̄1

P by the

orbit map u 7→ u−1x. Since X̊P
v′ ∩X

w̄1

P is irreducible (cf. [Kum17, Proposition 6.6])



ON FACES OF THE TENSOR CONE OF KM LIE ALGEBRAS 19

and the stabilizer of x in Uv̄ is, of course, irreducible (being a closed subgroup of a
finite-dimensional unipotent group), so is p−1

2 (x). Moreover,

(39)
dim(p−1

2 (x)) = ℓ(v′) + dim(StabUv̄
(v′P/P ))− ℓ(w̄1)

= ℓ(v̄) + dim(StabUv̄
(v̄P/P ))− ℓ(w̄1),

where StabUv̄
(v′P/P ) denotes the stabilizer of v′P/P in Uv̄.

Further, by Equations (38) and (39),

dim X̂ = ℓ(v̄) + dim(StabUv̄
(v̄P/P ))− ℓ(w̄1) + ℓ(v̄)− ℓ(w̄2)(40)

= dimUv̄ − 1, by the condition (ii) at the beginning of subsection 5.7.

We return to the surjective map q : Y ′
։ X̂ defined above. By Chevalley’s theorem

(cf. [Har77, Chap. II, Exercise 3.19(b)]), q(Y ′
+) contains a nonempty open subset

(denoted by X̂+) of X̂. By the definition of X̊+
1 , we get the following:

(41) Tx(uX̊
w̄1
v̄ (P )) ∩ Tx(X̊

w̄2
v̄ (P )) = (0), for any (u, x) ∈ X̂+ ⊂ Uv̄ × X̊

w̄2
v̄ (P ),

where

X̊ w̄
v̄ (P ) := X̊ w̄

P ∩ X̊
P
v̄ .

Observe that X̊ w̄i
v̄ (P ) is smooth (which follows from [Kum02, Lemma 7.3.10]).

Consider the projection map

p+1 : X̂+ → Uv̄, where p+1 := p1|X̂+ .

From the above Equation (41), we conclude that

(p+1 )
−1(p+1 (u, x)) ⊂ {u} ×

(

(uX̊ w̄1
v̄ (P )) ∩ X̊ w̄2

v̄ (P )
)

is a finite set for any (u, x) ∈ X̂+. In particular, Ê being irreducible,

dim(Ê) = dim(Im p+1 ) = dim(X̂+) = dim(X̂) = dim(Uv̄)− 1,

where the last equality follows from the Equation (40). This proves that Ê is a divisor,
proving the lemma.

Lemma 5.9. — There exist a G-equivariant line bundle M ∈ Pic(Ω) and nonzero
τ ∈ H0(Ω,M)G such that

Ω ∩ E = {x ∈ Ω : τ(x) = 0},

where E = Ew̄1,w̄2,v̄ (defined by the Identity (11)–(12)). In fact, we can take M =
(p3|Ω)

∗Lχ for a character χ of B.
In particular, E ∩Ω is closed in Ω.

Proof. — By definition,

E = {(g1o−, g2o−, g3o) ∈ X : g1X
w̄1

P ∩ g2X
w̄2

P ∩ g3X
P
v̄ 6= ∅}, by (12)

= {(g1o−, g2o−, g3o) : (g−1
3 g1X

w̄1

P ) ∩ (g−1
3 g2X

w̄2

P ) ∩XP
v̄ 6= ∅}.

Consider the isomorphism ι : Uo− −→ U, uo− 7→ u. Then,

E ∩ Ω = {(x1, x2, g3o) ∈ Ω : ι(g−1
3 x1)X

w̄1

P ∩ ι(g
−1
3 x2)X

w̄2

P ∩X
P
v̄ 6= ∅}

= {(x1, x2, g3o) ∈ Ω :
(

ι(g−1
3 x1)X

w̄1
v̄ (P )

)

∩
(

ι(g−1
3 x2)X

w̄2
v̄ (P )

)

6= ∅},
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since XP
v̄ is U -stable. Here (as earlier) X w̄1

v̄ (P ) := X w̄1

P ∩X
P
v̄ . Thus,

(42) E ∩ Ω = {(x1, x2, g3o) ∈ Ω :
(

[ι(g−1
3 x2)

−1ι(g−1
3 x1)]X

w̄1
v̄ (P )

)

∩X w̄2
v̄ (P ) 6= ∅}.

As earlier, consider the group homomorphism θ : U −→ Aut(XP
v̄ ) given by the

action, and denote by Uv̄ its image (which is a finite-dimensional unipotent group).
Recall (cf. (19)) that

Ê := {u ∈ Uv̄ :
(

uX w̄1
v̄ (P )

)

∩X w̄2
v̄ (P ) 6= ∅}.

Note that the torus T acts by conjugation on Uv̄ and that Ê is T -stable. Being a finite-
dimensional unipotent group, Uv̄ is isomorphic as a variety to an affine space. In partic-

ular, there exists f̂ ∈ C[Uv̄], unique up to scalar multiplication, such that div(f̂) = Ê

(since Ê is an irreducible divisor by Lemma 5.8). Moreover, since Ê is T -stable, f̂ is
an eigenvector of T ; denote by χ the corresponding character. We extend χ uniquely
to a character of B.

Set Ẽ = π̃−1(E) and Ω̃ := π̃−1(Ω), where π̃ : X̃ := G/B−×G/B−×G→ X is the

projection. Then, Ω̃ and Ẽ are stable by the following action of G×B:

(g, b).(x1, x2, g
′) := (gx1, gx2, gg

′b−1).

Consider f̃ : Ω̃ −→ C defined by

f̃(x1, x2, g) = f̂ ◦ θ(ι(g−1x2)
−1ι(g−1x1)).

Then, by the Equation (42), Ẽ ∩ Ω̃ is the zero locus Z(f̃) of f̃ and for b = ut ∈ B
(where u ∈ U, t ∈ T ):

(43)
f̃(x1, x2, gb) : = f̂ ◦ θ(t−1[ι(g−1x2)

−1ι(g−1x1)]t)

= χ(t)f̃(x1, x2, g) = χ(b)f̃(x1, x2, g).

We claim that f̃ induces a section τf̃ of (p3|Ω)
∗(Lχ), where p3 : X → G/B is the

projection onto the third factor.
By the Equation (43), f̃ gives rise to a section τf̃ of the line bundle LΩ(χ) associated

to the principal B-bundle Ω̃→ Ω (induced from the right · action of B on Ω̃) via the
character χ−1 of B. Clearly,

LΩ(χ) = (p3|Ω)
∗(Lχ).

By construction, the zero set Z(τf̃ ) = E ∩ Ω. By the definition of τf̃ , it is easy to
see that it is a G-invariant section. Taking τ = τf̃ , we get the lemma.

We now have a line bundle and a section τ on Ω with the expected zero locus. To
avoid extra zero locus in the boundary X\Ω we need to twist by some line bundles
given by Lemma 5.1. The key point to do this is the following finiteness result:
Lemma 5.10. — The valuation vFβ,i

(τ) is finite for any β ∈ ∆ and i = 1, 2, where
τ is the section taken from Lemma 5.9. (In the proof below we see that Fβ,i is ind-
irreducible.)
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Proof. — We are going to prove that vFβ,i
(τ) can be computed in some finite-

dimensional variety after taking a quotient by a unipotent group.
Fix a simple root β ∈ ∆ and i = 1 and consider

F = Fβ,1 = {(x1, x2, g3o) ∈ X : g−1
3 x1 ∈ Bsβo−}.

Consider the isomorphism

ϕ : X̃ → X̃ , (x1, x2, g) 7→ (gx1, gx2, g).

Endow X̃ with the following two right actions of B:

(x1, x2, g)⊙ b = (b−1x1, b
−1x2, gb)

and

(x1, x2, g) · b = (x1, x2, gb).

Then, the morphism ϕ is B-equivariant with respect to the action ⊙ on the domain
and the action · on the range.

Clearly, π̃ : X̃ → X is a principal B-bundle with respect to the action ·. Define

Ω̃′ := ϕ−1(Ω̃).

By the definition of Ω,

(44) Ω̃′ = Uo− × Uo− ×G.

Let f̂ and f̃ be as in the proof of Lemma 5.9. Set f̃ ′ = f̃ ◦ ϕ : Ω̃′ → C. Thus,

(45) f̃ ′(u1o
−, u2o

−, g) = f̂ ◦ θ(u−1
2 u1), for u1, u2 ∈ U and g ∈ G.

Set F ′ := (π̃ ◦ ϕ)−1(F ) = Usβo− ×G/B− × G. Consider V β := Uo− ∪ Usβo−. It is

an open subset of G/B− (containing Usβo−). By [Kum17, Lemma 6.1] and [KS09,
Proposition 3.2], there exists a closed normal subgroup U of U such that V β −→
U\V β =: Y β is a principal U-bundle and Y β is a smooth finite-dimensional variety.
Moreover, by intersecting with Ker θ, one can assume that U acts trivially on Xv̄.

Let h1, h2 ∈ U . We have, for any u1, u2 ∈ U and g ∈ G,

f̃ ′(h1u1o
−, h2u2o

−, g) = f̂ ◦ θ(u−1
2 h−1

2 h1u1), by Equation (45)

= f̂ ◦ θ(u−1
2 u1), since θ is a group homomorphism

and h1, h2 ∈ U ⊂ Ker θ

= f̃ ′(u1o
−, u2o

−, g).(46)

Since the line bundle p∗3(Lχ) over X pulled to the principal B-bundle π : X̃ → X is
trivialized, to prove the finiteness of vF (τ), it suffices to show that the function

f̃ : Ω̃→ C has a pole of finite order along π−1(F ). Equivalently, considering the

isomorphism ϕ : X̃ → X̃ , it suffices to show that the function

f̃ ′ : Ω̃′ = Uo− × Uo− ×G→ C

has a pole of finite order along F ′ = Usβo− × G/B− × G, since F ′ = ϕ−1(F ); in
particular, F is ind-irreducible.
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The diagonal action of G on X̃ pulled back via ϕ to the action ⊙ of G on X̃ is
given by:

g ⊙ (x1, x2, h) = (x1, x2, gh), for x1, x2 ∈ G/B
− and g, h ∈ G.

The function f̃ ′ : Uo− × Uo− ×G → C descends to a function f̂ ′ on Uo− × Uo− by
Equation (45). So, to prove that the function f̃ ′ has a pole of finite order along F ′,

it suffices to show that the function f̂ ′ : Uo− × Uo− → C has a pole of finite order

along
(

Usβo−
)

×G/B−. Consider the open embedding

(

U\Uo−
)

×
(

U\Uo−
)

→֒
(

U\V β
)

×
(

U\Uo−
)

.

By the Equation (46), the function f̂ ′ descends to a function φ̂′ on (U\Uo−) ×
(U\Uo−). Since

(

U\V β
)

× (U\Uo−) is a (smooth) scheme of finite type over C, the

function φ̂′ has a pole of finite order along the divisor (U\(Usβo−)) × (U\Uo−) and

hence f̂ ′ has a pole of finite order along the divisor (Usβo
−)×Uo−. Since Usβo− is an

open subset of Usβo−, we get that f̂
′ has a pole of finite order along (Usβo−)×Uo−.

This proves the finiteness of vFβ,1
(τ) for any β ∈ ∆. The proof of the finiteness

of vFβ,2
(τ) is identical.

Proof of Proposition 5.7. — Observe that E 6= X by Lemma 4.5. By Lemma 5.9,
there exist a G-equivariant line bundleM over Ω and a nonzero G-invariant section τ
over Ω with its zero set Z(τ) = E ∩Ω. Moreover, the line bundleM is the restriction
of the line bundle p∗3(Lχ) over X . Then, τ is a (rational) section of M′ := p∗3(Lχ)
regular over Ω.

Lemma 5.10 allows to consider the G-linearized line bundle

Lw̄1,w̄2,v̄ :=M′ ⊗





⊗

β∈∆, i=1,2

M
vFβ,i

(τ)

β,i



 over X ,

where the line bundlesMβ,i are as in Lemma 5.1. In particular, Lw̄1,w̄2,v̄ is of the form
L−(λ1)⊠ L−(λ2)⊠ L(µ) for some λ1, λ2, µ ∈ h∗Z.

By Lemmas 5.1, 4.6, 4.7 and the decomposition (36), it has a nonzero G-invariant
section

(47) σw̄1,w̄2,v̄ = τ ⊗





⊗

β∈∆, i=1,2

σ
vFβ,i

(τ)

β,i



 .

Thus, by [Kum02, Corollary 8.3.12], (λ1, λ2, µ) ∈ P 3
+. This proves the proposition

by using the following Lemma 5.11.

Observe that E ∩ Ω ⊂ E (since E is closed by Lemma 5.2). Moreover, since E is
irreducible and E ∩ Ω 6= ∅ (as (o−, o−, o) ∈ E ∩ Ω),

(48) E ∩ Ω = E.

Lemma 5.11. — The zero set Z(σw̄1,w̄2,v̄) := {x ∈ X : σw̄1,w̄2,v̄(x) = 0} is equal
to E.
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Proof. — Consider the map

ψ : X̃ := (G/B−)2 ×G→ X := (G/B−)2 ×G/B, (x1, x2, g) 7→ (gx1, gx2, go).

For any subset Y ⊂ X , we set Ŷ ′ := ψ−1(Y ). Then,

F̂ ′
β,1 = Bsβo− ×G/B

− ×G.

Take an increasing cofinal sequence wn ∈ W (i.e., w̄1 < w̄2 < w3 < · · · and for
any w ∈ W there exists a wn such that w ≤ wn). Take a filtration (Gn)n≥0 of G by
finite-dimensional irreducible subvarieties compatible with its ind-variety structure
(cf. [Res21, above Lemma 2.3]). Now, define the increasing filtration

X̃n := X−
wn
×X−

wn
×Gn of X̃ , where X−

w := B−wo−.

Then,

(49) X̃n ∩ F̂
′
β,1 = (X−

wn
∩Bsβo−)×X

−
wn
×Gn,

and a similar expression for X̃n ∩ F̂ ′
β,2. Thus, X̃n ∩ F̂ ′

β,i is irreducible. Abbreviate

Z = Z(σw̄1,w̄2,v̄). Then, by Lemmas 5.1 and 5.9 and the identity (36), Z ∩Ω = E ∩Ω
and hence Z ⊃ E by the identity (48). Write

Ẑ ′ = Ê′ ∪





⋃

(β,i)∈∆×{1,2}

(Ẑ ′ ∩ F̂ ′
β,i)



 , by the identity (36).

Thus, for any n ≥ 0,

(50) Ẑ ′ ∩ X̃n = (Ê′ ∩ X̃n) ∪





⋃

(β,i)∈∆×{1,2}

(Ẑ ′ ∩ F̂ ′
β,i ∩ X̃n)



 .

But, being the zero set of a section of a line bundle, Ẑ ′∩X̃n is a divisor in X̃n for large n

and so is F̂ ′
β,i ∩ X̃n and the latter is irreducible (divisor of X̃n) by the Equation (49).

From the definition of σ given by the Equation (47), we get (for any (β, i) ∈ ∆×{1, 2})

(51) Ẑ ′ ∩ F̂ ′
β,i ∩ X̃n ( F̂ ′

β,i ∩ X̃n, for large enough n.

Thus, Ẑ ′ ∩ F̂ ′
β,i ∩ X̃n is of codimension ≥ 2 in X̃n for large enough n. But, since

Ẑ ′ ∩ X̃n is a divisor in X̃n, we get from the Equation (50) that

Ẑ ′ ∩ F̂ ′
β,i ∩ X̃n ⊂ Ê

′ ∩ X̃n, for large enough n.

Thus,

Ẑ ′ ∩ X̃n = Ê′ ∩ X̃n, for large enough n which gives Ẑ ′ = Ê′.

Hence, Z = E proving the lemma.

Combining Lemmas 5.1, 5.4 and 5.5 and Proposition 5.7, we get the following.
Corollary 5.12. — For any (α, i) ∈ D, there exists a G-linearized line bundle Nα,i

of the form L−(λ1)⊗L−(λ2)⊗L(µ), for some λ1, λ2, µ ∈ P 3
+, together with a nonzero

G-invariant section µα,i of Nα,i such that the zero set

Z(µα,i) = Eα,i, where Eα,i := Ew̄1,w̄2,v̄.
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Remark 5.13. — Observe that for a descent (α, 3) of type B, there exists exactly
one 1 ≤ j ≤ 2 such that wj = w̄j 6≤ v̄. To show this, assume for contradiction,
that wi 6≤ v̄ for both i = 1, 2.Then, by Lemma 5.5, Eα,3 = Fα,1 = Fα,2. This is a
contradiction since Fα,1 6= Fα,2. This proves the claim.

6. Proof of Theorem 1.5

In this section, we fix P , (w1, w2, v) and L as in the theorem.
As earlier, let D denote the set of descents (α, i) ∈ ∆ × {1, 2, 3} coming

from ∆+(w1), ∆
+(w2) and ∆−(v), i.e.,

D ∩ (∆× {i}) = ∆+(wi) for i = 1, 2 and D ∩ (∆× {3}) = ∆−(v),

where ∆+(wi) and ∆−(v) are defined in the Introduction.

6.1. Strategy. — We set

C = Lw−1
1 o− × Lw−1

2 o− × Lv−1o,

C+ = Pw−1
1 o− × Pw−1

2 o− × Pv−1o,

and (as earlier)

C̄+ = C̄+
w1,w2,v := Pw−1

1 o− × Pw−1
2 o− × Pv−1o.

Recall from Equation (20):

X := {(gP/P, x) ∈ G/P ×X : g−1x ∈ C̄+}
= {(y, g1o

−, g2o
−, g3o) ∈ G/P ×X : y ∈ g1X

w1

P ∩ g2X
w2

P ∩ g3X
P
v }.

As a closed subset of G/P × X , it is a G-ind-variety with the diagonal action of G.
Consider the projection

η : X→ X , (y, x) 7→ x.

For each (α, i) ∈ D, consider the associated P 3-orbit ∂C+
α,i in X , where

∂C+
α,1 := Pw−1

1 sαo
− × Pw−1

2 o− × Pv−1o

and ∂C+
α,i (i = 2, 3) are defined similarly. Then, ∂C+

α,i is open in an irreducible

component of C̄+\C+. Set

C̃+ = Ỹ w1 × Ỹ w2 × Ỹv,

where

Ỹ wi := (Pw−1
i o−) ∪





⋃

(α,i)∈D

Pw−1
i sαo

−





and

Ỹv := (Pv−1o) ∪





⋃

(α,3)∈D

Pv−1sαo



 .
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It is open in C̄+. Similarly, we define the open subset of Xwi

P :

X̃wi

P := (B−wiP/P ) ∪





⋃

α∈∆+(wi)

B−sαwiP/P



 (for i = 1, 2)

and the open subset of XP
v :

X̃P
v := (BvP/P ) ∪





⋃

α∈∆−(v)

BsαvP/P



 .

We also set

X̃′ := {(gP/P, x) ∈ G/P ×X : g−1x ∈ C̃+}
= {(y, g1o−, g2o−, g3o) ∈ G/P ×X : y ∈ g1X̃

w1

P ∩ g2X̃
w2

P ∩ g3X̃
P
v },

which is an open subset of X and hence ind-irreducible (since so is X as observed
earlier below the Equation (20)). We make use of a slice by setting

X¯s := (G/B−)2 × {o} ⊂ X ,

and its B-stable open subset

X
◦◦

¯s := (Bo− ∪
⋃

α∈∆

sαBo
−)2 × {o} =





⋃

ℓ(w)≤1

Bwo−





2

× {o}.

Then, we have a G-equivariant isomorphism:

(52) G×B X¯s ≃ X , [g, x] 7→ gx.

As defined in the proof of Lemma 5.2,

X¯s := {(y, g1o
−, g2o

−, o) ∈ G/P ×X¯s : y ∈ g1X
w1

P ∩ g2X
w2

P ∩X
P
v } ⊂ X.

We also set

X
◦◦

¯s := X¯s ∩ (G/P ×X
◦◦

¯s)

and

X̃¯s := {(y, g1o
−, g2o

−, o) ∈ G/P ×X¯s : y ∈ g1X̃
w1

P ∩ g2X̃
w2

P ∩ X̃
P
v }.

Then,

(53) G×B X¯s ≃ X, [g, x] 7→ gx.

In particular, X¯s is irreducible since so is X. Hence, X̃¯s and X
◦◦

¯s (being open subsets
of X¯s) are irreducible.

We now consider the following commutative diagram (⋄) for any G-equivariant line
bundle L over X as in Theorem 1.5:
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H0(X ,L)G H0(X,L)G H0(G×P C̃+,L)G H0(C,L)L

H0(X¯s,L)
B H0(X¯s,L)

B H0(X̃¯s,L)
B

H0(X
◦◦

¯s,L)
B H0(X

◦◦

¯s,L)
B H0(X̃¯s ∩ X

◦◦

¯s,L)
B ,

η∗ α∗ β∗

η∗1 i∗3

η∗2 i∗7

i∗1 i∗2

i∗4 i∗5

γ∗

i∗6

where

α : G×P C̃+ → X, [g, (x1, x2, x3)] 7→ (gP, gx1, gx2, gx3)

is a G-equivariant open embedding with image X̃′,

β : C →֒ G×P C̃+ is the L-equivariant morphism x 7→ [1, x],

γ : X̃¯s −→ G×P C̃+, (gP, g1o
−, g2o

−, o) 7→ [g, (g−1g1o
−, g−1g2o

−, g−1o)],

is the morphism (which is α−1

|X̃¯s

), η1, η2 are restrictions of η to X¯s and X
◦◦

¯s respectively.

All the maps ij are appropriate inclusion maps. In the above diagram L also denotes
the induced line bundle on each of the above ind-varieties by pullback. Note that the
ind-varieties with ¯s as subscript are B-ind-varieties with the B-action induced from
the G-action of the ambient G-ind-varieties; in particular, the line bundle L over them
is endowed with a natural B-action.

We now prove that all the maps in the above commutative diagram are isomor-
phisms.

6.2. Various isomorphisms. — We first prove the following lemma for its use in
the proof of Lemma 6.2.
Lemma 6.1. — Let UP be the unipotent radical of P . Then,

(a) Any regular map UP → C∗ is constant.
(b) Pic(UP ) = (0).

Proof. — (a) Consider the parabolic subgroup P− opposite to P and the homoge-
neous space G/P−. Then UP can be seen as an open subset of G/P−. For any Schu-

bert variety X−
w = X−

w (P ) := B−wP−/P− ⊂ G/P− (with w ∈ WP ), X−
w ∩ UP is

contractible in the analytic topology (cf. [Kum02, Proposition 7.4.17 and its proof]).
Now, by [KNR94, Lemma 2.5], we get that any regular map X−

w ∩ UP → C∗ is a
constant. From this (a) follows.

(b) By induction on ℓ(w), we show that the group of k-cycles modulo rational
equivalence Ak(X

−
w ∩ UP ) is a finitely generated group. By [Ful98, Proposition 1.8],

we have an exact sequence:

Ak((∂X
−
w ) ∩ UP )→ Ak(X

−
w ∩ UP )→ Ak

(

(B−wP−/P−) ∩ UP

)

→ 0.
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Writing ∂X−
w as a union

⋃

ℓ(v)=ℓ(w)−1 X
−
v and applying [Ful98, Example 1.3.1(c)]

and the induction hypothesis, we get that Ak(∂X
−
w ∩ UP ) is finitely generated. Also,

applying [Ful98, Proposition 1.8] again to the open subset (B−wP−/P−)∩UP of the
affine space B−wP−/P−, we get that Ak ((B

−wP−/P−) ∩ UP ) is finitely generated
since so is Ak(B

−wP−/P−) (cf. [Ful98, Proposition 1.9]). Thus, from the above exact
sequence, we get that Ak(X

−
w ∩ UP ) is finitely generated, completing the induction.

Consider the cohomology exact sequence (since X−
w ∩ UP is contractible in the

analytic topology)

H1(X−
w ∩ UP ,Zm) = 0→ H1(X−

w ∩ UP ,O
∗) = Pic(X−

w ∩ UP )

→ H1(X−
w ∩ UP ,O

∗) = Pic(X−
w ∩ UP )→ H2(X−

w ∩ UP ,Zm) = 0,

induced from the sheaf exact sequence:

Zm → O
∗ → O

∗ → 0,

where the map O
∗ → O

∗ takes f 7→ fm. From the above cohomology exact sequence
we see that Pic(X−

w ∩UP ) is a divisible group. But, since it is also a finitely generated
abelian group (by [Ful98, Example 2.1.1]), it must be trivial. From this, taking limit,
we obtain (b).

Since X is irreducible and Imα = X̃′ is open in X, the restriction map

H0(X,L) −→ H0(G×P C̃+,L) is injective and hence so is α∗.

Lemma 6.2. — (a) The pullback induces an isomorphism:

η∗ : H0(X ,L)G ≃ H0(X,L)G.

(b) The restriction map

H0(C̃+,L)P −→ H0(C+,L)P

is an isomorphism.
(c) The restriction map

H0(C+,L)P → H0(C,L)L

is an isomorphism.
Proof. — (a) follows by [Res21, Lemma 11].

The proof of (b) is analogous to the proof of [Res21, Lemma 13]. We sketch the

proof: the map H0(C̃+,L)P −→ H0(C+,L)P is obviously injective. Hence, it remains

to prove that any P -invariant section σ of L on C+ extends to C̃+.

For x ∈ WP , Px−1o− is contained in Pw−1
i o− if and only if x ≥ wi. Moreover,

{z ∈ W : zo− ∈ Px−1o−} is the set of z ∈ W that can be written as z = yx−1 for

some y ∈ WP . Since xy
−1 ≥ x, such a point zo− belongs to Bw−1

i o−. Then, Pw−1
i o−

and Bw−1
i o− are B-stable and contain the same T -fixed points. We deduce that

(54) Pw−1
i o− = Bw−1

i o−.
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Yet, Pv−1o =
⋃

vn∈WP
Xvnv−1 , where vn is an increasing cofinal sequence in WP .

We now construct an increasing filtration of C̄+ by products of finite-dimensional
Richardson varieties:

C̄+ =
⋃

n∈N

C̄+
n .

Explicitly

C̄+
n := (Xw1

− ∩X
−
wn

)× (Xw2
− ∩X

−
wn

)×Xvnv−1 ,

where {wn} is a cofinal increasing sequence in W and Pw−1
i o− = Xwi

− by the Equa-

tion (54), whereXw
− := Bw−1o− andX−

w := B−wo−. In particular, C̄+
n are irreducible

and normal (cf. [Kum17, Proposition 6.6]). Of course, C̄+
n ∩ C

+ is open in C̄+
n and

nonempty for large enough n. It remains to prove that σ|C̄+
n ∩C+ extends to a regular

section on C̄+
n ∩ C̃

+, for any n.
Fix (α, i) ∈ D. The irreducibility of the Richardson varieties implies that the

intersection C̄+
n ∩ ∂C

+
α,i is either empty or irreducible. Since C̄+

n is normal, to prove

that σ|C̄+
n ∩C+ extends to C̄+

n ∩ C̃
+, it is sufficient to prove that σ|C̄+

n ∩C+ has no pole

along C̄+
n ∩ ∂C

+
α,i if C̄

+
n ∩ ∂C

+
α,i has codimension 1 in C̄+

n .

Assume that Dn := C̄+
n ∩ ∂C

+
α,i has codimension 1 in C̄+

n . Then, Dn is equal to
either

(α) (X ū1
− ∩ X

−
wn

) × (Xw2
− ∩ X−

wn
) × Xvnv−1 , for some ū1 ≥ w1 ∈ WP and ℓ(ū1) =

ℓ(w1) + 1; or
(α′) (Xw1

− ∩ X−
wn

) × (X ū2
− ∩ X

−
wn

) × Xvnv−1 , for some ū2 ≥ w2 ∈ WP and ℓ(ū2) =
ℓ(w2) + 1; or

(β) (Xw1
− ∩X

−
wn

)× (Xw2
− ∩X

−
wn

)×Xvnv−1sα .

Now, we construct an explicit affine open subset Ωn in C̄+
n that intersects Dn.

In case (α), set

Ωn = (Xw1
− ∩X

−
wn
∩ ((ū1)

−1Bo−))× (Xw2
− ∩ X̊

−
wn

)× X̊vnv−1 ,

where X̊−
w := B−wo− and X̊w := Bwo and similarly for the case (α′). In case (β),

Ωn = (Xw1
− ∩ X̊

−
wn

)× (Xw2
− ∩ X̊

−
wn

)× (Xvnv−1 ∩ (vnv
−1sαB

−o)).

Fix τ = z
∑

αi 6∈∆(P) dixi : C∗ −→ T , where di > 0 is an integer such that dixi ∈ hZ.
We now apply [Res21, Lemma 33] to Ωn endowed with the action of C∗ induced
by τ . The checking of the assumptions (i)–(iv) of [Res21, Lemma 33] are done in
the proof of [Res21, Lemma 13]. The only remaining point, with the notation of
[Res21, Lemma 33], is to prove that k ≥ 0. This is done as in [Res21, Proof of
Lemma 13, specifically the part ‘The line bundle on the affine subvarieties’]. Here, the
non-negativity of k is due to the fact that L is nonnegative restricted to the projective
lines ℓα,i for any (α, i) ∈ D, which is our assumption (cf. Theorem 1.5). This proves
(b).
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We now come to the proof of (c). Since H0(C+,L)P is contained in H0(C+,L)τ ,
[Res21, Lemma 14] implies that the map (c) of the lemma is injective. We now prove
its surjectivity:

Consider the map θ : P −→ L, p 7−→ limt→0 τ(t)pτ(t
−1), which is a surjective

group homomorphism. This provides an action of P 3 on C through the homomorphism
θ. Then, the regular map γ : C+ −→ C, x 7−→ limt→0 τ(t)x is P 3-equivariant.

Take the canonical G3-equivariant structure on L over X under the componentwise
action of G3 on X . Thus, we will think of L as a G3-equivariant line bundle over X .
Denote

x = (w−1
1 o−, w−1

2 o−, v−1o) ∈ C.

Then, C = L3 · x and C+ = P 3 · x. Thus,

(55) PicP
3

(C+) ≃ X(P 3
x ) and PicL

3

(C) ≃ X(L3
x),

where X( ) denotes the character group and P 3
x (resp. L3

x) denotes the isotropy
subgroup of P 3 (resp. L3) at x. Now, it is easy to see that (by considering P∩w−1

i B−wi

and P ∩ v−1Bv)

(56) P 3
x = L3

x · (Uw1 × Uw2 × U
′
v) ,

where Uw (resp. U ′
v) is the finite-dimensional (resp. finite-codimensional) subgroup

of the unipotent radical UP of P with Lie algebra
⊕

β∈Φ+∩w−1Φ− gβ (resp.
⊕

β∈(Φ+\Φ+
L
)∩v−1Φ+ gβ), where Φ+ (resp. Φ+

L) is the set of positive roots of G

(resp. L). Moreover, since L3 normalizes U3
P , L

3
x normalizes Uw1 × Uw2 × U

′
v. Now,

for a finite-dimensional unipotent group, any character is trivial and similarly U ′
v has

no nontrivial characters by the same proof as that of Lemma 6.1(a). Thus,

X(P 3
x ) = X(L3

x).

Hence, by combining the Equations (55) and (56), we get

(57) PicP
3

(C+) ≃ PicL
3

(C).

We define the P 3-action on L|C compatible with the action of P 3 on C by demanding

that U3
P acts trivially on L|C . Thus, we get a P 3-equivariant line bundle γ∗(L|C)

over C+. We also have a P 3-equivariant line bundle L|C+ . By the Equation (57), we
readily see that

L|C+ ≃ γ∗(L|C), as P 3-equivariant line bundles;

in particular, as diagonal P -equivariant line bundles.
Thus, for σ ∈ H0(C,L)L, γ∗(σ) ∈ H0(C+,L)P and γ∗(σ)|C = σ. We deduce thus

that the restriction map H0(C+,L)P → H0(C,L)L is surjective. This proves (c).

We thus conclude that the first horizontal line in the above diagram (⋄) satisfies:
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H0(X ,L)G H0(X,L)G H0(G×P C̃+,L)G H0(C̃+,L)P

H0(C,L)L,

∼
η∗

α∗

≀∼
β∗

∼

where η∗ is an isomorphism and the last vertical map is an isomorphism (which follows
from Lemma 6.2).

6.3. Isomorphisms induced from slice. — Since G ×B X¯s ≃ X (cf. Equa-
tion (52)), we get that i∗1 : H0(X ,L)G −→ H0(X¯s,L)

B is an isomorphism. Similarly,
i∗2 is an isomorphism by using Equation (53). Further, γ∗ is an isomorphism since

α : G×P C̃+ → X̃′ is a G-equivariant isomorphism and so is

(58) G×B X̃¯s ≃ X̃′, [g, x] 7→ gx.

6.4. Isomorphisms obtained from restriction to some open subsets. —

Lemma 6.3. — The restriction map H0(X¯s,L) −→ H0(X
◦◦

¯s,L) is an isomorphism
and hence i∗4 is an isomorphism.
Proof. — For any w ∈W , consider the Schubert variety

X−
w := B−wB−/B− ⊂ G/B−.

For any w1, w2 ∈W , consider the open embedding

iw1,w2 : X
◦◦

¯s ∩
(

X−
w1
×X−

w2
× {o}

)

→֒ X−
w1
×X−

w2
× {o}.

The complement

Yw1,w2 :=
(

X−
w1
×X−

w2
× {o}

)

\Im(iw1,w2)

has its irreducible components of the form

(X−
w1
∩BuB−/B−)×X−

w2
× {o} or X−

w1
× (X−

w2
∩BuB−/B−)× {o}

for some ℓ(u) = 2. But, by [Kum02, Lemma 7.3.10], each of these irreducible compo-
nents have codimension 2 in (the finite-dimensional) X−

w1
×X−

w2
× {o}. Thus, by the

normality of X−
w (cf. [Kum02, Theorem 8.2.2(b)], we see that the restriction map

H0(X−
w1
×X−

w2
× {o},L)→ H0(X

◦◦

¯s ∩ (X−
w1
×X−

w2
× {o}),L)

is an isomorphism. Taking limits over w1, w2, we get the lemma.

As observed earlier, X̃′ is irreducible and hence so is X̃¯s by the isomorphism (58)

and X̃¯s ∩ X
◦◦

¯s is open in X̃¯s. It follows thus that the map

i∗6 : H0(X̃¯s,L)
B −→ H0(X̃¯s ∩X

◦◦

¯s,L)
B

is injective.
We now prove that the maps η∗2 and i∗7 are isomorphisms.

Lemma 6.4. — The map H0(X
◦◦

¯s,L) → H0(X
◦◦

¯s,L) induced from η2 is an isomor-
phism and hence so is η∗2 .
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Proof. — It is easy to see that the map η2 is proper. Moreover, it is birational by

[Res21, Lemma 10]. In particular, it is surjective. If X
◦◦

¯s and X
◦◦

¯s are finite-dimensional,
the lemma follows from Zariski’s main theorem (see, e.g., [Har77, Chap. III, Corol-
lary 11.4]). The argument used to prove [Res21, Lemma 11] allows us to prove that

the above map H0(X
◦◦

¯s,L)→ H0(X
◦◦

¯s,L) is an isomorphism. To prove this we first

show that X
◦◦

¯s is ind-irreducible. To prove this, since X
◦◦

¯s is an open subset of X¯s,
by the isomorphism (53), it suffices to show that X is ind-irreducible. Further, since

X = G·(P/P, C̄+) (see above Lemma 5.3), it suffices to show that Pw−1
i o− and Pv−1o

are ind-irreducible. But, as observed earlier in the proof of Lemma 6.2 equality (54),

Pw−1
i o− = Bw−1

i o−. So, it is ind-irreducible. Similarly, Pv−1o =
⋃

vn∈WP
Xvnv−1 ,

where vn is an increasing cofinal sequence in WP . This shows that Pv−1o is also

ind-irreducible. Thus, X is ind-irreducible. Take an open set Ω′
¯s
⊂ X

◦◦

¯s and open set

Ω¯s ⊂ X
◦◦

¯s such that η2 : Ω′
¯s
−→ Ω¯s is an isomorphism. Let ξ : Ω¯s −→ Ω′

¯s
be its

inverse. Now, take an increasing cofinal sequence {un}n≥0 in W and take the filtra-

tion (Yn)n≥0 of X
◦◦

¯s by

Yn := X
◦◦

¯s ∩ (X−
un
×X−

un
),

where X−
un

:= B−uno− ⊂ G/B−. Set Zn := ξ(Ω¯s ∩ Yn) ⊂ X
◦◦

¯s. Then, Yn is irreducible

and normal (since so is X−
un

) and Zn is closed and irreducible in X
◦◦

¯s (by definition).
Moreover, ∪nZn ⊃ Ω′

¯s
. Thus, by [Res21, Lemma 3], (Zn)n≥0 provides an irreducible

filtration for X
◦◦

¯s. Apply now Zariski’s main theorem to the morphism Zn −→ Yn to
conclude that H0(Yn,L) −→ H0(Zn,L) is an isomorphism for all n ≥ 0. Taking the
inverse limit, we get the lemma.

Lemma 6.5. — The restriction map H0(X
◦◦

¯s,L)→ H0(X̃¯s∩X
◦◦

¯s,L) is an isomorphism
and hence so is i∗7.
Proof. — As earlier, consider the action of U on XP

v :

θ : U −→ Aut(XP
v ).

Then, Im θ is a finite-dimensional unipotent group Uv. As a consequence, Ker θ is a
normal subgroup of U of finite-codimension.

Consider now the group

U1 = Ker θ ∩

(

⋂

α∈∆

sαUsα

)

.

Then, U1 is again a normal subgroup of U of finite-codimension (i.e., U/U1 is a finite-
dimensional group). There exists a closed subgroup U of U1 of finite-codimension such

that U is normal in U , U2 := U ×U acts freely and properly on X
◦◦

¯s (under the action

(u1, u2) · (x1, x2, o) = (u1x1, u2x2, o)) and the quotient map πX : X
◦◦

¯s −→ U2\X
◦◦

¯s is
a principal U2-bundle (cf. [Kum17, Lemma 6.1]). Moreover, since η2 is proper (cf.

Proof of Lemma 6.4), U2 acts freely and properly on X
◦◦

¯s.
Consider the action of U2 on XP

v ×X¯s given by

(59) (u1, u2).(y, g1o
−, g2o

−, o) = (y, u1g1o
−, u2g2o

−, o).
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Since U acts trivially on XP
v and y ∈ XP

v , the condition y ∈ uigiX
wi

P is equivalent

to y ∈ giX
wi

P . In particular, X¯s, X
◦◦

¯s and X̃¯s are all stable by the action of U2. Moreover,

η2 : X
◦◦

¯s → X
◦◦

¯s is U2-equivariant.
We consider the associated quotients:

X
◦◦

¯s X
◦◦

¯s X̃¯s ∩X
◦◦

¯s

U2\X
◦◦

¯s U2\X
◦◦

¯s U2\
(

X̃¯s ∩ X
◦◦

¯s

)

.

η2

η̄2

πX πX

Let ΩX be an open subset of U2\X
◦◦

¯s such that the quotient πX is trivial over ΩX .
(It can be seen that πX is locally trivial.) Set ΩX = η̄−1

2 (ΩX ). Choosing a section
of πX over ΩX and taking the induced section of πX over ΩX, we get

(60) π−1
X (ΩX ) ≃ U2 × ΩX and π−1

X (ΩX) ≃ U
2 × ΩX

such that η2|π−1
X

(ΩX) under the above isomorphism is given by

η2(ũ, x) = (ũ, η̄2(x)), for ũ ∈ U2 and x ∈ ΩX.

Since L is G3-equivariant with G3 acting on X componentwise, we get that L
|X
◦◦

¯s

and L
|X
◦◦

¯s

are U2-equivariant. Since U2 acts freely on X
◦◦

¯s (resp. X
◦◦

¯s), L
|X
◦◦

¯s

(resp. L
|X
◦◦

¯s

)

descends to a unique line bundle L̄ over U2\X
◦◦

¯s (resp. U2\X
◦◦

¯s). Hence, under the
decompositions (60),

(61) L|U2×ΩX
= OU2 ⊠ L̄|ΩX

, and L|U2×ΩX
= OU2 ⊠ L̄|ΩX

.

Now, the map

η̄2 : U2\X
◦◦

¯s → U
2\X

◦◦

¯s

is proper. To prove this, consider the projection

π2 : U2\(XP
v ×X

◦◦

¯s) = XP
v × (U2\X

◦◦

¯s)→ U
2\X

◦◦

¯s

with U2 acting on XP
v ×X

◦◦

¯s as in (59). This is clearly a projective morphism. Now,

η̄2 = (π2)
|U2\X

◦◦

¯s

.

Moreover, U2\X
◦◦

¯s is a closed subset of U2\(XP
v ×X

◦◦

¯s) (as can easily be seen) and hence
η̄2 is a projective morphism.

Further, η̄2 is a birational map since so is η2 (cf. Proof of Lemma 6.4).

By the following lemma, η̄2

(

U2\(X
◦◦

¯s\X̃¯s)
)

is of codimension ≥ 2 in U2\X
◦◦

¯s. More-

over, U2\X
◦◦

¯s is normal (cf. [KS09, Proposition 3.2]). In fact, it is smooth (cf. [Kum17,
§10]). Thus, by Proposition 2.1, the restriction map

(62) H0(ΩX, L̄)→ H0(Ω′
X, L̄) is an isomorphism,



ON FACES OF THE TENSOR CONE OF KM LIE ALGEBRAS 33

for any open subset ΩX ⊂ U2\X
◦◦

¯s over which πX admits a section and ΩX := η̄−1
2 (ΩX ),

where Ω′
X := ΩX ∩

(

U2\(X
◦◦

¯s ∩ X̃¯s)
)

. But, by the decomposition (61)

H0(π−1
X (ΩX),L) ≃ H0(U2 × ΩX,OU2 ⊠ L̄)

= lim
←−
n

C[U2
n]⊗H0(ΩX, L̄),(63)

where {Un}n≥0 is a filtration of U giving the ind-variety structure. Similarly,

(64) H0(π−1
X (Ω′

X),L) = lim
←−
n

C[U2
n]⊗H0(Ω′

X, L̄).

Combining the Equations (62) - (64), we get that the restriction map

H0(π−1
X (ΩX),L)→ H0(π−1

X (Ω′
X),L)

is an isomorphism (use [Har77, Chap. II, Proposition 9.1]). Since {π−1
X (ΩX)} provides

an open cover of X
◦◦

¯s, we get that the restriction map

H0(X
◦◦

¯s,L)→ H0(X̃¯s ∩ X
◦◦

¯s,L)

is an isomorphism. This proves the lemma modulo Lemma 6.6 below.

6.5. Smallness of the boundary of X̃¯s. — The goal of this subsection is to prove
the following lemma. We refer to [BKR12, §7] for some parallel arguments.
Lemma 6.6. — With the notation as in the proof of Lemma 6.5, the image

η̄2

(

U2\(X
◦◦

¯s\X̃¯s)
)

is of codimension ≥ 2 in U2\X
◦◦

¯s.

This lemma will be a consequence of the nontransversality Corollary 6.8, which in
turn is a consequence of Proposition 6.7.

Set, for i ∈ N := {0, 1, 2, . . .},

(65) (g/p)i := {ξ ∈ g/p : ad(xP ) · ξ = −iξ}, where xP :=
∑

αj∈∆\∆(P )

xj

and

(66) (g/p)≤i :=
⊕

j≤i

(g/p)j.

Note that the (g/p)≤i’s form a P -stable filtration of g/p.
Let Z ⊂ G/P be a locally closed finite-dimensional subvariety of G/P and let z be

a point of Z. Write z = gP/P . Set, for i ∈ N,

(67) di(z, Z) := dim
(

Tė(g
−1Z) ∩ (g/p)≤i

)

, where ġ := gP/P ∈ G/P .

This indeed does not depend on the choice of g such that z = gP/P . Observe that
d0(z, Z) = 0, dn(z, Z) = dimTzZ for n large enough, and that i 7→ di(z, Z) is non-
decreasing. Define, for any i ∈ N,

d̄i(z, Z) = di(z, Z)− di−1(z, Z),

where we declare d−1(z, Z) = 0. Thus, d̄m(z, Z) = 0, for m > n.
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Similarly, let z ∈ Z ⊂ G/P , where Z has finite-codimension. Write z = gP/P . Set,
for i ∈ N,

(68) di(z, Z) := dim

(

Tė(g
−1Z) + (g/p)≤i

Tė(g−1Z)

)

.

Again this does not depend on the choice of g such that z = gP/P . Observe that
d0(z, Z) = 0, that dn(z, Z) is the codimension of TzZ for n large enough, and that
i 7→ di(z, Z) is non-decreasing.
Proposition 6.7. — Let v ∈WP and β be a positive real root such that w = sβv ∈
WP .

(i) If ℓ(w) = ℓ(v)− 1, then

di(ẇ,X
P
v ) ≥ di(v̇, X

P
v ), ∀i ∈ N.

Moreover, if β is not a simple root,

dio(ẇ,X
P
v ) > dio(v̇, X

P
v ), for some io ∈ N.

(ii) If ℓ(w) = ℓ(v) + 1, then

di(ẇ,Xv
P ) ≤ d

i(v̇, Xv
P ), ∀i ∈ N.

Moreover, if β is not a simple root,

dio(ẇ,Xv
P ) < dio(v̇, Xv

P ), for some io ∈ N.

Proof. — We first translate the first assertion in a combinatorial statement in terms
of roots. Given a T -vector space E, we denote by Φ(E) the set of weights of T acting
on E.

Let Φ+ (resp. Φ−) be the set of positive (resp. negative) roots. Since Tė(v
−1XP

v ) is
multiplicity free as a T -module, and Φ(Tė(v

−1XP
v )) = {θ ∈ Φ− : vθ ∈ Φ+}, we have

(69) di(v̇, X
P
v ) = ♯{θ ∈ Φ− : vθ ∈ Φ+ and − θ(xP ) ≤ i}, ∀i ≥ 1.

Consider the unique T -stable curve ℓ containing both v̇ and ẇ. Observe that ℓ is
isomorphic to P1, Φ(Tv̇ℓ) = {β}, Φ(Tẇℓ) = {−β} and ℓ is contained in XP

v . Moreover,
XP

w is contained in XP
v and

(70) TẇX
P
v = TẇX

P
w ⊕ Tẇℓ.

After translating by w−1, equality (70) implies that

Φ(Tė(w
−1XP

v )) = Φ(Tė(w
−1XP

w )) ∪ {−w−1β}.

It follows that

(71) di(ẇ,X
P
v ) = ♯{θ ∈ Φ− : wθ ∈ Φ+ and − θ(xP ) ≤ i}+ δ

(w−1β)(xP )
i , ∀i ≥ 1,

where δmi = 1 if m ≤ i and 0 otherwise.
We deduce that the first assertion of the proposition is equivalent to ∀i ≥ 1:

(72) ♯{θ ∈ Φ− : wθ ∈ Φ+ and − θ(xP ) ≤ i}+ δ
(w−1β)(xP )
i

≥ ♯{θ ∈ Φ− : vθ ∈ Φ+ and − θ(xP ) ≤ i},

and the existence of io with a strict inequality (72) if β is not simple.
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We now translate the second assertion of the proposition in a combinatorial state-
ment. First observe that, since v ∈WP ,

Φ

(

Tė(G/P )

Tė(v−1Xv
P )

)

= {θ ∈ Φ− : vθ ∈ Φ+}.

We deduce that

(73) di(v̇, Xv
P ) = ♯{θ ∈ Φ− : vθ ∈ Φ+ and − θ(xP ) ≤ i}, ∀i ≥ 1.

Now, since ℓ(w) = ℓ(v) + 1, Xv
P ⊃ Xw

P , ℓ is contained in Xv
P , Φ(Tẇℓ) = {β} and

Φ(Tv̇ℓ) = {−β}. Moreover, we have the following exact sequence

0 −→ Tẇℓ −→
Tẇ(G/P )

TẇXw
P

−→
Tẇ(G/P )

TẇXv
P

−→ 0.

After translation by w−1, we obtain that

Φ

(

Tė(G/P )

Tė(w−1Xw
P )

)

= Φ

(

Tė(G/P )

Tė(w−1Xv
P )

)

⊔ {w−1β}.

This implies that

(74) di(ẇ,Xv
P ) = ♯{θ ∈ Φ− : wθ ∈ Φ+ and − θ(xP ) ≤ i} − δ

−(w−1β)(xP )
i , ∀i ≥ 1.

With (73) and (74), the second assertion of the proposition is equivalent to ∀i ≥ 1:

(75)
♯{θ ∈ Φ− : vθ ∈ Φ+ and − θ(xP ) ≤ i}

≥ ♯{θ ∈ Φ− : wθ ∈ Φ+ and − θ(xP ) ≤ i} − δ
−(w−1β)(xP )
i ,

with a strict inequality for some io, if β is not simple.
Now, observe that given (v, w) such that w = sβv and ℓ(w) = ℓ(v) + 1, one gets

(v′, w′) such that w′ = sβv
′ and ℓ(w′) = ℓ(v′) − 1 by setting w′ = v and v′ = w. By

(72) and (75), the first assertion for (v′, w′) implies the second one for (v, w) (note

that w′−1
β = −w−1β). It is now sufficient to prove the first assertion.

From now on, we assume that ℓ(w) = ℓ(v) − 1. Recall that we denote v′ → v if
v′ ∈ WP , ℓ(v′) = ℓ(v)− 1 and v′ ≤ v. Set

X̂P
v = X̊P

v ∪

(

⋃

v′→v

X̊P
v′

)

, where X̊P
v := BvP/P .

Then, X̂P
v is a smooth open subset of XP

v . Set

Ŷ P
v = π−1(X̂P

v ),

where π : G −→ G/P is the natural projection. Define two vector bundles over Ŷ P
v :

V :=
⋃

g∈Ŷ P
v

({g} × Tė(g
−1XP

v )) −→ Ŷ P
v ,

and the trivial bundle

εi := Ŷ P
v ×

Tė(G/P )

(g/p)≤i
,
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for any fixed i ∈ N. The inclusion Tė(g
−1XP

v ) ⊂ Tė(G/P ) induces a bundle map

ϕi : V −→ εi.

On the open subset BvP , the rank of ϕi is constant since

Tė((bvp)
−1XP

v ) = Tė(p
−1v−1b−1XP

v ) = p−1Tė(v
−1XP

v ),

and (g/p)≤i is P -stable.

On the other hand, the subset of points in Ŷ P
v , where the rank of ϕi is maximum

is open. Hence, this rank is maximum at any point of BvP ⊂ Ŷ P
v ; in particular, at v.

This shows the inequalities of the first assertion of the proposition.
Note that

ρ− v−1ρ = −
∑

θ∈Φ−∩v−1Φ+

θ.

Hence,

(ρ− v−1ρ)(xP ) =
∑

θ∈Φ−∩v−1Φ+

−θ(xP ).

But by the Equation (69),

♯{θ ∈ Φ− : vθ ∈ Φ+ and − θ(xP ) = i} = di(v̇, X
P
v )− di−1(v̇, X

P
v ), ∀i ≥ 1.

Hence,

(ρ− v−1ρ)(xP ) =
∑

j≥1 jd̄j(v̇, X
P
v )

= ℓ(v) +
∑

j≥2(j − 1)d̄j(v̇, X
P
v ),

since, by the Equation (69), dm = ℓ(v) for large enough m. Similarly,

(ρ− w−1ρ)(xP ) = ℓ(w) +
∑

j≥2

(j − 1)d̄j(ẇ,X
P
w ).

Since ℓ(w) = ℓ(v)− 1, we get

(76) (ρ− w−1ρ− (ρ− v−1ρ))(xP ) = −1 +
∑

j≥2

(j − 1)
(

d̄j(ẇ,X
P
w )− d̄j(v̇, X

P
v )
)

.

On the other hand, since w = sβv, we get

ρ− w−1ρ− (ρ− v−1ρ) = −w−1ρ+ w−1sβρ

= w−1(sβρ− ρ)

= −〈ρ, β∨〉w−1β.(77)

Combining the Equations (76) and (77), we get

1 +
∑

j≥2

(j − 1)
(

d̄j(v̇, X
P
v )− d̄j(ẇ,X

P
w )
)

= 〈ρ, β∨〉(w−1β)(xP ).

But by the Equation (69) (for v replaced by w) and the Equation (71), we have

di(ẇ,X
P
v ) = di(ẇ,X

P
w ) + δ

(w−1β)(xP )
i , ∀i ≥ 1
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and hence (for k := (w−1β)(xP ))

1+
∑

j≥2,j 6=k

(j − 1)
(

d̄j(v̇, X
P
v )− d̄j(ẇ,X

P
v )
)

+ (k − 1)

(

d̄k(v̇, X
P
v )− d̄k(ẇ,X

P
v ) + 1

)

= 〈ρ, β∨〉(w−1β)(xP ).(78)

If possible, assume that

(79) dj(v̇, X
P
v ) = dj(ẇ,X

P
v ), ∀j ≥ 1.

Equivalently,

d̄j(v̇, X
P
v ) = d̄j(ẇ,X

P
v ), ∀j ≥ 1.

Then, the Equation (78) implies that

k = 〈ρ, β∨〉k.

But, 〈ρ, β∨〉 ≥ 1. Hence,

〈ρ, β∨〉 = 1.

Observe that k 6= 0 since v = wsw−1β and v, w ∈ WP . We deduce that β is simple if
(79) holds. This ends the proof of the proposition.

Corollary 6.8. — Let w1, w2, v ∈ WP be as in Theorem 1.5. In particular, ℓ(v) =

ℓ(w1)+ℓ(w2). Let x ∈ G/P and g, g1, g2 in G be such that x belongs to gX̂P
v ∩g1X̂

w1

P ∩

g2X̂
w2

P , where X̂P
v is as defined in the proof of Proposition 6.7 and

X̂w
P := X̊w

P ∪

(

⋃

w→w′

X̊w′

P

)

, where X̊w′

P := B−w′P/P.

We assume that there exists a non-simple real root β such that one of the following
two conditions holds:

(i) ℓ(sβv) = ℓ(v)− 1, sβv ∈ WP and x ∈ gX̊P
sβv

.

(ii) ℓ(sβw1) = ℓ(w1) + 1, sβv ∈ WP and x ∈ g1X̊
sβw1

P .

Then, the intersection gX̂P
v ∩ g1X̂

w1

P ∩ g2X̂
w2

P is not transverse at x.
Proof. — It suffices to prove that the standard linear map

θ : Tx(gX
P
v ) −→

Tx(G/P )

Tx(g1X
w1

P )
⊕

Tx(G/P )

Tx(g2X
w2

P )

is not an isomorphism.Write x = hP/P . Up to changing (g, g1, g2) by (h
−1g, h−1g1, h

−1g2),
we may assume that h = e.

Observe that

(∗) θ
(

Tė(gX
P
v ) ∩ (g/p)≤i

)

⊂
(Tė(g1X

w1

P )) + (g/p)≤i

Tė(g1X
w1

P )
⊕

(Tė(g2X
w2

P )) + (g/p)≤i

Tė(g2X
w2

P )
.
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Moreover, since εvP occurs with coefficient 1 (in particular, nonzero) in the deformed
product εw1

P ⊙0 ε
w2

P by assumption, ∀i ∈ N,

dim
(

Tė(v
−1XP

v ) ∩ (g/p)≤i

)

= dim

(

Tė(w
−1
1 Xw1

P ) + (g/p)≤i

Tė(w
−1
1 Xw1

P )

)

+ dim

(

Tė(w
−1
2 Xw2

P ) + (g/p)≤i

Tė(w
−1
2 Xw2

P )

)

(cf. [Res21, Lemma 19]). But, Proposition 6.7 implies that, for some io, the dimension
of the first space Tė(gX

P
v )∩(g/p)io in (∗) is greater than that of the direct sum. Hence,

the restriction of θ to Tė(gX
P
v ) ∩ (g/p)≤i can not be injective. Thus, θ can not be an

isomorphism.

Lemma 6.9. — Let f : Y −→ X be a dominant morphism between two quasi-
projective irreducible varieties of the same dimension. Let D ⊂ Y be an irreducible
proper closed subset.

Then, if f(D) has codimension one in X, then, for x ∈ D general, f−1(f(x)) is
finite.
Proof. — Otherwise, the general fibers of the restriction of f to f−1(f(D))

would have positive dimension. Since f(D) has codimension one, this implies

that dim(f−1(f(D))) = dim(Y ) and hence f−1(f(D)) = Y . But, f is assumed to be
dominant. A contradiction.

Proof of Lemma 6.6. — For (w′
1, w

′
2, v

′) ∈ (WP )3, we set

X
◦◦

¯s(w
′
1, w

′
2, v

′) := {(x, g1o
−, g2o−, o) ∈ X

P
v′ ×X

◦◦

¯s : x ∈ g1X
w′

1

P ∩ g2X
w′

2

P }

and

X¯s(w
′
1, w

′
2, v

′) := {(x, g1o
−, g2o−, o) ∈ X

P
v′ ×X¯s : x ∈ g1X

w′
1

P ∩ g2X
w′

2

P }.

The set X
◦◦

¯s\X̃¯s is the union of finitely many subsets of one of the following types:

Type I. — X
◦◦

¯s(w
′
1, w

′
2, v

′), where (w′
1, w

′
2, v

′) ∈ (WP )3, w′
1 ≥ w1, w

′
2 ≥ w2, v

′ ≤ v and
ℓ(w′

1) + ℓ(w′
2)− ℓ(v

′) ≥ 2.

Type II. — X
◦◦

¯s(w1, w2, v
′), where v′ ∈ WP , v′ ≤ v, ℓ(v′) = ℓ(v)− 1 and v′v−1 is not

a simple reflection.

Type III. — X
◦◦

¯s(w
′
1, w2, v), where w

′
1 ∈ W

P , w′
1 ≥ w1, ℓ(w

′
1) = ℓ(w1)+1 and w′

1w
−1
1 is

not a simple reflection.

Type IV. — Like type III after exchanging w1 and w2.

It is sufficient to prove that the image by η̄2 of each one of these subsets has

codimension at least two in U2\X
◦◦

¯s.
Consider (w′

1, w
′
2, v

′) as in type I. There exists (w′′
1 , w

′′
2 , v

′′) such that w′
1 ≥ w′′

1 ≥
w1, w

′
2 ≥ w

′′
2 ≥ w2, v

′ ≤ v′′ ≤ v and ℓ(w′′
1 ) + ℓ(w′′

2 )− ℓ(v
′′) = 1.

The point (v̇′′, v′′(w′′
1 )

−1o−, v′′(w′′
2 )

−1o−) belongs to X¯s(w
′′
1 , w

′′
2 , v

′′) and does not
belong to X¯s(w

′
1, w

′
2, v

′). Hence, X¯s(w
′′
1 , w

′′
2 , v

′′)\X¯s(w
′
1, w

′
2, v

′) is open and nonempty
in X¯s(w

′′
1 , w

′′
2 , v

′′).
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To prove the lemma in this type, we can assume that X
◦◦

¯s(w
′
1, w

′
2, v

′) is nonempty,

then so is X
◦◦

¯s(w
′′
1 , w

′′
2 , v

′′). Since X¯s(w
′′
1 , w

′′
2 , v

′′) is irreducible (cf. §6.1), we deduce that

the intersection (X¯s(w
′′
1 , w

′′
2 , v

′′)\X¯s(w
′
1, w

′
2, v

′)) ∩ (G/P ×X
◦◦

s) is nonempty.

Thus, we have a strict inclusion X
◦◦

¯s(w
′
1, w

′
2, v

′) ⊂ X
◦◦

¯s(w
′′
1 , w

′′
2 , v

′′). Similarly, we have
the strict inclusion:

X
◦◦

¯s(w
′′
1 , w

′′
2 , v

′′) ⊂ X
◦◦

¯s(w1, w2, v).

Combining the above two, we get the strict inclusions:

X
◦◦

¯s(w
′
1, w

′
2, v

′) ⊂ X
◦◦

¯s(w
′′
1 , w

′′
2 , v

′′) ⊂ X
◦◦

¯s(w1, w2, v).

Since these varieties are irreducible and U2-stable, we deduce that U2\X
◦◦

¯s(w
′
1, w

′
2, v

′) is

of codimension at least two in U2\X
◦◦

¯s.

The lemma follows in this case since dim(U2\X
◦◦

¯s) = dim(U2\X
◦◦

¯s) since η̄2 is a
birational map (cf. Proof of Lemma 6.5).

Let now (w1, w2, v
′) be as in type II.

Assume, for contradiction, that η̄2(U2\X
◦◦

¯s(w1, w2, v
′)) is a divisor. By Lemma 6.9,

there exists (g1, g2) ∈ G
2 such that XP

v ∩ g1X
w1

P ∩ g2X
w2

P is finite and there exists

x ∈ X̊P
v′ ∩ g1X̊

w1

P ∩ g2X̊
w2

P ; in particular, (x, g1o
−, g2o

−, o) ∈ X
◦◦

¯s(w1, w2, v
′).

By Corollary 6.8, the intersection X̂P
v ∩g1X̂

w1

P ∩g2X̂
w2

P is not transverse at x. Hence,
the multiplicity of x in XP

v ∩ g1X
w1

P ∩ g2X
w2

P is at least 2. Since this intersection is
finite, this implies that the coefficient of εvP in εw1

P ·ε
w2

P : nv
w1,w2

≥ 2 (cf. [BK14, Proof
of Proposition 3.5]). A contradiction!

The last types III and IV work similarly.

6.6. Conclusion of the proof of Theorem 1.5. — Observe that X̃¯s ∩ X
◦◦

¯s being
open in the irreducible X̃¯s, i

∗
6 is injective. Combining the results from Subsections 6.2

- 6.4, we get that

i∗6 ◦ γ
∗ ◦ α∗ ◦ η∗ : H0(X ,L)G → H0(X̃¯s ∩ X

◦◦

¯s,L)
B is injective

and
i∗7 ◦ η

∗
2 ◦ i

∗
4 ◦ i

∗
1 : H0(X ,L)G → H0(X̃¯s ∩ X

◦◦

¯s,L)
B is an isomorphism.

From the commutative diagram (⋄) of Subsection 6.1, these two composite maps are
equal forcing α∗ to be an isomorphism. Thus, we get (from the top horizontal line of
the commutative diagram (⋄)) that the restriction map

H0(X ,L)G → H0(C,L)L is an isomorphism.

This ends the proof of the theorem.

7. Proof of Theorem 1.3

In this section, P is still a standard parabolic subgroup (and not necessarily
maximal). We fix (w1, w2, v) ∈ (WP )3 such that εvP occurs with coefficient 1 in the
deformed product

εw1

P ⊙0 ε
w2

P ∈
(

H∗(XP ,Z),⊙0

)

.
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In particular, w1, w2 ≤ v. Recall the definition of D and Eα,i (for (α, i) ∈ D) from
subsection 5.4.

7.1. On the relative position of Eα,i and C. —
Proposition 7.1. — For any (α, i) ∈ D, the ind-variety

C := Lw−1
1 o− × Lw−1

2 o− × Lv−1o

is not contained in Eα,i.
To prove Proposition 7.1 we need the following lemma.

Lemma 7.2. — Let x ∈ G/P and (g, g1, g2) ∈ G3 be such that the intersection

g1X̊
w1

P ∩ g2X̊
w2

P ∩ gX̊
P
v

contains x and is transverse at this point. Such a choice is possible by [Res21,
Lemmas 6 and 7]. Then,

g1X
w1

P ∩ g2X
w2

P ∩ gX
P
v = {x}.

In fact, the lemma remains true if we replace X̊wi

P (for any i = 1, 2) by any B−-

stable open subset of X̊wi

P ∪
(

⋃

wi→w′
i
∈WP X̊

w′
i

P

)

and X̊P
v by any B-stable open subset of

X̊P
v ∪

(

⋃

v′→v,v′∈WP X̊P
v′

)

.

Proof. — The strategy of the proof is to reduce the problem to a finite-dimensional
situation (by quotient), and then to apply Zariski’s main theorem.

Up to a translation, we may assume that g is trivial. Since G/B− =
⋃

w∈W wUo−,

there exists, for i = 1, 2, ui ∈W such that gio
− ∈ uiUo−. Consider now

X̊¯s = {(y, h1o
−, h2o

−) ∈ XP
v × u1Uo

− × u2Uo
− : y ∈ h1X

w1

P ∩ h2X
w2

P }

and its projection η to u1Uo
− × u2Uo−.

Consider θ : U −→ Aut(XP
v ) obtained by the action as before. Fix i ∈ {1, 2}. Then,

Ker θ has finite-codimension in U and U∩uiUu
−1
i has finite-codimension in uiUu

−1
i . It

follows that there exists a closed normal subgroup Ui of uiUu
−1
i of finite-codimension

such that

Ui ⊂ uiUu
−1
i ∩Ker θ.

Such a Ui can be obtained as a closed subgroup of U with Lie algebra

LieUi =
⊕

β∈Φ+,|β|>N

gβ ,

for large enough N (depending upon v and ui), where, for β =
∑

j njαj , |β| :=
∑

nj .

The group U1×U2 acts freely and properly on u1Uo
−×u2Uo− (and hence on X̊¯s).

Moreover, η is (U1 × U2)-equivariant. After quotient, one gets

η̄ : (U1 × U2)\X̊¯s −→ (U1 × U2)\(u1Uo
− × u2Uo

−).

Observe that Ui being closed subgroups of finite-codimension in uiUu
−1
i andXP

v being
finite-dimensional, the domain and the range of η̄ are finite-dimensional varieties and
the range of η̄ is smooth and irreducible.



ON FACES OF THE TENSOR CONE OF KM LIE ALGEBRAS 41

Since the coefficient of εPv in εPw1
·εPw2

: nv
w1,w2

= 1, the general fiber of η is one point
(see [Res21, §4.2]). Further, as observed below the Equation (53), X¯s is irreducible

and hence so is (U1×U2)\X̊¯s. Since the base field is C, this implies that η̄ is birational.
Since XP

v is projective and Xw1

P and Xw2

P are closed in G/P , it is easy to see that
the map η̄ is proper. Now, we can apply Zariski’s main theorem [Har77, Chap. III,
Corollary 11.4] to conclude that the fibers of η̄ are connected. But, by assumption,
[x, g1o

−, g2o
−] is isolated in the fiber η̄−1[g1o

−, g2o
−], where [g1o

−, g2o
−] denotes the

(U1 × U2)-orbit of (g1o−, g2o−). Then, η̄−1[g1o
−, g2o

−] = {[x, g1o−, g2o−]}, that is

g1X
w1

P ∩ g2X
w2

P ∩X
P
v = {x}.

This proves the first part of the lemma.
The proof for the ‘In fact’ statement in the lemma is identical.

Proof of Proposition 7.1. — Since εvP occurs with coefficient 1 in the deformed
product εw1

P ⊙0 ε
w2

P , by the proof of [Res21, Lemma 19], there exist l1, l2, l3 ∈ L such
that the intersection

(80) (l1w
−1
1 X̊w1

P ) ∩ (l2w
−1
2 X̊w2

P ) ∩ (l3v
−1X̊P

v )

is transverse at P/P . Then, Lemma 7.2 implies that the intersection

(l1w
−1
1 Xw1

P ) ∩ (l2w
−1
2 Xw2

P ) ∩ (l3v
−1XP

v )

is reduced to {P/P}. In particular, if w1 ≤ sαw1 and sαw1 ∈WP ,

(81) (l1w
−1
1 Xsαw1

P ) ∩ (l2w
−1
2 Xw2

P ) ∩ (l3v
−1XP

v ) = ∅.

Then,

(82) (l1w
−1
1 o−, l2w

−1
2 o−, l3v

−1o) /∈ G ·
(

Pw−1
1 sαo− × Pw

−1
2 o− × Pv−1o

)

.

This proves that (l1w
−1
1 o−, l2w

−1
2 o−, l3v

−1o) does not belong to Eα,1. The proposition
follows for (α, 1). The proof for (α, i) ∈ D for i = 2, 3 is identical.

7.2. The line bundles Nα,i. — The goal of this subsection is to prove that Nα,i

belongs to the face considered in Theorem 1.3:
Proposition 7.3. — For any (α, i) ∈ D, the center Z(L) of L acts trivially on the
restriction of Nα,i to C, where C is as in Proposition 7.1.

In fact, for any L-equivariant line bundle L over C with H0(C,L)L 6= 0, Z(L) acts
trivially on L. In particular, if we write Nα,i = L−(λ1)⊗L−(λ2)⊗L(µ), then for all
αj 6∈ ∆(P ),

(Ij(w1,w2,v)
) λ1(w1xj) + λ2(w2xj)− µ(vxj) = 0.

Proof. — Consider a G-invariant section µα,i of Nα,i as guaranteed by Corollary 5.12.
For any (α, i) ∈ D, by Corollary 5.12, Z(µα,i) = Eα,i. Then Proposition 7.1 implies
that µα,i restricts to a nonzero L-invariant section on C.

Since Z(L) acts trivially on C, it acts by a character on any line bundle over C.
The existence of a nonzero Z(L)-invariant section implies that this character is trivial
for the restriction of Nα,i.
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Write Nα,i = L−(λ1) ⊗ L−(λ2) ⊗ L(µ) and fix αj 6∈ ∆(P ). There exists d > 0,
such that dxj is the differential at 1 of a one parameter subgroup of Z(L). This one
parameter subgroup acts with weight λ1(w1xj), λ2(w2xj) and −µ(vxj) on the fiber

over w−1
1 o−, w−1

2 o− and v−1o in L−(λ1), L
−(λ2) and L(µ) respectively. Thus, the

equality Ij(w1,w2,v)
follows proving Proposition 7.3.

7.3. The line bundles Nα,i and the lines ℓβ,j. — Recall the definition of the
line ℓβ,j from §1. We now study the restriction of the line bundle Nα,i to the lines
ℓβ,j. This will be used to apply Theorem 1.5.
Lemma 7.4. — Let (α, i) ∈ D and (β, j) ∈ D be two distinct elements. Then,

(i) the degree of the restriction of Nα,i to ℓα,i is positive.
(ii) the degree of the restriction of Nα,i to ℓβ,j is nonnegative.

Proof. — Take (α, 1) ∈ D. Then, as in Section 1,

ℓα,1 = (w−1
1 P−

α o
−, w−1

2 o−, v−1o).

Since the line bundle Nα,i has the form L−(λ1)⊠L−(λ2)⊠L(µ) for some (λ1, λ2, µ) ∈
P 3
+ (cf. Corollary 5.12),

Nα,1|ℓα,1
≃ L−(λ1)|w−1

1 P−
α o− ,

which is of degree
(w−1

1 λ1)(w
−1
1 α∨) = λ1(α

∨) ≥ 0.

Assume, if possible, that λ1(α
∨) = 0. Then, the zero set Z(µα,1) would be of the

form π−1
α (S) for some S ⊂ G/P−

α ×G/B
− ×G/B, where

πα : G/B− ×G/B− ×G/B → G/P−
α ×G/B

− ×G/B

is the projection.
Then, by Corollary 5.12 and Equation (18),

Z(µα,1) = Eα,1 = G · C̄+
sαw1,w2,v,

and hence we would have

Z(µα,1) ⊃ G · C̄
+
w1,w2,v = X ,

where the last equality follows from [BK14, Proposition 3.5] since εvP occurs with
nonzero coefficient in εw1

P · εw2

P . This contradicts the nonvanishing of µα,1. Thus,
λ1(α

∨) > 0, proving (i) for (α, 1) ∈ D. The same proof works for any (α, i) ∈ D
to prove (i).

To prove (ii), we still take (α, 1) ∈ D and (β, j) ∈ D for j = 1, 2. Then,

Nα,1|ℓβ,j
≃ L−(λj)|w−1

j
P−

β
o− ,

which is of degree
(w−1

j λj)(w
−1
j β∨) = λj(β

∨) ≥ 0.

For (β, 3) ∈ D,
Nα,1|ℓβ,3

≃ L(µ)|v−1Pβo,

which is of degree
(v−1µ)(v−1β∨) = µ(β∨) ≥ 0.
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This proves (ii) for (α, 1) ∈ D. The same proof gives (ii) for any (α, i) ∈ D.

7.4. Conclusion of the proof of Theorem 1.3. — Let w1, w2, v ∈ WP be as in
Theorem 1.3, i.e., εvP occurs with coefficient 1 in the deformed product εw1

P ⊙0 ε
w2

P .
Set d = 2dim h + ♯∆(P ). Let F = FP

w1,w2,v be the convex cone generated by

the weights (λ1, λ2, µ) ∈ Γ(g) satisfying Identity Ij(w1,w2,v)
for all αj 6∈ ∆(P ) as

in Theorem 1.3. Since the linear forms {Ij(w1,w2,v)
}αj∈∆\∆(P ) restricted to Eg (cf.

Proposition 3.1) defining F are linearly independent, the dimension of F is at most d.

We now have to produce ‘enough’ points in F . To do this we consider the restriction

map PicG
3

(X ) −→ PicL
3

(C) and we apply Theorem 1.5 to sufficiently many line
bundles L such that H0(C,L|C)

L 6= {0}.

Observe that, for any w ∈WP , the map

L/B−
L → Lw−1o− ⊂ G/B−, lB−

L 7→ lw−1o− is an L-equivariant isomorphism

and also the map

L/BL → Lw−1o ⊂ G/B, lBL 7→ lw−1o is an isomorphism,

where BL := B ∩ L is the standard Borel subgroup of L and B−
L := B− ∩ L is the

standard opposite Borel subgroup of L. (To prove the above two isomorphisms, use the

fact that w∆P ⊂ Φ+.) Thus, the restriction map PicG
3

(X ) ≃ (h∗Z)
3 −→ PicL

3

(C) ≃
(h∗Z)

3 is an isomorphism. Let l denote the Lie algebra of L.

Lemma 7.5. — There exist L1, . . . ,Ld ∈ PicG
3

(X ) such that

(i) L1, . . . ,Ld ∈ PicG
3

(X ) ⊗Q are linearly independent;
(ii) The restriction of each Li to C belongs to Γ(l).

Proof. — By Proposition 3.1, Γ(l) has dimension d. (Observe that Proposition 3.1

remains valid for l by the same proof.) Hence, Γ(l) ⊂ PicL
3

(C) ⊗Z Q contains
d linearly independent elements. Then, the lemma follows from the isomorphism

PicG
3

(X ) ≃ PicL
3

(C).

Proof of Theorem 1.3. — Up to taking tensor powers, we may assume that the
restriction of Li to C admits a nonzero L-invariant section σi (cf. [BK14, Proof of
Theorem 3.2]).

By Lemma 7.4, there exists (aα,i)(α,i)∈D ∈ ND such that N :=
∑

(α,i)∈D aα,iNα,i

satisfies:

Lk ⊗N is nonnegative for all k when restricted to any ℓβ,j for (β, j) ∈ D.

Moreover, up to changing N by 2N if necessary, we may assume that

L1 ⊗N , . . . ,Ld ⊗N ∈ PicG
3

(X )⊗Q

are linearly independent.
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By Corollary 5.12, N has a G-invariant section σN that does not vanish identically
on C. Then,

σ̃i ∈ H0(C,Li ⊗N )L\{0}, where σ̃i := (σi ⊗ σN )|C .

Moreover, since σ̃i is not identically zero on C, by Proposition 7.3, each Li ⊗ N
satisfies the identity Ij(w1,w2,v)

of Theorem 1.3 for all αj ∈ ∆\∆(P ).

By Theorem 1.5, each σ̃i can be extended to a G-invariant section σ̃i of Li⊗N . In
particular, Li ⊗N belongs to Γ(g). Thus, the dimension of F is at least d and hence
it is exactly d. This proves the theorem.
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