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ON THE FACES OF THE TENSOR CONE
OF SYMMETRIZABLE KAC-MOODY LIE ALGEBRAS

by

Shrawan Kumar & Nicolas Ressayre

Abstract. — 1In this paper, we are interested in the decomposition of the tensor
product of two representations of a symmetrizable Kac-Moody Lie algebra g, or more
precisely in the tensor cone of g. As usual, we parametrize the integrable, highest
weight (irreducible) representations of g by their highest weights. Then, the triples
of such representations such that the last one is contained in the tensor product
of the first two is a semigroup. This semigroup generates a rational convex cone
I'(g) called tensor cone. If g is finite-dimensional, I'(g) is a polyhedral convex cone.
In 2006, Belkale and the first author described this cone by an explicit finite list
of inequalities. In 2010, this list of inequalities was proved to be irredundant by
the second author: each such inequality corresponds to a codimension one face. In
general, I'(g) is neither polyhedral, nor closed. Brown and the first author obtained a
list of inequalities that describe I'(g) conjecturally. Here, we prove that each of these
inequalities corresponds to a codimension one face of I'(g).

Résumé (A propos des faces du cdne tensoriel d’une algéebre de Kac-
Moody)

Dans cet article, nous nous intéressons a la décomposition du produit tensoriel de
deux représentations d’une algebre de Kac-Moody symétrisable g, et plus précisément
au cone tensoriel de g. Comme d’habitude, nous paramétrons les représentations
irréductibles intégrables et de plus haut poids par ledit plus haut poids. Alors, les
triplets de telles représentations telles que la troisieme s’injecte dans le produit ten-
soriel des deux premieres est un semi-groupe. Ces triplets engendrent un céne convexe
rationnel I'(g) que nous appelons le cone tensoriel. Lorsque g est de dimension finie,
I'(g) est un cone convexe polyédral. En 2006, Belkale et le premier auteur ont décrit
ce cone par une liste finie explicite d’inégalités linéaires. En 2010, le second auteur a
montré que cette liste d’inégalités n’est pas redondante : chaque inégalité correspond
a une face de codimension un. En général, I'(g) n’est ni fermé, ni polyédral. Brown
et le premier auteur ont obtenu une liste d’inégalités qui décrit conjecturalement le
coéne I'(g). Nous montrons ici que chacune de ces inégalités correspond & une face de
codimension un de I'(g).
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1. Introduction

Let A be a symmetrizable irreducible GCM (generalized Cartan matrix) of size {+1.
Let h O {ag,...,} and b* D {ao,...,q} =: A be a realization of A over the
complex numbers C. We fix an integral form bz C h containing each o, such that
b3 := Hom(hz, Z) contains A and such that bz /€, Za; is torsion-free.

Set bty = b, ®Q Ch*, Prog:={Aebhy : (o/,A) >0 Vi}, and Py :=b; N Py g

Let g = g(A) be the associated Kac-Moody (KM) Lie algebra over C with Cartan
subalgebra h. For A € Py, L(\) denotes the (irreducible) integrable, highest weight
representation of g with highest weight \. Define the (rational) tensor cone as

I'(g) == {(M, X2, ) € P} o : 3N > 1such that L(Np) C L(NA1) ® L(NX2)}.

The aim of this paper is to describe facets (codimension one faces) of this cone.
Before describing our result, we recall from [BK14] a conjectural description of I'(g),
due to Brown and the first author. We need some more notation.

Fix {xo,..., 2} € b to be dual of the simple roots: (o, z;) = &]. Let Q = @i:o Za;
denote the root lattice. Let X = G/B be the standard full KM-flag variety associated
to g, where G is the ‘minimal’ Kac-Moody group with Lie algebra g and B is the
standard Borel subgroup of G. For w in the Weyl group W of G, let X, = BwB/B C
X be the corresponding Schubert variety. Let {e* },ew C H*(X, Z) be the (Schubert)
basis dual (with respect to the standard pairing) to the basis of the singular homology
of X given by the fundamental classes of X,,.

Let P D B be a (standard) parabolic subgroup and let Xp := G/P be the corre-
sponding partial flag variety. Let Wp be the Weyl group of P (which is, by defini-
tion, the Weyl group of the Levi L of P) and let W% be the set of minimal length
representatives of cosets in W/Wp. The projection map X — Xp induces an injec-
tive homomorphism H*(Xp,Z) — H*(X,Z) and H*(Xp,Z) has the Schubert basis
{e8}pewr such that €% goes to e for any w € WF. As defined by Belkale and
the first author [BKO06, §6] in the finite-dimensional case and extended by the first
author in [KumO8| for any symmetrizable Kac-Moody case (see [BK14, §,7] for more
details), there is a new deformed product @9 in H*(Xp, Z), which is commutative and
associative. Now, we are ready to state Brown-Kumar’s conjecture [BK14].

Conjecture 1.1. — Let g be any indecomposable symmetrizable Kac-Moody
Lie algebra and let (A1, Ao, p) € Pf_. Assume further that none of Aj and p are W-
invariant and

w— Z?Zl Aj € Q. Then, the following are equivalent:
(a) (A1, A2, 1) € I'(g).

(b) For every standard mazimal parabolic subgroup P in G and every choice of
triples (w1, wq,v) € (WF)3 such that €% occurs with coefficient 1 in the deformed
product

et @oel? € (H(Xp,Z), @),
the following inequality holds:
(I(Iz;l,wg,v)) )\1(’LU1.TP) + )\Q(wgwp) — /L(’Uwp) >0,

where o, is the (unique) simple root not in the Levi of P and xp := x;,.
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Note that if A; is W-invariant, L(A;) is one-dimensional and hence L(A1)® L(Az) is
irreducible.

In the case where g is a semisimple Lie algebra, Conjecture 1.1 was proved by
Belkale and the first author in [BKO06]. The following result is due to the second
author.

Theorem 1.2 ([Res21]). — In the case where g is affine untwisted, Conjecture 1.1
holds.

The conjecture in the general symmetrizable case is still open. But it is conceivable
that the inductive proof in the case of affine g obtained by the second author might
be amenable to handle the general symmetrizable case.

Let us come back to the case where g is semisimple. Then, I'(g) is a closed
convex polyhedral cone, and Conjecture 1.1 (Belkale-Kumar’s theorem) describes I'(g)
in ([j(*@)3 by (finitely many) explicit inequalities. (Recall that a rational cone C is called
convezifforx,y € Cand0 < a < 1, € Q, az+(1—a)y € C.) In the case of g = sl,,, a
larger set of inequalities describing I'(g) was conjectured by Horn [Hor62] and proved
by Klyachko [Kly98] (combining the saturation result of Knutson-Tao [KT99]). A
larger set of inequalities describing I'(g) for any semisimple g was known earlier (see
[BS00]). The irredundancy of the above set of inequalities I (1; L wa,w) WAS proved by
Knutson-Tao-Woodward in type A [KTWO04] and by the second author in general
[Res10]. (See [Kum14, §1] for more details on the history.) The irredundancy asser-
tion is the statement that each inequality I, (1; L waw) in Conjecture 1.1 corresponds to a
face of I'(g) of codimension one. The aim of this paper is to extend this result to any
symmetrizable Kac-Moody Lie algebra. We, in fact, prove the following (stronger)
result for any (not necessarily maximal) standard parabolic subgroup P.

Theorem 1.3. — Let g be any indecomposable symmetrizable Kac-Moody Lie
algebra. Let P be a standard parabolic subgroup in G and let (wy,ws,v) € (WT)3 be
a triple such that €' occurs with coefficient 1 in the deformed product

ept Opep? € (H (Xp,Z), ®0).
Then, the set of (A1, A2, 1) € T'(g) such that for all aj & A(P),

(I(le,wz,v)) A (wlxj) + )\g(wgacj) — ,u(vxj) =0
has codimension §(A\A(P)) in I'(g), where A(P) C A is the set of simple roots of
the Levi subgroup L of P.

Let C denote the cone determined by the inequalities in Conjecture 1.1. For P
maximal, Theorem 1.3 implies that if one removes any of the inequalities I
the cone thus obtained is strictly larger than C.

Theorem 1.3 implies that C is locally polyhedral. This property of C plays an impor-
tant role in the inductive proof of Theorem 1 from [Res21]. (Note that in [Res21],
the local polyhedrality is proved in a totally different way.) As a consequence, one can
hopefully think about Theorem 1.3 as a first step towards a proof of Conjecture 1.1.

Combining Theorems 1.2 and 1.3, we get the following.

P
(w1, w2,v)?
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Corollary 1.4. — For any untwisted affine Kac-Moody Lie algebra g, the inequal-
ities I(I;I,w%v) in Conjecture 1.1 give an irredundent and complete set of inequalities
determining the cone I'(g).

To prove Theorem 1.3 we will use (geometric) Theorem 1.5 below. Let us introduce
some more notation.

Fix a standard parabolic subgroup P of G. For w € WF, we set
A7 (w) ={a e A : l(sqw) = (w) — 1},

and

AT (w) = {a € A : l(sqw) = L(w) + 1 and spw € W},
where s, is the (simple) reflection corresponding to the (simple) root «. It is easy to
see that for any o € A~ (w), sqw € WF.

Let B~ denote the Borel subgroup of G opposite to B. Consider the flag ind-variety
X := (G/B7)? x G/B and Pic®(X) the group of G-linearized line bundles on X.
For A € b3, denote the line bundle £~ (\) := G xB C, over G/B~ (resp. L()\) :=
G xB C_, over G/B) associated to the principal B~-bundle G — G/B~ (resp. the
B-bundle G — G/B) via the one-dimensional representation Cy of B~ given by the
character e* uniquely extended to a character of B~ (resp. the representation C_y
of B given by the character e™*).

Fix (A1,A2,n) € P}. By an analogue of the Borel-Weil theorem for any Kac-
Moody group G (c¢f. [Kum02, Corollary 8.3.12]), the G-linearized line bundle
L:=L"(\)X L (\2) X L(1) on X is such that the dimension of the space H*(X, £)¢
of G-invariant sections is the multiplicity of L(u) in L(A1) ® L(A2) (cf. [BK14, Proof
of Theorem 3.2]). From this we see that T'(g) is a convex subset of P .

Fix (w1, w2,v) € (WF)3 as in Theorem 1.3 and let L O T denote the standard
Levi subgroup of P, where T is the standard maximal torus of G with Lie algebra b.
The base point B/B in G/B is denoted by o. Similarly, 0~ = B~ /B~. Set

Ty = (wl_lgf,wg_lgf,vflg) cX.
For ao € AT (wy), we set
Ta1 = (witsa0 ,wyto™, v o) € A
Similarly, we define x4 2 associated to & € At (ws). For o € A~ (v), we set
Ta3 = (wflg_,wglg_,v_lsag) cX.
For any () as above, we denote by ¢, ; the unique T-stable curve in X containing xg
and x4,;; then £, ; ~ P! and z( and Za,i are the two T-fixed points in ¢, ;. Explicitly,
lo1 = (wflPa_Q_,wglg_,v_lg) Cc X,

where P is the minimal (opposite) parabolic subgroup containing B~ and s,. Simi-
larly, ¢, 2 and ¢, 3 can be described explicitly.
Consider now
C = wa197 X nglgf x Lv~ 1o,

acted on by L diagonally.
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Theorem 1.5. — Let P and (w1, wa,v) € (WF)3 be as in Theorem 1.3.
Fiz (A1, X2, 1) € (h3)? such that

VOéj ¢ A(P), Al(wle) + )\g(wgl'j) — /L(’ij) =0.

Let L:= L7 (A\)K L (A2) K L(n) denote the associated line bundle on X. We assume
that, for any i = 1,2 and o € AT (w;), the restriction of L to lu; is nonnegative.
Similarly, we assume that for any oo € A~ (v) the restriction of L to £y 3 is nonnega-
tive.

Then, the restriction map induces an isomorphism:

HO(x, L)Y ~H°(C, L)L.

To prove Theorem 1.3, we have to produce line bundles £ on X having nonzero
G-invariant sections and satisfying the equalities (I (thwmv)). To do this we start with
a line bundle M on & whose restriction M|c admits an L-invariant section o. Now,
we want to extend o to a regular G-invariant section on &X'. The first step is to extend
o to a rational G-invariant section. Even though this rational section can have poles,
we are able to kill them by adding an explicit line bundle £’ to M. An informed
reader will notice that the strategy is similar to the one used by the second author in
[Res10]. Nevertheless, there are numerous difficulties because of infinite-dimensional
phenomena. For example, we have no abstract construction of line bundles arising
from divisors; the order of a pole along a divisor is not so easy to define (and even
if it is defined, such an order could be infinite) etc. In this paper, we overcome these
difficulties by making various constructions more explicit which extend to our infinite-
dimensional situation.

Acknowledgements. — The first author is supported by NSF grants. The second
author is supported by the French ANR project ANR-15-CE40-0012.

2. Zariski’s main theorem

We recall a consequence of the Zariski’s main theorem for our later use.
Proposition 2.1. — Let f : Y — Z be a proper birational morphism between two
quasiprojective irreducible varieties. We assume that we have an open subset Y of Y
such that f(Y\Y) has codimension at least two in Z and that Z is normal. Let L be
a line bundle over Z.

Then, f* : HY(Z, L) — H(Y, f*(L)) and the restriction map r : HO(Y, f*(L)) —
H(Y, f*(L)) are both isomorphisms.

Proof. — To prove that f* is an isomorphism, use the proof of Zariski’s main theorem
as in [Har77, Chap. III, Corollary 11.4].
To prove that r is an isomorphism, consider the following commutative diagram:
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™

H%(Z, L) HO(Z\f(Y\Y), L)

f*lz zlf*

HO(Y, f*L) " }()(Y\f—%fmf/)), L)
HO(Y, f*L).

In the above diagram, g is an isomorphism since f(Y'\Y) is of codimension > 2
and Z is normal. Thus, 71 is an isomorphism. Further, since r; is an isomorphism and
r and r9 are injective, r is an isomorphism as well. o

3. The span of the cone

Before being interested in the faces of I'(g), we describe the span of it.
Proposition 3.1. — The tensor cone I'(g) (which is, by definition, a rational cone)
has nonempty interior in the following rational vector space

E = Eq:={(A, A2, 1) € (h9)? + M + A2 — pu € Spang(A)}.
Observe that E has dimension 2dim b + §A.
Proof. — Tf (A1, A2, 1) € T'(g) then some integral multiple N (A1 + A2 — p) belongs to
the root lattice. Hence,
(1) I'(g) C E.
Note that, for A, i in P, the point

(2) (A s A+ 1) € T(g)-

We claim that for any simple root «; € A,

(3) (p)pa QP_ai) er(g)a
where p € b3 is any element satisfying p() = 1 for all the simple coroots ). Indeed,
fix a highest weight vector vy in L(p) and a nonzero e; (resp. f;) in ga; (resp. g—q,)
for any simple root «; with [e;, f;] = a}/, where g, denotes the corresponding root
space. Consider the element in L(p) ® L(p):

v = fivy Quy —vg ® fivg.

Clearly, e;v = 0 for any j # i. Also,

ev = (eifivy) ® vy —vg @ (i fivg)
=afvy Quy — vy ® afvg
=0.

It follows that v is a highest weight vector. But its weight is 2p — «;, proving (3).
Combined with (2), we get

(4) (0,0,a:) € (T(g)),  Veu €A,
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where (T'(g)) is the Q-span of I'(g) in (h3)® . Now, by (2) and (4), T'(g) spans E. O

4. On some translated Richardson varieties

Fix a standard parabolic subgroup P of G with Levi subgroup L D T', where T is
the (standard) maximal torus of G with Lie algebra h. For w € W% let

X¥:=B~wP/P C Xp and X! := BuP/P C Xp

be respectively the opposite Schubert variety and the Schubert variety associated to w.
Proposition 4.1. — Fiz (w,v) € (WF)? and o € A such that

1. V2> w;

1. UV :i= 840 < U5

. 02 w.

Then, XV (P) := XFP N XY =s, X' NXY.

In particular, XX N s, X% is nonempty.
Proof. — The inclusion s, X2 N X% C XY@ (P) is clear. Moreover, X¥(P) is an irre-
ducible closed subvariety of X of dimension ¢(v)—¢(w) (cf. [Kum17, Proposition 6.6]
and use the surjectivity of X (B) onto X (P)). Since s, XL N X% is closed in X,
it is sufficient to prove that
(5) dim(XFP N s, XB) = £(v) — L(w).
Consider the incidence variety ) with projection on the second factor:

7 :Y:i={(z,907) € X' xG/B™ |z € gX¥} — G/B".

Set YV := YN (XL x G/B’) and 7 the restriction of 7 to Y.
Observe first that ) and ) are respectively P,-stable and B-stable closed subsets
of X x G/B~ and X! x G/B~ respectively and that 7w and 7 are equivariant,
where P, is the minimal parabolic subgroup of G containing B and s,. Moreover,
G xpY ~ G xp (Pv~lo x Pw=lo7)) is ind-irreducible (i.e., admits a filtration by
finite-dimensional irreducible closed subsets). Hence Y is ind-irreducible. Similarly, Y
is ind-irreducible. Since X! is projective, 7 is proper. Similarly, 7 is proper. Hence
their images are closed.

Since v > w, 0o~ € Imx. Hence, 7 is surjective. B

Since v # w, o~ ¢ Im7. Hence, Im(7) C Ugcp Bspo™. But, (0P/P,sq07) € V.
Indeed vP/P € X¥ and s,vP/P = 0P/P € s, X}. Hence, Im(7) contains Bs,0~ by
B-equivariance. Since Im(7) is closed and irreducible, we get

(6) Im(7) = Bsq0™.

We now restrict ) over P,0~. Consider the action map
p: Py — Aut(XF).

The image P, of p is a finite dimensional connected algebraic group of semi-simple
rank one. Consider

Veea :={(x,p) € X x P,|p~'w € XP}
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with its two projections p; and ps on XF and P, respectively. Moreover, py is P,-

equivariant and hence surjective. Further, Y ; is irreducible since so is py (e) and
P,.
Note that py !(e) ~ X*(P) is of dimension £(v) — £(w). Hence,

(7) dim(Ye,4) = dim(P,) + £(v) — L(w).

We already observed that (vP/P,e) € Y2 . Since P, - v is dense in X! and p; is P,-
equivariant, we conclude that p; is dominant. Then, still using the P,-equivariance,
we get

(8)  dim(p; '(vP/P)) = dim(Y24) — £(v) = dim(P,) — £(w), by equation (7)
Set
J_}fed = yfed n (Xég x PU)'

As observed above, Y # Y. Similarly Y2, # V°,,. Since XI' x P, is a hypersurface in
XP x P,, we deduce that

(9)  dim(Yoy) = dim (Vo) — 1 = dim(P,) + £(v) — £(w) — 1, by equation (7).
Write now P, = BU_,(C) U Bsy and P, = p(B)U_(C) U p(B)Sa, where U_,(C)
is the root subgroup of G corresponding to the negative root —a. Let p2 denote the

restriction of ps to J_Jroed, which is p(B)-equivariant. The discussion about the image
of T at the beginning of the proof implies that Im(p2) = p(B)s,. Hence,

(10) dim(p2) ! (s4) = dim(XF N s, X %) = dim(Y,,) — dim(p(B)sq).
The expected equality (5) follows from (10), (9) and the identity dim(p(B)sa) =

dim(P,) — 1.
To prove the ‘In particular’ statement of the proposition, observe that

XP N5 X8 = (XP N5 XB) N (XE N saXY)

and the last two open subsets are nonempty in the irreducible variety X2 N s, X%
(by the first part of the lemma). O

Corollary 4.2. — Fiz (w,v) € (WF)? and o € A such that

1. V2> w;

. W= sqw > w € WF;

. v 2 w.

Then, X (P) = XP Ns, XB.

Proof. — Set © = sqv. Then, by [12, Lemma 1.3.18 and Corollary 1.3.19], v € W7,
v > w; v < ¥; and v 2 @. Hence, we can apply Proposition 4.1 to the pair (w,7) to
get

(11) XPNXE =5, X nXB.
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In particular, we have

dim(X¥(P)) = {(v

I
=7
=4
<
'8
£

dim(s, X N XY)
= dim(XF Ns,X2).

Moreover, by [12, Theorem 5.1.3(d)], so X2 C X%. Hence, XI' N s, X% C X¥(P).
This proves the corollary. O

5. Construction of line bundles

Consider a subvariety Z C X. If G and so X is finite-dimensional, Z can be realized
as the zero set of a section of some line bundle on X if and only if Z has codimension
one. If G is not finite-dimensional, then X is only an ind-variety and the codimension
is not so easy to define. Moreover, even if there exists a filtration X = (J,, &, by
finite-dimensional closed subvarieties such that Z N X,, has codimension one in X,
Z is not necessarily the zero locus of a section of some line bundle on X.

Nevertheless, if Z = F,; (resp. Z = Eg, w,,5) as defined by Formula (12) (resp.
(25)) below, we prove in this section that Z is the zero locus of a section of some line
bundle.

5.1. First divisors. — Fix once and for all fundamental weights w,,, . . ., @q, in b7,
such that (w,,, o)) = 57

Let M be a g-module such that, under the action of hj, M decomposes as Gaueh* M,
with finite-dimensional weight spaces M,,. Set MY = @ M- it is a g-submodule of
the full dual space M*.

Recall that X = (G/B7)% x G/B and o* = B*/B*. Consider, for a € A and

1=1,2,
(12) Foi={(x1,22,90) € X : g”'x; € Bsao™}
with the reduced ind-scheme structure. It is easy to see that F, ; is ind-irreducible.

Let p1,p2 and p3 denote the projections from X to the corresponding factor. Set,
fori=1,2and a € A,

Mai =pi(Lg,) @p3(Le,)-

Lemma 5.1. — The space HO(X, M) contains a unique (up to scalar multiples)
nonzero G-invariant section o = 04,;. Moreover, scheme-theoretically,

Foi={zre X : o(z) =0}

Proof. — Our construction of M, ; and o, is completely explicit.
By the analogue of the Borel-Weil theorem for Kac-Moody groups (cf. [Kum02,
Corollary 8.3.12]), we have (cf. [BK14, Proof of Theorem 3.2]):

(13) HO(X, M, ;) ~ Home (L(w,)Y @ L(w,), C).
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Observe that
(14) Homg (L(wa)" @ L(wa), C) ~ Home(L(wa) Y, L(wa)*),

since Home (V' ® W,C) ~ Homc(V,W*) for any C-vector spaces V and W. From
the Equations (13) and (14) it is easy to see that H(X, M, ;)¢ is one-dimensional
spanned by the inclusion of L(w,)Y in L(w@,)* under the identifications (13) and
(14). We now identify the zero locus of nonzero o € H(X', M, ;)¢:
Consider the isomorphism
¢:Gx"” G/B~G/B™ xG/B, [g,ho] ~ (g0, gho), for g,h € G,

where [g, ho| denotes the B~-orbit of (g, ho). Consider the B~ -equivariant line bundle
Cw, ® L, over G/B, where C,_ denotes the trivial line bundle over G/B with the
B~-action given by the character e®«. It is easy to see that
(15) P (Lo, WLm,)=Gx" (Cq, ®Ls,).
Let v_ be a fixed nonzero vector of C_, . Consider the section o, of L over G/B
given by
(16) o0(g0) = [g,v} (gv4)v-], for g € G,
where vy is a nonzero highest weight vector of L(w,) and v} € L(wq,)* is given by
v} (vy) = land v} (v) = 0, for any weight vector v of L(w,) of weight # w,.
By the definition of o,, it is a character of B~ of weight —w, and hence 1 ® o,
thought of as a section of C_, ® L, is B™-invariant. Thus, it canonically gives rise
to a G-invariant section 6, of G x? (Cyn, @ L,)-
We next claim that the zero set Z(o,) of o, is given by
(17) Z(0,) = B=sq0 C G/B.
By the definition of ¢,, Z(0,) is left B~ -stable (since v} € L(wq)* is an eigenvector
for the action of B™). Take w € W. Then,
wo € Z(o,) © vy (wuy) =0
S Wy # Wa
© w ¢ (s5)gea\{a}, by [Kum02, Proposition 1.4.2 (a)]
= w Z SOH
where (sg) C W denotes the subgroup generated by the elements sg. This proves the

Equation (17) by the Birkhoff decomposition [Kum02, Theorem 6.2.8]. Thus, the
zero set Z(6,) of 6, is given by:

Z(6,) =G x B~ (B*sag) .

Moreover,
P (G x B~ (B_sag)) ={(x,90) € G/B~ xG/B:g 'z € Bs,o~}.

From this we obtain that Z (o) = F,; set theoretically.
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To prove that Z(o) = F,,; scheme-theoretically, it suffices to show that Z(o,)
(which is set theoretically X®» = B~s,0 C G/B) is reduced.

For any v € W, consider Z(o,) N X, = X®* N X, which is an irreducible subset
of codimension one in X,. The Chern class of the line bundle £ X, is the Schubert

class % € H*(X,,Z). If Z(0,) N X, were not reduced, say
Z(0,) N X, =d(X° NX,) (scheme-theoretically) for some d > 1,

then e € H?(X,,Z), which is a contradiction. Hence d = 1, proving that Z(o,) N
X, is reduced for any v € W. Thus, Z(o,) is reduced, proving the lemma. O

5.2. Subvarieties of X from Schubert varieties. — Fix a standard parabolic
subgroup P of G with Levi subgroup L D T, where T is the (standard) maximal torus
of G with Lie algebra . For any triple (wy,ws,v) € (WF)3, set

cr :owlg* waQIQ* x Pv—lo C X,

wi,w2,v

and

(18) By wsw = G.Cf) C X under the diagonal action of G.

w1,w2,v

Lemma 5.2. — For any triple (w1, w2,v) € (WF)3, the set By, w, v is closed and
ind-irreducible in X.
Proof. — Since G and C, are ind-irreducible (see [Res21, before Lemma 3] and

wi,w2,v

the argument in the proof of Lemma 5.4), s0 is Fy, w,,». Note that

(19) Euywsw = {(g107,9207,930) € X : g1 Xp' N g2 X2 Ngs XL # 0}.

Observe that Ey, w,,0 = X if €} occurs in ep' - €p? with nonzero coefficient (cf.
[BK14, Porposition 3.5]).
By the following isomorphism

G xp(G/B7)? — X, [g.a] = (gz,9B/B),
it is sufficient to prove that
E={(g107,9207) : 91 Xp' Ng2Xp> N X, # 0}
is closed in &, := (G/B~)? ~ (G/B~)? x o. Consider
Ty o Xy — X,
where
%, ={(v, 910,920 ,0) €EG/Px X :y € X' Ngo X3* N X[}

and 7, is the projection to the last three factors. Note that E is the image of X, and
X, is closed in X" x X,. Consider a filtration X, = |J,, X7 by closed finite-dimensional
subvarieties. Then, ;1 (X7) is closed in X! x X. Since X[ is projective, it follows
that 7y(7; (X)) is closed in X”. This concludes the proof since m,(7; (X)) =
Enxpr. O
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For w € WP, we set Xl“j = B~ wP/P and Xf; = BwP/P. Cousider, for any triple
(w1, wa,v) € (WE)3
X:={(gP/P,x) €G/Px X : g 'x c C"}
(20) ={(, 9107, 9207, g30) € G/P x X : y € g1 Xp" N g2Xp> N 93X}
and
X:={(y,0107,920,930) €EG/Px X : ye 1 X' N g2 X¥2 N g3 XY,

where CT = CJ . - Observe that X is closed in G/P x X and it is ind-irreducible
since X = G - (P/P,C™).

Consider also the set X of points (y,9107, 9207, 930) € X such that the linear
map

o p T, (G/P) T, (G/P)
TylgsXy) — Ty Xp1) 7 Ty (g2Xp?)

is injective, i.e.,
Tu(91Xp") N Ty(92Xp?) N Ty (g3 X7)) = (0),
where 7 denotes the Zariski tangent space.

For v € WP we denote v/ — v if v/ € WF £(v') = £(v) — 1 and v < v.

Lemma 5.3. — The subsets X and X1 are open in X for any triple (wy,ws,v) €
(W)2.

In the definition of X and X if we replace X" (for any i = 1,2) by any B~ -stable
open subset of )D(gi U (Uwi%w/_ewp )Q(;”) and Xf by any B-stable open subset of
XPu (Uv Sovrewr )0(5), then the lemma still remains true.

Proof. — Consider the projection

T GX4 — G/P X Xv (9791592593) = (gP/Pvglginging3Q)7

and define X := 7~ (%) and x= 7~ 1(X). Then,

(21) X=1{(g.91.92.93) € G** : gP/P € 1 X' N g2 X > N g3 X L'},
and
(22) X =1{(g,91,92,93) € G**: gP/P € 91)0(;1 N 925@2 ﬂgBj(f}-

Define the morphism
B:X = Xp' x Xp* x X[, (9,91,92,93) = (91 '9P/P, 93 ' 9P/ P, g5 ' 9P/ P).
Then,
x=p4" ()Q(}.fl x X2 x Xf)
and hence X is open in X. Thus, 7 being an open map, X is open in X.

We now prove that
XT is open in ¥ (and hence in X).
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By the Equation (22)

7 HX) = X={(g, 91, 92.93) € G**:
(23) 1 -1 1 —1 1 1
9 g1 € Puy U™, g 'ga € Puy, U™, g 'g3 € Pv~'U},

and

(24) L (XY) = {(9,91,92,95) € (%) - ) .
Te(g7 i XE) N Te(g g2 XE2) N Te(g ™ g3 XE) = (0)},

where é := P/P € G/P. Consider the morphism
B X = Xy = Xp' x X2 x X7, (9,01,92,93) = (919,95 9,95 9),

where ng := B~w;P C G and similarly X” := BvP C G. Define the finite rank
vector bundle & over X% (i =1,2) by

U 7e(G/P)/Ta(h Xy — X,

hs e)z(ﬁi
and similarly the finite rank vector bundle & over Xf by

U 7 'XP) = X3,

heXP

and a morphism over )Q(wth,U:
@ m3(E3) = mi(€1) B m3(E2)

induced by the canonical inclusion of Tz(h~'XF) < T2(G/P), where m; is the projec-
tion from )D(mw%v to the i-th factor.. The set of points Z C )D(mw%v where ¢ is
injective is clearly open. But, it is easy to see that (ﬂo)_l(Z) = ﬁ_l(.%+), and hence

71(XT) is open in X and thus X is open in X. This proves the first part of the
lemma.
The proof for the second (stronger) part of the lemma is identical. O

5.3. Divisors from Schubert varieties. — In the remaining part of this Section
5, P is still a standard parabolic subgroup (and not necessarily maximal). We fix
(w1, wa,v) € (WF)? such that €% occurs with coefficient 1 in the deformed product

ept Goep? € (HY(Xp,Z), ).

In particular, wy, ws < v.
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5.4. The setting. — By a descent we mean a pair («, i) € A x {1,2,3} such that
—i=1,2and a € At (w), i.e., sqw; € WP and £(sqw;) = £(w;) + 1.
In this case we set w; = sqw;, w3_; = ws_; and v = v. Or
—i=3and a € A~ (v), i.e., l(squ) = £(v) — 1.
In this case we set w; = w; (for i = 1,2) and ¥ = s4v.
The set of all descents is denoted by D.
We now aim to prove that

(25) Eui = Eg, @, defined by equation (18)

is the zero set of a section of some G-linearized line bundle on X. To do this, we
consider three different situations of descents:

Type A: Descent («,¢) with ¢ = 1 or 2 such that v = 7 2 ;.

Type B: Descent («, ) with ¢ = 3 such that o # w; = w; for at least one j = 1,2.

Type C: Descent (c, ) with 1 < ¢ < 3 such that the relation © > w; holds for
both j = 1,2.

5.5. Type A descents. —
Lemma 5.4. — For a descent (o, 1) of type A,

Ea,i = E1I]1,U72,’L7 = Foz,ia
where Fy,; is defined by equation (12).
Proof. — Assume that ¢ = 2. (The proof for ¢ = 1 is identical.) Recall from the
Equation (20):
X:={(y,9107,920 ,90) €G/P x X : y € 1 X" NgaXp* N g X[},
for the triple (w1, ws,v). Consider its analogue for wsy replaced by ws := sqwa:
xl = x/a,Q = {(yvglgiaQQQiagQ) € G/P x X Yy S nggl QQZXgZ mgX'Ll;j}a

and X[, ; has a similar meaning, where we place s, in the i-th factor.
Let n : G/P x X — X be the projection. By Lemma 5.2, n(X’) = E, 2 (cf. the
identity (19)) is closed in X and ind-irreducible. Define the open subset of X :

X = {(z1,22,2) € X : (21,2) € G.(0",0)}.
To prove that X is open in X, use the standard isomorphism G x - G/B~G/B™ x
G/B. Since (07,8407 ,0) € X N F, 2 and F, o is ind-irreducible (cf. §5.1), we have
(26) XNFag=Fpo.

Since w; < wv, the Richardson variety X*'(P) := XF N X}* is nonempty. Take
x € X1 (P). There exists g € G such that g~'xz € X722, Then, (0~,go™,0) belongs
to X Nn(X’). Since n(X’) is ind-irreducible, we deduce that

(27) X (') = n(X').
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By (26) and (27), it is sufficient to prove that
(28) XNnX)=XNF,..

But G xr G/B~ — X, [g: z] — (go~, gz, go) is an isomorphism. Consider the

intersection of X with G/P x o~ x G/B~ X o:

Xy ={(z,907) e X;)'(P) x G/B™ : x € gX;*}
and

X' ={(x,907) € X (P)x G/B™ : x € gXp*}.
Since X is closed in G/P x X (see above Lemma 5.3), X,, and X/, are closed in
X¥(P) x G/B~. Note that
(29) XN(G/P X X) =G xrXus, X' N(G/PxX)=GCxr X,
under the maps

§:lg:(x ho”)] = (9,907, gho™, go)

and X' N Fu 2 ~ G X Bsao~. Thus, to prove (28), it is sufficient to prove that
(30) -)vam = Bsy0™,
where Xy, = {go~ € G/B~ : X'(P) N gXi*"* # (}. By Lemma 5.2, X,, is closed
in G/B~.

By the identity (30), it suffices to prove that Xss = Bs,o~. By equation (6)
applied in the setting of Corollary 4.2 for w = ws, we get Xs3 C Bs,0~. Moreover,
by Corollary 4.2, Bs,o~ C Xss (since X' N X3 N gXpt # 0 for anyg € G due to
the fact that €% occurs in €' - €p' with nonzero coefficient [BK14, Proposition 3.5]).
But since /'?ss is closed in G/B~, we get /'?ss = Bs,0™. O

5.6. Type B descents. —

Lemma 5.5. — For a descent (a,3) of type B such that w; = w; £ 0 (for some
Ea,s = Ewl,wg,i = Foz,j;

where F, ; is defined by equation (12).

Proof. — Without loss of generality take j = 2. By Lemma 5.2, E, 3 is closed and

ind-irreducible. Define the open subset of X :

X = {(z1,22,2) € X : (x1,2) € G.(07,0)}.
Since (07, 8407,0) € XN F,2 and F, 5 is ind-irreducible (cf. §5.1), we have
(31) XNFag=Fpo.

Since wy < ¥ := s4v, the Richardson variety X' (P) := XN X} is nonempty. Take
x € X1 (P). There exists g € G such that g~'z € X32. Then, (0™, go™,0) belongs
to X Nn(X’), where X' := X, 5. Since 7(X’) is ind-irreducible, we deduce that

(32) X (') = n(X').
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By (31) and (32), it is sufficient to prove that
(33) XNnX)=XNF,,.

But G xr G/B~ — X, [g: z] — (go~, gz, go) is an isomorphism. Consider the

intersection of X with G/P x 0o~ x G/B~ X o

X0 = {(zagQi) S X:;UI(P) X G/Bi Tx e ngZ}
and its closed subset

X' ={(z,907) € X;’'(P) x G/B™ : x € gXp*}.
Since X is closed in G/P x X (see above Lemma 5.3), X,, and ¥/, are closed in
X (P) x G/B~. Note that
(34) XN(G/P X X) =G xrXus, X' N(G/PxX)=GCxrX,,
under the maps

§:g:(x ho™)] = (9,907, gho™, go)

and X' N Fo2 ~ G xp Bsqo™. Thus, to prove (33), it is sufficient to prove that
(35) -)vam = Bsy0™,
where X,, := {go~ € G/B™ : X (P)NgXp? # 0}. By Lemma 5.2, X,, is closed
in G/B~.

By the identity (35), it suffices to prove that Xss = Bs,o~. By equation (6)
applied in the setting of Proposition 4.1 for w = ws, we get Xs3 C Bs,0~. Moreover,
by Proposition 4.1, Bs,o~ C Xss. But since Xy is closed in G/B~, we get X5 =
Bsq0™. O

5.7. Type C descents. — Take a descent («,4),1 < i < 3, of type C. Thus,
(i) wy < v and we < 7;
(ii) £(v) = L(w) + £(w2) — 1;
(iii) there exist Iy, Iy and I3 in L such that the linear map
I5Ts — o @ 7o
is injective, where the Zariski tangent spaces
T =T:G/P), T" =Te(w; ' Xp"), and Ty = Te(07' X)),
The above condition (iii) follows from the following lemma.
Lemma 5.6. — For any descent (o, 1) of type C, the triple (w1,W2,7) satisfies the
above condition ().
Proof. — We first prove the lemma for a descent (a, 1) of type C. By the proof of
[Res21, Lemma 19], there exists l1,l2,l3 € L such that

3Te N LT NI T2 = (0).
Now, 7%t D T%1, since

T = @ g_p and T = @ 9-5,

BedLnw; et gedinw, o+
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where ®* is the set of positive roots of the Kac-Moody Lie algebra g and ®F :=
&\ dF(L) (P+(L) being the set of positive roots of L). Thus,

13T, N 117-1171 NIlLTY? = (0)
The proof of the lemma for any descent («, ) of type C for i = 2 or 3 is identical. [

Proposition 5.7. — Let («,i) be any descent of type C. Then, there exist a G-
linearized line bundle Lg, w,5 over X of the form Lg, wy5 = L7 (A1)RL (A2) XL ()
for some (A1, A2, ) € Pf and a nonzero G-invariant section 0w, we.v Of L, we,5 SUCh
that

Ep, w5 ={€X : 0, w,,5(x) =0}.

Before we come to the proof of the proposition, we need to prove some preparatory
results.

Let U be the commutator subgroup [B, B] of B and Uo~ the open cell in G/B~.
Set

Q= {(1,22,930) € X : g3 'w; € Uo™ fori=1,2}.
It is easy to see that €2 is open in X.

The construction of Ly, 4,5 and 0g, w,,5 is made in two steps:

(1) construct their restrictions to € by using a slice technique to reduce to the case
of finite-dimensional varieties (see Lemma 5.9 below). Now, Eg, @,.5 corresponds to
the subvariety E (see (37) below) of an affine space. Lemma 5.8 proves that Eisa
closed divisor using Lemma 5.3.

(2) Twist the restriction (Lg, w,,5)j@ to avoid components of the zero locus
of 045, w,,» i the boundary X — (2. This step uses Lemmas 5.9 and 5.10 below.

Observe that, by the Birkhoff decomposition [Kum02, Theorem 6.2.8],

(36) X=QuU U Foi
a€A,i=1,2

Consider the group homomorphism 6 : U — Aut(X?") given by the action and
let Uy be its image. Note that Uy is a finite-dimensional unipotent group. Set

(37) E:={ucUs: (uX(P))NXT(P) # 0}.
Lemma 5.8. — The subset E of Uy is a closed irreducible dwvisor of Us.
Proof. — Consider the closed subset of Uy x X?(P):
X:={(u,z) € Uy x XP2(P) : 'z € X' (P)},
with its two projections p; and pe on U; and X22(P) respectively. Since X2 (P) is
projective, py is proper. In particular, £ = p; (X) is closed in Uy.

Recall the definition of X from the Equation (20) and as defined earlier in the proof
of Lemma 5.2,

X, =%Xn(G/PxG/B~ x G/B~ x {o})
={(y,9107,9207,0) €EG/Px X :y € (1 X') N (g2 X52) N XL},
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its open subset
X1 =%n(G/PxU-07)x(U-07)x{a}),
and
X, :=m; 5(X,), where 1 : G x X — G/P x X is the projection.
Then,

(BuP) x (Pw; 'B~/B~) x (Pwy ' B~/B~) ~ X, (9,21, %2) = (g, 921, g2, 0).

Hence, X, is irreducible and thus so is its quotient X,. By the condition (i) at the
beginning of subsection 5.7, X7 is nonempty. By the condition (iii) at the beginning
of subsection 5.7 and Lemma 5.3, X, N Xtisa nonempty open subset of X,. Since
X, is irreducible and X, N Xt and .%1 are nonempty open subsets of irreducible X,
their intersection

f{f =X, NXt s nonempty.
Consider the ind-variety Y = G/P x U x U and the morphism
a:Y — G/P*3, (y,ur,ug) — (uyty,uy 'y, y).
Let Y = Y{@, @,,5) C Y be the closed ind-subvariety
Y=o ' (XP < Xp2x X))
Then, there is an isomorphism
B:Xy~Y', (y,u10,u20 ,0) — (y,u1,us).
In particular, Y’ is also irreducible. Let
Y] = B(%f) C Y’ be the nonempty open subset.
Consider the morphism
q:Y =5 X, (y,u1,uz) — (O(uy ur), uy ty).

Qlearly, q is surjective. In particular, we obtain that X is irreducible and hence so is
E = p1(X). .

We now determine the image of py: Let € X;2(P) and let v < @ be such
that v/ € WP and z € Xf, Then, € Im(pz) if and only if Uz N X' # 0 if and only
if w1 <o (cf. [Kum02, Lemma 7.1.22]). We deduce that

(35) mp)=xg0( XD
w1 <v' <v0'eWP
In particular, it is open in X*(P).
We now analyze the fibers of pa: Let # € Im(ps) and v be as above. Then, p; *(z) is
the set of points u € Uy such that u~'z € X', Tt is the pullback of Xf, NXE by the
orbit map w +— u~tx. Since X5 N X3! is irreducible (cf. [Kum17, Proposition 6.6])
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and the stabilizer of z in Uy is, of course, irreducible (being a closed subgroup of a
finite-dimensional unipotent group), so is py *(z). Moreover,

dim(py '(2)) = £(v") + dim(Staby, (v P/P)) — £(w1)
= {(v) + dim(Staby, (0P/P)) — £(w1),

where Staby, (v P/P) denotes the stabilizer of v’ P/P in Us.
Further, by Equations (38) and (39),

(40) dim X = ¢(v) + dim(Staby, (0P/P)) — (1) + () — (w3)
=dim Uz — 1, by the condition (ii) at the beginning of subsection 5.7.

(39)

We return to the surjective map q : Y/ — X defined above. By Chevalley’s theorem
(cf. [Har77, Chap. II, Exercise 3.19(b)]), ¢(Y) contains a nonempty open subset

(denoted by .%*) of X. By the definition of %f, we get the following:
(41)  To(uXP1(P)) N T(XZ2(P)) = (0), for any (u,z) € XT C Uy x XZ2(P),
where

XP(P):= XgnXP.

v

Observe that X2i(P) is smooth (which follows from [Kum02, Lemma 7.3.10]).
Consider the projection map

pf e Uy, where pf =P
From the above Equation (41), we conclude that
()~ 7 (w)) € {u} x (WX (P) N X72(P))

is a finite set for any (u,z) € XT. In particular, E being irreducible,

dim(E) = dim(Im p;) = dim(X¥) = dim(¥) = dim(Uy) — 1,

where the last equality follows from the Equation (40). This proves that E is a divisor,
proving the lemma. O

Lemma 5.9. — There exist a G-equivariant line bundle M € Pic(Q?) and nonzero
7€ H(Q, M)C such that
QNE={zxeQ: 7(z) =0},
where E = Eg, w,5 (defined by the Identity (11)—(12)). In fact, we can take M =
(p310)* Ly for a character x of B.
In particular, ENQ is closed in €.
Proof. — By definition,
E ={(g107,9207,930) € X : 1 X" N g2 X}? N gsXT # 0}, by (12)

={(9107,9207,930) : (95 1 Xp") N (95 '92Xp?) N X T # 0}.

Consider the isomorphism ¢ : Uo~ — U,u0~ — u. Then,
ENQ ={(z1,22,930) € Q : (g5 x1) X5 Ne(gy 1'2)Xw2 NXE +£0}
= {(z1,72,930) € Q : (L(gglxl)X—wl(P)) ( (g3 tw2) Xw2 ) # 0},
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since X7 is U-stable. Here (as earlier) X¢ (P) := X' N XL, Thus,
(42) ENQ={(z1,22,950) € Q : ([t(g5  x2) " "e(g5 '21)] X (P)) N X2 (P) # 0}

As earlier, consider the group homomorphism 6 : U — Aut(X?!) given by the
action, and denote by Uy its image (which is a finite-dimensional unipotent group).
Recall (cf. (19)) that

E={ueUs;: (uX(P))NXT(P) # 0}.

Note that the torus T" acts by conjugation on Uz and that E is T-stable. Being a finite-
dimensional unipotent group, Us is isomorphic as a variety to an affine space. In partic-
ular, there exists f € C[Us), unique up to scalar multiplication, such that div( f) E
(since FE is an irreducible divisor by Lemma 5.8). Moreover, since Eis T-stable, f is
an eigenvector of T'; denote by x the corresponding character. We extend x uniquely
to a character of B.

Set £ = #~1(E) and Q := #~1(Q), where # : X := G/B~ x G/B~ x G — X is the
projection. Then, 2 and E are stable by the following action of G x B:

(g’b)'(xlazQag/) = (g:cl,g:cg,gg/lf )
Consider f : Q —» C defined by

fle1,22,9) = [ o 8ulg™ e2) " ulg ™ an)).

Then, by the Equation (42), E N Q is the zero locus Z(f) of f and for b = ut € B
(where u € U,t € T)):

f(xlvx%gb) *foe(t He(g™tag) ™t (g_lxl)]t)
(43) () F (1, 22.9) = x(6) F (1,22, 9).

We claim that f induces a section 75 of (p3j0)*(Ly), where p3 : X — G/B is the
projection onto the third factor.
By the Equation (43), f gives rise to a section 77 of the line bundle Lo (x) associated

to the principal B-bundle Q@ — Q (induced from the right - action of B on ) via the
character ! of B. Clearly,

La(x) = (p310)" (Ly)-

By construction, the zero set Z(Tf) = E N . By the definition of Tf, it is easy to
see that it is a G-invariant section. Taking 7 = 77, we get the lemma. O

We now have a line bundle and a section 7 on 2 with the expected zero locus. To
avoid extra zero locus in the boundary X'\ we need to twist by some line bundles
given by Lemma 5.1. The key point to do this is the following finiteness result:
Lemma 5.10. — The valuation v, () is finite for any B € A and i = 1,2, where
T 1is the section taken from Lemma 5.9. (In the proof below we see that Fg, is ind-
irreducible.)
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Proof. — We are going to prove that vp, (7) can be computed in some finite-
dimensional variety after taking a quotient by a unipotent group.
Fix a simple root € A and ¢ = 1 and consider

F=Fgy ={(x1,22,930) € X : g3'®1 € Bsgo™}.
Consider the isomorphism
p: X > X, (x1,22,9) — (921,972, 9).
Endow X with the following two right actions of B:
(-Tla T2, g) © b= (b_l‘rl’ b_1$25 gb)
and
(x1,22,9) - b= (21,22, 9b).
Then, the morphism ¢ is B-equivariant with respect to the action ® on the domain

and the action - on the range.
Clearly, 7 : X — X is a principal B-bundle with respect to the action -. Define

Q' = (D).

By the definition of €,
(44) Q' =Uo xUo™ xG.

Let f and f be as in the proof of Lemma 5.9. Set f/ = f o : ( — C. Thus,
(45) fN’(ulg*,uQQ*,g) =fo 0(uy ' uy), for uj,us € U and g € G.
Set I := (o) Y (F) = Usgo~ x G/B~ x G. Consider V# := Uo™ UUsgo™. Tt is
an open subset of G/B~ (containing Usgo~). By [Kum17, Lemma 6.1] and [KS09,
Proposition 3.2], there exists a closed normal subgroup U of U such that V# —
U\VP =:YF is a principal U-bundle and Y? is a smooth finite-dimensional variety.

Moreover, by intersecting with Ker #, one can assume that U/ acts trivially on X3.
Let hy, hs € U. We have, for any ui,us € U and g € G,

F'(huro™, hauso™,g) = f o 0(uy hy *hiut), by Equation (45)
=fo 0(uy'u1), since 6 is a group homomorphism
and hy,ho € U C Ker
(46) = fl(ulg_a UQQ_, g)

Since the line bundle p5(L,) over X pulled to the principal B-bundle 7 : X = Xis
trivialized, to prove the finiteness of vp(7), it suffices to show that the function
f:Q — C has a pole of finite order along 7~ 1(F). Equivalently, considering the
isomorphism ¢ : X — X, it suffices to show that the function

f’:Q':UQ_XUQ_XG%(C

has a pole of finite order along F’ = Usgo~ x G/B~ x G, since F' = ¢~ '(F); in
particular, F' is ind-irreducible.
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The diagonal action of G on X pulled back via ¢ to the action ® of G on X is
given by:

9O (x1,22,h) = (21, 22,gh), for x1,29 € G/B~ and g,h € G.

The function f’ :Uo™ xUo™ x G — C descends to a function f’ on Uo~ xUo~ by
Equation (45). So, to prove that the function f’ has a pole of finite order along F”’,
it suffices to show that the function f’ : Uo~ x Uo~ — C has a pole of finite order

along (USBQ_) x G/B~. Consider the open embedding
U\Uo™) x (U\Uo™) = (U\V?) x (U\Uo™)

By the Equation (46), the function f’ descends to a function ¢’ on (U\Uo™) x
(U\Uo™). Since (U\V?) x (U\Uo™) is a (smooth) scheme of finite type over C, the
function ¢’ has a pole of finite order along the divisor (U\(Usgo™)) x (U\Uo™) and
hence f' has a pole of finite order along the divisor (Uspo~)xUo~. Since Usgo™ is an
open subset of Usgo~, we get that f' has a pole of finite order along (Usgo~) x Uo™.
This proves the finiteness of vp, ,(7) for any 3 € A. The proof of the finiteness
of vp, ,(7) is identical. O

Proof of Proposition 5.7. — Observe that £ # X by Lemma 4.5. By Lemma 5.9,
there exist a G-equivariant line bundle M over §2 and a nonzero G-invariant section 7
over ) with its zero set Z(7) = EN Q. Moreover, the line bundle M is the restriction
of the line bundle p5(L,) over X. Then, 7 is a (rational) section of M’ := p%(L,)
regular over ().

Lemma 5.10 allows to consider the G-linearized line bundle

Ewl,u’;Q,vj =M ® ® MZI;BZ(T) over X,
BeA,i=1,2
where the line bundles Mg ; are as in Lemma 5.1. In particular, L, 4,,s is of the form
L7(M) KL (A2) B L(p) for some A1, Aa, it € b
By Lemmas 5.1, 4.6, 4.7 and the decomposition (36), it has a nonzero G-invariant
section

vry ,(7)
(47) Owy,w2,0 = T ® ® 0-,61;'67
BEA,i=1,2

Thus, by [Kumo02, Corollary 8.3.12], (A1, A2, ) € P{. This proves the proposition
by using the following Lemma 5.11. O

Observe that ENQ C E (since E is closed by Lemma 5.2). Moreover, since E is
irreducible and ENQ # 0 (as (07,07,0) € ENQ),

(48) ENQ=E.

Lemma 5.11. — The zero set Z(0p, my.5) = { € X : 0y my,5(x) = 0} is equal
to E.
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Proof. — Consider the map
V:X:=(G/B7)*xG— X :=(G/B)?xG/B, (x1,22,9) = (921,92, go).
For any subset Y C X, we set Y’ := ¢~1(Y). Then,
F}, =Bsgo~ x G/B~ xG.
Take an increasing cofinal sequence w, € W (ie., w3 < w2 < wg < --- and for
any w € W there exists a w,, such that w < w,,). Take a filtration (G, )n>0 of G by

finite-dimensional irreducible subvarieties compatible with its ind-variety structure
(cf. [Res21, above Lemma 2.3]). Now, define the increasing filtration

X, = Xy, X Xy X Gy of X, where X, := B-wo~.
Then,
(49) X, NFh, = (X, NBsgo~) x Xy % G,
and a similar expression for X, N F 5.0+ Thus, X,NF 5. is irreducible. Abbreviate

Z = Z(0, .0y.5). Then, by Lemmas 5.1 and 5.9 and the identity (36), ZNQ = ENQ
and hence Z D FE by the identity (48). Write

Z'=F'U U (Z'n Féz) , by the identity (36).
(B,5)eAx{1,2}

Thus, for any n > 0,

(50) Z'NX,=(ENX,)u U @nF,nk)
(Bi)enx{1,2}
But, being the zero set of a section of a line bundle, Z'NX,, is a divisor in X, for large n

and so is F° 5.0 X, and the latter is irreducible (divisor of &,,) by the Equation (49).
From the definition of o given by the Equation (47), we get (for any (3,4) € Ax{1,2})

(51) Z'n F'éz N&x, C Féz NX,, for large enough n.
Thus, Z' N Féz N X, is of codimension > 2 in X, for large enough n. But, since
Z' N X, is a divisor in X,, we get from the Equation (50) that

Z'n Féz NX, C E'NX,, forlarge enough n.

Thus,
7' NX,=ENAX,, forlarge enough n which gives Z' = F'.
Hence, Z = E proving the lemma. O
Combining Lemmas 5.1, 5.4 and 5.5 and Proposition 5.7, we get the following.
Corollary 5.12. — For any («,i) € D, there exists a G-linearized line bundle N, ;

of the form L~ (A1) ® L™ (X2) @ L(p), for some A1, A2, u € P}, together with a nonzero
G-invariant section fia ; of Noi such that the zero set

Z(/La,i) = Eaq,i, where Eq; = Eg, w,,0-
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Remark 5.13. — Observe that for a descent («, 3) of type B, there exists exactly
one 1 < j < 2 such that w; = w; £ v. To show this, assume for contradiction,
that w; £ v for both ¢ = 1,2.Then, by Lemma 5.5, Ey3 = F,1 = F, 2. This is a
contradiction since F, 1 # Fy 2. This proves the claim.

6. Proof of Theorem 1.5

In this section, we fiz P, (w1, ws,v) and L as in the theorem.
As earlier, let D denote the set of descents (o,i) € A x {1,2,3} coming
from AT (wy), AT (wz) and A~ (v), i.e.,

DN (A x {i}) = AT (w;) fori=1,2and DN (A x {3}) = A" (v),
where At (w;) and A~ (v) are defined in the Introduction.
6.1. Strategy. — We set
C = Lw; o™ x Lwy o™ x Lv™ 1o,

Cct = owlg_ X Pw;lo_ x Pv~ 1o,

and (as earlier)

Ct =C} w0 =Puwi o™ x Puy o~ x Pvlo

Recall from Equation (20):
X :={(gP/Px) € G/Px X : g~ 'z c CT}
= {(y,9107,9207,930) € G/Px X : y € 1 Xp' NgaXp? Ngs X}
As a closed subset of G/P x X, it is a G-ind-variety with the diagonal action of G.
Consider the projection
n:X—>X, (y,x)— a.
For each (a,i) € D, consider the associated P3-orbit dC7 ; in X, where
30;;1 = owlsag_ X nglg_ x Pv~lo
and 80:{11. (1 = 2,3) are defined similarly. Then, 80;% is open in an irreducible
component of Ct\C*. Set
Ct=Y" xY"2 xY,,
where
YW = (Pwi_lgf) U U Pw;lsagf
(e,i)€D

and

Y, = (Pv_lg) U U Pvts,0
(,3)€D
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It is open in C'*. Similarly, we define the open subset of X5

Xpio=B wP/P)U| |J B sawP/P| (fori=1,2)
aeAt(w;)

and the open subset of X2

X! = (BorP/P)u| |J BsawP/P
aceA~(v)

We also set

¥ :={(gP/P,x) €G/Px X : g~ 'z € Ct}
={(y,0107,920,930) E G/P x X : y € 1 X' N g2 X2 Ngs X1},

which is an open subset of X and hence ind-irreducible (since so is X as observed
earlier below the Equation (20)). We make use of a slice by setting

X, :=(G/B™)* x {0} C &,

and its B-stable open subset

55'1) :=(Bo™ U U 5aB07)? x {0} = U Bwo™ x {o}.
a€cA L(w)<1

Then, we have a G-equivariant isomorphism:
(52) GxBx,~x [g,2] gz
As defined in the proof of Lemma 5.2,
X, ={(y,010,920 ,0) EG/Px X, : y€ 1 X N2 X2 N X} c x.

We also set
X, =%,n(G/Px X))

and

X, = {(y,9107,9207,0) € G/P x Xy : y € ng;ﬁl ﬂggX}.ﬁjz ﬂf(f}.
Then,
(53) GxPx,~% [g,1] gz

In particular, X, is irreducible since so is X. Hence, X, and %)A (being open subsets
of X,) are irreducible.

We now consider the following commutative diagram (o) for any G-equivariant line
bundle £ over X as in Theorem 1.5:
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n* % _ B*
HO(X, £)6 —1 5 HO(X, £)C —% s HO(G xP O+, £)6 —— HO(C, )"

iy i3 7"
77* Z* ~
HO(XIM ‘C)B *1> HO(%IH ‘C)B 43) HO(XIME)B
iy 5 ig

* -

00 T2 00 124 - 00
H(X,, L) —— H°(X,, £)P — HO(X,nX,, L)

where
a:GxPCt =%, [g, (21, 22,23)] — (9P, g1, g2, g3)
is a G-equivariant open embedding with image X/,
B:C < GxP C* is the L-equivariant morphism z — 1, z],

v X, — GxPCr, (gP,gi07,9207,0) |9, (g7 9107, 97 g207, 97 0)],

is the morphism (which is at ), M, M2 are restrictions of  to X, and ¥ » respectively.

x,
All the maps i; are appropr}ate inclusion maps. In the above diagram £ also denotes
the induced line bundle on each of the above ind-varieties by pullback. Note that the
ind-varieties with » as subscript are B-ind-varieties with the B-action induced from
the G-action of the ambient G-ind-varieties; in particular, the line bundle £ over them
is endowed with a natural B-action.

We now prove that all the maps in the above commutative diagram are isomor-
phisms.

6.2. Various isomorphisms. — We first prove the following lemma for its use in
the proof of Lemma 6.2.
Lemma 6.1. — Let Up be the unipotent radical of P. Then,

(a) Any regular map Up — C* is constant.

(b) Pic(Up) = (0).
Proof. — (a) Cousider the parabolic subgroup P~ opposite to P and the homoge-
neous space G/P~. Then Up can be seen as an open subset of G/P~. For any Schu-
bert variety X, = X (P) :== B~wP~ /P~ C G/P~ (with w € WF), X, NUp is
contractible in the analytic topology (cf. [Kum02, Proposition 7.4.17 and its proof]).
Now, by [KNR94, Lemma 2.5], we get that any regular map X, NUp — C* is a
constant. From this (a) follows.

(b) By induction on ¢(w), we show that the group of k-cycles modulo rational
equivalence Ag (X, NUp) is a finitely generated group. By [Ful98, Proposition 1.8],
we have an exact sequence:

Ak((aX;) n Up) — Ak(Xv; n Up) — Ay ((Biwpi/Pi) n Up) — 0.
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Writing 9X,; as a union Uy,)—g(u)—1 X, and applying [Ful98, Example 1.3.1(c)]

and the induction hypothesis, we get that A;(0X, NUp) is finitely generated. Also,
applying [Ful98, Proposition 1.8] again to the open subset (B~ wP~/P~)NUp of the
affine space B~wP~/P~, we get that Ay (B~wP~/P~)NUp) is finitely generated
since so is Ay (B~ wP~/P~) (cf. [Ful98, Proposition 1.9]). Thus, from the above exact
sequence, we get that Ax (X, NUp) is finitely generated, completing the induction.

Consider the cohomology exact sequence (since X, N Up is contractible in the
analytic topology)

H (X, NUp,Z,,) =0 — B (X, NUp, 0*) = Pic(X, NUp)
— HY (X, NUp, 0*) = Pic(X,, NUp) — H*(X, NUp,Zy,) =0,
induced from the sheaf exact sequence:
Ly — OF — O — 0,

where the map 0* — 0* takes f — f™. From the above cohomology exact sequence
we see that Pic(X,, NUp) is a divisible group. But, since it is also a finitely generated
abelian group (by [Ful98, Example 2.1.1]), it must be trivial. From this, taking limit,
we obtain (b). O

Since X is irreducible and Im o = X’ is open in X, the restriction map
H(%, L) — H(G xP C*, L) is injective and hence so is a*.
Lemma 6.2. — (a) The pullback induces an isomorphism:
n*HO(X, L)Y ~ H (X, £)°.
(b) The restriction map
HO(C, £)P — H(CH, L)F

18 an tsomorphism.
(c) The restriction map

H(Ct,£)f - H(C,L)F

s an isomorphism.
Proof. — (a) follows by [Res21, Lemma 11].

The proof of (b) is analogous to the proof of [Res21, Lemma 13]. We sketch the
proof: the map H(Ct, £)” — H(C*, £)F is obviously injective. Hence, it remains
to prove that any P-invariant section o of £ on Ct extends to C't.

For x € WP, Px~'o~ is contained in Pwi_lg* if and only if x > w;. Moreover,
{2 €W : zo~ € Pr—'o} is the set of z € W that can be written as z = yz~! for

some y € Wp. Since zy~! > z, such a point zo~ belongs to Bw;lg—. Then, Pwi_lg

and Bw; 19— are B-stable and contain the same T-fixed points. We deduce that

(54) Pw;'o~ = Bw; 'o~.
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Yet, Pv—lo = U’UnEWP
We now construct an increasing filtration of C* by products of finite-dimensional
Richardson varieties:

X, v-1, Where v, is an increasing cofinal sequence in Wp.

or= e
neN
Explicitly
O = (X" N Xy ) x (X2 N X5 ) x Xy 01,
where {w,} is a cofinal increasing sequence in W and Pw; o~ = X™ by the Equa-

tion (54), where X := Bw—1lo~ and X := B~wo~. In particular, C; are irreducible
and normal (cf. [Kum17, Proposition 6.6]). Of course, C;7 N C™ is open in C;F and
nonempty for large enough n. It remains to prove that 016 no+ extends to a regular
section on C;f N Ct, for any n.

Fix (a,i) € D. The irreducibility of the Richardson varieties implies that the
intersection C;F N GC;Z- is either empty or irreducible. Since C is normal, to prove

that 0|5+ c+ extends to C:rnCT, it is sufficient to prove that 0\&+no+ has no pole
along C;F N9CT , if Cf N ACY; has codimension 1 in Cf .
Assume that D,, := Cf NdCT; has codimension 1 in C;f. Then, D, is equal to
either
() (XM N Xy ) x (X NX, )x X, -1, for some 4y > w1 € WP and {(u1) =
(wy) + 1; or .
(@) (X' NXy ) x (X2NnX, ) x X, -1, for some iy > wy € WF and ((ti2) =
L(ws2) + 1; or
(B) (XZ' N Xy, ) x (X2 Xy ) X Xy v-ts,-

Now, we construct an explicit affine open subset €2, in C;F that intersects D,,.
In case («), set

Q= (X" N Xy N((a1)"'Bo™)) x (X*2 N X5 ) X Xyt
where )0(1; := B~wo~ and X,, := Bwo and similarly for the case (/). In case (f8),
Q= (X" NX5 )% (XN Xy ) X (Xy, o1 N (vav " 50 B 0)).

Fix 7 = zXeeam 4o . 0 T, where d; > 0 is an integer such that d;x; € bz.
We now apply [Res21, Lemma 33| to 2, endowed with the action of C* induced
by 7. The checking of the assumptions (i)—(iv) of [Res21, Lemma 33| are done in
the proof of [Res21, Lemma 13]. The only remaining point, with the notation of
[Res21, Lemma 33], is to prove that k& > 0. This is done as in [Res21, Proof of
Lemma 13, specifically the part ‘The line bundle on the affine subvarieties’]. Here, the
non-negativity of k is due to the fact that £ is nonnegative restricted to the projective
lines ¢,; for any (a,4) € D, which is our assumption (cf. Theorem 1.5). This proves

(b).
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We now come to the proof of (c). Since H*(CT, £)F is contained in H*(C*, )7,
[Res21, Lemma 14] implies that the map (c) of the lemma is injective. We now prove
its surjectivity:

Consider the map 6 : P — L, p — lim;_o7(¢)pr(t~!), which is a surjective
group homomorphism. This provides an action of P? on C through the homomorphism
6. Then, the regular map v: CT — C, x — lim;_,o 7(t)x is P3-equivariant.

Take the canonical G3-equivariant structure on £ over X under the componentwise
action of G on X. Thus, we will think of £ as a G3-equivariant line bundle over X.
Denote

Then, C = L? -2 and Ct = P3 . 2. Thus,
(55) Pic” (C*) ~ X(P?) and Pic”’ (C) ~ X (L?),

where X ( ) denotes the character group and P2 (resp. L3) denotes the isotropy
subgroup of P? (resp. L?) at z. Now, it is easy to see that (by considering PNw; ' B~ w;
and P Nv~!Bv)

(56) ng = Li : (U’wl X U’w2 X U;),

where U, (resp. U)) is the finite-dimensional (resp. finite-codimensional) subgroup
of the wunipotent radical Up of P with Lie algebra @geginy-14- 98 (TeSP.
@Be@ﬂ@{)ﬂv*lqﬁ gp), where ®T (resp. ®]) is the set of positive roots of G

(resp. L). Moreover, since L? normalizes U3, L3 normalizes Uy, X Uy, x U!. Now,
for a finite-dimensional unipotent group, any character is trivial and similarly U] has
no nontrivial characters by the same proof as that of Lemma 6.1(a). Thus,

X(P}) = X(L3).
Hence, by combining the Equations (55) and (56), we get
(57) Pic”’ (CF) ~ Pic’ (C).

We define the P3-action on L|c compatible with the action of P3 on C by demanding
that UP acts trivially on £jc. Thus, we get a P*-equivariant line bundle v*(L¢)
over CT. We also have a P3-equivariant line bundle Lc+. By the Equation (57), we
readily see that

Licr =27 (Lic), as P3-equivariant line bundles;

in particular, as diagonal P-equivariant line bundles.
Thus, for o € H’(C, L)X, v*(0) € H*(C*, £) and v*(0)|c = 0. We deduce thus
that the restriction map H(CT, £)F — H°(C, £)" is surjective. This proves (c). O

We thus conclude that the first horizontal line in the above diagram (¢) satisfies:
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HO<X,£)G %) HO(‘%)E)G [Oé_) HO(G ><P é+,£)G N H0(C¢+’£)P
n

B*

HO(C, L)*,

where n* is an isomorphism and the last vertical map is an isomorphism (which follows
from Lemma 6.2).

6.3. Isomorphisms induced from slice. — Since G x? X, ~ X (cf. Equa-
tion (52)), we get that i} : H (X, £)¢ — H°(X,,£)” is an isomorphism. Similarly,
i3 is an isomorphism by using Equation (53). Further, 4* is an isomorphism since
a: G xP Ct - X' is a G-equivariant isomorphism and so is

(58) GxBx,~% [g,7] gz

6.4. Isomorphisms obtained from restriction to some open subsets. —
Lemma 6.3. — The restriction map H(X,, L) — Ho(ﬁéb,ﬁ) is an isomorphism
and hence i} is an isomorphism.

Proof. — For any w € W, consider the Schubert variety

X, =B wB- /B~ CG/B".
For any wi,ws € W, consider the open embedding

by = s N (X5, x Xo x {o}) = Xo x X5 % {o}.

The complement
Y, we = (X, X Xopy X {0}) \Im (G, 00,
has its irreducible components of the form
(Xo, NBuB~/B~) x X, x {0} or X, x (X,, NBuB~/B~) x {0}
for some ¢(u) = 2. But, by [Kum02, Lemma 7.3.10], each of these irreducible compo-

nents have codimension 2 in (the finite-dimensional) X7 x X x {o}. Thus, by the

w1

normality of X (cf. [KumO02, Theorem 8.2.2(b)], we see that the restriction map
HO(X,, x X, x {o},£) = HO(X, N (X, x X, x{o}),£)

w1 w1
is an isomorphism. Taking limits over w1, w2, we get the lemma. o
As obsigved earlier, X’ is irreducible and hence so is X, by the isomorphism (58)
and X, N X, is open in X,. It follows thus that the map
it HOX,, L) — HO(X, N X, £)P
is injective.
We now prove that the maps 75 and 7% are isomorphisms.

Lemma 6.4. — The map HO(?OS'A,[,) — Ho(ib,ﬁ) induced from ng is an isomor-
phism and hence so is 15 .
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Proof. — 1t is easy to see that the map 7, is proper. Moreover it is birational by
[Res21, Lemma 10]. In particular, it is surjective. If X, and kS » are finite-dimensional,
the lemma follows from Zariski’s main theorem (see, e.g., [Har77, Chap. III, Corol-
lary 11.4]). The argument used to prove [Res21, Lemma 11] allows us to prove that
the above map H (?Oéb,ﬁ) — Ho(ib,ﬁ) is an 1somorphrsrn To prove this we first
show that Z{A is ind-irreducible. To prove this, since Z{A is an open subset of X,
by the isomorphism (53), it suffices to show that X is ind-irreducible. Further, since

X =G-(P/P,C%) (see above Lemma 5.3), it suffices to show that Pw; 'o~ and Pv—1lo
are ind-irreducible. But, as observed earlier in the proof of Lemma 6.2 equality (54),

Pw[lg* = Bwflg*. So, it is ind-irreducible. Similarly, Pv=to =, cw, Xv,v-1

where v, is an increasing cofinal sequence in Wp. This shows that Pv—lo is also
ind-irreducible. Thus, X is ind-irreducible. Take an open set Q, C %)A and open set
Q, C 5& such that 7o : Q) — €, is an isomorphism. Let £ : Q, — Q) be its
inverse. Now, take an increasing cofinal sequence {uy}n>0 in W and take the filtra-
tion (Y3, )n>0 of /f’éb by
Y, =X, N (X, x X, ),

where X, := B-un,0- C G/B™.Set Z, :=£(Q,NY,,) C X,. Then, Y, is irreducible
and normal (since so is X ) and Z, is closed and irreducible in x, (by definition).
Moreover, U, Z,, D £2. Thus by [Res21, Lemma 3], (Z,,)n>0 provides an irreducible

filtration for .’{A. Apply now Zariski’s main theorem to the morphism Z,, — Y,, to
conclude that HY(Y,,, £) — H°(Z,, L) is an isomorphism for all n > 0. Taking the
inverse limit, we get the lemma. O

Lemma 6.5. — The restriction map HO(%), L) — HO(Z%AO%)A, L) is an isomorphism
and hence so is 5.
Proof. — As earlier, consider the action of U on X

0 : U — Aut(X)).

Then, Im @ is a finite-dimensional unipotent group U,. As a consequence, Ker @ is a
normal subgroup of U of finite-codimension.
Consider now the group

Ui =Kerfn (ﬂ saUsa> .

acA
Then, U; is again a normal subgroup of U of finite-codimension (i.e., U/Uj is a finite-
dimensional group). There exists a closed subgroup U of U; of finite-codimension such
that I is normal in U, U? := U x U acts freely and properly on )Oa, (under the action
(u1,u2) - (z1,22,0) = (U121, u2x2,0)) and the quotient map 7y : X, — Z/{Q\é\f,3 is
a principal #2-bundle (cf. [Kum17, Lemma 6.1]). Moreover, since 7 is proper (cf.

Proof of Lemma 6.4), U? acts freely and properly on %b
Consider the action of U? on XF x X, given by

(59) (u1,u2).(y, 910", 920", 0) = (Y, U110, u2g20", 0).
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Since U acts trivially on XF and y € X7Z, the condition y € u;g; X p' is equivalent
toy € gZX““ In particular, X,, %A and %A are all stable by the action of 1/2. Moreover,
%b — X is U2-equivariant.
We consider the associated quotients:

00 772 00 ~ 00
X, x, X, NX,

X Tx l

00 772 0o ~ 00
UNX, +—— U\, ——— U2\ (36,3 N 36,3) .

Let Q4 be an open subset of L{Q\)Oa such that the quotient 7wy is trivial over Q.
(Tt can be seen that mx is locally trivial.) Set Qx = 75 '(Qx). Choosing a section
of my over (Qy and taking the induced section of mx over QQx, we get

(60) T3 (Qx) ~U* x Qx and 731 (Qx) ~ U x Qx
such that 20721 (Qx) under the above isomorphism is given by
N (@, ) = (@, 72 (x)), for & € U? and z € Q.

Since £ is G3-equivariant with G® acting on X componentwise, we get that £|5§

b

and £ g are U?-equivariant. Since U2 acts freely on X, (resp. %A), £|5§ (resp. K& )

‘ b
descends to a unique line bundle £ over U2\ X, (resp. U2\X,). Hence, under the
decompositions (60),

(61) Liuzxor, = Ouz &E‘Qx, and Lypzya, = Oy2 &Z‘Qx.
Now, the map
o : U2\§A — L{Q\)Oa
is proper. To prove this, consider the projection
m UP\(XP x X)) = XP x (UA\X,) > U\ X,
with U4? acting on X2 x )OEA as in (59). This is clearly a projective morphism. Now,

o = (772)|M2\§A.

Moreover, 1/12\%)43 is a closed subset of U2\ (X x /PVOA) (as can easily be seen) and hence
72 is a projective morphism.
Further, 72 is a birational map since so is 1z (cf. Proof of Lemma 6.4).

By the following lemma, 7 (UQ\(%;\Z%A)) is of codimension > 2 in UQ\;YOA. More-

over, UQ\/PKO'A is normal (cf. [KS09, Proposition 3.2]). In fact, it is smooth (cf. [Kum17,
§10]). Thus, by Proposition 2.1, the restriction map

(62) H°(Qx, £) — H°(Q%, £) is an isomorphism,
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for any open subset Qy C I/IQ\fYOA over which 7y admits a section and Qx := 7751 (Qx),
where . :=Qx N (2/12\(%)A N Z%A)) But, by the decomposition (61)

H(m3' (Qx), £) ~ H'(U? x Qx, Oy2 R L)

(63) — lim C2) © H'(©x. ),

n

where {Uy, }n>0 is a filtration of U giving the ind-variety structure. Similarly,

(64) HY(my ' (Q%), £) = lim CUy] © H (., £).

Combining the Equations (62) - (64), we get that the restriction map
H(m ' (Qx), £) = H'(r% ' (%), £)
is an isomorphism (use [Har77, Chap. II, Proposition 9.1]). Since {m3'(Q2x)} provides

an open cover of %3, we get that the restriction map
HO(X,, £) - H'(X,nX,,L)

is an isomorphism. This proves the lemma modulo Lemma 6.6 below. O

6.5. Smallness of the boundary of X,. — The goal of this subsection is to prove
the following lemma. We refer to [BKR12, §7] for some parallel arguments.
Lemma 6.6. — With the notation as in the proof of Lemma 6.5, the image

2 (U2\(§A\3~€A)) is of codimension > 2 in UQ\/'OYOA.
This lemma will be a consequence of the nontransversality Corollary 6.8, which in
turn is a consequence of Proposition 6.7.

Set, for i € N:={0,1,2,...},
(65) (g/p)i :=4{&€g/p: ad(xp) & = —i&}, where xp := Z x;
a; EA\A(P)
and
(66) (9/p)<i == EP(a/p);-
i<i
Note that the (g/p)<;’s form a P-stable filtration of g/p.

Let Z C G/P be a locally closed finite-dimensional subvariety of G/P and let z be
a point of Z. Write z = gP/P. Set, for i € N,

(67) di(z, Z) == dim (Te(9~ ' Z) N (g/p)<i) , where §:= gP/P € G/P.

This indeed does not depend on the choice of g such that z = gP/P. Observe that
do(2,Z) = 0, dp(2,Z) = dimT,Z for n large enough, and that ¢ — d;(z, Z) is non-
decreasing. Define, for any i € N,

CL’(Z, Z) = dl(z, Z) — di_l(z, Z),
where we declare d_;(z, Z) = 0. Thus, d,,(2, Z) = 0, for m > n.
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Similarly, let z € Z C G/P, where Z has finite-codimension. Write z = gP/P. Set,
fori € N,

: - (Telg~'Z) + (a/p)<i
d'(z,7):=d = .

(69) (2.2) = dim (228

Again this does not depend on the choice of g such that z = gP/P. Observe that
d’(z,Z) = 0, that d"(z,Z) is the codimension of T, Z for n large enough, and that
i~ d'(z,7) is non-decreasing.
Proposition 6.7. — Let v € W and 3 be a positive real root such that w = S8V €
WP,

(i) If b(w) = £(v) — 1, then
di(i, XJ) > di(, X)), VieN.

Moreover, if 3 is not a simple root,
di, (w, XF) > d;, (0, XF), for some i, € N.
(ii) If 6(w) = £(v) + 1, then
d'(w, X%) < d'(v, X%), VieN.
Moreover, if 5 is not a simple root,
d" (w, X%) < d* (0, X5), for somei, € N.

Proof. — We first translate the first assertion in a combinatorial statement in terms
of roots. Given a T-vector space E, we denote by ®(F) the set of weights of T" acting
on F.

Let ®T (resp. @) be the set of positive (resp. negative) roots. Since T; (v XF) is
multiplicity free as a T-module, and ®(T:(v"1XF)) ={0 € &~ : v € T}, we have

(69) di(0, XP)=4{0 € & : v0 € ®T and —O(xp) <i}, Vi> 1.

Consider the unique T-stable curve ¢ containing both v and w. Observe that ¢ is
isomorphic to P!, ®(Ty¢) = {B}, ®(T;;,¢) = {—B} and £ is contained in X. Moreover,
X is contained in X and

(70) TpXP =Ty XE @ Tyt
After translating by w™?!, equality (70) implies that
B(To(w ™ X[)) = B(T: (w' X1)) U {~w B}
It follows that
(71)  di(, XP)=#{0 € &~ : wh € T and — O(zp) < i} + 0% PP vi> 1,

where §;" =1 if m < and 0 otherwise.
We deduce that the first assertion of the proposition is equivalent to Vi > 1:

(72) {0 € @ : wh € dT and — O(xp) <i}+ 51(“1’119)(11:)
>#{0ed vl e dt and —O(zp) <i},

and the existence of i, with a strict inequality (72) if 8 is not simple.
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We now translate the second assertion of the proposition in a combinatorial state-
ment. First observe that, since v € W7,

@(%) ={0ecd :v0ecdT}.

We deduce that

(73) di(0,Xp)=#{0c® :v0c®" and —0O(xp) < i}, Vi> 1.

Now, since ¢(w) = ¢(v) + 1, X% D X%, ¢ is contained in X}, ®(T,¢) = {8} and
O(Ty¢) = {—p}. Moreover, we have the following exact sequence

T.(G/P) | Tu(G/P)

0 — Tl
et T T X ToX5

— 0.

After translation by w™!, we obtain that
T: P T: P
P G(G/ ) — E(G/ ) L {w_lﬁ}.

Te(w™1XE) Te(w='Xp)
This implies that
(74) di(w, X8) = #{0 € &~ : wh € &+ and — O(zp) < i} —05; @ D) w1,
With (73) and (74), the second assertion of the proposition is equivalent to Vi > 1:
{0 ® :vhed and —O(zp) < i}

-1

>#{0c® :whedt and —O(xp) < i} —g; " DR,
with a strict inequality for some i,, if 5 is not simple.

Now, observe that given (v, w) such that w = sgv and ¢(w) = £(v) + 1, one gets
(v',w") such that w' = sgv’ and £(w') = ¢(v') — 1 by setting w’ = v and v' = w. By
(72) and (75), the first assertion for (v/,w’) implies the second one for (v,w) (note
that w' ™8 = —w™1B). It is now sufficient to prove the first assertion.

(75)

From now on, we assume that ¢(w) = ¢(v) — 1. Recall that we denote v — v if
v e WP £(v') = 4(v) — 1 and v/ < v. Set

XP=xru ( U X5> , where X" := BuP/P.
v —=v
Then, X7 is a smooth open subset of X. Set
where m : G — G/P is the natural projection. Define two vector bundles over YUP :
V= |J g} xTelg7' X)) — V.,
geYy

and the trivial bundle
op, T(G/P)

R

E; 1=
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for any fixed i € N. The inclusion T;(¢~ 1 X[") C T:(G/P) induces a bundle map
Wi YV —> ;.
On the open subset BvP, the rank of ¢; is constant since
T:((bop) ' XE) = Te(p~ o™ 01 XP) = p7 1T (v X)),

and (g/p)<; is P-stable.
On the other hand, the subset of points in Y, where the rank of ; is maximum

is open. Hence, this rank is maximum at any point of BuP C }A/UP ; in particular, at v.

This shows the inequalities of the first assertion of the proposition.
Note that

Hence,
(p—vip)ep)= > —B(xp).
0ed—Nv—1o+
But by the Equation (69),
#H{O0cd™ :vh € d" and — O(xp) =i} = di(0, X)) —di_1 (0, XF), Vi>1.
Hence,
(p— v_lp)(xp) = Zj21jdj(@aXf) B
00) + 325500 — Dd; (9, X7),

since, by the Equation (69), d,,, = £(v) for large enough m. Similarly,

(p—w™ ' p)(xp) = L(w) + > _(j — 1)d;(w, X2).

Jj=2

Since £(w) = £(v) — 1, we get

(76) (p—w'p—(p—v ' p)(xp) = -1+ (G- 1) (d;(w, X)) - d;(,X])).
Jj>2

On the other hand, since w = sgv, we get

p—wlp—(p—vlp)=—wlp+w sgp

= w (530 — p)

(77) = —(p, B )w'B.

Combining the Equations (76) and (77), we get

L+ (=1 (di(6, X)) = dj (i, X)) = (p, B) (w™' B)(wp).
j=2

But by the Equation (69) (for v replaced by w) and the Equation (71), we have

d; (1, XY = d; (w0, XE) + 800 Per) g >
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and hence (for k := (w™13)(zp))

L Y G -0 (d(0,X)) = dj(, X)) + (k= 1)
722,54k

(78) (di(0, X)) = di (0, X7) +1) = (p, 8Y)(w ™" B)(wp).
If possible, assume that
(79) d;j(0, X)) =d;(w, X)), Vj>1.
Equivalently,

d;(0, X)) = d;(w, X)), Vj =1
Then, the Equation (78) implies that

k= (p,B")k.
But, (p,8Y) > 1. Hence,

(p,8Y) = 1.
Observe that k # 0 since v = ws,,-15 and v,w € WP. We deduce that f3 is simple if
(79) holds. This ends the proof of the proposition. O

Corollary 6.8. — Let wy,wy,v € W be as in Theorem 1.5. In particular, {(v) =
l(w1)+€(ws). Let z € G/P and g, g1, g2 in G be such that x belongs to gXI'Ng1 X5+ N
9o X 352, where XL is as defined in the proof of Proposition 6.7 and

Xy .= XpuU < U Xg') , where Xg/ = B~ w'P/P.

w—w’

We assume that there exists a non-simple real root 3 such that one of the following
two conditions holds:

(i) L(sgv) =L(v) — 1, spp € WF and z € gX?

SRV "

(i) L(spwr) = L(w1) + 1, spv € WP and z € gy X7

Then, the intersection ng N glf(gl N 92X$2 s not transverse at x.
Proof. — 1t suffices to prove that the standard linear map

T.(G/P) . T.(G/P)

0 : T,(gXF) — o o
0%0) = T () @ T (o)

is not an isomorphism. Write x = hP/P. Up to changing (g, g1, g2) by (h"tg,h=tg1,h=1g2),
we may assume that h = e.
Observe that

P (Te(91Xp)) + (9/p)<i . (Te(92Xp?)) + (9/p)<i
() 0(TelgX) 0 (0/p)<i) © Ts(1 Xph) @ Ts(92Xp?) '
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Moreover, since €% P occurs with coefficient 1 (in particular, nonzero) in the deformed
product ep! ®g €’ by assumption, Vi € N,

dim (T:(v' XY N (g/p)<i) = dim <Té(w1T.€2?1);w(i/p)gi>
e 1 P

Te(wy ' X}° i
i (2 XE) + 0
To(wy " Xp*)
(cf. [Res21, Lemma 19]). But, Proposition 6.7 implies that, for some i,, the dimension
of the first space T:(g X )N (g/p)s, in (x) is greater than that of the direct sum. Hence,

the restriction of 6 to T:(gXF) N (g/p)<; can not be injective. Thus, 6 can not be an
isomorphism. O

Lemma 6.9. — Let f : Y — X be a dominant morphism between two quasi-
projective irreducible varieties of the same dimension. Let D C Y be an irreducible
proper closed subset.

Then, if f(D) has codimension one in X, then, for x € D general, f~1(f(z)) is
finite.
Proof. — Otherwise, the general fibers of the restriction of f to f~!(f(D))
would have positive dimension. Since m has codimension one, this implies
that dim(f~1(f(D))) = dim(Y) and hence f~'(f(D)) =Y. But, f is assumed to be
dominant. A contradiction. O

Proof of Lemma 6.6. — For (w},wh,v") € (WF)3 we set

Xs(w),wh,v') = {(2, 9107, g20_,0) € XL x X, 1z € ng}-@”; ﬂnggé}
and

X, (w, wh,v') = {(x,g107,920_,0) € XEx X, : x € nggll ﬁgngé}.
The set X A\.% » 18 the union of finitely many subsets of one of the following types:

Type I. — %A(w’l,w’g,v’), where (w),wh,v') € (WF)3, wi > wy, wh > wa, v' < v and
L(wy) + L(wh) — L(v) > 2

Type II. — %A(wl,wg,v'), where v/ € WP v/ <w, £(v') = {(v) — 1 and v'v~! is not
a simple reflection.

Type III. — %A(w’l,wg,v), where wy € W w| > wy, £(w)) = £(w1)+1 and whw; ' is
not a simple reflection.

Type IV. — Like type III after exchanging w; and ws.

It is sufficient to prove that the image by 72 of each one of these subsets has
codimension at least two in U2\ X,.

Consider (wl,wQ,v') as in type I. There exists (wf, w4, v”) such that w} > w{ >
wy, wh > wh > wq, v < v’ <wvand L(w)) 4+ L(wh) —L(") = 1.

The point (0", ”(w’l) Lo= 0" (wh)"to™) belongs to X,(w, w5, v"”) and does not
belong to %A(wl, wh,v"). Hence, X, (wf, wh, v )\X,(w],wh,v") is open and nonempty
in X,(w!,wy,v").
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To prove the lemma in this type, we can assume that %b(w’l, wh,v’) is nonempty,
then so is %;(w'f, wy,v"). Since X, (w}, wY,v") is irreducible (cf. §6.1), we deduce that
the intersection (X,(w}, wq, v")\X(w},wh,v")) N (G/P x ?Oés) is nonempty.

Thus, we have a strict inclusion X, (w/, wh,v’) C X,(w!,wh,v"). Similarly, we have
the strict inclusion:

%A(w’{,wg,v”) C %b(wl,wg,v).

Combining the above two, we get the strict inclusions:
Xy(wh,wh,v') € Xy(w], wh,v") C X,y(wr, we,v).

Since these varieties are irreducible and U2-stable, we deduce that U2\ X, (w}, wh, v') is
of codimension at least two in Z/lQ\%A.

The lemma follows in this case since dim(u2\§b) = dim(UQ\/PYOA) since 72 is a
birational map (cf. Proof of Lemma 6.5).

Let now (w1, ws,v’) be as in type II.

Assume, for contradiction, that 7 (L{Q\%b(wl, wa,v')) is a divisor. By Lemma 6.9,
there exists (g1,92) € G? such that X N g1 Xp' N g2 X 3? is finite and there exists
T € Xf, N gl)o(}.fl N 92)0(;52; in particular, (x,9107,g207,0) € %A(wl, wa, V).

By Corollary 6.8, the intersection Xfﬁnggl mgQng is not transverse at x. Hence,
the multiplicity of z in X N g1 X' N g2 Xj? is at least 2. Since this intersection is
finite, this implies that the coefficient of e, in €' -ep*: ny, . > 2 (cf. [BK14, Proof
of Proposition 3.5]). A contradiction!

The last types III and IV work similarly. O

6.6. Conclusion of tlge proof of Theorem 1.5. — Observe that ib N %b being
open in the irreducible X, ¢§ is injective. Combining the results from Subsections 6.2
- 6.4, we get that

itoy oar oyt HOX, L) = HY(X,NX,, £)" is injective
and ~ "
isomsyoiyoil  HY(X, L)Y — HY(X,NX,,£)” is an isomorphism.
From the commutative diagram (o) of Subsection 6.1, these two composite maps are

equal forcing a* to be an isomorphism. Thus, we get (from the top horizontal line of
the commutative diagram (¢)) that the restriction map

HO(x,£)¢ — H(C, L) is an isomorphism.
This ends the proof of the theorem. O

7. Proof of Theorem 1.3

In this section, P is still a standard parabolic subgroup (and not necessarily
maximal). We fix (w1, ws2,v) € (WF)3 such that €% occurs with coefficient 1 in the
deformed product

ept Goep? € (HY(Xp,Z), ).
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In particular, wy, ws < v. Recall the definition of D and E,; (for (o, i) € D) from
subsection 5.4.

7.1. On the relative position of E,; and C. —
Proposition 7.1. — For any (o, 1) € D, the ind-variety
C .= Lwl_lg_ X nglg_ x Lv~to

s not contained in Eq ;.
To prove Proposition 7.1 we need the following lemma.
Lemma 7.2. — Let x € G/P and (g, 91, 92) € G* be such that the intersection

9120(21 N 925)(;2 NngXr

contains x and is transverse at this point. Such a choice is possible by [Res21,
Lemmas 6 and 7]. Then,

G XE NgXEngXl = {2}
In fact, the lemma remains true if we replace X}.ﬁj (for any i = 1,2) by any B~ -
stable open subset of)o(}.ﬁj"u (Uwi%w/_ewp )Q(;ji) and Xf by any B-stable open subset of

o b o b
Xv U (Uu’%v,v’GWP Xv’)'

Proof. — The strategy of the proof is to reduce the problem to a finite-dimensional
situation (by quotient), and then to apply Zariski’s main theorem.
Up to a translation, we may assume that g is trivial. Since G/B~ = ey wUo™,

there exists, for i = 1,2, u; € W such that g;o~ € u;Uo~. Consider now
X, = {(y,h107,h207) € Xf X uiUo™ x ugUo™ : y € X5 NheXp?}

and its projection n to u1Uo™ X usUo™.

Consider § : U — Aut(X) obtained by the action as before. Fix i € {1,2}. Then,
Ker 0 has finite-codimension in U and UNu;Uu; ! has finite-codimension in u;Uu; L1t
follows that there exists a closed normal subgroup U; of u;Uu; L of finite-codimension
such that

U; C uiUu;l N Ker 6.
Such a U; can be obtained as a closed subgroup of U with Lie algebra
Lie = B g5
BeDt,|B|>N
for large enough N (depending upon v and u;), where, for 8 = Zj njay, |8 = > n;.
The group U; X Uy acts freely and properly on u1Uo~ x uaUo~ (and hence on %b)
Moreover, n is (U; X Usz)-equivariant. After quotient, one gets

n: (U1 X UQ)\:%A — (Z/ﬁ X UQ)\(ulUQ_ X UQUQ_).

Observe that U; being closed subgroups of finite-codimension in uiUuZ-_1 and X! being
finite-dimensional, the domain and the range of 77 are finite-dimensional varieties and
the range of 7 is smooth and irreducible.
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Since the coefficient of 55 in 551 el oy

ws * My ws = 1, the general fiber of 7 is one point
(see [Res21, §4.2]). Further, as observed below the Equation (53), X, is irreducible
and hence so is (U x L[g)\% - Since the base field is C, this implies that 7 is birational.
Since X[ is projective and Xp* and Xp? are closed in G/P, it is easy to see that
the map 7 is proper. Now, we can apply Zariski’s main theorem [Har77, Chap. III,
Corollary 11.4] to conclude that the fibers of 7 are connected. But, by assumption,
[r,9107, g207] is isolated in the fiber 771[g107, g20~|, where [g10™, go0~] denotes the
(Uy x Up)-orbit of (g107, g207). Then, 77 t[g107, g207] = {[x, 9107, g207]}, that is

nXp N gaXp* NXY = {a}.

This proves the first part of the lemma.
The proof for the ‘In fact’ statement in the lemma is identical. O

Proof of Pmposition 7.1. — Since €% occurs with coeflicient 1 in the deformed
product €' ®gep?, by the proof of [Res21, Lemma 19], there exist I1,1s,1l3 € L such
that the intersection

(80) (hwp ' X310 (lowy ' X52) 0 (I X))

is transverse at P/P. Then, Lemma 7.2 implies that the intersection
(hwy ' X5 N (lawy ' X52) N (Iso7 1 X))

is reduced to {P/P}. In particular, if w; < s,w; and sqw; € WF,

(81) (hwy P X5 N (lawy ' X B2 N (vt XE) = 0.

Then,

(82) (11w1 o~ lgw2 o, 31)_19) ¢ G- (owlsag_ X Pw;lg— X Pv—lg) .

This proves that (llw1 o~ lng 07, l3v710) does not belong to E, 1. The proposition
follows for («,1). The proof for (a, z) € D for i = 2,3 is identical. O

7.2. The line bundles N, ;. — The goal of this subsection is to prove that N, ;
belongs to the face considered in Theorem 1.3:
Proposition 7.3. — For any («,i) € D, the center Z(L) of L acts trivially on the
restriction of No; to C, where C is as in Proposition 7.1.

In fact, for any L-equivariant line bundle £ over C with H*(C, £)* # 0, Z(L) acts
trivially on L. In particular, if we write No; = L7 (A1) @ L7 (X2) ® L(p), then for all
a; & A(P),

(I(jwl,wg,v)) A(wizj) + Aa(waz;) — p(vz;) = 0.

Proof. — Consider a G-invariant section p4 ; of Ny, ; as guaranteed by Corollary 5.12.
For any («,i) € D, by Corollary 5.12, Z(a,;) = Ea,. Then Proposition 7.1 implies
that /1o ; restricts to a nonzero L-invariant section on C.

Since Z(L) acts trivially on C, it acts by a character on any line bundle over C.
The existence of a nonzero Z(L)-invariant section implies that this character is trivial
for the restriction of N ;.
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Write My = L£7(A1) @ L7 (A2) @ L(p) and fix oj ¢ A(P). There exists d > 0,
such that dz; is the differential at 1 of a one parameter subgroup of Z(L). This one
parameter subgroup acts with weight A (w1z;), Aa(waz;) and —p(ve;) on the fiber
over wy 'o™, wyto™ and v lo in £7(\1), L= (X2) and L(u) respectively. Thus, the
equality r

(101, w3,0) follows proving Proposition 7.3. O

7.3. The line bundles N, ; and the lines (g ;. — Recall the definition of the
line {3 ; from §1. We now study the restriction of the line bundle N, ; to the lines
£ ;. This will be used to apply Theorem 1.5.

Lemma 7.4. — Let (a,i) € D and (B8,7) € D be two distinct elements. Then,

(i) the degree of the restriction of Ny, to £a; is positive.

(ii) the degree of the restriction of No; to €g ; is nonnegative.

Proof. — Take (a, 1) € D. Then, as in Section 1,

“1p— - -1 — -1
loy = (wy Pyo ,wy 0,0 0).

Since the line bundle NV, ; has the form £7 (A1) KL~ (A2) X L(u) for some (A1, A2, i) €
P} (cf. Corollary 5.12),

Na71\la,1 ~ £7 (Al)lwfngg*’

which is of degree

(wi A (wi'aY) = A (a¥) > 0.
Assume, if possible, that A;(a¥) = 0. Then, the zero set Z(uq,1) would be of the
form 7 1(S) for some S C G/P; x G/B~ x G/B, where

7o : G/B” xG/B” xG/B— G/P, xG/B~ xG/B
is the projection.
Then, by Corollary 5.12 and Equation (18),
Z(pta,1) = Baq = G- Cf

Sq W1, w2,V

and hence we would have
Z(,Ltayl) OG- cr

w1, w2,V

=X,

where the last equality follows from [BK14, Proposition 3.5] since % occurs with
nonzero coefficient in ep' - ep?. This contradicts the nonvanishing of ps 1. Thus,
A1(aY) > 0, proving (i) for («,1) € D. The same proof works for any («,i) € D
to prove (i).

To prove (ii), we still take (a, 1) € D and (8,j) € D for j = 1,2. Then,

Neajg,, = L£7(N)

lw; ' Py o>
which is of degree
(w; A (w; ' BY) = X(8Y) > 0.
For (8,3) € D,
Na,l\eﬂyg = E(H)\vfnggv
which is of degree
(v )T BY) = u(B”) 2 0.
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This proves (ii) for (o, 1) € D. The same proof gives (ii) for any («, i) € D. O

7.4. Conclusion of the proof of Theorem 1.3. — Let w;, w2, v € WF be as in
Theorem 1.3, i.e., €% occurs with coefficient 1 in the deformed product €5t ©¢ £p2.
Set d = 2dimb + $A(P). Let F = FF be the convex cone generated by

wi,w2,v

the weights (A1, A2, 1) € T'(g) satisfying Identity I(jwl wawy for all a; ¢ A(P) as
in Theorem 1.3. Since the linear forms {Igw1 s U)}ajeA\A(p) restricted to Ey (cf.

Proposition 3.1) defining F are linearly independent, the dimension of F is at most d.

We now have to produce ‘enough’ points in F. To do this we consider the restriction

map PiCGS(X) — Pic”’ (C) and we apply Theorem 1.5 to sufficiently many line
bundles £ such that H*(C, £ic)* # {0}.

Observe that, for any w € W', the map
L/B; — Lw 'o™ CG/B~, IB} — lw ‘o~ is an L-equivariant isomorphism
and also the map
L/Br — Lw o C G/B, By — lw™'o is an isomorphism,

where By, := BN L is the standard Borel subgroup of L and B; := B~ N L is the
standard opposite Borel subgroup of L. (To prove the above two isomorphisms, use the
3 3
fact that wAp C ®F.) Thus, the restriction map Pic® (X) ~ (h%)® — Pic” (C) ~
(h%)? is an isomorphism. Let [ denote the Lie algebra of L.
Lemma 7.5. — There exist L1,...,Lq € Pic?’ (X) such that
(i) L1,..., L4 € PicS” (X) ® Q are linearly independent;
(ii) The restriction of each L; to C belongs to T'(I).
Proof. — By Proposition 3.1, I'(l) has dimension d. (Observe that Proposition 3.1

remains valid for [ by the same proof.) Hence, T'(l) C Pic”’ (C) ®z Q contains
d linearly independent elements. Then, the lemma follows from the isomorphism

Pic?” (X) ~ Pick’ (C). O

Proof of Theorem 1.3. — Up to taking tensor powers, we may assume that the
restriction of £; to C' admits a nonzero L-invariant section o; (cf. [BK14, Proof of
Theorem 3.2]).

By Lemma 7.4, there exists (aa,i)(a,i)ep € NP such that N := Z(a,i)ED o, iNa,i
satisfies:

L, @ N is nonnegative for all k when restricted to any ¢3 ; for (3, ) € D.
Moreover, up to changing N by 2N if necessary, we may assume that
Li®N,...,La®N €Pic? (X)2Q

are linearly independent.
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By Corollary 5.12, N has a G-invariant section o, that does not vanish identically
on C. Then,

&; € HY(C, £; @ N)\{0}, where 6; := (0; ® oN)ic-

Moreover, since &; is not identically zero on C, by Proposition 7.3, each £; @ N
satisfies the identity Igwl,w%v) of Theorem 1.3 for all a; € A\A(P).

By Theorem 1.5, each ; can be extended to a G-invariant section &; of £; @ V. In
particular, £; @ A belongs to I'(g). Thus, the dimension of F is at least d and hence
it is exactly d. This proves the theorem. o
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