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ON THE FACES OF THE TENSOR CONE OF

SYMMETRIZABLE KAC-MOODY LIE ALGEBRAS

SHRAWAN KUMAR AND NICOLAS RESSAYRE

Abstract. In this paper, we are interested in the decomposition of the

tensor product of two representations of a symmetrizable Kac-Moody

Lie algebra g, and more precisely in the tensor cone of g. Let P+ be

the set of dominant integral weights. For λ ∈ P+, L(λ) denotes the

(irreducible) integrable, highest weight representation of g with high-

est weight λ. Let P+,Q be the rational convex cone generated by P+.

Consider the tensor cone

Γ(g) := {(λ1, λ2, µ) ∈ P3
+,Q : ∃N ≥ 1 such that L(Nµ) ⊂ L(Nλ1)⊗L(Nλ2)}.

If g is finite dimensional, Γ(g) is a polyhedral convex cone described in

[BK06] by an explicit finite list of inequalities. In [Res10] this list of

inequalities is proved to be irredundant: each inequality corresponds to a

codimension one face. In general, Γ(g) is neither polyhedral, nor closed.

Brown-Kumar [BK14] obtained a list of inequalities that describe Γ(g)

conjecturally. Here, we prove that each of Brown-Kumar’s inequalities

corresponds to a codimension one face of Γ(g).

1. Introduction

Let A be a symmetrizable irreducible GCM (generalized Cartan matrix)

of size l+1. Let h ⊃ {α∨0 , . . . , α
∨
l
} and h∗ ⊃ {α0, . . . , αl} =: ∆ be a realization

of A. We fix an integral form hZ ⊂ h containing each α∨i , such that h∗
Z

:=

Hom(hZ,Z) contains ∆ and such that hZ/ ⊕ Zα∨
i

is torsion free. Set h∗
Q
=

h∗
Z
⊗ Q ⊂ h∗, P+,Q := {λ ∈ h∗

Q
: 〈α∨i , λ〉 ≥ 0 ∀i}, and P+ = h

∗
Z
∩ P+,Q.

Let g = g(A) be the associated Kac-Moody Lie algebra with Cartan sub-

algebra h. For λ ∈ P+, L(λ) denotes the (irreducible) integrable, highest

weight representation of g with highest weight λ. Define the tensor cone as

Γ(g) := {(λ1, λ2, µ) ∈ P3
+,Q : ∃N ≥ 1 such that L(Nµ) ⊂ L(Nλ1) ⊗ L(Nλ2)}.

The aim of this paper is to describe facets (codimension one faces) of

this cone. Before describing our result, we recall from [BK14] a conjectural

description of Γ(g), due to Brown and the first author. We need some more

notation.

Fix {x0, . . . , xl} ∈ h to be dual of the roots: 〈α j, xi〉 = δ
j

i
. Let Q =

⊕l

i=0
Zαi denote the root lattice. Let X = G/B be the standard full KM-flag
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variety associated to g, where G is the ‘minimal’ Kac-Moody group with

Lie algebra g and B is the standard Borel subgroup of G. For w in the Weyl

group W of G, let Xw = BwB/B ⊂ X be the corresponding Schubert variety.

Let {ǫw}w∈W ⊂ H∗(X,Z) be the (Schubert) basis dual (with respect to the

standard pairing) to the basis of the singular homology of X given by the

fundamental classes of Xw.

Let P ⊃ B be a (standard) parabolic subgroup and let XP := G/P be the

corresponding partial flag variety. Let WP be the Weyl group of P (which

is, by definition, the Weyl group of the Levi L of P) and let WP be the

set of minimal length representatives of cosets in W/WP. The projection

map X → XP induces an injective homomorphism H∗(XP,Z) → H∗(X,Z)

and H∗(XP,Z) has the Schubert basis {ǫw
P
}w∈WP such that ǫw

P
goes to ǫw for

any w ∈ WP. As defined by Belkale-Kumar [BK06, §6] in the finite di-

mensional case and extended by Kumar in [Kum08] for any symmetrizable

Kac-Moody case, there is a new deformed product ⊙0 in H∗(XP,Z), which

is commutative and associative. Now, we are ready to state Brown-Kumar’s

conjecture [BK14].

Conjecture 1. Let g be any indecomposable symmetrizable Kac-Moody Lie

algebra and let (λ1, λ2, µ) ∈ P3
+
. Assume further that none of λ j is W-

invariant and µ −
∑s

j=1 λ j ∈ Q. Then, the following are equivalent:

(a) (λ1, λ2, µ) ∈ Γ(g).

(b) For every standard maximal parabolic subgroup P in G and every

choice of triples (w1,w2, v) ∈ (WP)3 such that ǫv
P

occurs with coefficient 1 in

the deformed product

ǫw1

P
⊙0 ǫ

w2

P
∈

(

H∗(XP,Z),⊙0

)

,

the following inequality holds:

(IP
(w1 ,w2,v)

) λ1(w1xP) + λ2(w2xP) − µ(vxP) ≥ 0,

where αiP is the (unique) simple root not in the Levi of P and xP := xiP .

Note that if λ1 is W-invariant, L(λ1) is one dimensional and hence L(λ1)⊗

L(λ2) is irreducible.

In the case that g is a semisimple Lie algebra, Conjecture 1 was proved

by Belkale-Kumar in [BK06]. The following result is due to Ressayre.

Theorem 2. [Res17] In the case that g is affine untwisted, Conjecture 1 is

true.

The conjecture in the general symmetrizable case is still open. But it is

conceivable that the inductive proof in the case of affine g obtained by the

second author might be amenable to handle the general symmetrizable case.
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Let us come back to the case that g is semisimple. Then, Γ(g) is a closed

convex polyhedral cone, and Conjecture 1 (Belkale-Kumar’s theorem) de-

scribes Γ(g) in (h∗
Q

)3 by (finitely many) explicit inequalities. In the case of

g = sln, a bigger set of inequalities describing Γ(g) was conjectured by Horn

[Hor62] and proved by Klyachko [Kly98] (combining the saturation result

of Knutson-Tao [KT99]). A bigger set of inequalities describing Γ(g) for

any semisimple g was known earlier (see [BS00]). The irredundancy of the

above set of inequalities IP
(w1 ,w2,v)

was proved by Knutson-Tao-Woodward

in type A [KTW04] and by the second author in general [Res10]. (See

[Kum14, §1] for more details on the history.) The irredundancy assertion

is the statement that each inequality IP
(w1 ,w2,v) in Conjecture 1 corresponds

to a face of Γ(g) of codimension one. The aim of this paper is to extend

this result to any symmetrizable Kac-Moody Lie algebra. We, in fact, prove

the following (stronger) result for any (not necessarily maximal) standard

parabolic subgroup P.

Theorem 3. Let g be any indecomposable symmetrizable Kac-Moody Lie

algebra. Let P be a standard parabolic subgroup in G and let (w1,w2, v) ∈

(WP)3 be a triple such that ǫv
P

occurs with coefficient 1 in the deformed

product

ǫw1

P
⊙0 ǫ

w2

P
∈

(

H∗(XP,Z),⊙0

)

.

Then, the set of (λ1, λ2, µ) ∈ Γ(g) such that for all α j < ∆(P),

(I
j

(w1 ,w2,v)
) λ1(w1x j) + λ2(w2x j) − µ(vx j) = 0

has codimension ♯(∆ \ ∆(P)) in Γ(g), where ∆(P) ⊂ ∆ is the set of simple

roots of the Levi subgroup L of P.

Let C denote the cone determined by the inequalities in Conjecture 1.

For P maximal, Theorem 3 implies that if one removes any of the inequali-

ties IP
(w1 ,w2,v)

, the cone thus obtained is strictly bigger than C.

Theorem 3 implies that C is locally polyhedral. This property of C plays

an important role in the inductive proof of Theorem 2 from [Res17]. (Note

that in [Res17], the local polyhedrality is proved in a totally different way.)

As a consequence, one can hopefully think about Theorem 3 as a first step

towards a proof of Conjecture 1.

Combining Theorems 2 and 3, we get the following.

Corollary 1. For any untwisted affine Kac-Moody Lie algabra g , the in-

equalities IP
(w1 ,w2,v)

in Conjecture 1 give an irredundant and complete set of

inequalities determining the cone Γ(g).

To prove Theorem 3 we will use (geometric) Theorem 4 below. Let us

introduce some more notation.
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Fix a standard parabolic subgroup P of G. For w ∈ WP, we set

∆
−(w) = {α ∈ ∆ : ℓ(sαw) = ℓ(w) − 1},

and

∆
+(w) = {α ∈ ∆ : ℓ(sαw) = ℓ(w) + 1 and sαw ∈ WP},

where sα is the (simple) reflection corresponding to the (simple) root α. It

is easy to see that for any α ∈ ∆−(w), sαw ∈ WP.

Let B− denote the Borel subgroup of G opposite to B. Consider the flag

ind-varietyX := (G/B−)2 ×G/B and PicG(X) the group of G-linearized line

bundles on X. For λ ∈ h∗
Z

, denote the line bundle L−(λ) := G ×B− Cλ over

G/B− (resp. L(λ) := G ×B C−λ over G/B) associated to the principal B−-

bundle G → G/B− (resp. the B-bundle G → G/B) via the one dimensional

representation Cλ of B− given by the character eλ uniquely extended to a

character of B− (resp. the representation C−λ of B given by the character

e−λ).

Fix (λ1, λ2, µ) ∈ P3
+
. By an analogue of the Borel-Weil theorem for any

Kac-Moody group G (cf. [Kum02, Corollary 8.3.12]), the G-linearized line

bundle L := L−(λ1) ⊠ L−(λ2) ⊠ L(µ) on X is such that the dimension of

the space H0(X,L)G of G-invariant sections is the multiplicity of L(µ) in

L(λ1) ⊗ L(λ2) (cf. [BK14, Proof of Theorem 3.2]). From this we see that

Γ(g) is a convex subset of P3
+,Q.

Fix (w1,w2, v) ∈ (WP)3 as in Theorem 3 and let L ⊃ T denote the standard

Levi subgroup of P, where T is the standard maximal torus of G with Lie

algebra h. The base point B/B in G/B is denoted by o. Similarly, o− =

B−/B−. Set

x0 = (w−1
1 o−,w−1

2 o−, v−1o) ∈ X.

For α ∈ ∆+(w1), we set

xα,1 = (w−1
1 sαo−,w−1

2 o−, v−1o) ∈ X.

Similarly, we define xα,2 associated to α ∈ ∆+(w2). For α ∈ ∆−(v), we set

xα,3 = (w−1
1 o−,w−1

2 o−, v−1sαo) ∈ X.

For any (α, i) as above, we denote by ˜lα,i the unique T -stable curve in X

containing x0 and xα,i; then ˜lα,i ≃ P1 and x0 and xα,i are the two T -fixed

points in ˜lα,i. Explicitly,

˜lα,1 =
(

w−1
1 P−αo−,w−1

2 o−, v−1o
)

⊂ X,

where P−α is the minimal (opposite) parabolic subgroup containing B− and

sα. Similarly, ˜lα,2 and ˜lα,3 can be described explicitly.

Consider now

C = Lw−1
1 o− × Lw−1

2 o− × Lv−1o,
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acted on by L diagonally.

Theorem 4. Let P and (w1,w2, v) ∈ (WP)3 be as in Theorem 3. Fix (λ1, λ2, µ) ∈

(h∗
Z

)3 such that

∀α j < ∆(P), λ1(w1x j) + λ2(w2x j) − µ(vx j) = 0.

Let L := L−(λ1) ⊠ L−(λ2) ⊠ L(µ) denote the associated line bundle on X.

We assume that, for any i = 1, 2 and α ∈ ∆+(wi), the restriction of L to ˜lα,i
is nonnegative. Similarly, we assume that for any α ∈ ∆−(v) the restriction

of L to ˜lα,3 is nonnegative.

Then, the restriction map induces an isomorphism:

H0(X,L)G ≃ H0(C,L)L.

To prove Theorem 3, we have to produce line bundles L on X having

nonzero G-invariant sections and satisfying the equalities (Ii
(w1 ,w2,v)

). To do

this we start with a line bundleM on X whose restriction M|C admits an

L-invariant section σ. Now, we want to extend σ to a regular G-invariant

section on X. The first step is to extend σ to a rational G-invariant sec-

tion. Even though this rational section can have poles, we are able to kill

them by adding an explicit line bundle L′ toM. An informed reader will

notice that the strategy is similar to the one used by the second author in

[Res10]. Nevertheless, there are numerous difficulties because of infinite

dimensional phenomena. For example, we have no abstract construction of

line bundles arising from divisors; the order of a pole along a divisor is not

so easy to define (and even if it is defined, such an order could be infinite)

etc. In this paper, we overcome these difficulties by making various con-

structions more explicit which extend to our infinite dimensional situation.

Acknowledgements. The first author is supported by NSF grants. The sec-

ond author is supported by the French ANR project ANR-15-CE40-0012.

2. Zariski main theorem

We recall a consequence of the Zariski’s main theorem for our later use.

Proposition 1. Let f : Y −→ Z be a proper birational morphism between

two quasiprojective irreducible varieties. Let L be a line bundle over Z.

We assume that we have an open subset Ỹ of Y such that f (Y − Ỹ) has

codimension at least two in Z and that Z is normal.

Then, f ∗ : H0(Z,L) −→ H0(Y, f ∗(L)) and the restriction map r : H0(Y, f ∗L) −→

H0(Ỹ , f ∗(L)) are both isomorphisms.

Proof. To prove that f ∗ is an isomorphism, use the proof of Zariski’s main

theorem as in [Har77, Chap. III, Corollary 11.4].
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To prove that r is an isomorphism, consider the following commutative

diagram:

H0(Z,L) H0(Z \ f (Y \ Ỹ),L)

H0(Y, f ∗L) H0(Y \ f −1( f (Y \ Ỹ)), f ∗L)

H0(Ỹ , f ∗L).

β
∼

f ∗ ≀ f ∗≀

r1

∼

r r2

In the above diagram, β is an isomorphism since f (Y \ Ỹ) is of codimen-

sion ≥ 2 and Z is normal. Thus, r1 is an isomorphism and hence so is r

(since r1 is an isomorphism and r and r2 are injective). �

3. The span of the cone

Before being interested in the faces of Γ(g), we describe the span of it.

Proposition 2. The tensor cone Γ(g) has nonempty interior in the following

rationnal vector space

E = Eg := {(λ1, λ2, µ) ∈ (h∗Q)3 : λ1 + λ2 − µ ∈ SpanQ(∆)}.

In particular, E has dimension 2 dim h + ♯∆.

Proof. If (λ1, λ2, µ) ∈ Γ(g) then some integral multiple N(λ1+λ2−µ) belongs

to the root lattice. Hence,

(1) Γ(g) ⊂ E.

Note that, for λ, µ in P+, the point

(2) (λ, µ, λ + µ) ∈ Γ(g).

We claim that for any simple root αi ∈ ∆,

(3) (ρ, ρ, 2ρ − αi) ∈ Γ(g),

where ρ ∈ h∗
Q

is any element satisfying ρ(α∨i ) = 1 for all the simple co-

roots α∨
i
. Indeed, fix a highest weight vector v+ in L(ρ) and a nonzero e j

(resp. f j) in gα j
(resp. g−α j

) for any simple root α j, where gα denotes the

corresponding root space. Consider the element in L(ρ) ⊗ L(ρ):

v = fiv+ ⊗ v+ − v+ ⊗ fiv+.
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Clearly, e jv+ = 0 for any j , i. Also,

eiv = (ei fiv+) ⊗ v+ − v+ ⊗ (ei fiv+)

= α∨
i
v+ ⊗ v+ − v+ ⊗ α

∨
i
v+

= 0.

It follows that v is a highest weight vector. But its weight is 2ρ−αi, proving

(3). Combined with (2), we get

(4) (0, 0, αi) ∈ 〈Γ(g)〉, ∀αi ∈ ∆,

where 〈Γ(g)〉 is the Q-span of Γ(g) in (h∗
Q

)3 . Now, by (2) and (4), Γ(g) spans

E. �

4. Construction of line bundles

Consider a subvariety Z ⊂ X. If G and so X is finite dimensional, Z can

be realized as the zero set of a section of some line bundle on X if and only

if Z has codimension one. If G is not finite dimensional, then X is only an

ind-variety and the codimension is not so easy to define. Moreover, even if

there exists a filtration X = ∪nXn by finite dimensional closed subvarieties

such that Z ∩ Xn has codimension one in Xn, Z is not necessarily the zero

locus of a section of some line bundle on X.

Nevertheless, if Z = Fα,i or Z = Ew1,w2,v as defined by formula (5) (resp.

(11)) below, we prove in this section that Z is the zero locus of a section of

some line bundle.

4.1. First divisors. Fix once and for all fundamental weights ̟α0
, . . . , ̟αl

in h∗
Z

such that 〈̟αi
, α∨j 〉 = δ

j

i
.

Let M be a g-module such that, under the action of h, M decomposes as

⊕µ∈h∗Mµ with finite dimensional weight spaces Mµ. Set M∨ = ⊕µM∗µ: it is a

g-submodule of the full dual space M∗.

Recall that X = (G/B−)2 × G/B and o± = B±/B±. Consider, for α ∈ ∆
and i = 1, 2,

(5) Fα,i = {(x1, x2, go) ∈ X : g−1xi ∈ Bsαo−}

with the reduced ind-scheme structure. It is easy to see that Fα,i is ind-

irreducible (i.e., union of finite dimensional irreducible closed subsets). Let

p1, p2 and p3 denote the projections from X to the corresponding factor.

Set, for i = 1, 2 and α ∈ ∆,

Mα,i = p∗i (L−̟α
) ⊗ p∗3(L̟α

).

Lemma 1. The space H0(X,Mα,i) contains a unique (up to scalar multi-

ples) nonzero G-invariant sectionσ = σα,i. Moreover, scheme theoretically,

Fα,i = {x ∈ X : σ(x) = 0}.
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Proof. Our construction ofMα,i and σα,i is completely explicit.

By the analogue of the Borel-Weil theorem for Kac-Moody groups (cf.

[Kum02, Corollary 8.3.12]), we have (cf. [BK14, Proof of Theorem 3.2]):

(6) H0(X,Mα,i) ≃ HomC(L(̟α)∨ ⊗ L(̟α),C).

Observe that

(7) HomC(L(̟α)∨ ⊗ L(̟α),C) ≃ HomC(L(̟α)∨, L(̟α)∗),

since HomC(V ⊗ W,C) ≃ HomC(V,W∗) for any C-vector spaces V and

W. From the equations (6) and (7) it is easy to see that H0(X,Mα,i)
G

is one dimensional spanned by the inclusion of L(̟α)∨ in L(̟α)∗ under

the identifications (6) and (7). We now identify the zero locus of nonzero

σ ∈ H0(X,Mα,i)
G:

Consider the isomorphism

ψ : G ×B− G/B ≃ G/B− ×G/B, [g, ho] 7→ (go−, gho), for g, h ∈ G,

where [g, ho] denotes the B−-orbit of (g, ho). Consider the B−-equivariant

line bundle C̟α
⊗ L̟α

over G/B, where C̟α
denotes the trivial line bundle

over G/B with the B−-action given by the character e̟α . It is easy to see

that

(8) ψ∗(L−̟α
⊠L̟α

) = G ×B− (C̟α
⊗ L̟α

).

Let v− be a fixed nonzero vector of C−̟α
. Consider the section σo of L̟α

over G/B given by

(9) σo(go) = [g, v∗
+
(gv+)v−], for g ∈ G,

where v+ is a nonzero highest weight vector of L(̟α) and v∗
+
∈ L(̟α)∗ is

given by

v∗
+
(v+) = 1 and v∗

+
(v) = 0, for any weight vector v of L(̟α) of weight , ̟α.

By the definition of σo, it is a character of B− of weight −̟α and hence 1⊗

σo thought of as a section of C̟α
⊗L̟α

is B−-invariant. Thus, it canonically

gives rise to a G-invariant section σ̂o of G ×B− (C̟α
⊗ L̟α

).
We next claim that the zero set Z(σo) of σo is given by

(10) Z(σo) = B−sαo ⊂ G/B.

By the definition of σo, Z(σo) is left B−-stable (since v∗
+
∈ L(̟α)∗ is an

eigenvector for the action of B−). Take w ∈ W. Then,

wo ∈ Z(σo)⇔ v∗
+
(wv+) = 0

⇔ w̟α , ̟α

⇔ w < 〈sβ〉β∈∆\{α}, by [Kum02, Proposition 1.4.2 (a)]

⇔ w ≥ sα,
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where 〈sβ〉 ⊂ W denotes the subgroup generated by the elements sβ. This

proves the equation (10) by the Birkhoff decomposition [Kum02, Theorem

6.2.8]. Thus, the zero set Z(σ̂o) of σ̂o is given by:

Z(σ̂o) = G ×B−
(

B−sαo
)

.

Moreover,

ψ
(

G ×B−
(

B−sαo
))

= {(x, go) ∈ G/B− ×G/B : g−1x ∈ Bsαo−}.

From this we obtain that Z(σ) = Fα,i set theoretically.

To prove that Z(σ) = Fα,i scheme theoretically, it suffices to show that

Z(σo) (which is set theoretically Xsα = B−sαo ⊂ G/B) is reduced. For any

v ∈ W, consider Z(σo) ∩ Xv = Xsα ∩ Xv, which is an irreducible subset of

codimension one in Xv. The Chern class of the line bundle L̟α |Xv
is the

Schubert class ǫ sα ∈ H2(Xv,Z). If Z(σo) ∩ Xv were not reduced, say

Z(σo) ∩ Xv = d(Xsα ∩ Xv) (scheme theoretically) for some d > 1,

then 1
d
ǫ sα ∈ H2(Xv,Z), which is a contradiction. Hence d = 1, proving that

Z(σo) ∩ Xv is reduced for any v ∈ W. Thus, Z(σo) is reduced, proving the

lemma. �

4.2. Subvarieties of X from Schubert varieties. Fix a standard parabolic

subgroup P of G with Levi subgroup L ⊃ T , where T is the (standard)

maximal torus of G with Lie algebra h. For w ∈ WP, let

Xw
P := B−wP/P ⊂ XP and XP

w := BwP/P ⊂ XP

be respectively the opposite Schubert variety and the Schubert variety asso-

ciated to w.

For any triple (w1,w2, v) ∈ (WP)3, set

C̄+w1 ,w2,v
= Pw−1

1
o− × Pw−1

2
o− × Pv−1o ⊂ X,

and

(11) Ew1,w2,v = G.C̄+w1,w2,v
⊂ X under the diagonal action of G.

Lemma 2. For any triple (w1,w2, v) ∈ (WP)3, the set Ew1 ,w2,v is closed and

ind-irreducible in X.

Proof. Since G and C̄+w1 ,w2,v
are ind-irreducible (see [Res17, before Lemma 3]),

so is Ew1 ,w2,v. Note that

(12) Ew1,w2,v = {(g1o−, g2o−, g3o) ∈ X : g1X
w1

P
∩ g2X

w2

P
∩ g3XP

v , ∅}.

By the following isomorphism

G ×B (G/B−)2 −→ X, [g, x] = (gx, gB/B),
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it is sufficient to prove that

Ẽ = {(g1o−, g2o−) : g1X
w1

P
∩ g2X

w2

P
∩ XP

v , ∅}

is closed in X¯s := (G/B−)2 ≃ (G/B−)2 × o. Consider

π¯s : X¯s −→ X¯s,

where

X¯s := {(y, g1o−, g2o−, o) ∈ G/P × X : y ∈ g1X
w1

P
∩ g2X

w2

P
∩ XP

v }

and π¯s is the projection to the last three factros. Note that Ẽ is the image

of X¯s. Consider a filtration X¯s = ∪nX
n
¯s by closed finite dimensional sub-

varieties. Then, π−1
¯s (Xn

¯s) is closed in XP
v × X

n
s . Since XP

v is projective, it

follows that π¯s(π
−1
¯s (Xn

¯s)) is closed in Xn
¯s. This concludes the proof since

π¯s(π
−1
¯s (Xn

¯s)) = Ẽ ∩ Xn
¯s. �

For w ∈ WP, we set X̊w
P
= B−wP/P and X̊P

w = BwP/P. Consider, for any

triple (w1,w2, v) ∈ (WP)3,

X := {(gP/P, x) ∈ G/P × X : g−1x ∈ C̄+}

= {(y, g1o−, g2o−, g3o) ∈ G/P × X : y ∈ g1X
w1

P
∩ g2X

w2

P
∩ g3XP

v }(13)

and

X̊ := {(y, g1o−, g2o−, g3o) ∈ G/P × X : y ∈ g1X̊
w1

P
∩ g2X̊

w2

P
∩ g3X̊P

v },

where C̄+ = C̄+w1,w2,v
. Observe that X is closed in G/P×X and it is irreducible

(in its Zariski topology) since X = G · (P/P, C̄+).

Consider also the set X̊+ of points (y, g1o−, g2o−, g3o) ∈ X̊ such that the

linear map

Ty(g3X̊P
v ) −→

Ty(G/P)

Ty(g1X̊
w1

P
)
⊕
Ty(G/P)

Ty(g2X̊
w2

P
)

is injective, i.e.,

Ty(g1X̊
w1

P
) ∩ Ty(g2X̊

w2

P
) ∩ Ty(g3X̊P

v ) = (0),

where T denotes the Zariski tangent space.

For v ∈ WP, we denote v′ → v if v′ ∈ WP, ℓ(v′) = ℓ(v) − 1 and v′ ≤ v.

Lemma 3. The subsets X̊ and X̊+ are open in X for any triple (w1,w2, v) ∈

(WP)3.

In fact, the lemma remains true if we replace X̊
wi

P
(for any i = 1, 2) by any

B−-stable open subset of X̊
wi

P
∪ ∪wi→w′

i
∈WP X̊

w′
i

P
and X̊P

v by any B-stable open

subset of X̊P
v ∪ ∪v′→v,v′∈WP X̊P

v′ .
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Proof. Consider the projection

π : G×4 → G/P × X, (g, g1, g2, g3) 7→ (gP/P, g1o−, g2o−, g3o),

and define X̃ := π−1(X) and
˜̊
X := π−1(X̊). Then,

(14) X̃ = {(g, g1, g2, g3) ∈ G×4 : gP/P ∈ g1X
w1

P
∩ g2X

w2

P
∩ g3XP

v },

and

(15)
˜̊
X = {(g, g1, g2, g3) ∈ G×4 : gP/P ∈ g1X̊

w1

P
∩ g2X̊

w2

P
∩ g3X̊P

v }.

Define the morphism

β : X̃→ X
w1

P
× X

w2

P
× XP

v , (g, g1, g2, g3) 7→ (g−1
1 gP/P, g−1

2 gP/P, g−1
3 gP/P).

Then,
˜̊
X = β−1

(

X̊
w1

P
× X̊

w2

P
× X̊P

v

)

and hence
˜̊
X is open in X̃. Thus, π being an open map, X̊ is open in X.

We now prove that

(16) X̊+ is open in X̊ (and hence in X).

By the equation (15)

(17) π−1(X̊)=
˜̊
X= {(g, g1, g2, g3) ∈ G×4 :

g−1g1 ∈ Pw−1
1

U−, g−1g2 ∈ Pw−1
2

U−, g−1g3 ∈ Pv−1U},

and

(18)
π−1(X̊+) = {(g, g1, g2, g3) ∈ π−1(X̊) :

Tė(g
−1g1X̊

w1

P
) ∩ Tė(g

−1g2X̊
w2

P
) ∩ Tė(g

−1g3X̊P
v ) = (0)},

where ė := P/P ∈ G/P. Consider the morphism

˜̊β :
˜̊
X→

˜̊
Xw1 ,w2,v := ˜̊

X
w1

P
×

˜̊
X

w2

P
×

˜̊
XP

v , (g, g1, g2, g3) 7→ (g−1
1 g, g−1

2 g, g−1
3 g),

where ˜̊
X

wi

P
:= B−wiP ⊂ G and similarly ˜̊

XP
v := BvP ⊂ G. Define the finite

rank vector bundle Ei over ˜̊
X

wi

P
(i = 1, 2) by

⋃

hi∈
˜̊
X

wi
P

Tė(G/P)/Tė(h
−1
i X̊

wi

P
)→ ˜̊

X
wi

P
,

and similarly the finite rank vector bundle E3 over
˜̊
XP

v by
⋃

h∈
˜̊
XP

v

Tė(h
−1X̊P

v )→ ˜̊
Xv

P,

and a morphism over
˜̊
Xw1 ,w2,v:

ϕ : π∗3(E3)→ π∗1(E1) ⊕ π∗2(E2)
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induced by the canonical inclusion of Tė(h
−1X̊P

v ) ֒→ Tė(G/P), where πi is

the projection from ˜̊
Xw1 ,w2,v to the i-th factor.. The set of points Z ⊂

˜̊
Xw1 ,w2,v

where ϕ is injective is clearly open. But, it is easy to see that (
˜̊β)−1(Z) =

π−1(X̊+), and hence π−1(X̊+) is open in
˜̊
X and thus X̊+ is open in X̊. This

proves the first part of the lemma.

The proof for the ‘In fact’ statement in the lemma is identical.

�

4.3. Divisors from Schubert varieties. Fix (w1,w2, v) ∈ (WP)3 such that

(i) w1 ≤ v and w2 ≤ v;

(ii) ℓ(v) = ℓ(w1) + ℓ(w2) − 1;

(iii) there exist l1, l2 and l3 in L such that the linear map

l3Tv −→
T

l1T
w1
⊕
T

l2T
w2

is injective, where the Zariski tangent spaces

T = Tė(G/P), T wi = Tė(wi
−1X

wi

P
), and Tv = Tė(v

−1XP
v ).

Proposition 3. There exists a G-linearized line bundle Lw1,w2,v over X of

the form Lw1,w2,v = L
−(λ1) ⊠ L−(λ2) ⊠ L(µ) for some (λ1, λ2, µ) ∈ P3

+
and a

nonzero G-invariant section σw1,w2,v of Lw1,w2,v such that

Ew1,w2,v = {x ∈ X : σw1,w2,v(x) = 0}.

Before we come to the proof of the proposition, we need to prove some

preparatory results.

Let U be the commutator subgroup [B, B] of B and Uo− be the open cell

in G/B−. Set

Ω = {(x1, x2, g3o) ∈ X : g−1
3 xi ∈ Uo− for i = 1, 2}.

It is easy to see that Ω is open in X.

The construction of Lw1,w2,v and σw1,w2,v is made in two steps:

(1) construct their restrictions to Ω by using a slice technique to reduce

to the case of finite dimensional varieties (see Lemma 5 below). Now,

Ew1,w2,v corresponds to the subvariety Ê (see (20) below) of an affine space.

Lemma 4 proves that Ê is a closed divisor using Lemma 3.

(2) Twist the restriction (Lw1,w2,v)|Ω to avoid components of the zero locus

of σw1 ,w2,v in the boundary X −Ω. This step uses Lemmas 5 and 6 below.

Observe that, by the Birkhoff decomposition [Kum02, Theorem 6.2.8],

(19) X = Ω ⊔
⋃

α∈∆, i=1,2

Fα,i.
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Consider the group homomorphism θ : U −→ Aut(XP
v ) given by the

action and let Uv be its image. Note that Uv is a finite dimensional unipotent

group. Set

(20) Ê := {u ∈ Uv :
(

uXw1
v (P)

)

∩ Xw2
v (P) , ∅}, where Xw

v (P) := XP
v ∩ Xw

P .

Lemma 4. The subset Ê of Uv is a closed irreducible divisor of Uv.

Proof. Consider the closed subset of Uv × X
w2
v (P):

X̂ := {(u, x) ∈ Uv × Xw2
v (P) : u−1x ∈ Xw1

v (P)},

with its two projections p1 and p2 on Uv and X
w2
v (P) respectively. Since

X
w2
v (P) is projective, p1 is proper. In particular, Ê = p1(X̂) is closed in Uv.

Recall the definition of X from the equation (13) and as defined earlier in

the proof of Lemma 2,

X¯s := X ∩
(

G/P ×G/B− ×G/B− × {o}
)

= {(y, g1o−, g2o−, o) ∈ G/P × X : y ∈ (g1X
w1

P
) ∩ (g2X

w2

P
) ∩ XP

v },

its open subset

X̊1 := X¯s ∩
(

G/P × (U · o−) × (U · o−) × {o}
)

,

and

X̂¯s := π−1
1 (X¯s), where π1 : G × X → G/P × X is the projection.

Then,

(BvP) × (Pw−1
1

B−/B−) × (Pw−1
2

B−/B−) ≃ X̂¯s, (g, x1, x2) 7→ (g, gx1, gx2, o).

Hence, X̂¯s is irreducible and thus so is its quotient X¯s. By the condition (i)

of §4.3, X̊1 is nonempty. By the condition (iii) of §4.3 and Lemma 3, X¯s∩X̊
+

is nonempty open subset of X¯s. Since X¯s is irreducible and X¯s ∩ X̊
+ and X̊1

are nonempty open subsets of irreducible X¯s, their intersection

X̊+1 := X̊1 ∩ X̊
+ is nonempty.

Consider the ind-variety Y = G/P × U × U and the morphism

α : Y → G/P×3, (y, u1, u2) 7→ (u−1
1 y, u−1

2 y, y).

Let Y ′ = Y(w1 ,w2,v) ⊂ Y be the closed ind-subvariety

Y ′ := α−1
(

X
w1

P
× X

w2

P
× XP

v

)

.

Then, there is an isomorphism

β : X̊1 ≃ Y ′, (y, u1o−, u2o−, o) 7→ (y, u1, u2).

In particular, Y ′ is also irreducible. Let

Y ′
+

:= β(X̊+1 ) ⊂ Y ′ be the nonempty open subset.
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Consider the morphism

q : Y ′ → X̂, (y, u1, u2) 7→ (θ(u−1
2 u1), u−1

2 y).

Clearly, q is surjective. In particular, we obtain that X̂ is irreducible and

hence so is Ê = p1(X̂).

We now determine the image of p2: Let x ∈ X
w2
v (P) and let v′ ≤ v be such

that v′ ∈ WP and x ∈ X̊P
v′ . Then, x ∈ Im(p2) if and only if Ux ∩ X

w1

P
, ∅ if

and only if w1 ≤ v′ (cf. [Kum02, Lemma 7.1.22]). We deduce that

(21) Im(p2) = X
w2

P
∩

(

∪w1≤v′≤v;v′∈WP X̊P
v′

)

.

In particular, it is open in X
w2
v (P).

We now analyze the fibers of p2: Let x ∈ Im(p2) and v′ be as obove.

Then, p−1
2 (x) is the set of points u ∈ Uv such that u−1x ∈ X

w1

P
. It is the pull-

back of X̊P
v′ ∩ X

w1

P
by the orbit map u 7→ u−1x. Since X̊P

v′ ∩ X
w1

P
is irreducible

(cf. [Kum17, Proposition 6.6]) and the stabilizer of x in Uv is, of course, ir-

reducible (being a closed subgroup of a finite dimensional unipotent group),

so is p−1
2

(x). Moreover,

(22)
dim(p−1

2 (x)) = ℓ(v′) + dim(StabUv
(v′P/P)) − ℓ(w1)

= ℓ(v) + dim(StabUv
(vP/P)) − ℓ(w1),

where StabUv
(v′P/P) denotes the stabilizer of v′P/P in Uv.

Further, by equations (21) and (22),

dim X̂ = ℓ(v) + dim(StabUv
(vP/P)) − ℓ(w1) + ℓ(v) − ℓ(w2)(23)

= dim Uv − 1, by the assumption (ii) of §4.3.

We return to the surjective map q : Y ′ ։ X̂ defined above. By Cheval-

ley’s theorem (cf. [Har77, Chap. II, Exercise 3.19(b)]), q(Y ′
+
) contains a

nonempty open subset (denoted by X̂+) of X̂. By the definition of X̊+
1
, we

get the following:

(24)
(

Tx(uX̊w1
v (P))

)

∩ Tx(X̊
w2
v (P)) = (0), for any (u, x) ∈ X̂+ ⊂ Uv × X̊w2

v (P),

where

X̊w
v (P) := X̊w

P ∩ X̊P
v .

Observe that X̊
wi
v (P) is smooth (which follows from [Kum02, Lemma 7.3.10]).

Consider the projection map

p+1 : X̂+ → Uv, where p+1 := p1 |X̂+ .

From the above equation (24), we conclude that

(p+1 )−1(p+1 (u, x)) ⊂ {u} ×
(

(uX̊w1
v (P)) ∩ X̊w2

v (P)
)
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is a finite set for any (u, x) ∈ X̂+. In particular, Ê being irreducible,

dim(Ê) = dim
(

Im p+
1

)

= dim(X̂+) = dim(X̂) = dim(Uv) − 1,

where the last equality follows from the equation (23). This proves that Ê

is a divisor, proving the lemma. �

Lemma 5. There exists a G-equivariant line bundleM ∈ Pic(Ω) and τ ∈
H0(Ω,M)G such that

Ω ∩ E = {x ∈ Ω : τ(x) = 0},

where E = Ew1,w2,v. In fact, we can takeM = (p3 |Ω)∗Lχ for a character χ of

B.

In particular, E ∩ Ω is closed in Ω.

Proof. By definition,

E = {(g1o−, g2o−, g3o) ∈ X : g1X
w1

P
∩ g2X

w2

P
∩ g3XP

v , ∅}

= {(g1o−, g2o−, g3o) : (g−1
3 g1)Xw1

P
∩ (g−1

3 g2)Xw2

P
∩ XP

v , ∅}.

Consider the isomorphism ι : Uo− −→ U, uo− 7→ u. Then,

E ∩Ω = {(x1, x2, g3o) ∈ Ω : ι(g−1
3 x1)Xw1

P
∩ ι(g−1

3 x2)Xw2

P
∩ XP

v , ∅}

= {(x1, x2, g3o) ∈ Ω :
(

ι(g−1
3 x1)Xw1

v (P)
)

∩
(

ι(g−1
3 x2)Xw2

v (P)
)

, ∅},

since XP
v is U-stable. Here (as earlier) X

w1
v (P) := X

w1

P
∩ XP

v . Thus,

(25)

E ∩Ω = {(x1, x2, g3o) ∈ Ω :
(

[ι(g−1
3 x2)−1ι(g−1

3 x1)]Xw1
v (P)

)

∩ Xw2
v (P) , ∅}.

As earlier, consider the group homomorphism θ : U −→ Aut(XP
v ) given

by the action, and denote by Uv its image (which is a finite dimensional

unipotent group). Recall that

Ê := {u ∈ Uv :
(

uXw1
v (P)

)

∩ Xw2
v (P) , ∅}.

Note that the torus T acts by conjugation on Uv and that Ê is T -stable.

Being a finite dimensional unipotent group, Uv is isomorphic as a variety

to an affine space. In particular, there exists f̂ ∈ C[Uv], unique up to scalar

multiplication, such that div( f̂ ) = Ê (since Ê is an irreducible divisor by

Lemma 4). Moreover, since Ê is T -stable, f̂ is an eigenvector of T ; denote

by χ the corresponding character. We extend χ uniquely to a character of B.

Set Ẽ = π̃−1(E) and Ω̃ := π̃−1(Ω), where π̃ : X̃ := G/B−×G/B−×G → X

is the projection. Then, Ω̃ and Ẽ are stable by the following action of G×B:

(g, b).(x1, x2, g
′) := (gx1, gx2, gg′b−1).

Consider f̃ : Ω̃ −→ C defined by

f̃ (x1, x2, g) = f̂ ◦ θ(ι(g−1x2)−1ι(g−1x1)).
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Then, by the equation (25), Ẽ ∩ Ω̃ is the zero locus Z( f̃ ) of f̃ and for b =

ut ∈ B (where u ∈ U, t ∈ T ):

(26)
f̃ (x1, x2, gb) := f̂ ◦ θ(t−1[ι(g−1x2)−1ι(g−1x1)]t)

= χ(t) f̃ (x1, x2, g) = χ(b) f̃ (x1, x2, g).

We claim that f̃ induces a section τ f̃ of (p3 |Ω)∗(Lχ), where p3 : X → G/B

is the projection onto the third factor.

By the equation (26), f̃ gives rise to a section τ f̃ of the line bundleLΩ(χ)

associated to the principal B-bundle Ω̃→ Ω (induced from the right · action

of B on Ω̃) via the character χ−1 of B. Clearly,

LΩ(χ) = (p3 |Ω)∗(Lχ).

By construction, the zero set Z(τ f̃ ) = E ∩ Ω. By the definition of τ f̃ ,

it is easy to see that it is a G-invariant section. Taking τ = τ f̃ , we get the

lemma. �

We now have a line bundle and a section τ on Ω with the expected zero

locus. To avoid extra zero locus in the boundary X − Ω we need to twist

by some line bundles given by Lemma 1. The key point to do this is the

following finiteness result:

Lemma 6. The valuation vFα,i(τ) is finite for any α ∈ ∆ and i = 1, 2, where

τ is the section taken from Lemma 5. (In the proof below we see that Fα,i is

irreducible.)

Proof. We are going to prove that vFα,i(τ) can be computed in some finite

dimensional variety after taking a quotient by a unipotent group.

Fix a simple root α ∈ ∆ and i = 1 and consider

F = Fα,1 = {(x1, x2, g3o) ∈ X : g−1
3 x1 ∈ Bsαo−}.

Consider the isomorphism

ϕ : X̃ → X̃, (x1, x2, g) 7→ (gx1, gx2, g).

Endow X̃ with the following two right actions of B:

(x1, x2, g) ⊙ b = (b−1x1, b
−1x2, gb)

and

(x1, x2, g) · b = (x1, x2, gb).

Then, the morphism ϕ is B-equivariant with respect to the action ⊙ on the

domain and the action · on the range.

Clearly, π̃ : X̃ → X is a principal B-bundle with respect to the action ·.

Define

Ω̃
′ := ϕ−1(Ω̃).
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By the definition of Ω,

(27) Ω̃
′
= Uo− × Uo− ×G.

Let f̂ and f̃ be as in the proof of Lemma 5. Set f̃ ′ = f̃ ◦ ϕ : Ω̃′ → C.

Thus,

(28) f̃ ′(u1o−, u2o−, g) = f̂ ◦ θ(u−1
2 u1), for u1, u2 ∈ U and g ∈ G.

Set F′ := (π̃ ◦ϕ)−1(F) = Usαo− ×G/B− ×G. Consider Vα := Uo− ∪Usαo−.

It is an open subset of G/B− (containing Usαo−). By [Kum17, Lemma 6.1],

there exists a closed normal subgroup U of U such that Vα −→ U\Vα
=:

Yα is a principal U-bundle and Yα is a smooth finite dimensional variety.

Moreover, by intersecting with Ker θ, one can assume that U acts trivialy

on Xv.

Let h1, h2 ∈ U. We have, for any u1, u2 ∈ U and g ∈ G,

f̃ ′(h1u1o−, h2u2o−, g) = f̂ ◦ θ(u−1
2 h−1

2 h1u1), by equation (28)

= f̂ ◦ θ(u−1
2 u1), since θ is a group homomorphism

and h1, h2 ∈ U ⊂ Ker θ

= f̃ ′(u1o−, u2o−, g).(29)

Since the line bundle p∗
3
(Lχ) over X pulled to the principal B-bundle π :

X̃ → X is trivialized, to prove the finiteness of vF(τ), it suffices to show that

the function f̃ : Ω̃ → C has a pole of finite order along π−1(F). Equiva-

lently, considering the isomorphism ϕ : X̃ → X̃, it suffices to show that the

function

f̃ ′ : Ω̃′ = Uo− × Uo− ×G → C

has a pole of finite order along F′ = Usαo− ×G/B− ×G.

The diagonal action of G on X̃ pulled back via ϕ to the action ⊙ of G on

X̃ is given by:

g ⊙ (x1, x2, h) = (x1, x2, gh), for x1, x2 ∈ G/B− and g, h ∈ G.

The function f̃ ′ : Uo− × Uo− ×G → C descends to a function f̂ ′ on Uo− ×

Uo− by equation (28). So, to prove that the function f̃ ′ has a pole of finite

order along F′, it suffices to show that the function f̂ ′ : Uo−×Uo− → C has

a pole of finite order along
(

Usαo−
)

×G/B−. Consider the open embedding
(

U\Uo−
)

×
(

U\Uo−
)

֒→ (U\Vα) ×
(

U\Uo−
)

.

By the equation (29), the function f̂ ′ descends to a function φ̂′ on
(

U\Uo−
)

×
(

U\Uo−
)

. Since (U\Vα) ×
(

U\Uo−
)

is a (smooth) scheme of finite type

over C, the function φ̂′ has a pole of finite order along the divisor
(

U\(Usαo−)
)

×
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(

U\Uo−
)

and hence f̂ ′ has a pole of finite order along the divisor (Usαo−)×

Uo−. Since Usαo− is an open subset of Usαo−, we get that f̂ ′ has a pole of

finite order along (Usαo−) ×G/B−. This proves the finiteness of vFα,1(τ) for

any α ∈ ∆. The proof of the finiteness of vFα,2(τ) is identical. �

Proof of Proposition 3. By Lemma 5, there exist a G-equivariant line bun-

dleM overΩ and a nonzero G-invariant section τ overΩwith div τ = E∩Ω.

Moreover, the line bundleM is restriction of the line bundle p∗
3
(Lχ) over

X. Then, τ is a (rational) section ofM′ := p∗3(Lχ) regular over Ω.

Lemma 6 allows to consider the G-linearized line bundle

Lw1,w2,v :=M⊗
⊗

α∈∆, i=1,2

M
vFα,i

(τ)

α,i over X,

where the line bundleM := p∗3(Lχ) is as in Lemma 5 and the line bundles

Mα,i are as in Lemma 1. In particular, Lw1,w2,v is of the form L−(λ1) ⊠

L−(λ2) ⊠ L(µ) for some λ1, λ2, µ ∈ h
∗
Z

.

By Lemmas 1 and 5 and the decomposition (19), it has a nonzero G-

invariant section

(30) σw1,w2,v = τ ⊗
⊗

α∈∆, i=1,2

σ
vFα,i

(τ)

α,i .

Thus, by [Kum02, Corollary 8.3.12], (λ1, λ2, µ) ∈ P3
+
. This proves the

proposition by using the following Lemma 7. �

Observe that E ∩ Ω ⊂ E (since E is closed by Lemma 2). Moreover,

since E is irreducible and E ∩Ω , ∅ (as (o−, o−, o) ∈ E ∩Ω),

(31) E ∩Ω = E.

Lemma 7. The zero set Z(σw1 ,w2,v) := {x ∈ X : σw1,w2,v(x) = 0} is equal to

E.

Proof. Consider the map

ψ : X̃ := (G/B−)2×G → X := (G/B−)2×G/B, (x1, x2, g) 7→ (gx1, gx2, go).

For any subset Y ⊂ X, we set Ŷ ′ := ψ−1(Y). Then,

F̂′α,1 = Bsαo− ×G/B− ×G.

Take an increasing cofinal sequence wn ∈ W (i.e., w1 < w2 < w3 < · · ·
and for any w ∈ W there exists a wn such that w ≤ wn). Take a filtration

(Gn)n≥0 of G by finite dimensional irreducible subvarieties compatible with

its ind-variety structure (cf. [Res17, above Lemma 2.3]). Now, define the

increasing filtration

X̃n := X−wn
× X−wn

×Gn of X̃, where X−w := B−wo−.
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Then,

(32) X̃n ∩ F̂′α,1 = (X−wn
∩ Bsαo−) × X−wn

×Gn,

and a similar expression for X̃n ∩ F̂′α,2. Thus, X̃n ∩ F̂′α,i is irreducible. Ab-

breviate Z = Z(σw1 ,w2,v). Then, by Lemmas 1 and 5 and the identity (19),

Z ∩Ω = E ∩ Ω and hence Z ⊃ E by the identity (31). Write

Ẑ′ = Ê′
⋃

∪(α,i)∈∆×{1,2}

(

Ẑ′ ∩ F̂′α,i

)

, by the identity (19).

Thus, for any n ≥ 0,

(33) Ẑ′ ∩ X̃n =

(

Ê′ ∩ X̃n

)
⋃

∪(α,i)∈∆×{1,2}

(

Ẑ′ ∩ F̂′α,i ∩ X̃n

)

.

But, being the zero set of a section of a line bundle, Ẑ′ ∩ X̃n is a divisor

in X̃n and so is F̂′α,i ∩ X̃n and the latter is irreducible (divisor of X̃n) by the

equation (32). From the definition of σ given by the equation (30), we get

(for any (α, i) ∈ ∆ × {1, 2})

(34) Ẑ′ ∩ F̂′α,i ∩ X̃n ( F̂′α,i ∩ X̃n, for large enough n.

Thus, Ẑ′ ∩ F̂′α,i ∩ X̃n is of codimension ≥ 2 in X̃n for large enough n. But,

since Ẑ′ ∩ X̃n is a divisor in X̃n , we get from the equation (33) that

Ẑ′ ∩ F̂′α,i ∩ X̃n ⊂ Ê′ ∩ X̃n, for large enough n.

Thus,

Ẑ′ ∩ X̃n = Ê′ ∩ X̃n, for large enough n which gives Ẑ′ = Ê′.

Hence, Z = E proving the lemma. �

5. Proof of Theorem 4

In this section, we fix P, (w1,w2, v) and L as in the theorem.

Let D denote the set of pairs (α, i) ∈ ∆ × {1, 2, 3} coming from ∆+(w1),

∆
+(w2) and ∆−(v), i.e.,

D∩ (∆ × {i}) = ∆+(wi) for i = 1, 2 and D∩ (∆ × {3}) = ∆−(v),

where ∆+(wi) and ∆−(v) are defined in the Introduction.

5.1. Strategy. Note that the assumptions on the triple (w1,w2, v) differ

from that of Section 4.3. Nevertheless, we use the same notation. We set

C = Lw−1
1 o− × Lw−1

2 o− × Lv−1o,

C+ = Pw−1
1 o− × Pw−1

2 o− × Pv−1o,

and (as earlier)

C̄+ = C̄+w1 ,w2,v
:= Pw−1

1
o− × Pw−1

2
o− × Pv−1o.
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Recall from equation (13):

X := {(gP/P, x) ∈ G/P × X : g−1x ∈ C̄+}

= {(y, g1o−, g2o−, g3o) ∈ G/P × X : y ∈ g1X
w1

P
∩ g2X

w2

P
∩ g3XP

v }.

As a closed subset of G/P×X, it is a G-ind-variety with the diagonal action

of G. Consider the projection

η : X→ X, (y, x) 7→ x.

For each (α, i) ∈ D, consider the associated P3-orbit ∂C+α,i in X, where

∂C+α,1 := Pw−1
1

sαo− × Pw−1
2

o− × Pv−1o and ∂C+α,i (i = 2, 3) are defined simi-

larly. Then, ∂C+α,i is open in an irreducible component of C̄+ −C+. Set

C̃+ = C+ ∪
⋃

(α,i)∈D

∂C+α,i.

It is open in C̄+. Similarly, we define the open subset of X
wi

P
:

X̃
wi

P
:= B−wiP/P ∪

⋃

α∈∆+(wi)

B−sαwiP/P (for i = 1, 2)

and the open subset of XP
v :

X̃P
v := BvP/P ∪

⋃

α∈∆−(v)

BsαvP/P.

We also set

X̃′ := {(gP/P, x) ∈ G/P × X : g−1x ∈ C̃+}

= {(y, g1o−, g2o−, g3o) ∈ G/P × X : y ∈ g1X̃
w1

P
∩ g2X̃

w2

P
∩ g3X̃P

v },

which is an open subset of X and hence irreducible (since so is X as observed

earlier below the equation (13)). We make use of a slice by setting

X¯s := (G/B−)2 × {o} ⊂ X,

and its B-stable open subset

X
◦◦

¯s := (Bo− ∪
⋃

α∈∆

sαBo−)2 × {o} =

















⋃

ℓ(w)≤1

Bwo−

















2

× {o}.

Then, we have a G-equivariant isomorphism:

(35) G ×B X¯s ≃ X, [g, x] 7→ gx.

As defined in the proof of Lemma 2,

X¯s := {(y, g1o−, g2o−, o) ∈ G/P × X¯s : y ∈ g1X
w1

P
∩ g2X

w2

P
∩ XP

v } ⊂ X.

We also set

X
◦◦

¯s := X¯s ∩ (G/P × X
◦◦

¯s)
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and

X̃¯s := {(y, g1o−, g2o−, o) ∈ G/P × X¯s : y ∈ g1X̃
w1

P
∩ g2X̃

w2

P
∩ X̃P

v }.

Then,

(36) G ×B X¯s ≃ X, [g, x] 7→ gx.

In particular, X¯s is irreducible since so is X. Hence, X̃¯s and X
◦◦

¯s (being open

subsets of X¯s) are irreducible.

We now consider the following commutative diagram (⋄) for any G-

equivariant line bundle L over X as in Theorem 4:

H0(X,L)G H0(X,L)G H0(G ×P C̃+,L)G H0(C,L)L

H0(X¯s,L)B H0(X¯s,L)B H0(X̃¯s,L)B

H0(X
◦◦

¯s,L)B H0(X
◦◦

¯s,L)B H0(X̃¯s ∩ X
◦◦

¯s,L)B ,

η∗ α∗ β∗

η∗1 i∗3

η∗2 i∗7

i∗1 i∗2

i∗4 i∗
5

γ∗

i∗
6

where

α : G ×P C̃+ → X, [g, (x1, x2, x3)] 7→ (gP, gx1, gx2, gx3)

is a G-equivariant open embedding with image X̃′,

β : C ֒→ G ×P C̃+ is the L-equivariant morphism x 7→ [1, x],

γ : X̃¯s −→ G ×P C̃+, (gP, g1o−, g2o−, o) 7→ [g, (g−1g1o−, g−1g2o−, g−1o)],

is the morphism (which is α−1

|X̃¯s
), η1, η2 are restrictions of η to X¯s and X

◦◦

¯s

respectively. All the maps i j are appropriate inclusion maps. In the above

diagram L also denotes the induced line bundle on each of the above ind-

varieties by pullback. Note that the ind-varieties with s as subscript are

B-ind-varieties with the B-action induced from the G-action of the ambient

G-ind-varieties; in particular, the line bundle L over them is endowed with

a natural B-action.

We now prove that all the maps in the above commutative diagram are

isomorphisms.

5.2. Various Isomorphisms. We first prove the following lemma for its

use in the proof of Lemma 9.
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Lemma 8. Let UP be the unipotent radical of P. Then,

(a) Any regular map UP → C∗ is constant.

(b) Pic(UP) = (0).

Proof. (a) Consider the parabolic subgroup P− opposite to P and the homo-

geneous space G/P−. Then UP can be seen as an open subset of G/P−. For

any Schubert variety X−w = X−w(P) := B−wP−/P− ⊂ G/P− (with w ∈ WP),

X−w ∩ UP is contractible in the analytic topology (cf. [Kum02, Proposition

7.4.17 and its proof]). Now, by [KNR94, Lemma 2.5], we get that any

regular map X−w ∩ UP → C∗ is a constant. From this (a) follows.

(b) By induction on ℓ(w), we show that the group of k-cycles modulo

rational equivalence Ak(X−w ∩ UP) is a finitely generated group. By [Ful98,

Proposition 1.8], we have an exact sequence:

Ak((∂X−w) ∩ UP)→ Ak(X
−
w ∩ UP)→ Ak

(

(B−wP−/P−) ∩ UP

)

→ 0.

Writing ∂X−w as a union∪ℓ(v)=ℓ(w)−1 X−v and applying [Ful98, Example 1.3.1(c)]

and the induction hypotheis, we get that Ak(∂X−w ∩ UP) is finitely gen-

erated. Also, applying [Ful98, Proposition 1.8] again to the open subset

(B−wP−/P−)∩UP of the affine space B−wP−/P−, we get that Ak ((B−wP−/P−) ∩ UP)

is finitely generated since so is Ak(B
−wP−/P−) (cf. [Ful98, Proposition

1.9]). Thus, from the above exact sequence, we get that Ak(X
−
w ∩ UP) is

finitely generated, completing the induction.

Consider the cohomology exact sequence (since X−w ∩ UP is contractible

in the analytic topology)

H1(X−w ∩ UP,Zm) = 0→ H1(X−w ∩ UP,O
∗) = Pic(X−w ∩ UP)→ H1(X−w ∩ UP,O

∗)

= Pic(X−w ∩ UP)→ H2(X−w ∩ UP,Zm) = 0,

induced from the sheaf exact sequence:

Zm → O
∗ → O

∗ → 0,

where the map O
∗ → O

∗ takes f 7→ f m. From the above cohomology exact

sequence we see that Pic(X−w ∩ UP) is a divisible group. But, since it is also

a finitely generated abelian group (by [Ful98, Example 2.1.1]), it must be

trivial. From this, taking limit, we obtain (b). �

Since X is irreducible and Imα = X̃′ is open in X, the restriction map

H0(X,L) −→ H0(G ×P C̃+,L) is injective and hence so is α∗.

Lemma 9. (a) The pullback induces an isomorphism:

η∗ : H0(X,L)G ≃ H0(X,L)G.

(b) The restriction map

H0(C̃+,L)P −→ H0(C+,L)P
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is an isomorphism.

(c) The restriction map

H0(C+,L)P → H0(C,L)L

is an isomorphism.

Proof. (a) follows by [Res17, Lemma 6.3].

The proof of (b) is analogous to the proof of [Res17, Lemma 6.5]. We

sketch the proof: The map H0(C̃+,L)P −→ H0(C+,L)P is obviously injec-

tive. Hence, it remains to prove that any P-invariant section σ of L on C+

extends to C̃+.

For x ∈ WP, Px−1o− is contained in Pw−1
i

o− if and only if x ≥ w. More-

over {z ∈ W : zo− ∈ Px−1o−} is the set of z ∈ W that can be written as

z = yx−1 for some y ∈ WP. Since xy−1 ≥ x, such a point zo− belongs

to Bw−1
i

o−. Then, Pw−1
i

o− and Bw−1
i

o− are B-stable and contain the same

T -fixed points. We deduce that

(37) Pw−1
i

o− = Bw−1
i

o−.

On the other hand, Pv−1o = ∪vn∈WP
Xvnv−1 , where vn is an increasing cofinal

sequence in WP. We now construct an increasing filtration of C̄+ by products

of finite dimensional Richardson varieties:

C̄+ = ∪n∈NC̄+n .

Explicitly

C̄+n := (Xw1
− ∩ X−wn

) × (Xw2
− ∩ X−wn

) × Xvnv−1 ,

where {wn} is a cofinal increasing sequence in W and Pw−1
i

o− = X
wi

− by the

equation (37), where Xw
− := Bw−1o− and X−w := B−wo−. In particular, C̄+n are

irreducible and normal (cf. [Kum17, Proposition 6.6]). Of course, C̄+n ∩C+

is open in C̄+n and nonempty for large enough n. It remains to prove that

σ|C̄+n∩C+ extends to a regular section on C̄+n ∩ C̃+, for any n.

Fix (α, i) ∈ D. The irreducibility of the Richardson varieties implies that

the intersection C̄+n∩∂C+α,i is either empty or irreducible. Since C̄+n is normal,

to prove that σ|C̄+n∩C+ extends to C̄+n ∩ C̃+, it is sufficient to prove that σ|C̄+n∩C+

has no pole along C̄+n ∩ ∂C+α,i if C̄+n ∩ ∂C+α,i has codimension 1 in C̄+n .

Assume that Dn := C̄+n ∩ ∂C+α,i has codimension 1 in C̄+n . Then, Dn is

equal to either

(α) (Xū1
− ∩ X−wn

) × (Xw2
− ∩ X−wn

) × Xvnv−1 , for some ū1 ≥ w1 ∈ WP and

ℓ(ū1) = ℓ(w1) + 1; or

(α′) (Xw1
− ∩ X−wn

) × (Xū2
− ∩ X−wn

) × Xvnv−1 , for some ū2 ≥ w2 ∈ WP and

ℓ(ū2) = ℓ(w2) + 1; or
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(β) (Xw1
− ∩ X−wn

) × (Xw2
− ∩ X−wn

) × Xvnv−1sα .

Now, we construct an explicit affine open subset Ωn in C̄+n that intersects

Dn.

In case (α), set

Ωn = (Xw1
− ∩ X−wn

∩ (ū1Bo−)) × (Xw2
− ∩ X̊−wn

) × X̊vnv−1 ,

where X̊−w := B−wo− and X̊w := Bwo and similarly for the case (α′). In case

(β),

Ωn = (Xw1
− ∩ X̊−wn

) × (Xw2
− ∩ X̊−wn

) × (Xvnv−1 ∩ (vnv−1sαB−o)).

Fix τ = z
∑

αi<∆(P) di xi : C∗ −→ T , where di > 0 is an integer such that dixi

is in the coroot lattice. We now apply [Res17, Lemma 11.5] to Ωn endowed

with the action of C∗ induced by τ. The checking of the assumptions (i)−(iv)

of [Res17, Lemma 11.5] are done in the proof of [Res17, Lemma 6.5]. The

only remaining point, with the notation of [Res17, Lemma 11.5], is to prove

that k ≥ 0. This is done as in [Res17, Proof of Lemma 6.5, specifically the

part ‘The line bundle on the affine subvarieties’]. Here, the non-negativity

of k is due to the fact that L is nonnegative restricted to the projective lines

˜lα,i for any (α, i) ∈ D, which is our assumption (cf. Theorem 4). This proves

(b).

We now come to the proof of (c). Since H0(C+,L)P is contained in

H0(C+,L)τ, [Res17, Lemma 6.6] implies that the map (c) of the lemma

is injective. We now prove its surjectivity:

Consider the map θ : P −→ L, p 7−→ limt→0 τ(t)pτ(t−1), which is a sur-

jective group homomorphism. This provides an action of P3 on C through

the homomorphism θ. Then, the regular map γ : C+ −→ C, x 7−→ limt→0 τ(t)x

is P3-equivariant.

Take a G3-equivariant lift ofL overX under the componentwise action of

G3 onX. (This is possible since any character of the diagonal of (G/[G,G])3

extends to a character of (G/[G,G])3. Thus, we will think of L as a G3-

equivariant line bundle over X. Denote

x = (w−1
1 o−,w−1

2 o−, v−1o) ∈ C.

Then, C = L3 · x and C+ = P3 · x. Thus,

(38) PicP3

(C+) ≃ X(P3
x) and PicL3

(C) ≃ X(L3
x),

where X( ) denotes the character group and P3
x (resp. L3

x) denotes the

isotropy subgroup of P3 (resp. L3) at x. Now, it is easy to see that

(39) P3
x = L3

x ·
(

Uw1
× Uw2

× U′v
)

,

where Uw (resp. U′v) is the finite dimensional (resp. finite codimensional)

subgroup of the unipotent radical UP of P with Lie algebra ⊕β∈Φ+∩w−1Φ− gβ
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(resp. ⊕β∈(Φ+\Φ+
L

)∩v−1Φ+ gβ), where Φ+ (resp. Φ+
L
) is the set of positive rots of

G (resp. L). Moreover, since L3 normalizes U3
P
, L3

x normalizes Uw1
×Uw2

×

U′v. Now, for a finite dimensional unipotent group, any character is trivial

and similarly U′v has no nontrivial characters by the same proof as that of

Lemma 8(a). Thus,

X(P3
x) = X(L3

x).

Hence, by combining the equations (38) and (39), we get

(40) PicP3

(C+) ≃ PicL3

(C).

We define the P3-action on L|C compatible with the action of P3 on C by

demanding that U3
P

acts trivially on L|C . Thus, we get a P3-equivariant line

bundle γ∗(L|C) over C+. We also have a P3-equivariant line bundleL|C+ . By

the equation (40), we readily see that

L|C+ ≃ γ
∗(L|C), as P3-equivariant line bundles;

in particular, as diagonal P-equivariant line bundles.

Thus, for σ ∈ H0(C,L)L, γ∗(σ) ∈ H0(C+,L)P and γ∗(σ)|C = σ. We

deduce thus that the restriction map H0(C+,L)P → H0(C,L)L is surjective.

This proves (c). �

We thus conclude that the first horozontal line in the above diagram (⋄)

satisfies:

H0(X,L)G H0(X,L)G H0(G ×P C̃+,L)G H0(C̃+,L)P

H0(C,L)L,

∼
η∗

α∗

≀
∼

β∗

∼

where η∗ is an isomorphism and the last vertical map is an isomorphism

(which follows from Lemma 9).

5.3. Isomorphisms induced from slice. Since G ×B X¯s ≃ X (cf. equa-

tion (35)), we get that i∗1 : H0(X,L)G −→ H0(X¯s,L)B is an isomorphism.

Similarly, i∗2 is an isomorphism by using equation (36). Further, γ∗ is an

isomorphism since α : G ×P C̃+ → X̃′ is a G-equivariant isomorphism and

so is

(41) G ×B
X̃¯s ≃ X̃

′, [g, x] 7→ gx.
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5.4. Isomorphisms obtained from restriction to some open subsets.

Lemma 10. The restriction map H0(X¯s,L) −→ H0(X
◦◦

¯s,L) is an isomor-

phism and hence i∗4 is an isomorphism.

Proof. For any w ∈ W, consider the Schubert variety

X−w := B−wB−/B− ⊂ G/B−.

For any w1,w2 ∈ W, consider the open embedding

iw1,w2
: X
◦◦

¯s ∩
(

X−w1
× X−w2

× {o}
)

֒→ X−w1
× X−w2

× {o}.

The complement

Yw1,w2
:=

(

X−w1
× X−w2

× {o}
)

\ Im(iw1,w2
)

has its irreducible components of the form

(X−w1
∩BuB−/B−)×X−w2

×{o} or X−w1
×(X−w2

∩BuB−/B−)×{o} for some ℓ(u) = 2.

But, by [Kum02, Lemma 7.3.10], each of these irreducible components

have codimension 2 in (the finite dimensional) X−w1
×X−w2

×{o}. Thus, by the

normality of X−w (cf. [Kum02, Theorem 8.2.2(b)], we see that the restriction

map

H0(X−w1
× X−w2

× {o},L)→ H0(X
◦◦

¯s ∩ (X−w1
× X−w2

× {o}),L)

is an isomorphism. Taking limits over w1,w2, we get the lemma. �

As observed earlier, X̃′ is irreducible and hence so is X̃¯s by the isomor-

phism (41) and X̃¯s ∩ X
◦◦

¯s is open in X̃¯s. It follows thus that the map

i∗6 : H0(X̃¯s,L)B −→ H0(X̃¯s ∩ X
◦◦

¯s,L)B

is injective.

We now prove that the maps η∗
2

and i∗
7

are isomorphisms.

Lemma 11. The map H0(X
◦◦

¯s,L) → H0(X
◦◦

¯s,L) induced from η2 is an iso-

morphism and hence so is η∗
2

.

Proof. It is easy to see that the map η2 is proper. Moreover, it is birational

by [Res17, Lemma 6.2]. In particular, it is surjective. If X
◦◦

¯s and X
◦◦

¯s are finite

dimensional, the lemma follows from Zariski’s main’s theorem (see, e.g.,

[Har77, Chap. III, Corollary 11.4]). The argument used to prove [Res17,

Lemma 6.3] allows us to prove that the above map H0(X
◦◦

¯s,L)→ H0(X
◦◦

¯s,L)

is an isomorphism. Indeed, the only specific assumption is that X
◦◦

¯s can be

written as a union of irreducible finite dimensional closed subsets (called

ind-irreducible in [Res17]). To prove this, since X
◦◦

¯s is an open subset of X¯s,

by the isomorphism (36), it suffices to show that X is ind-irreducible. Fur-

ther, since X = G · (P/P, C̄+) (see above Lemma 3), it suffices to show that
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Pw−1
i

o− and Pv−1o are ind-irreducible. But, as observed earlier in the proof

of Lemma 9 equality (37), Pw−1
i

o− = Bw−1
i

o−. So, it is ind-irreducible.

Similarly, Pv−1o = ∪vn∈WP
Xvnv−1 , where vn is an increasing cofinal sequence

in WP. This shows that Pv−1o is also ind-irreducible. Thus, X is ind-

irreducible. �

Lemma 12. The restriction map H0(X
◦◦

¯s,L)→ H0(X̃¯s ∩X
◦◦

¯s,L) is an isomor-

phism and hence so is i∗7.

Proof. As earlier, consider the action of U on XP
v :

θ : U −→ Aut(XP
v ).

Then, Im θ is a finite dimensional unipotent group Uv. As a consequence,

Ker θ is a normal subgroup of U of finite codimension.

Consider now the group

U1 = Ker θ ∩
⋂

α∈∆

sαUsα.

Then, U1 is again a normal subgroup of U of finite codimension (i.e., U/U1

is a finite dimensional group). There exists a closed subgroup U of U1 of

finite codimension such that U is normal in U, U2 := U × U acts freely

and properly on X
◦◦

¯s (under the action (u1, u2) · (x1, x2, o) = (u1x1, u2x2, o))

and the quotient map πX : X
◦◦

¯s −→ U
2\X

◦◦

¯s is a principal U2-bundle (cf.

[Kum17, Lemma 6.1]). Moreover, since η2 is proper (cf. Proof of Lemma

11),U2 acts freely and properly on X
◦◦

¯s.

Consider the action ofU2 on XP
v × X¯s given by

(42) (u1, u2).(y, g1o−, g2o−, o) = (y, u1g1o−, u2g2o−, o).

SinceU acts trivially on XP
v and y ∈ XP

v , the condition y ∈ uigiX
wi

P
is equiv-

alent to y ∈ giX
wi

P
. In particular, X¯s, X

◦◦

¯s and X̃¯s are all stable by the action of

U2. Moreover, η2 : X
◦◦

¯s → X
◦◦

¯s isU2-equivariant.

We consider the associated quotients:

X
◦◦

¯s X
◦◦

¯s X̃¯s ∩ X
◦◦

¯s

U2\X
◦◦

¯s U2\X
◦◦

¯s U2\
(

X̃¯s ∩ X
◦◦

¯s

)

.

η2

η̄2

πX πX

Let ΩX be an open subset of U2\X
◦◦

¯s such that the quotient πX is trivial

over ΩX. Set ΩX = η̄
−1
2 (ΩX). Choosing a section of πX over ΩX and taking
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the induced section of πX over ΩX , we get

(43) π−1
X (ΩX) ≃ U2 × ΩX and π−1

X (ΩX) ≃ U
2 × ΩX

such that η2 |π−1
X

(ΩX) under the above isomorphism is given by

η2(ũ, x) = (ũ, η̄2(x)), for ũ ∈ U2 and x ∈ ΩX.

Since L is G3-equivariant with G3 acting on X componentwise, we get

that L
|X
◦◦

¯s

and L
|X
◦◦

¯s

are U2-equivariant. Since U2 acts freely on X
◦◦

¯s (resp.

X
◦◦

¯s),L
|X
◦◦

¯s

(resp. L
|X
◦◦

¯s

) descends to a unique line bundle L̄ overU2\X
◦◦

¯s (resp.

U2\X
◦◦

¯s). Hence, under the decompositions (43),

(44) L|U2×ΩX
= OU2 ⊠ L̄|ΩX , and L|U2×ΩX

= OU2 ⊠ L̄|ΩX .

Now, the map

η̄2 : U2\X
◦◦

¯s →U
2\X

◦◦

¯s

is proper. To prove this, consider the projection

π2 : U2\(XP
v × X

◦◦

¯s) = XP
v × (U2\X

◦◦

¯s)→ U
2\X

◦◦

¯s

withU2 acting on XP
v ×X

◦◦

¯s as in (42). This is clearly a projective morphism.

Now,

η̄2 = (π2)
|U2\X

◦◦

¯s

.

Moreover,U2\X
◦◦

¯s is a closed subset ofU2\(XP
v ×X

◦◦

¯s) (as can easily be seen)

and hence η̄2 is a projective morphism.

Further, η̄2 is a birational map since so is η2 (cf. Proof of Lemma 11).

By the following lemma, η̄2

(

U2\(X
◦◦

¯s \ X̃¯s)
)

is of codimension ≥ 2 in

U2\X
◦◦

¯s. Moreover, U2\X
◦◦

¯s is normal (cf. [KS09, Proposition 3.2]). In

fact, it is smooth (cf. [Kum17, §10]). Thus, by Proposition 1, the restriction

map

(45) H0(ΩX, L̄)→ H0(Ω′X, L̄) is an isomorphism,

for any open subsetΩX ⊂ U
2\X

◦◦

¯s over which πX admits a section andΩX :=

η̄−1
2

(ΩX), whereΩ′
X

:= ΩX∩
(

U2\(X
◦◦

¯s ∩ X̃¯s)
)

. But, by the decomposition (44)

H0(π−1
X (ΩX),L) ≃ H0(U2 ×ΩX,OU2 ⊠ L̄)

= Inv.lt.n C[U2
n] ⊗ H0(ΩX, L̄),(46)

where {Un}n≥0 is a filtration ofU giving the ind-variety structure. Similarly,

(47) H0(π−1
X (Ω′X),L) = Inv.lt.n C[U2

n] ⊗ H0(Ω′X, L̄).

Combining the equations (45) - (47), we get that the restriction map

H0(π−1
X (ΩX),L)→ H0(π−1

X (Ω′X),L)
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is an isomorphism. Since {π−1
X

(ΩX)} provides an open cover of X
◦◦

¯s, we get

that the restriction map

H0(X
◦◦

¯s,L)→ H0(X̃¯s ∩ X
◦◦

¯s,L)

is an isomorphism. This proves the lemma modulo Lemma 13 below. �

5.5. Smallness of the boundary of X̃¯s. The goal of this subsection is to

prove the following lemma:

Lemma 13. With the notation as in the proof of Lemma 12, the image

η̄2

(

U2\(X
◦◦

¯s \ X̃¯s)
)

is of codimension ≥ 2 inU2\X
◦◦

¯s.

This lemma will be a consequence of the nontransversality Corollary 2,

which in turn is a consequence of Proposition 4.

Set, for i ∈ N := {0, 1, 2, . . . },

(48) (g/p)i := {ξ ∈ g/p : ad(xP) · ξ = −iξ}, where xP :=
∑

α j∈∆\∆(P)

x j

and

(49) (g/p)≤i :=
⊕

j≤i

(g/p) j.

Note that the (g/p)≤i’s form a P-stable filtration of g/p.
Let Z ⊂ G/P be a locally closed finite dimensional subvariety of G/P

and let z be a point of Z. Write z = gP/P. Set, for i ∈ N,

(50) di(z, Z) := dim
(

Tė(g
−1Z) ∩ (g/p)≤i

)

, where ġ := gP/P ∈ G/P.

This indeed does not depend on the choice of g such that z = gP/P.

Observe that d0(z, Z) = 0, dn(z, Z) = dim TzZ for n large enough, and that

i 7→ di(z, Z) is non-decreasing. Define, for any i ∈ N,

d̄i(z, Z) = di(z, Z) − di−1(z, Z),

where we declare d−1(z, Z) = 0. Thus, d̄m(z, Z) = 0, for m > n.

Similarly, let z ∈ Z ⊂ G/P, where Z has finite codimension. Write

z = gP/P. Set, for i ∈ N,

(51) di(z, Z) := dim

(

Tė(g
−1Z) + (g/p)≤i

Tė(g−1Z)

)

.

Again this does not depend on the choice of g such that z = gP/P. Ob-

serve that d0(z, Z) = 0, that dn(z, Z) is the codimension of TzZ for n large

enough, and that i 7→ di(z, Z) is non-decreasing.

Proposition 4. Let v ∈ WP and β be a positive real root such that w = sβv ∈

WP.
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(i) If ℓ(w) = ℓ(v) − 1, then

di(ẇ, X
P
v ) ≥ di(v̇, X

P
v ), ∀i ∈ N.

Moreover, if β is NOT a simple root,

dio(ẇ, X
P
v ) > dio(v̇, X

P
v ), for some io ∈ N.

(ii) If ℓ(w) = ℓ(v) + 1, then

di(ẇ, Xv
P) ≤ di(v̇, Xv

P), ∀i ∈ N.

Moreover, if β is NOT a simple root,

dio(ẇ, Xv
P) < dio(v̇, Xv

P), for some io ∈ N.

Proof. We first translate the first assertion in a combinatorial statement in

terms of roots. Given a T -vector space E, we denote by Φ(E) the set of

weights of T acting on E.

Let Φ+ (resp. Φ−) be the set of positive (resp. negative) roots. Since

Tė(v
−1XP

v ) is multiplicity free as a T -module, and Φ(Tė(v
−1XP

v )) = {θ ∈ Φ− :

vθ ∈ Φ+}, we have

(52) di(v̇, X
P
v ) = ♯{θ ∈ Φ− : vθ ∈ Φ+ and − θ(xP) ≤ i}, ∀i ≥ 1.

Consider the unique T -stable curve ˜l containing both v̇ and ẇ. Observe that

˜l is isomorphic to P1, Φ(Tv̇ ˜l) = {β}, Φ(Tẇ ˜l) = {−β} and ˜l is contained in XP
v .

Moreover, XP
w is contained in XP

v and

(53) TẇXP
v = TẇXP

w ⊕ Tẇ ˜l.

After translating by w−1, equality (53) implies that

Φ(Tė(w
−1XP

v )) = Φ(Tė(w
−1XP

w)) ∪ {−w−1β}.

It follows that

(54) di(ẇ, X
P
v ) = ♯{θ ∈ Φ− : wθ ∈ Φ+ and −θ(xP) ≤ i}+δ

(w−1β)(xP)

i
, ∀i ≥ 1,

where δm
i
= 1 if m ≤ i and 0 otherwise.

We deduce that the first assertion of the proposition is equivalent to ∀i ≥

1:

(55)
♯{θ ∈ Φ− : wθ ∈ Φ+ and − θ(xP) ≤ i} + δ

(w−1β)(xP)

i
≥

♯{θ ∈ Φ− : vθ ∈ Φ+ and − θ(xP) ≤ i},

and the existence of io with a strict inequality (55) if β is not simple.

We now translate the second assertion of the proposition in a combinato-

rial statement. First observe that, since v ∈ WP,

Φ(
Tė(G/P)

Tė(v−1Xv
P
)
) = {θ ∈ Φ− : vθ ∈ Φ+}.
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We deduce that

(56) di(v̇, Xv
P) = ♯{θ ∈ Φ− : vθ ∈ Φ+ and − θ(xP) ≤ i}, ∀i ≥ 1.

Now, since ℓ(w) = ℓ(v)+1, Xv
P
⊃ Xw

P
, ˜l is contained in Xv

P
, Φ(Tẇ ˜l) = {β} and

Φ(Tv̇ ˜l) = {−β}. Moreover, we have the following exact sequence

0 −→ Tẇ ˜l −→
Tẇ(G/P)

TẇXw
P

−→
Tẇ(G/P)

TẇXv
P

−→ 0.

After translation by w−1, we obtain that

Φ(
Tė(G/P)

Tė(w−1Xw
P

)
) = Φ(

Tė(G/P)

Tė(w−1Xv
P
)
) ⊔ {w−1β}.

This implies that

(57)

di(ẇ, Xv
P) = ♯{θ ∈ Φ− : wθ ∈ Φ+ and − θ(xP) ≤ i} − δ

−(w−1β)(xP)

i
, ∀i ≥ 1.

With (56) and (57), the second assertion of the proposition is equivalent to

∀i ≥ 1:

(58)
♯{θ ∈ Φ− : vθ ∈ Φ+ and − θ(xP) ≤ i} ≥

♯{θ ∈ Φ− : wθ ∈ Φ+ and − θ(xP) ≤ i} − δ
−(w−1β)(xP)

i
,

with a strict inequality for some io, if β is not simple.

Now, observe that given (v,w) such that w = sβv and ℓ(w) = ℓ(v)+ 1, one

gets (v′,w′) such that w′ = sβv
′ and ℓ(w′) = ℓ(v′) − 1 by setting w′ = v and

v′ = w. By (55) and (58), the first assertion for (v′,w′) implies the second

one for (v,w) (note that w′−1β = −w−1β). It is now sufficient to prove the

first assertion.

From now on, we assume that ℓ(w) = ℓ(v) − 1. Recall that we denote

v′ → v if v′ ∈ WP, ℓ(v′) = ℓ(v) − 1 and v′ ≤ v. Set

X̂P
v = X̊P

v ∪ ∪v′→vX̊P
v′ , where X̊P

v := BvP/P.

Then, X̂P
v is a smooth open subset of XP

v . Set

ŶP
v = π

−1(X̂P
v ),

where π : G −→ G/P is the natural projection. Define two vector bundles

over ŶP
v :

V := ∪g∈ŶP
v
{g} × Tė(g

−1XP
v ) −→ ŶP

v ,

and the trivial bundle

ǫi := ŶP
v ×

Tė(G/P)

(g/p)≤i

,
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for any fixed i ∈ N. The inclusion Tė(g
−1XP

v ) ⊂ Tė(G/P) induces a bundle

map

ϕi : V −→ ǫi.

On the open subset BvP, the rank of ϕi is constant since

Tė((bvp)−1XP
v ) = Tė(p−1v−1b−1XP

v ) = p−1Tė(v
−1XP

v ),

and (g/p)≤i is P-stable.

On the other hand, the subset of points in ŶP
v , where the rank of ϕi is

maximum is open. Hence, this rank is maximum at any point of BvP ⊂ ŶP
v ;

in particular, at v. This shows the inequalities of the first assertion of the

proposition.

Note that

ρ − v−1ρ = −
∑

θ∈Φ−∩w−1Φ+

θ.

Hence,

(ρ − v−1ρ)(xP) =
∑

θ∈Φ−∩v−1Φ+

−θ(xP).

But by the equation (52),

♯{θ ∈ Φ− : vθ ∈ Φ+ and − θ(xP) = i} = di(v̇, X
P
v ) − di−1(v̇, XP

v ), ∀i ≥ 1.

Hence,

(ρ − v−1ρ)(xP) =
∑

j≥1 jd̄ j(v̇, X
P
v )

= ℓ(v) +
∑

j≥2( j − 1)d̄ j(v̇, X
P
v ),

since, by the equation (52), dm = ℓ(v) for large enough m. Similarly,

(ρ − w−1ρ)(xP) = ℓ(w) +
∑

j≥2

( j − 1)d̄ j(ẇ, X
P
w).

Since ℓ(w) = ℓ(v) − 1, we get

(59) (ρ−w−1ρ− (ρ− v−1ρ))(xP) = −1+
∑

j≥2

( j−1)
(

d̄ j(ẇ, X
P
w) − d̄ j(v̇, X

P
v )

)

.

On the other hand, since w = sβv, we get

ρ − w−1ρ − (ρ − v−1ρ) = −w−1ρ + w−1sβρ

= w−1(sβρ − ρ)

= −〈ρ, β∨〉w−1β.(60)

Combining the equations (59) and (60), we get

1 +
∑

j≥2

( j − 1)
(

d̄ j(v̇, X
P
v ) − d̄ j(ẇ, X

P
w)

)

= 〈ρ, β∨〉(w−1β)(xP).
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But by the equation (52) (for v replaced by w) and the equation (54), we

have

di(ẇ, X
P
v ) = di(ẇ, X

P
w) + δ

(w−1β)(xP)

i
, ∀i ≥ 1

and hence

1 +
∑

j≥2, j,k

( j − 1)
(

d̄ j(v̇, X
P
v ) − d̄ j(ẇ, X

P
v )

)

+ (k − 1)
(

d̄k(v̇, X
P
v ) − d̄k(ẇ, X

P
v ) + 1

)

= 〈ρ, β∨〉(w−1β)(xP), where k := (w−1β)(xP).(61)

If possible, assume that

(62) d j(v̇, X
P
v ) = d j(ẇ, X

P
v ), ∀ j ≥ 1.

Equivalently,

d̄ j(v̇, X
P
v ) = d̄ j(ẇ, X

P
v ), ∀ j ≥ 1.

Then, the equation (61) implies that

k = 〈ρ, β∨〉k.

But, 〈ρ, β∨〉 ≥ 1. Hence,

〈ρ, β∨〉 = 1.

We deduce that β is simple if (62) holds. This ends the proof of the propo-

sition. �

Corollary 2. Let w1,w2, v ∈ WP be as in Theorem 4. In particular, ℓ(v) =

ℓ(w1) + ℓ(w2). Let x ∈ G/P and g, g1, g2 in G be such that x belongs to

gX̂P
v ∩ g1X̂

w1

P
∩ g2X̂

w2

P
, where X̂P

v is as defined in the proof of Proposition 4

and

X̂w
P := X̊w

P ∪ ∪w→w′ X̊
w′

P , where X̊w′

P := B−w′P/P.

We assume that, there exists a non-simple real root β such that one of the

following two conditions holds:

(i) ℓ(sβv) = ℓ(v) − 1, sβv ∈ WP and x ∈ gX̊P
sβv.

(ii) ℓ(sβw1) = ℓ(w1) + 1, sβv ∈ WP and x ∈ g1X̊
sβw1

P
.

Then, the intersection gX̂P
v ∩ g1X̂

w1

P
∩ g2X̂

w2

P
is not transverse at x.

Proof. It suffices to prove that the standard linear map

θ : Tx(gXP
v ) −→

Tx(G/P)

Tx(g1X
w1

P
)
⊕

Tx(G/P)

Tx(g2X
w2

P
)

is not an isomorphism. Write x = hP/P. Up to changing (g, g1, g2) by

(h−1g, h−1g1, h
−1g2), we may assume that h = e.

Observe that

θ
(

Tė(gXP
v ) ∩ (g/p)≤i

)

⊂
(Tė(g1X

w1

P
)) + (g/p)≤i

Tė(g1X
w1

P
)

⊕
(Tė(g2X

w2

P
)) + (g/p)≤i

Tė(g2X
w2

P
)
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Moreover, since ǫv
P

occurs with coefficient 1 (in particular, nonzero) in the

deformed product ǫw1

P
⊙0 ǫ

w2

P
by assumption, ∀i ∈ N,

dim
(

Tė(v
−1XP

v ) ∩ (g/p)≤i

)

= dim

(

Tė(w
−1
1

X
w1

P
) + (g/p)≤i

Tė(w
−1
1

X
w1

P
)

)

+dim

(

Tė(w
−1
2

X
w2

P
) + (g/p)≤i

Tė(w
−1
2

X
w2

P
)

)

(cf. [Res17, §7]). But, Proposition 4 implies that, for some io, the dimen-

sion of the first space is greater than that of the direct sum. Hence, the

restriction of θ to Tė(gXP
v ) ∩ (g/p)≤i can not be injective. Thus, θ can not be

an isomorphism. �

Lemma 14. Let f : Y −→ X be a dominant morphism between two quasi-

projective irreducible varieties of the same dimension. Let D ⊂ Y be an

irreducible proper closed subset.

Then, if f (D) has codimension one in X, then, for x ∈ D general, f −1( f (x))

is finite.

Proof. Otherwise, the general fibers of the restriction of f to f −1( f (D))

would have positive dimension. Since f (D) has codimension one, this im-

plies that dim( f −1( f (D))) = dim(Y) and hence f −1( f (D))) = Y . But, f is

assumed to be dominant. A contradiction. �

Proof of Lemma 13. For (w′
1
,w′

2
, v′) ∈ (WP)3, we set

X
◦◦

¯s(w
′
1,w

′
2, v
′) := {(x, g1o−, g2o

−
, o) ∈ XP

v′ × X
◦◦

¯s : x ∈ g1X
w′

1

P
∩ g2X

w′
2

P
}

and

X¯s(w
′
1,w

′
2, v
′) := {(x, g1o−, g2o

−
, o) ∈ XP

v′ × X¯s : x ∈ g1X
w′

1

P
∩ g2X

w′
2

P
}.

The set X
◦◦

¯s \ X̃¯s is the union of finitely many subsets of one of the following

types:

Type I. X
◦◦

¯s(w
′
1
,w′

2
, v′), where (w′

1
,w′

2
, v′) ∈ (WP)3, w′

1
≥ w1, w′

2
≥ w2, v′ ≤ v

and ℓ(w′
1
) + ℓ(w′

2
) − ℓ(v) ≥ 2.

Type II. X
◦◦

¯s(w1,w2, v
′), where v′ ∈ WP, v′ ≤ v, ℓ(v′) = ℓ(v) − 1 and v′v−1 is

not a simple reflection.

Type III. X
◦◦

¯s(w
′
1
,w2, v), where w′

1
∈ WP, w′

1
≥ w1, ℓ(w′

1
) = ℓ(w1) + 1 and

w′1w−1
1 is not a simple reflection.

Type IV. Like type III after exchanging w1 and w2.

It is sufficient to prove that the image by η̄2 of each one of these subsets

has codimension at least two inU2\X
◦◦

¯s.

Consider (w′1,w
′
2, v
′) as in type I. There exists (w′′1 ,w

′′
2 , v

′′) such that w′1 ≥

w′′
1
≥ w1, w′

2
≥ w′′

2
≥ w2, v′ ≤ v′′ ≤ v and ℓ(w′′

1
) + ℓ(w′′

2
) − ℓ(v′′) = 1. The

point (v̇′′, v′′(w′′1 )−1o−, v′′(w′′2 )−1o−) belongs to X¯s(w
′′
1 ,w

′′
2 , v

′′) and does not
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belong to X¯s(w
′
1
,w′

2
, v′). Hence, X¯s(w

′′
1
,w′′

2
, v′′) \ X¯s(w

′
1
,w′

2
, v′) is open and

nonempty in X¯s(w
′′
1
,w′′

2
, v′′).

To prove the lemma in this type, we can assume that X
◦◦

¯s(w
′
1
,w′

2
, v′) is

nonempty, then so is X
◦◦

¯s(w
′′
1 ,w

′′
2 , v

′′). Since X¯s(w
′′
1 ,w

′′
2 , v

′′) is irreducible

(cf. §5.1), we deduce that
(

X¯s(w
′′
1
,w′′

2
, v′′) \ X¯s(w

′
1
,w′

2
, v′)

)

∩ (G/P × X
◦◦

s) is

nonempty. Thus, we have a strict inclusion X
◦◦

¯s(w
′
1,w

′
2, v
′) ⊂ X

◦◦

¯s(w
′′
1 ,w

′′
2 , v

′′).

Similarly, we have the strict inclusion:

X
◦◦

¯s(w
′′
1 ,w

′′
2 , v

′′) ⊂ X
◦◦

¯s(w1,w2, v).

Combining the above two, we get the strict inclusions:

X
◦◦

¯s(w
′
1,w

′
2, v
′) ⊂ X

◦◦

¯s(w
′′
1 ,w

′′
2 , v

′′) ⊂ X
◦◦

¯s(w1,w2, v).

Since these varieties are irreducible andU2-stable, we deduce thatU2\X
◦◦

¯s(w
′
1,w

′
2, v
′)

is of codimension at least two in U2\X
◦◦

¯s. The lemma follows in this case

since dim(U2\X
◦◦

¯s) = dim(U2\X
◦◦

¯s) since η̄2 is a birational map (cf. Proof of

Lemma 12).

Let now (w1,w2, v
′) be as in type II. Assume, for contradiction, that

η̄2(U2\X
◦◦

¯s(w1,w2, v
′)) is a divisor. By lemma 14, there exists (g1, g2) ∈

G2 such that XP
v ∩ g1X

w1

P
∩ g2X

w2

P
is finite and there exists x ∈ XP

v′ such

that (x, g1o−, g2o−, o) ∈ X
◦◦

¯s(w1,w2, v
′). By Corollary 2, the intersection

XP
v ∩ g1X

w1

P
∩ g2X

w2

P
is not transverse at x. Hence, the multiplicity of x

in XP
v ∩ g1X

w1

P
∩ g2X

w2

P
is at least 2. Since this intersection is finite, this

implies that the coefficient of ǫv
P

in ǫw1

P
· ǫw2

P
: nv

w1,w2
≥ 2. A contradiction!

The last case III works similarly. �

5.6. Conclusion of proof of Theorem 4. Observe that X̃¯s ∩X
◦◦

¯s being open

in the irreducible X̃¯s, i∗
6

is injective. Combining the results from Subsections

5.2 - 5.4, we get that

i∗6 ◦ γ
∗ ◦ α∗ ◦ η∗ : H0(X,L)G → H0(X̃¯s ∩ X

◦◦

¯s,L)B is injective

and

i∗7 ◦ η
∗
2 ◦ i∗4 ◦ i∗1 : H0(X,L)G → H0(X̃¯s ∩ X

◦◦

¯s,L)B is an isomorphism.

From the commutative diagram (⋄) of Subsection 5.1, these two composite

maps are equal forcing α∗ to be an isomorphism. Thus, we get (from the

top horizontal line of the commutative diagram (⋄)) that the restriction map

H0(X,L)G → H0(C,L)L is an isomorphism.

This ends the proof of the theorem. �
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6. Proof of Theorem 3

6.1. The boundary coming from the weak Bruhat order. In this section,

P is still a standard parabolic subgroup (and not necessarily maximal). We

fix (w1,w2, v) ∈ (WP)3 such that ǫv
P

occurs with coefficient 1 in the deformed

product

ǫw1

P
⊙0 ǫ

w2

P
∈

(

H∗(XP,Z),⊙0

)

.

In particular, w1,w2 ≤ v. Recall the definition of ∆±(w) from Section 1 and

ofD from Section 5. We associate to any (α, i) ∈ D, a subvariety Eα,i using

formula (11):

Eα,1 = Esαw1 ,w2,v Eα,2 = Ew1 ,sαw2,v Eα,3 = Ew1,w2,sαv.

6.2. On the relative position of Eα,i and C.

Proposition 5. For any (α, i) ∈ D, the ind-variety

C := Lw−1
1 o− × Lw−1

2 o− × Lv−1o

is not contained in Eα,i.

To prove Proposition 5 we need the following lemma.

Lemma 15. Let x ∈ G/P and (g, g1, g2) ∈ G3 be such that the intersection

g1X̊
w1

P
∩ g2X̊

w2

P
∩ gX̊P

v

contains x and is transverse at this point. Such a choice is possible by

[Res17, Lemma 4.2]. Then,

g1X
w1

P
∩ g2X

w2

P
∩ gXP

v = {x}.

In fact, the lemma remains true if we replace X̊
wi

P
(for any i = 1, 2) by any

B−-stable open subset of X̊
wi

P
∪ ∪wi→w′

i
∈WP X̊

w′
i

P
and X̊P

v by any B-stable open

subset of X̊P
v ∪ ∪v′→v,v′∈WP X̊P

v′ .

Proof. The strategy of the proof is to reduce the problem to a finite dimen-

sional situation (by quotient), and then to apply Zariski’s main theorem.

Up to a translation, we may assume that g is trivial. Since G/B− =

∪w∈WwUo−, there exists, for i = 1, 2, ui ∈ W such that gio
− ∈ uiUo−.

Consider now

X̊¯s = {(y, h1o−, h2o−) ∈ XP
v × u1Uo− × u2Uo− : y ∈ h1X

w1

P
∩ h2X

w2

P
}

and its projection η to u1Uo− × u2Uo−.

Consider θ : U −→ Aut(XP
v ) obtained by the action as before. Fix

i ∈ {1, 2}. Then, Ker θ has finite codimension in U and U ∩ uiUu−1
i

has

finite codimension in uiUu−1
i

. It follows that there exists a closed normal

subgroupUi of uiUu−1
i

of finite codimension such that

Ui ⊂ uiUu−1
i ∩ Ker θ.
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Such aUi can be obtained as a closed subgroup of U with Lie algebra

LieUi = ⊕β∈Φ+,|β|>N gβ,

for large enough N (depending upon v and ui), where, for β =
∑

j n jα j, |β| :=
∑

n j.

The groupU1×U2 acts freely and properly on u1Uo−×u2Uo− (and hence

on X̊¯s). Moreover, η is (U1 ×U2)-equivariant. After quotient, one gets

η̄ : (U1 ×U2)\X̊¯s −→ (U1 ×U2)\(u1Uo− × u2Uo−).

Observe that Ui being closed subgroups of finite codimension in uiUu−1
i

and XP
v being finite dimensional, the domain and the range of η̄ are finite

dimensional varieties and range of η̄ is smooth and irreducible.

Since the coefficient of ǫP
v in ǫP

w1
· ǫP

w2
: nv

w1,w2
= 1, the general fiber of η is

one point (see [Res17, §4.2]). Further, as observed below the equation (36),

X¯s is irreducible and hence so is (U1 × U2)\X̊¯s. Since the base field is C,

this implies that η̄ is birational. Since XP
v is projective and X

w1

P
and X

w2

P
are

closed in G/P, it is easy to see that the map η̄ is proper. Now, we can apply

Zariski’s main theorem [Har77, Chap. III, Corollary 11.4] to conclude that

the fibers of η̄ are connected. But, by assumption, (g1o−, g2o−, x) is isolated

in the fiber η̄−1(g1o−, g2o−). Then, η̄−1(g1o−, g2o−) = {(g1o−, g2o−, x)}, that

is

g1X
w1

P
∩ g2X

w2

P
∩ XP

v = {x}.

This proves the first part of the lemma.

The proof for the ‘In fact’ statement in the lemma is identical. �

Proof of Proposition 5. Since ǫv
P

occurs with coefficient 1 in the deformed

product ǫw1

P
⊙0 ǫ

w2

P
, by the proof of [Res17, Lemma 7.5], there exist l1, l2, l3 ∈

L such that the intersection

(63) (l1w−1
1 X̊

w1

P
) ∩ (l2w−1

2 X̊
w2

P
) ∩ (l3v−1X̊P

v )

is transverse at P/P. Then, Lemma 15 implies that the intersection (l1w−1
1 X

w1

P
)∩

(l2w−1
2

X
w2

P
) ∩ (l3v−1XP

v ) is reduced to {P/P}. In particular, if w1 ≤ sαw1 and

sαw1 ∈ WP,

(64) (l1w−1
1 X

sαw1

P
) ∩ (l2w−1

2 X
w2

P
) ∩ (l3v−1XP

v ) = ∅.

Then,

(65) (l1w−1
1 o−, l2w−1

2 o−, l3v−1o) < G ·

(

Pw−1
1

sαo− × Pw−1
2

o− × Pv−1o

)

.

This proves that (l1w−1
1

o−, l2w−1
2

o−, l3v−1o) does not belong to Eα,1. The

proposition follows for (α, 1). The proof for (α, i) ∈ D for i = 2, 3 is

identical. �
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6.3. Line bundles and Eα,i. For (α, i) ∈ D, we now want to describe Eα,i

as vanishing locus of sections of line bundles. We consider three cases:

(i) Set

D1 := ∪i=1,2 {(α, i) ∈ D : sαwi ≤ v} ∪ {(α, 3) ∈ D : w1,w2 ≤ sαv}.

(ii) Set

D3 := {(α, 3) ∈ D : w1 � sαv and w2 � sαv},

(iii) andD2 = D− (D1 ∪D3).

6.3.1. The case of D1. By definition, for (α, i) ∈ D1, the corresponding

triple (sαw1,w2, v), (w1, sαw2, v) or (w1,w2, sαv) depending on i = 1, 2 or

3 satisfies condition (i) at the beginning of Subsection 4.3. The following

Lemma 16 allows us to obtain the two other conditions:

Lemma 16. (i) For (α, 1) ∈ D (resp. (α, 2) ∈ D), the triple (sαw1,w2, v)

(resp. (w1, sαw2, v)) satisfies the conditions (ii) and (iii) at the be-

ginning of Subsection 4.3.

(ii) For any (α, 3) ∈ D, the triple (w1,w2, sαv) satisfies the conditions

(ii) and (iii) at the beginning of Subsection 4.3.

Proof. We prove (i) for α ∈ ∆+(w1): The condition (ii) of Subsection 4.3 is

clearly satisfied. Further, by the proof of [Res17, Lemma 7.5], there exists

l1, l2, l3 ∈ L such that

l3Tv ∩ l1T
w1 ∩ l2T

w2 = (0),

where Tv := Tė(v
−1XP

v ) and T w := Tė(w
−1Xw

P
). Now, T w1 ⊃ T sαw1 , since

T w1 = ⊕β∈Φ+∩w−1
1
Φ+ g−β and T sαw1 = ⊕β∈Φ+∩w−1

1
sαΦ+
g−β,

where Φ+ is the set of positive roots of the Kac-Moody Lie algebra g. Thus,

l3Tv ∩ l1T
sαw1 ∩ l2T

w2 = (0).

This proves the condition (iii) of Subsection 4.3.

The proof of (i) for α ∈ ∆+(w2) and also the proof of (ii) are identical. �

Definition 1. For (α, i) ∈ D1, Proposition 3 and Lemma 16 give a line

bundleNα,i over X and a G-invariant section µα,i ofNα,i such that

(66) Z(µα,i) = Eα,i.

In the notation of Proposition 3,

Nα,1 := Lsαw1,w2,v and µα,1 := σsαw1,w2,v.
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6.3.2. The case ofD2 andD3. In these cases, Eα,i can be described in terms

of the divisors Fα, j (for j = 1, 2) defined in Section 4.1:

Lemma 17. (a) Let (α, i) ∈ D2 with i = 1 or 2. Then, Eα,i = Fα,i, where Fα,i

is defined by the equation (5).

(b) Let (α, 3) ∈ D2 and denote by j ∈ {1, 2} the only one with w j 
 sαv.

Then, Eα,3 = Fα, j.

(c) For (α, 3) ∈ D3, we have Eα,3 = Fα,1 ∩ Fα,2.

Proof. (a) Assume that i = 2. Recall from the equation (13):

X := {(y, g1o−, g2o−, go) ∈ G/P × X : y ∈ g1X
w1

P
∩ g2X

w2

P
∩ gXP

v },

for the triple (w1,w2, v). Consider its analogue for w2 replaced by sαw2:

X′ := X′α,2 := {(y, g1o−, g2o−, go) ∈ G/P × X : y ∈ g1X
w1

P
∩ g2X

sαw2

P
∩ gXP

v },

and X′α,i has a similar meaning, where we place sα in the i-th factor. Let

η : G/P × X −→ X be the projection. By Lemma 2, η(X′) = Eα,2 (cf. the

identity (12)) is closed in X and ind-irreducible. Define the open subset of

X :

X̊ := {(x1, x2, x) ∈ X : (x1, x) ∈ G.(o−, o)}.

Since (o−, sαo−, o) ∈ X̊∩ Fα,2 and Fα,2 is ind-irreducible (cf. §4.1), we have

(67) X̊ ∩ Fα,2 = Fα,2.

Since w1 ≤ v, the Richardson variety X
w1
v (P) := XP

v ∩X
w1

P
is nonempty. Take

x ∈ X
w1
v (P). There exists g ∈ G such that g−1x ∈ X

sαw2

P
. Then, (o−, go−, o)

belongs to X̊ ∩ η(X′). Since η(X′) is ind-irreducible, we deduce that

(68) X̊ ∩ η(X′) = η(X′).

By (67) and (68), it is sufficient to prove that

(69) X̊ ∩ η(X′) = X̊ ∩ Fα,2.

But G ×T G/B− −→ X̊, [g : x] 7−→ (go−, gx, go) is an isomorphism.

Consider the intersection of X with G/P × o− ×G/B− × o:

X¯s¯s = {(x, go−) ∈ Xw1
v (P) ×G/B− : x ∈ gX

w2

P
}

and

X′ ¯s¯s = {(x, go−) ∈ Xw1
v (P) ×G/B− : x ∈ gX

sαw2

P
}.

Since X is closed in G/P × X (see above Lemma 3), X¯s¯s and X′¯s¯s are closed

in X
w1
v (P) ×G/B−. Note that

(70) X ∩ (G/P × X̊) ≃ G ×T X¯s¯s, X
′ ∩ (G/P × X̊) ≃ G ×T X

′
¯s¯s
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under the maps

δ : [g : (x, ho−)] 7→ (gx, go−, gho−, go)

and X̊ ∩Fα,2 ≃ G×T Bsαo−. Thus, to prove (69), it is sufficient to prove that

(71) X̂¯s¯s = Bsαo−,

where X̂¯s¯s := {go− ∈ G/B− : X
w1
v (P) ∩ gX

sαw2

P
, ∅}. By Lemma 2, X̂¯s¯s is

closed in G/B−.

Since sαw2P/P < XP
v , the Richardson variety X

sαw2
v (P) is empty. Then,

for any b ∈ B, XP
v ∩bX

sαw2

P
= b(XP

v ∩X
sαw2

P
) is empty. Hence, X̂¯s¯s∩Bo− = ∅,

and, by the Birkhoff decomposition,

(72) X̂¯s¯s ⊂
⋃

β∈∆

Bsβo−.

Since sαw2 
 v, by [Kum02, Corollary 1.3.19] , sαw2 ≤ sαv and hence

vP/P ∈ sαX
sαw2

P
and thus X

w1
v (P) ∩ sαX

sαw2

P
is nonempty. This gives sαo− ∈

X̂¯s¯s. From the ind-irreducibility of X and X′, it is easy to see that X¯s¯s, X
′
¯s¯s

and X̂¯s¯s are ind-irreducible. Thus, we deduce from (72) that

(73) X̂¯s¯s ⊂ Bsαo−.

Consider (G/B−)◦ := sαUo−, which is a neighborhood of sαo− in G/B−.

By the ind-irreduciblity of X̂¯s¯s and Bsαo− , to prove the equality (71), it is

sufficient to prove that

(74) X̂¯s¯s ∩ (G/B−)◦ = Bsαo− ∩ (G/B−)◦.

LetU = Uα be the kernel of the action of sαUsα ∩ U on XP
v . Consider the

following commutative diagram:

(sαUsα ∩ U) × (sαUsα ∩ U−) sαUsα (G/B−)◦

(U\(sαUsα ∩ U)) × (sαUsα ∩ U−) U\(sαUsα) U\(G/B−)◦.

∼ ∼

∼ ∼

Set X̊¯s¯s := X¯s¯s∩(G/P×(G/B−)◦), X̊′¯s¯s := X′ ¯s¯s∩(G/P×(G/B−)◦) and
ˆ̊
X¯s¯s :=

X̂¯s¯s ∩ (G/B−)◦. All these spaces are nonempty. Consider the commutative

diagram of finite dimensional irreducible varieties:
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U\X̊¯s¯s U\(G/B−)◦

U\X̊′¯s¯s U\
ˆ̊
X¯s¯s,

ηU

η′
U

whereU acts on X̊¯s¯s and X̊′¯s¯s via its action on the (G/B−)◦-factor only.

Since ǫv
P

occurs in ǫw1

P
⊙0 ǫ

w2

P
with coefficient 1, there exist l1, l2 and l in L

such that (P/P, l1w−1
1

o−, l2w−1
2

o−, lv−1o) belongs to X̊+, where X̊+ is defined

above Lemma 3 and it corresponds to the triple (w1,w2, v) (cf. [Res17, Proof

of Lemma 7.5]).

Let

X¯s := X ∩ (G/P × o− ×G/B− ×G/B).

Then, X¯s is irreducible, which follows from the irreducibility of the open

subset X ∩ (G/P × (U · o−) ×G/B− ×G/B) of X. By Lemma 3, X̊+ ∩ X¯s is a

(nonempty) open subset of X¯s. Moreover, X ∩ (G/P × o− ×G/B− × U− · o)

is a nonempty (by the parabolic analogue of [BK14, Proposition 3.5]) open

subset of X¯s. Thus,

X̊+ ∩ (G/P × o− ×G/B− × U− · o) , ∅.

From this we see that X̊+∩ (G/P×o−×G/B−×o) is a nonempty open subset

of X¯s¯s (since U− · o− = o−). Further,

X̊¯s¯s := (G/P × o− × (G/B−)◦ × o) ∩ X¯s¯s

is a nonempty (again by the parabolic analogue of [BK14, Proposition 3.5])

open subset of X¯s¯s. Moreover, as observed above, X¯s¯s is irreducible. Hence,

X̊+ ∩ (G/P × o− × (G/B−)◦ × o) is a nonempty open subset of X̊¯s¯s. By the

parabolic analogue of [BK14, Proposition 3.5], ηU : U\X̊¯s¯s → U\(G/B−)◦

is surjective and, by Lemma 15, it is birational. In particular,

(75) dim
(

U\X̊¯s¯s
)

= dim
(

U\(G/B−)◦
)

.

Consider the set

X̃¯s¯s := {(x, g) ∈ Xw1
v (P) ×G : g−1x ∈ X

w2

P
}

and similarly X̃′ ¯s¯s. Define the morphism

p : X̃¯s¯s → X
w2

P
, (x, g) 7→ g−1x.

By definition,

p−1(Xsαw2

P
) = X̃′ ¯s¯s.
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Clearly, p is surjective. Consider the open subset of X
w2

P
:

ˆ̊
X

w2

P
:= X̊

w2

P
⊔ X̊

sαw2

P
.

Then, it is smooth (in the sense that there is a subgroup U−w2
of finite codi-

mension of U− acting properly and discontinuously on
ˆ̊
X

w2

P
such that U−w2

\
ˆ̊
X

w2

P

is a smooth variety of finite type over C, cf. [Kum17, Lemma 6.1]) and X̊
sαw2

P

is a closed smooth subset of codimension 1. In particular, X̊
sαw2

P
is a Cartier

divisor of ˆ̊
X

w2

P
. Thus, p−1(X̊sαw2

P
) is a Cartier divisor of p−1( ˆ̊

X
w2

P
). Let p̊ be

the restriction of the map p to the nonempty open subset of X̃¯s¯s:

˜̊
X¯s¯s := {(x, g) ∈ Xw1

v (P) × (sαU · B−) : g−1x ∈ X
w2

P
}.

Then, p̊ is a dominant morphism. Since X¯s¯s is irreducible and hence so is

X̃¯s¯s. Thus,

p−1( ˆ̊
X

w2

P
) ∩

˜̊
X¯s¯s , ∅.

Since p−1(X̊sαw2

P
) and

˜̊
X¯s¯s ∩ X̃

′
¯s¯s are both nonempty (since so is X̊′¯s¯s) open

subsets of irreducible X̃′¯s¯s, we get that their intersection is nonempty. In

particular,

p−1(X̊sαw2

P
) ∩

˜̊
X¯s¯s , ∅.

The map p̊ :
˜̊
X¯s¯s → X

w2

P
isU-invariant (with the trivial action ofU on X

w2

P
).

From this it is easy to see that

(76) dim
(

U\X̊′¯s¯s

)

= dim
(

U\X̊¯s¯s
)

− 1.

Since X
w2

P
is Pα-stable, for any l1, l2 and l in L such that (P/P, l1w−1

1
o−, l2w−1

2
o−, lv−1o)

belongs to X̊+, we get

(P/P, l1w−1
1 o−, l2w−1

2 sαo−, lv−1o) ∈
ˆ̊
X+ ∩ X′,

where

ˆ̊
X+ := {(y, g1o−, g2o−, g3o) ∈ G/P × X : y ∈ g1X̊

w1

P
∩ g2

ˆ̊
X

w2

P
∩ g3X̊P

v and

Ty(g1X̊
w1

P
) ∩ Ty(g2

ˆ̊
X

w2

P
) ∩ Ty(g3X̊P

v ) = (0)}.(77)

Then,
ˆ̊
X+ is open in X (cf. Lemma 3).

Consider the surjective morphism

η′N : U\X̊′¯s¯s →U\
ˆ̊
X¯s¯s.

We next prove that

(78) X̊
′
¯s¯s ∩

ˆ̊
X
+
, ∅ open subset of X̊′¯s¯s.
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As observed above,
ˆ̊
X+ ∩ X′ contains (in fact, is) a nonempty open subset

of X′. Moreover, X′ ∩ (G/P × X̊) is a nonempty open subset of X′ by (70)

since X′¯s¯s is nonempty. But, since X′ is irreducible, their intersection X′ ∩
(

ˆ̊
X+ ∩ (G/P × X̊)

)

, ∅. But, it is easy to see that under the isomorphism (as

in (70)) δ : G×T X
′
¯s¯s ≃ X

′ ∩ (G/P×X̊), X′ ∩
ˆ̊
X+∩ (G/P×X̊) corresponds to

G ×T

(

X′ ¯s¯s ∩
ˆ̊
X+

)

. In particular, X′ ¯s¯s ∩
ˆ̊
X+ is a nonempty open subset of X′¯s¯s.

Also, X̊′¯s¯s is a nonempty open subset of X′¯s¯s. Thus, X′¯s¯s being irreducible,

X̊′¯s¯s ∩
ˆ̊
X+ is nonempty proving (78).

Moreover, by Lemma 15, η′
N

is one to one restricted to X̊′¯s¯s ∩
ˆ̊
X+. Thus,

η′
N

is birational. In particular,

dim

(

U\
ˆ̊
X¯s¯s

)

= dim
(

U\X̊′¯s¯s

)

= dim
(

U\X̊¯s¯s
)

− 1, by (76)

= dim
(

U\(G/B−)◦
)

− 1, by (75)

= dim
(

U\
(

(Bsαo−) ∩ (G/B−)◦
))

.

Thus, from the inclusion (73), and the irreducibility ofU\
(

(Bsαo−) ∩ (G/B−)◦
)

,

we get (74).

This completes the proof of the lemma for (α, 2) ∈ D2.

The proof in the case (α, i) ∈ D2 for i = 1 is identical.

(b) Without loss of generality take j = 2. By Lemma 2, Eα,3 is closed and

ind-irreducible. Define the open subset of X :

X̊ := {(x1, x2, x) ∈ X : (x1, x) ∈ G.(o−, o)}.

Since (o−, sαo−, o) ∈ X̊∩ Fα,2 and Fα,2 is ind-irreducible (cf. §4.1), we have

(79) X̊ ∩ Fα,2 = Fα,2.

Since w1 ≤ sαv, the Richardson variety X
w1
sαv(P) := XP

sαv ∩ X
w1

P
is nonempty.

Take x ∈ X
w1
sαv(P). There exists g ∈ G such that g−1x ∈ X

w2

P
. Then,

(o−, go−, o) belongs to X̊ ∩ η(X′). Since η(X′) is ind-irreducible, we deduce

that

(80) X̊ ∩ η(X′) = η(X′).

By (79) and (80), it is sufficient to prove that

(81) X̊ ∩ η(X′) = X̊ ∩ Fα,2.
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But G ×T G/B− −→ X̊, [g : x] 7−→ (go−, gx, go) is an isomorphism.

Consider the intersection of X with G/P × o− ×G/B− × o:

X¯s¯s = {(x, go−) ∈ Xw1
v (P) ×G/B− : x ∈ gX

w2

P
}

and its closed subset

X
′
¯s¯s = {(x, go−) ∈ Xw1

sαv(P) ×G/B− : x ∈ gX
w2

P
}.

Since X is closed in G/P × X (see above Lemma 3), X¯s¯s and X′¯s¯s are closed

in X
w1
v (P) ×G/B−. Note that

(82) X ∩ (G/P × X̊) ≃ G ×T X¯s¯s, X
′ ∩ (G/P × X̊) ≃ G ×T X

′
¯s¯s

under the maps

δ : [g : (x, ho−)] 7→ (gx, go−, gho−, go)

and X̊ ∩Fα,2 ≃ G×T Bsαo−. Thus, to prove (81), it is sufficient to prove that

(83) X̂¯s¯s = Bsαo−,

where X̂¯s¯s := {go− ∈ G/B− : X
w1
sαv(P) ∩ gX

w2

P
, ∅}. By Lemma 2, X̂¯s¯s is

closed in G/B−.

Since w2P/P < XP
sαv, the Richardson variety X

w2
sαv(P) is empty. Then, for

any b ∈ B, XP
sαv ∩ bX

w2

P
= b(XP

sαv ∩ X
w2

P
) is empty. Hence, X̂¯s¯s ∩ Bo− = ∅,

and, by the Birkhoff decomposition,

(84) X̂¯s¯s ⊂
⋃

β∈∆

Bsβo−.

Since w2 ≤ v and w1 ≤ sαv, we have sαvP/P ∈ sαX
w2

P
and thus X

w1
sαv(P) ∩

sαX
w2

P
is nonempty. This gives sαo− ∈ X̂¯s¯s. From the ind-irreducibility of X

and X′, it is easy to see that X¯s¯s, X
′
¯s¯s and X̂¯s¯s are ind-irreducible. Thus, we

deduce from (84) the inclusion (73).

Now, follow the exact same argument as in the proof of the (a)-part till

the identity (75).

Define the surjective projection

p : X¯s¯s → Xw1
v (P), (x, go−) 7→ x.

By definition,

p−1(Xw1
sαv(P)) = X′ ¯s¯s.

Consider the smooth open subset of X
w1
v (P):

ˆ̊
Xw1

v (P) := X̊
w1

P
∩

ˆ̊
XP

v , where ˆ̊
XP

v := X̊P
v ∪ X̊P

sαv

and its closed smooth subset of codimension 1:

X̊w1
sαv(P) := X̊

w1

P
∩ X̊P

sαv
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In particular, X̊
w1
sαv(P) is a Cartier divisor of ˆ̊

X
w1
v (P). Thus, p−1(X̊w1

sαv(P)) is a

Cartier divisor of p−1( ˆ̊
X

w1
v (P)). Let p̊ be the restriction of the map p to the

nonempty open subset X̊¯s¯s: Then, p̊ is a dominant morphism. Since X¯s¯s is

irreducible,

p−1(
ˆ̊
Xw1

v (P)) ∩ X̊¯s¯s , ∅.

Since p−1(X̊w1
sαv(P)) and X̊′¯s¯s are both nonempty open subsets of irreducible

X′¯s¯s, we get that their intersection is nonempty. In particular,

p−1(X̊w1
sαv(P)) ∩ X̊¯s¯s , ∅.

The map p̊ : X̊¯s¯s → X
w1
v (P) is U-invariant (with the trivial action of U on

X
w1
v (P)). From this it is easy to see that

(85) dim
(

U\X̊′¯s¯s

)

= dim
(

U\X̊¯s¯s
)

− 1.

Since XP
v is Pα-stable, for any l1, l2 and l in L such that (P/P, l1w−1

1
o−, l2w−1

2
o−, lv−1o)

belongs to X̊+, we get

(P/P, l1w−1
1 o−, l2w−1

2 o−, lv−1sαo) ∈ X′ ∩
ˆ̊
X+,

where

ˆ̊
X+ := {(y, g1o−, g2o−, g3o) ∈ G/P × X : y ∈ g1X̊

w1

P
∩ g2X̊

w2

P
∩ g3

ˆ̊
XP

v and

Ty(g1X̊
w1

P
) ∩ Ty(g2X̊

w2

P
) ∩ Ty(g3

ˆ̊
XP

v ) = (0)}.

Then,
ˆ̊
X+ is open in X (cf. Lemma 3).

Now, follow the exact same argument starting ‘Consider the surjective

morphism · · · ’ till the end of the proof in the (a)-part.

This completes the proof of the (b)-part.

(c) By Lemma 2, Eα,3 is closed and ind-irreducible. Define the subset of

X :

X̊ := {(x1, x2, x) ∈ X : (x1, x) ∈ G.(sαo−, o)}.

Let F := Fα,1∩Fα,2. Since F = G.(Bsαo−×Bsαo−×{o}), it is ind-irreducible.

But (sαo−, sαo−, o) ∈ X̊ ∩ F thus we have

(86) X̊ ∩ F = F, since X̊ ∩ F contains an open subset of F.

Since sαw1 ≤ sαv, the variety Y(w1; sαv) := XP
sαv ∩ sαX

w1

P
is nonempty.

Take x ∈ Y(w1; sαv). There exists g ∈ G such that g−1x ∈ X
w2

P
. Then,

(sαo−, go−, o) belongs to X̊∩η(X′). Since η(X′) is ind-irreducible, we deduce

that

(87) X̊ ∩ η(X′) = η(X′),
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since X̊ ∩ η(X′) contains an open subset of η(X′) as can be seen since
(

Bsαo− × Bsαo− × o
)

∩ η(X′) is nonempty. By (86) and (87), it is sufficient

to prove that

(88) X̊ ∩ η(X′) = X̊ ∩ F.

But G ×Bα G/B− −→ X̊, [g : x] 7−→ (gsαo−, gx, go) is an isomorphism,

where Bα is the subgroup of B generated by T and the one dimensional root

subgroup Gα. Consider the intersection of X with G/P × sαo− ×G/B− × o:

X¯s¯s = {(x, go−) ∈ Y(w1; v) ×G/B− : x ∈ gX
w2

P
},

where Y(w1; v) := XP
v ∩ sαX

w1

P
= sα(XP

v ∩ X
w1

P
), and its closed subset

X′ ¯s¯s = {(x, go−) ∈ Y(w1; sαv) ×G/B− : x ∈ gX
w2

P
}.

Since X is closed in G/P × X (see above Lemma 3), X¯s¯s and X′¯s¯s are closed

in Y(w1; v) ×G/B−. Note that

(89) X ∩ (G/P × X̊) ≃ G ×Bα X¯s¯s, X
′ ∩ (G/P × X̊) ≃ G ×Bα X

′
¯s¯s

under the maps

δ : [g : (x, ho−)] 7→ (gx, gsαo−, gho−, go)

and X̊ ∩ F ≃ G ×Bα Bsαo−. Thus, to prove (88), it is sufficient to prove that

(90) X̂¯s¯s = Bsαo−,

where X̂¯s¯s := {go− ∈ G/B− : Y(w1; sαv) ∩ gX
w2

P
, ∅}. By the proof of

Lemma 2, X̂¯s¯s is closed in G/B−.

Since w2P/P < XP
sαv, the Richardson variety X

w2
sαv(P) is empty. Then, for

any b ∈ B, XP
sαv ∩ bX

w2

P
= b(XP

sαv ∩ X
w2

P
) is empty. Hence, X̂¯s¯s ∩ Bo− = ∅,

and, by the Birkhoff decomposition,

(91) X̂¯s¯s ⊂
⋃

β∈∆

Bsβo−.

Since w1,w2 ≤ v, we get sαo− ∈ X̂¯s¯s. From the ind-irreducibility of X′,

it is easy to see that X′¯s¯s and X̂¯s¯s are ind-irreducible. Moreover, X¯s¯s is ind-

irreducible since X¯s¯s ≃ X∩
(

G/P × o− ×G/B− × o
)

and the latter was proved

to be ind-irreducible earlier. Thus, we deduce from (91) the equation (73).

Now, follow the exact same argument as in the proof of the (a)-part till ‘

and it corresponds to the triple (w1,w2, v) (cf. [Res17, Proof of Lemma 7.5]).’

Let

X¯s := X ∩ (G/P × sαo− ×G/B− ×G/B).
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Then, X¯s is irreducible, which follows from the irreducibility of the open

subset X ∩ (G/P × (U · o−) ×G/B− ×G/B) of X. By Lemma 3,
ˆ̊
X+ ∩ X¯s is a

(nonempty) open subset of X¯s, where
ˆ̊
X+ is defined as follows:

ˆ̊
X+ := {(y, g1o−, g2o−, g3o) ∈ G/P × X : y ∈ g1X̊

w1

P
∩ g2X̊

w2

P
∩ g3

ˆ̊
XP

v and

Ty(g1X̊
w1

P
) ∩ Ty(g2X̊

w2

P
) ∩ Ty(g3

ˆ̊
XP

v ) = (0)}.

Moreover, X∩ (G/P× sαo−×G/B−×U− ·o) is a nonempty (by the parabolic

analogue of [BK14, Proposition 3.5]) open subset of X¯s. Thus,

ˆ̊
X+ ∩ (G/P × sαo− ×G/B− × U− · o) , ∅.

From this we see that
ˆ̊
X+ ∩ (G/P × sαo− × G/B− × o) is a nonempty open

subset of X¯s¯s (since ˆ̊
XP

v is stable under the left multiplication by sα). Further,

X̊¯s¯s := (G/P × sαo− × (G/B−)◦ × o) ∩ X¯s¯s

is a nonempty (again by the parabolic analogue of [BK14, Proposition 3.5])

open subset of X¯s¯s. Moreover, as observed above, X¯s¯s is irreducible. Hence,
ˆ̊
X+ ∩ (G/P × sαo− × (G/B−)◦ × o) is a nonempty open subset of X̊¯s¯s. By the

parabolic analogue of [BK14, Proposition 3.5], ηU : U\X̊¯s¯s → U\(G/B−)◦

is surjective and, by Lemma 15, it is birational. In particular,

(92) dim
(

U\X̊¯s¯s
)

= dim
(

U\(G/B−)◦
)

.

Define the surjective projection

p : X¯s¯s → Y(w1; v), (x, go−) 7→ x.

By definition,

p−1(Y(w1; sαv)) = X′ ¯s¯s.

Consider the smooth open subset of Y(w1; v):

ˆ̊
Y(w1; v) := (sαX̊

w1

P
) ∩ ˆ̊

XP
v

and its closed subset of codimension 1:

Y̊(w1; sαv) := (sαX̊
w1

P
) ∩ X̊P

sαv.

In particular, Y̊(w1; sαv) is a Cartier divisor of ˆ̊
Y(w1; v). Thus, p−1(Y̊(w1; sαv))

is a Cartier divisor of p−1( ˆ̊
Y(w1; v)). Let p̊ be the restriction of the map p to

the nonempty open subset X̊¯s¯s: Then, p̊ is a dominant morphism. Since X¯s¯s
is irreducible,

p−1(
ˆ̊
Y(w1; v)) ∩ X̊¯s¯s , ∅.
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Since p−1(Y̊(w1; sαv)) and X̊′¯s¯s are both nonempty open subsets of irreducible

X′¯s¯s, we get that their intersection is nonempty. In particular,

p−1(Y̊(w1; sαv)) ∩ X̊¯s¯s , ∅.

The map p̊ : X̊¯s¯s → Y(w1; v) isU-invariant (with the trivial action ofU on

Y(w1; v)). From this it is easy to see that

(93) dim
(

U\X̊′¯s¯s

)

= dim
(

U\X̊¯s¯s
)

− 1.

Since XP
v is Pα-stable, for any l1, l2 and l in L such that (P/P, l1w−1

1
o−, l2w−1

2
o−, lv−1o)

belongs to X̊+, we get

(P/P, l1w−1
1 o−, l2w−1

2 o−, lv−1sαo) ∈ X′ ∩
ˆ̊
X+.

Now, follow the exact same argument as in the proof of the (a)-part starting

from ‘Consider the surjective morphism · · · ’ till the end of the proof of the

(a)-part, replacing G×T by G×Bα , we get the first part of the (c)-part.

The ‘In particular’ part of the (c)-part follows from the proof of Proposi-

tion 5 (specifically the equation (65)). �

Definition 2. For i = 1, 2 and (α, i) ∈ D2, take (cf. Lemma 1)

Nα,i :=Mα,i and µα,i := σα,i.

By Lemmas 1 and 17, we have

(94) Z(µα,i) = Eα,i = Fα,i.

For (α, 3) ∈ D2 and j ∈ {1, 2} such that w j 
 sαv, take

Nα,3 :=Mα, j and µα,3 := σα, j.

By Lemmas 1 and 17, we have

(95) Z(µα,3) = Eα,3 = Fα, j.

Let (α, 3) ∈ D3. By Proposition 5 and Lemma 17, there exists j such that

C is not contained in Fα, j. With notation of Lemma 1, we set

Nα,3 :=Mα, j and µα,3 := σα, j.

Then,

(96) Z(µα,3) = Fα, j ⊃ Eα,3.
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6.4. The line bundlesNα,i. The goal of this subsection is to prove thatNα,i

belongs to the face considered in Theorem 3:

Proposition 6. For any (α, i) ∈ D, the center Z(L) of L acts trivially on the

restriction ofNα,i to C.

In fact, for any L-equivariant line bundle L over C with H0(C,L)L
, 0,

Z(L) acts trivialy on L. In particular, if we write Nα,i = L
−(λ1) ⊗ L−(λ2) ⊗

L(µ), then for all α j < ∆(P),

(I
j

(w1 ,w2,v)
) λ1(w1x j) + λ2(w2x j) − µ(vx j) = 0

Proof. Consider the G-invariant section µα,i of Nα,i. If (α, i) ∈ D1 ∪ D2,

then by the equations (66), (95) and (94), Z(µα,i = Eα,i. Then Proposition 5

implies that µα,i restricts to a nonzero L-invariant section on C. If (α, i) ∈ D3

(and hence i = 3), then by the equations (96), Z(µα,i = Fα, j. But Fα, j was

chosen not to contain C. Thus µα,i restricts to a nonzero L-invariant section

on C.

Since Z(L) acts trivially on C, it acts by a character on any line bundle

over C. The existence of the nonzero Z(L)-invariant section implies that this

character is trivial for the restriction of Nα,i.

Write Nα,i = L
−(λ1) ⊗ L−(λ2) ⊗ L(µ) and fix α j < ∆(P). There exists

d > 0, such that dx j is the differential at 1 of a one parameter subgroup of

Z(L). This one parameter subgroup acts with weight λ1(w1x j), λ2(w2x j) and

−µ(vx j) on the fiber over w−1
1

o−, w−1
2

o− and v−1o inL−(λ1),L−(λ2) andL(ν)

respectively. Thus, the equality I
j

(w1 ,w2,v)
follows proving Proposition 6. �

6.5. The line bundles Nα,i and the lines ˜lβ, j. Recall the definition of the

line ˜lβ, j from §1. We now study the restriction of the line bundleNα,i to the

lines ˜lβ, j. This will be used to apply Theorem 4.

Lemma 18. Let (α, i) ∈ D and (β, j) ∈ D be two distinct elements. Then,

(i) the degree of the restriction of Nα,i to ˜lα,i is positive.

(ii) the degree of the restriction of Nα,i to ˜lβ, j is nonnegative.

Proof. Take (α, 1) ∈ D. Then, as in Section 1,

˜lα,1 = (w−1
1 P−αo−,w−1

2 o−, v−1o).

Since the line bundle Nα,i has the form L−(λ1) ⊠ L−(λ2) ⊠ L(µ) for some

(λ1, λ2, µ) ∈ P3
+

(cf. Proposition 3 and Lemma 1),

Nα,1 |˜lα,1
≃ L−(λ1)|w−1

1
P−αo− ,

which is of degree

(w−1
1 λ1)(w−1

1 α
∨) = λ1(α∨) ≥ 0.
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Assume, if possible, that λ1(α∨) = 0. Then, the zero set Z(µα,1) would be of

the form π−1
α (S ) for some S ⊂ G/P−α ×G/B− ×G/B, where

πα : G/B− ×G/B− ×G/B→ G/P−α ×G/B− ×G/B

is the projection.

Then, by equations (66), (95) and (94),

Z(µα,1) = Eα,1 = G · C̄+sαw1,w2,v
,

and hence we would have

Z(µα,1) ⊃ G · C̄+w1 ,w2,v
= X,

where the last equality follows from [BK14, Proposition 3.5] since ǫv
P

occurs

with nonzero coefficient in ǫw1

P
· ǫw2

P
. This contradicts the nonvanishing of

µα,1. Thus, λ1(α∨) > 0, proving (i) for (α, 1) ∈ D. The same proof works

for any (α, i) ∈ D to prove (i). The sole difference is that if (α, i) ∈ D3,

equation (96) gives only the inclusion

Z(µα,3) ⊃ G · C̄+w1 ,w2,sαv,

which is sufficient to get a contradiction.

To prove (ii), we still take (α, 1) ∈ D and (β, j) ∈ D for j = 1, 2. Then,

Nα,1|˜lβ, j
≃ L−(λ j)|w−1

j
P−βo− ,

which is of degree

(w−1
j λ j)(w

−1
j β
∨) = λ j(β

∨) ≥ 0.

For (β, 3) ∈ D,

Nα,1|˜lβ,3
≃ L(µ)|v−1Pβo,

which is of degree

(v−1µ)(v−1β∨) = µ(β∨) ≥ 0.

This proves (ii) for (α, 1) ∈ D. The same proof gives (ii) for any (α, i) ∈
D. �

6.6. Conclusion of Proof of Theorem 3. Let w1,w2, v ∈ WP be as in The-

orem 3, i.e., ǫv
P

occurs with coefficient 1 in the deformed product ǫw1

P
⊙0 ǫ

w2

P
.

Set d = 2 dim h + ♯∆(P). Let F = F P
w1,w2,v

be the convex cone gen-

erated by the weights (λ1, λ2, µ) as in Theorem 3. Since the linear forms

{I
j

(w1,w2,v)
}α j∈∆\∆(P) restricted to Eg (cf. Proposition 2) defining F are linearly

independent, the dimension of F is at most d.

We now have to produce ‘enough’ points in F . To do this we consider

the restriction map PicG3

(X) −→ PicL3

(C) and we apply Theorem 4 to suffi-

ciently many line bundles L such that H0(C,L|C)L
, {0}.
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Observe that, for any w ∈ WP, the map

L/B−L → Lw−1o− ⊂ G/B−, lB−L 7→ lw−1o− is an isomorphism

and also the map

L/BL → Lw−1o ⊂ G/B, lBL 7→ lw−1o is an isomorphism,

where BL := B ∩ L is the standard Borel subgroup of L and B−
L

:= B− ∩ L

is the standard opposite Borel subgroup of L. (To prove the above two

isomorphisms, use the fact that w∆P ⊂ Φ
+.) Thus, the restriction map

PicG3

(X) ≃ (h∗
Z

)3 −→ PicL3

(C) ≃ (h∗
Z

)3 is an isomorphism. Let l denote

the Lie algebra of L.

Lemma 19. There exist L1, . . . ,Ld ∈ PicG3

(X) such that

(i) L1, . . . ,Ld ∈ PicG3

(X) ⊗ Q are linearly independant;

(ii) The restriction of each Li to C belongs to Γ(l).

Proof. By Proposition 2, Γ(l) has dimension d. Hence, Γ(l) ⊂ PicL3

(C)

contains d linearly independent elements. Then, the lemma follows from

the isomorphism PicG3

(X) ≃ PicL3

(C). �

Proof of Theorem 3: Up to taking tensor powers, we may assume that the re-

striction of Li to C admits a nonzero L-invariant section σi. By Lemma 18,

there exists (aα,i)(α,i)∈D ∈ ND such that N :=
∑

(α,i)∈D aα,iNα,i satisfies:

Lk ⊗N is nonnegative for all k when restricted to any ˜lβ, j for (β, j) ∈ D.

Moreover, up to changingN by 2N if necessary, we may assume that L1 ⊗

N , . . . ,Ld ⊗N ∈ PicG3

(X) ⊗ Q are linearly independant.

By Proposition 5, N has a G-invariant section σN that does not vanish

identically on C. Then,

σ̃i ∈ H0(C,Li ⊗N)L − {0}, where σ̃i := (σi ⊗ σN )|C .

Moreover, since σ̃i is not identically zero on C, by Proposition 6, each

Li ⊗N satisfies the identity I
j

(w1 ,w2,v)
of Theorem 3 for all α j ∈ ∆ \ ∆(P).

By Theorem 4, each σ̃i can be extended to a G-invariant section σ̃i of

Li ⊗ N . In particular, Li ⊗ N belongs to Γ(g). Thus, the dimension of F is

at least d and hence it is exactly d. This proves the theorem.
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