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Review Article 

Beyond the hype surrounding biofuel cells: What’s the 

future of enzymatic fuel cells? 

Serge Cosnier ∗, Andrew J. Gross , Fabien Giroud and Q1 

Michael Holzinger 

After a short comparison of biofuel cells based on enzymes 1 

and microorganisms, several important developments and 2 

applications of enzymatic fuel cells (EFCs) are discussed. This 3 

discussion emphasizes how to evaluate the performance of 4 

EFCs, and highlights the influence of temperature and how it 5 

must be carefully considered for practical use of EFCs as 6 

power sources. Some of the latest and most important 7 

innovations in EFC design using buckypapers and redox 8 

nanoparticles are briefly reviewed. 9 
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Introduction 15 

The development of sustainable and renewable energy 16 

sources with greater respect for the environment is a cru- 17 

cial challenge for the 21st century. Among various alterna- 18 

tive energy sources, fuel cells have generated great inter- 19 

est for the production of clean electrical energy. Fuel cells 20 

generate power through electrochemical reactions via the 21 

oxidation of fuels such as hydrogen and alcohols at the an- 22 

ode, and the reduction of oxidants, typically oxygen, at the 23 

cathode. Fuel cells will produce electricity with heat and 24 

water as by-products providing that fuel and oxidant are 25 

available. Enzymatic fuel cells (EFCs) and microbial fuel 26 

cells (MFCs) are sub-categories of fuel cells that share 27 

similar operational principles for energy production [1,2] . 28 

However, biological fuel cells are not intended to over- 29 

come the depletion of fossil fuels and enter the category 30 

of renewable energy resources such as hydroelectric, solar, 31 

and wind energy. The scope of applications for EFCs and 32 

MFCs is restricted, at least for now, to electricity genera- 33 

tion for powering microelectronic systems such as actua- 34 

tors and sensors [3,4,5 

••,6 

•] and for use in environmental 35 

remediation and sanitation systems [7 

•,8] . 36 

Enzymatic and microbial biofuel cells differ vastly in 37 

terms of their volumetric size (cm 

3 to m 

3 ), power density 38 

output (μW to mW) and their targeted applications (small- 39 

to large-scale). Another important consideration lies in the 40 

cost of the biocatalyst, which ranges from low-cost bac- 41 

teria or yeast cells, for MFCs, to the higher cost of puri- 42 

fied wild-type and engineered enzymes for EFCs. MFCs 43 

have been successfully employed as long-term power- 44 

generating systems, for example, for self-powered sen- 45 

sors placed in "hostile" environments or remote locations 46 

[9] . Although MFCs have successfully powered different 47 

generations of robots, this approach remains at the aca- 48 

demic level because of limitations such as the large vol- 49 

ume of MFCs required and their long amortization cost 50 

[8] . Nevertheless, MFCs constitute an original and eco- 51 

friendly system for producing electrical energy, e.g. from 52 

waste, and have become an attractive bioreactor concept 53 

for purification of wastewaters. EFCs on the other hand, 54 

because of their superior power density and compactness, 55 

are better suited to miniaturization and use as portable 56 

power sources for wearable and implantable electronics 57 

devices. EFCs appear to carry greater promise as battery- 58 

free power solutions, but it is necessary to define if this is 59 

a simple scientific curiosity or if their potentialities really 60 

do have conceivable real-world applications. This opin- 61 

ion article attempts to shed light on some hitherto ne- 62 

glected facets of EFCs, to briefly revisit their possible 63 

applications, and to reveal new insights concerning fu- 64 

ture directions. It is emphasized that this review does 65 

not cover all of the exciting facets and developments in 66 

EFC research. Recent reviews are available for further 67 

information on important topics such as the evolution of 68 

bioinspired strategies for the electrical wiring of enzymes 69 

and the development of high surface area bioelectrodes 70 

[10,11] . Notable innovations on high surface area elec- 71 

trodes include the hierarchically porous MgO-templated 72 

carbon and carbon nanotube (CNT) yarn textile elec- 73 

trodes [12 

•,13] . 74 
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At the very beginning, EFCs were developed to gener- 75 

ate electrical energy mainly through the oxidation of sac- 76 

charides at the anode coupled with the red]uction of oxy- 77 

gen at the cathode [4,14] . In addition to glucose, which 78 

is by far the most exploited fuel at the anode, other fuels 
Q2 

79 

that have been explored include fructose, pyruvate, hy- 80 

drogen, lactate, methanol and ethanol [3,4,6] . Since glu- 81 

cose is an essential and relatively abundant source of en- 82 

ergy in living organisms, special attention has been given 83 

to the development of implantable EFCs for powering 84 

implanted medical devices from physiological fluids [15] . 85 

In parallel, EFCs are considered for powering portable 86 

electronic devices such as mobile phones, sensors, digi- 87 

tal music players, laptops, and GPS systems. A fascinating 88 

flagship application, proposed by many authors for more 89 

than a decade, is the use of EFCs as a lifetime power sup- 90 

ply for cardiac pacemakers. However, despite all of the 91 

promises, there are many hurdles and roadblocks to over- 92 

come. It is now time to recognize that the pacemaker ap- 93 

plication is unrealistic. Besides sterilization and biocom- 94 

patibility problems, the major issue with implanted EFCs 95 

is their operational stability that ranges from a few hours 96 

to one year compared to 5 –8 years for sealed batteries [16] . 97 

A recent and promising generation of biofuel cells con- 98 

cerns H 2 /O 2 EFCs [17 

•,18 

••] . The adsorption, entrap- 99 

ment and chemical immobilization of NiFe and FeFe hy- 100 

drogenases, and their “electrical wiring”, is at the origin 101 

of bioanodes for electrocatalytic interconversion of pro- 102 

tons and hydrogen [19–23] . Hydrogenases entrapped in 103 

redox polymers are particularly active for bioelectrocat- 104 

alytic hydrogen oxidation [24 

•,25,26] . Recent hydroge- 105 

nase electrodes exhibit characteristics that are compet- 106 

itive to those of Pt-based electrodes such as long-term 107 

stability, mW power densities, insensitivity to fuel impu- 108 

rities such as CO and sulfides, and tolerance to O 2 . EFCs 109 

with hydrogenase bioanodes thus show great promise as 110 

noble metal-free hydrogen fuel cells [27–31] . Compared 111 

with glucose EFCs, a major advantage of hydrogen EFCs 112 

lies in the size of the fuel. Hydrogen is markedly smaller 113 

than glucose or various redox mediators used for electrical 114 

enzyme wiring. The small size can thus be exploited, via 115 

careful electrode design with permselective membranes, 116 

to prevent the leakage of redox mediators whilst allow- 117 

ing H 2 to efficiently diffuse into the cell. Hydrogen EFCs 118 

have been successfully developed with gas-diffusion elec- 119 

trodes, like air-breathing cathodes or H 2 -breathing an- 120 

odes, which make it possible to increase the availability 121 

of dissolved O 2 and H 2 in quiescent solutions. This is 122 

an essential development for portable EFCs used out- 123 

side of the body. Owing to electrode nanostructuration, 124 

and improvements in enzyme orientation and electrical 125 

wiring, great improvements in power densities have been 126 

achieved, which can match, or even surpass, the perfor- 127 

mance of glucose EFCs. However, the use of hydrogen 128 

for EFCs confronts us with problems of H 2 storage and 129 

transport. This is in contrast to the use of glucose, which 130 

is a safe, abundant and easy-to-handle energy compound. 131 

Hydrogen can be physically stored as either a gas or a liq- 132 

uid but generally requires high pressure and large volume 133 

tanks. Practical high density hydrogen storage remains a 134 

major challenge for EFCs dedicated to portable applica- 135 

tions. 136 

How to define EFC power? 137 

One of the problematic points for the comparison and 138 

continuous optimization of EFC performance concerns 139 

their power output and how it is defined. As already 140 

pointed out by Katz and coworkers, the power density of 141 

an EFC is an important parameter that must be associ- 142 

ated with the real power generated by the EFC in order 143 

to determine which applications can actually be consid- 144 

ered [32] . There are a multitude of electronic and wireless 145 

electrical products that consume microwatt to milliwatt 146 

powers during operation. Many electronic devices have 147 

multiple power modes such as a “standby” mode, where 148 

low power is consumed, and “active modes”, for example, 149 

for data transmission. High milliwatt powers, for example, 150 

may therefore only be required for very short periods of 151 

peak activity. Future advances in ultra-low power and low 152 

voltage electronics in the next decade are expected which 153 

will further valorise energy-harvesting devices with μW 154 

to mW outputs. For instance, an ultra-low power 3.5 μW- 155 

consuming cell phone without a battery is under develop- 156 

ment [33] . 157 

In the research field of biological fuel cells, power den- 158 

sities can be misleading. For example, microwatt power 159 

densities obtained using microelectrodes seem extremely 160 

attractive, but in reality, are almost useless when the actual 161 

power output is on the order of nanowatts. Another issue 162 

for bioelectrodes is that the power does not evolve propor- 163 

tionally to the surface area owing to the electrode mor- 164 

phology that plays, for example, on the continuous sup- 165 

ply and removal of reactants and products. The power is 166 

highly dependent on electrode morphology, including the 167 

structure and thickness of the adsorbed enzymes, and the 168 

crucial mass transport and charge propagation processes 169 

that occur inside and outside of the biocatalyst layer(s) 170 

[34] . 171 

Regarding the electrode architecture, which ranges from 172 

simple planar electrodes with monolayers of enzymes 173 

to 3D-structured mesoporous carbon, CNT pellets, and 174 

CNT yarns with embedded enzymes, the electroactive 175 

surfaces and enzyme loadings can be vastly different 176 

[12 

•,13] . Despite this, the power densities of biofuel cells 177 

are conventionally calculated only with respect to the ge- 178 

ometric surface of the electrodes. So what about the fact 179 

that most bioelectrodes are now based on 3D architec- 180 

tures with huge differences in electrode thickness and 181 

surface area? Another difficulty in defining power also 182 

lies sometimes in the design of EFCs that exploit anodes 183 

and cathodes with different sizes. For example, a H 2 /O 2 184 
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EFC combines a 6 cm 

2 bilirubin oxidase-modified cath- 185 

ode with a 1.2 cm 

2 hydrogenase-modified anode to bal- 186 

ance the catalytic performance as a function of the H 2 -air 187 

mixture used [18 

••] . The raw power output must surely 188 

now be reported in all cases? It now seems valuable to de- 189 

fine the volumetric power of bioelectrodes in mW cm 

−3 , 190 

especially if 3D electrodes with thicknesses ranging from 191 

micrometres and centimetres are being used. Indeed, we 192 

have recently reported the raw power together with the 193 

current density of an EFC in both cm 

2 and cm 

3 [35 

•] . 194 

A crucial power definition for the future, which will be- 195 

come more relevant as EFCs emerge for practical device 196 

powering, is the volumetric power density of the single 197 

or stacked EFC in cm 

3 , taking into account the space be- 198 

tween the anode(s) and the cathode(s) and the entire cell. 199 

For a single EFC, the optimisation of distance between 200 

the bioelectrodes, which also plays on the resistance, sub- 201 

strate supply, and by-product formation, will become a 202 

key consideration for the power/size ratio. 203 

Influence of temperature on the operation of EFCs 204 

Besides the difficulty of designing EFCs whose enzy- 205 

matic reactions at the anode and the cathode must op- 206 

erate at the same pH, another major problem for EFCs 207 

concerns the influence of temperature on the rate and sta- 208 

bility of enzyme-catalyzed reactions, and hence on EFC 209 

performance. This key parameter has often been under- 210 

estimated or neglected, yet can drastically change the 211 

perspectives of EFCs for different applications. Depend- 212 

ing on the origin of the enzyme, the temperature/activity 213 

profile may show optima ranging from low temperatures 214 

(3 –5 °C) to high temperatures (50 –80 °C). Regarding the 215 

more common glucose/O 2 EFCs, cathodes are usually 216 

based on immobilized bilirubin oxidase or laccase for the 217 

reduction of oxygen. Laccase from Trametes versicolor ex- 218 

hibits its greatest stability at 30 °C and undergoes a ther- 219 

mal deactivation above 50 °C, which for example, leads to 220 

a loss in activity of 53% and 90% after 6 and 48 h rs , respec- 221 

tively [36] . In contrast, bilirubin oxidase from Myrothecium 222 

verrucaria is considered relatively stable in the range of 223 

40 –60 °C but loses 40% of its activity when the temper- 224 

ature decreases from 40 to 25 °C [37] . At the anode, the 225 

oxidation of glucose is mainly catalyzed by glucose oxi- 226 

dase. The latter has a maximum activity at 20 –35 °C but 227 

retains only 65% of its activity at 45 °C, and exhibits total 228 

thermal inactivation at 60 °C [38–40] . 229 

The different thermal behavior of oxidoreductase en- 230 

zymes is a real problem for the performance and stability 231 

of EFCs, especially considering that an EFC must em- 232 

ploy two very different enzymes at the anode and cathode. 233 

The influence of temperature may call into question the 234 

use of EFCs for powering portable electronics exposed 235 

to certain environmental conditions with wide variations 236 

in temperature. This problem actually becomes an attrac- 237 

tive point for implanted biofuel cells, of which one of the 238 

main features is their exposure, by definition, to a con- 239 

stant physiological temperature of 37 °C. Nevertheless, 240 

this does not mean that relevant enzymes are unsuitable 241 

for operation at elevated temperatures. In fact, it appears 242 

that the power of EFCs can be increased by increasing the 243 

temperature, as demonstrated by Lojou and coworkers for 244 

H 2 /O 2 EFCs using thermostable enzymes such as hydro- 245 

genase from Aquifex aeolicus and bilirubin oxidase from 246 

Bacillus pumilus [17 

•,41] . High power densities have been 247 

obtained under these (relatively) mild conditions, making 248 

it possible to power a wireless transmission system [42] as 249 

illustrated in Figure 1 . However, to accurately evaluate 250 

the performance and practicality of such hydrogen EFCs, 251 

it is necessary to also consider the power required to main- 252 

tain the EFC at 60 °C. Rather than the possibility for im- 253 

proved EFC power output, the main advantage of this ap- 254 

proach lies in the use of thermostable enzymes that allow 255 

the EFC to withstand significant temperature variations 256 

(e.g. from 30 –80 °C) without denaturation. 257 

As well as temperature considerations, the type of solu- 258 

tion used in the biofuel cell is another critical but often 259 

overlooked factor in EFC research. Until now, relatively 260 

few studies have investigated EFC performance in matri- 261 

ces for practical applications such as biological fluids, envi- 262 

ronmental waters or wastewater. The vast majority of ex- 263 

periments have simply been performed in aqueous buffer 264 

solutions. Towards human body-integrated applications, 265 

recent studies have started to address bioelectrode and 266 

EFC performance directly in human serum, urine, saliva 267 

and blood [43–47] . These works have highlighted compli- 268 

cations that reduce EFC power output and stability due 269 

to low substrate concentrations and interferences from 270 

ascorbic acid, chloride, uric acid and biophysical matter. 271 

Reported strategies to address interferences include the 272 

use of a dialysis bag as a protective membrane, a strategy 273 

first reported by our group in 2010 for an EFC implanted 274 

in a rat [48] . 275 

Buckypaper-based EFCs for wearables and 276 

implantables devices 277 

Carbon nanotubes are a widely used material in bioelec- 278 

trode design [6 

•] . In the last 5 –7 years, free-standing thin 279 

films of CNTs, called buckypapers, have emerged for use 280 

in biofuel cells [49 

•] . Buckypapers are in fact at the origin 281 

of remarkable advances in the field of EFCs [50–53] , par- 282 

ticularly concerning implanted biofuel cells [51 

••,54 

••] . 283 

Buckypaper films are self-supporting macroscopic sheets 284 

of entangled CNTs held together by π - π stacking inter- 285 

actions with an average thickness of 5 –200 μm. Bucky- 286 

papers are typically obtained either from a commercial 287 

source (e.g. NanoTechLabs Inc.) via roll-to-roll process- 288 

ing, or via conventional vacuum filtration of a disper- 289 

sion of CNTs in organic or aqueous solution. Compared 290 

with classical electrodes based on glassy carbon, bucky- 291 

papers constitute a break of concept since they are the 292 

electrode itself. Furthermore, these electrodes are lighter, 293 

more compact and flexible, and more easily processed into 294 
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Figure 1 

Schematic presentation of a H 2 /O 2 biofuel cell setup with thermophilic biocatalysts producing sufficient power at elevated temperature for supplying 
a wireless transmission system. 

different shapes and sizes compared to electrodes based 295 

on glassy carbon. Until now, buckypapers have mainly 296 

been modified via π -stacking interactions with pyrene 297 

derivatives, which are used for covalent or non-covalent 298 

binding of enzymes and/or mediators, and have led to 299 

high performance bioelectrodes for in-vivo biofuel cells. 300 

In particular, Katz and coworkers have highlighted the 301 

practical advantages of buckypaper for implantation com- 302 

pared to traditional bulk electrodes (e.g. glassy carbon), 303 

such as their ideal microscale thickness and tunable di- 304 

mensions [54 

••,55] . Owing to attractive properties such 305 

as their flexibility, Minteer and coworkers developed a 306 

miniaturized buckypaper-based lactate/O 2 EFC embed- 307 

ded in a contact lens for operation in human tears [56] . 308 

Besides increasing the length and alignment of CNTs, 309 

another possibility to improve the strength and flexibil- 310 

ity of buckypapers lies with the incorporation of an or- 311 

ganic crosslinker. An elegant approach is to “molecularly”312 

cross-link the CNTs of buckypaper with bis-pyrene-2,2 

′ - 313 

azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (bis- 314 

pyrene-ABTS), which enhances the mechanical stability 315 

of the buckypaper and gives it redox properties for wiring 316 

multicopper enzymes [57,58] . Furthermore, Cosnier and 317 

coworkers reported a new approach for fabricating robust 318 

and flexible buckypaper bioelectrodes based on the in- 319 

timate association of CNTs and linear polynorbornene 320 

polymers [59,60] . These polymers were functionalized 321 

with pyrene groups, for cross-linking, and activated esters, 322 

for covalent attachment of enzymes and/or molecules for 323 

electrical enzyme wiring. Besides improved flexibility and 324 

handleability, enzyme-modified buckypapers are proving 325 

to be effective bioelectrodes for EFCs and will certainly 326 

have an important role to play in future implantable or 327 

wearable EFCs. To improve the limited performance of 328 

biocathodes, which commonly suffer from oxygen limi- 329 

tations, we note the cathode design from Atanassov and 330 

his colleagues that combined a gas-diffusion layer with a 331 

catalytic buckypaper such that the individual benefits of 332 

both materials could be exploited [61] . Some examples of 333 

buckypaper interfaces and their applications are sketched 334 

in Figure 2 . 335 

Perspectives on nanoparticle-based rechargeable EFCs 336 

EFCs are faced with two major technological bottle- 337 

necks that currently block their development, namely 338 

their short lifetime, and to a lesser degree, their weak 339 

power output. The low stability of EFCs is largely re- 340 

lated to the deactivation of immobilized enzymes, the 341 

intrinsic catalytic component, and this seems somewhat 342 

ineluctable. In particular, enzymes have a limited stabil- 343 

ity that depends on the environment in which they are 344 

used (temperature, pH, inhibitors...). Weak power out- 345 

put is related to factors including the sub-optimal fixa- 346 

tion of enzymes and redox mediators to electrodes, which 347 

reduces markedly their mobility and flexibility, and in 348 

some cases, fixes enzymes in poor orientations for elec- 349 

tron transfer. An attractive solution lies in the devel- 350 

opment of bioelectrodes based on confined solutions of 351 

enzymes and supramolecular assemblies of redox media- 352 

tors or electron transfer-promoting molecules. The elec- 353 

trical wiring of enzymes in solution with electrodes form- 354 

ing a conductive chamber only permeable to the enzyme 355 
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Figure 2 

Illustration of buckypaper-based bioelectrodes with various immobilization and enzyme wiring functions (pyrroloquinoline quinone glucose 
dehydrogenase (PQQ GDH) and laccase) for efficient energy harvesting wearable and implantable biofuel cells. 

Figure 3 

Scheme illustrating the formation and modification of redox-active glyconanoparticles used for construction of an “all in solution” biocathode. 
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substrates is envisaged. For enzymes that require or ben- 356 

efit from the use of a redox mediator, bioelectrocatalysis 357 

can be ensured using supramolecular assemblies of re- 358 

dox mediator freely diffusing in this chamber. This strat- 359 

egy will overcome the low operational stability of EFCs 360 

by allowing the renewal of solubilized enzymes and re- 361 

dox mediators, leading thus to rechargeable EFCs. This 362 

concept can also enhance the electrical wiring process, 363 

for example, via rotation and redox-hopping effects, and 364 

should lead to increased fuel cell performance. Recently, 365 

the first step of this unconventional approach was con- 366 

ceived with biosourced nanoparticles functionalized with 367 

β-cyclodextrin groups [62] . For construction of a biocath- 368 

ode, the nanoparticles were modified via host-guest inter- 369 

actions with bis-pyrene-ABTS and used as electron shut- 370 

tles to facilitate electron transfer between the electrode 371 

and bilirubin oxidase in solution ( Figure 3 ). The redox 372 

nanoparticles led to enhanced catalytic currents and im- 373 

proved stability for O 2 reduction compared to the same 374 

electro-enzymatic system with ABTS in solution [63 

•] . 375 

Conclusion 376 

A significant number of emerging directions for EFCs 377 

are now under exploration, such as metabolon systems 378 

for cascade reactions of sequential enzymes [64,65 

••] , hy- 379 

brid fuel cells that seek to combine the advantages of 380 

metals and enzymes [66] , engineered enzymes with en- 381 

hanced thermal stability [67] , the use of molecular cata- 382 

lysts that mimic enzyme activity with very large turnover 383 

frequencies and high stability [68 

•] , and the integration 384 

of supercapacitors into fuel cell devices [69] . Another key 385 

emerging area concerns biofuel cell power management 386 

systems and the incorporation of energy storage systems 387 

such as capacitors to prolong biofuel cell lifetime for prac- 388 

tical applications [70,53] . The promises and challenges of 389 

this exciting research field now require truly interdisci- 390 

plinary research efforts between chemists, surface scien- 391 

tists, bio-scientists, electronic engineers and materials sci- 392 

entists. Despite the presence of technological obstacles to 393 

circumvent, there are real potential applications for EFCs 394 

ranging from implantable EFCs, for periodic monitoring 395 

of diseases during short periods (1 –3 months), to totally 396 

biodegradable EFCs for disposable medical devices. 397 
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