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ABSTRACT 

Grain breakage during compression and shearing is one important mechanism responsible for 

irrecoverable changes of the mechanical properties of granular materials. Here we present results 

of triaxial tests on limestone fragments under some monotonic and cyclic stress paths and we 

investigate the relationships between the progression of grain breakage, the plastic work and the 

evolution of the critical state line. Using the plastic work concept, we propose a method for 

determining grain shape and grain breakage indices, and we show how grain breakage influences 

the critical stress state, and hence the mechanical behaviour. The validity of the relationships is 

then verified on different granular assemblies (granite fragments and quartz sands), although 

further tests remain necessary to validate them under more generic stress paths. 

Keywords: particle crushing; fragmentation; critical state; plastic work; relative breakage. 
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1. INTRODUCTION

Clasts fragmentation (also termed grain breakage) can occur during compression and 

shearing of granular materials, especially under high confining stresses and dynamic loadings 

(Coop et al., 2004; Kaproth et al., 2010; Coop and Altuhafi, 2011; Kimura et al., 2014, 2018; 

Mehta and Patel, 2018). Important breakage can also occur under low confining stress, 

particularly if the grains are fragile and present irregular shape (e.g., Nakata et al., 1999). Grain 

breakage is a fundamental issue for the stability of earth dams, embankments and railway 

ballasts, and for the bearing capacity of piles (e.g., Daouadji et al., 2011; Okonta, 2015; Winter et 

al., 2017). Quantitative information about the shearing history can be retrieved from glacial 

sediments (Altuhafi and Baudet, 2011) and landslide granular deposits (Zhang and McSaveney, 

2017), and can be crucial for understanding the likelihood of the latter to exhibit further 

instability (Hu et al. 2017, 2018a, 2018b, 2018c; Fan et al., 2018). Extensive fragmentation has 

been also related to frictional weakening in rock avalanches, although the issue is still debated 

(Davies et al., 1999; Fan et al., 2017; Scaringi et al., 2017, 2018; Ren et al., 2018) and further, 

dedicated experimental investigations are required.  

The amount of fragmentation can be quantified through the changes of grain size distribution 

(GSD). Different ways to measure its evolution have been suggested (e.g., Marsal, 1967; Hardin, 

1985; Einav, 2007). The effect of particle crushing on various physical and mechanical properties 

has been investigated (e.g., McDowell et al., 1996; Bandini and Coop, 2011; Zhang et al., 2018), 

and introduced into constitutive and numerical modelling (e.g., Ma et al., 2017; Zhou, 2017). 

However, understanding how the breakage amount can be measured and how this measure can 

be related to mechanical properties explicitly is still challenging. The three following issues need 

to be investigated: (1) what are suitable measures for the amount of grain breakage; (2) how to 

determine these measures based on stress-strain histories; and (3) how to relate these measures to 

mechanical properties of the granular assembly. Once these three points are solved, the quantity 

measuring the amount of grain breakage can be introduced as a variable to control the influence 

of particle crushing on the mechanical properties of a granular material undergoing a generic 
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stress-strain path. 

For the first issue, a breakage measure varying in the range 0-1 with the GSD changing 

seems convenient. Among the proposed measures, the modified relative breakage index Br
* of

Einav (2007), and the relative uniformity Bu, based on the fractality of the GSD (e.g., Coop et al., 

2004) and on the coefficient of uniformity Cu, seem good choices. Various methods to quantify 

the GSD change under different loading conditions were developed and validated through tests 

under monotonic loading: i.e. the crushing surface approach (Kikumoto et al., 2010), and the 

energy approach (Einav, 2007). So far, these two approaches have not been fully examined under 

different loading conditions, including under cyclic loading. Therefore, in this paper we propose 

a unified approach to quantify the change of GSD (in terms of Bu and Br
*) for different loading

conditions. 

Changes of the GSD can be correlated to the evolution of mechanical characteristics. Several 

properties (stress-dilatancy, peak shear strength, plastic modulus, etc.) depend on the distance of 

the current stress state (p’, e) from the corresponding critical state (p’, ec) of the granular material.  

Hence, understanding how fragmentation- induced changes of GSD affect the location of the 

critical state line (CSL) becomes crucial for relating particle crushing to the mechanical 

behaviour. CSL-GSD relationships have been demonstrated by experiments on crushable sands 

(Bandini and Coop, 2011) and by discrete element simulations on crushable granular materials  

(Bolton et al., 2008). 

In the following sections, we first analyse the measures of particle crushing amount. We 

carry out laboratory tests on crushable limestone grain assemblies under various stress-strain 

paths, with both monotonic and cyclic loadings to propose a unified determination method for 

the measure of particle crushing. Secondly, we use the test results to propose a relation between 

these measures and the CSL location. Finally, we apply the relations obtained on limestone 

fragments to other materials to validate the method. 

2. MEASURES OF GRAIN BREAKAGE 

Different measures have been proposed, such as: (1) B15=D15i/D15f, where D15 is the grain 
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diameter for a percentage of passing equal to 15% in weight, and subscript “i” and “f” represent 

the initial and final values, e.g. before and after testing (Lee and Farhoomand, 1967; Fig. 1a); (2) 

R/100, that is the increase in % passing the sieve having the largest increase, measured from the 

GSDs before and after testing (Marsal, 1967; Fig. 1b); (3) the relative breakage Br=Bt/Bp, where 

Bp is the area between the line d = 0.074 mm and the portion of the initial GSD with d > 0.074 

mm, and Bt is the area between the initial GSD and the GSD after loading with d > 0.074 mm 

(Hardin, 1985; Fig. 1c); (4) the particle breakage factor B10=1- D10f/D10i (Lade et al., 1996; Fig. 

1d); (5) the change of the coefficient of uniformity Cu=D60/D10, related to the amount of grain 

breakage (Biarez and Hicher, 1997; Fig. 1e); (6) the particle breakage factor Bf=R/100, where R 

is the percentage of particles smaller, after testing, than the smallest particle size in the initial 

GSD (Nakata et al., 1999; Fig. 1f); (7) the modified relative breakage index Br
*=Bt/Bp, obtained

by replacing the line d = 0.074 mm by the ultimate grading in the definition of Hardin’s Bp and 

Bt (Einav, 2007; Fig. 1g); (8) the grading state index IG=Bt/Bp, with the initial grading curve 

determined by lower limit of the biggest particle size (Kikumoto et al., 2010; Fig. 1h). As the 

grading proceeds toward a fractal distribution, only Einav’s measure Br
* evolves from 0 to 1

following the evolution of the GSD, therefore it is selected in this study to describe the breakage 

amount. 

Another measure can be defined, that can be named “relative uniformity” Bu and employs 

the coefficient of uniformity Cu=D60/D10 in the following way: 

u ui
u

uf ui

C C
B

C C





(1) 

where Cui is the initial coefficient of uniformity, and Cuf is the ultimate coefficient of uniformity 

proper of the final, fractal grading. Hence, Bu also evolves from 0 to 1. Note that Bu includes also 

the change of D10 which is a factor influencing the mechanical properties as shown by Lade et al. 

(1996). Since the definition of Bu is based on Cu, which is a common coefficient in engineering 

practice and can be easily measured, the use of Bu is convenient to describe the grain breakage 

amount, provided that it can be related to mechanical variables influencing grain breakage. 

Therefore, in addition to B*
r, Bu is also examined in this study in connection with the amount of
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grain breakage. 

2.1. A UNIFIED APPROACH 

As grain breakage is produced by mechanical loading, the breakage amount can be related to 

the input energy. Based on this idea, Lade et al. (1996) proposed a hyperbolic relation between 

the particle breakage factor B10 and the total energy input calculated by stresses and total strains. 

Einav (2007) proposed to link the breakage energy, using stresses and total strains, to the relative 

breakage Br
* for compression tests. Different from the energy methods, Simonini (1996) and

Kikumoto et al. (2010) defined a crushing surface to determine the breakage amount based on 

the distance from the stress state to this crushing surface. However, the accumulation of grain 

breakage during cyclic loading cannot be described by these different approaches.  

Another measure in relationship with the amount of crushing is the plastic work of Daouadji 

et al. (2001). To avoid the non-uniqueness of the summation of the plastic work along a loading 

path where stresses or strains are reversed, we adopted the following different definition of the 

plastic work: 
p

pw d    (2)

where  and dp are stress and incremental plastic strain tensors, respectively, and the use of 

Macaulay’s brackets implies that   2F F F  . In this way, under cyclic loading, the

plastic work can be cumulated (Hu et al., 2013). Thus, linking the plastic work to the measure of 

breakage amount makes it possible to take the additional grain breakage after the first loading 

into account. 

3. MATERIALS AND METHODS

In order to establish the relation between the measures of breakage (Bu and Br
*) and the

plastic work, we performed drained triaxial tests under both monotonic and cyclic conditions. 

For each test, the GSD was measured after testing and the plastic work was calculated along the 

loading path. 

We first employed crushable limestone fragments from a quarry in Prefontaines, France. The 
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shape of the grains is sub-angular according to the D2488-10 ASTM standard. The material has a 

unit weight γ = 17.1 kN/m3 and a specific gravity Gs = 2.70. The samples were prepared with an

initial coefficient of uniformity Cu = 1.8, mean grain size D50 = 6 mm, minimum grain size dm = 

1 mm, and maximum grain size dM = 10 mm. The initial void ratio e0 ranges from 1.05 to 1.1, 

with minimum and maximum void ratios of 0.83-1.43. All samples have 70 mm diameter and 

105 mm height. All samples were saturated before testing. The rate of axial displacement for all 

triaxial tests was 0.03 mm/min. The correction of the cross section and the correction of 

membrane penetration are considered by applying the French Standard NF P 94-074 and the 

method of Head (1992). 

The relations between breakage measures, plastic work and CSL location obtained on the 

limestone grains are also applied to granite fragments, Cambria sand (e.g., Yamamuro and Lade, 

1996) and Sydney sand (Russell and Khalili, 2004), as will be shown in Section 5.3.  

The granite fragments consist of sub-angular grains of quartz with feldspars, with sizes 

between 0.3 mm and 2 mm. The material has an initial uniformity coefficient Cu = 2.0, a median 

grain size D50 = 0.85 mm and a specific gravity Gs = 2.65. Minimum and maximum void ratios 

are 0.83 and 1.23. The initial eref0 = 1.28 and c = 0.088 were obtained adopting the correlation 

by Biarez and Hicher (1997). The relative uniformity, modified relative breakage index, CSL 

location and applied plastic work were obtained from drained triaxial tests carried out by Kim 

(1995) with confining stress of 1, 5, 10, 30 and 60 MPa.  

The Cambria sand is composed of sub-rounded grains of quartz (with small quantity of 

gypsum) with sizes between 0.83 mm and 2 mm, a median grain size D50 = 1.43 mm and an 

initial uniformity coefficient Cu = 1.3. Minimum and maximum void ratios are 0.503 and 0.792. 

The specific gravity is Gs = 2.69. The initial eref0 = 0.73 and c = 0.088 were measured from 

drained and undrained triaxial tests under low confining pressures (100, 200, 500 kPa) with no 

change of grading (Yamamuro and Lade, 1996), thus Biarez and Hicher’s correlation is not 

needed. The relative uniformity, modified relative breakage index, CSL location and applied 

plastic work were obtained using drained and undrained triaxial tests under high confining 
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pressures up to 52 MPa (Lade and Bopp, 2005; Bopp and Lade, 2005; Yamamuro and Lade, 

1996). 

The Sydney sand is mostly made of quartz. It was sampled from sand dunes at Kurnell, 

Sydney. It has a median grain size D50 = 0.31 mm, initial uniformity coefficient Cu = 1.83, 

specific gravity Gs = 2.65. Minimum and maximum void ratios are 0.60 and 0.92. The initial eref0 

= 0.97 and c = 0.07 were obtained from drained and undrained triaxial tests under low confining 

pressures (50, 150 and 200 kPa) with no change of grading (Russell and Khalili, 2004). The 

relative uniformity, modified relative breakage index, CSL location and applied plastic work 

were obtained using drained and undrained triaxial tests under high confining pressures up to 7.8 

MPa (Russell and Khalili, 2004). 

Photographs of the limestone material before testing and after a drained triaxial test under 

constant mean effective stress p’ = 400 kPa are shown in Fig. 2. By comparing Fig. 2a and Fig. 

2b, one can see that some grains were crushed into smaller pieces, and some grains were 

damaged with visible cracks, while some others appear still intact. The breakage amount can be 

estimated by the GSD measured after testing. Figure 3a presents the results of two drained 

triaxial tests with confining stresses p’0 = 50 kPa and 100 kPa. The elastic properties can be 

measured on the stress-strain curves. We assume a non- linear elasticity and we adopt the 

formulation proposed by Richart et al. (1970): 

  0.52

0

2.97

1at

at

e p
G G p

e p

  
    

(3) 

  0.52

0

2.97

1at

at

e p
K K p

e p

  
    

(4) 

where pat = 101.325 kPa is the atmosphere pressure. 

The shear modulus was measured on the stress-strain curves up to a deviatoric strain of 0.1% 

in Fig. 3a. We found G0 = 80. The bulk modulus was measured from the isotropic compression 

tests (Fig. 3b). We found K0 = 105, which corresponds to a Poisson’s ratio of 0.2.  Taking into 

consideration the decrease of the shear modulus with the strain level found for various sands 

(e.g., Clayton, 2010), we can assume that the elastic modulus at very small strains is 
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approximately five times bigger than the elastic modulus at 0.1%. Therefore, G0 = 400 and K0 = 

525 corresponding to the very small strain level were used to estimate the elastic strain 

component. 

According to McDowell et al. (1996), the GSD for both initial and tested samples can be 

approximately expressed as follows 

 3
( ) /

M
F D D d

  (5)

where F(D) is the percentage of passing corresponding to the grain size D. In agreement with 

Einav (2007), a fractal GSD was assumed with  = 2.6 according to Coop et al. (2004). 

Therefore, the relative breakage index Br
* for each test can be obtained as proposed by Einav

(2007). For the measure of Bu, the current Cu and the ultimate Cuf are needed besides Cui. Cu can 

be obtained from the grading curve at the end of each test. Cuf corresponding to fractal GSD can 

be determined using Eq. (5) with  = 2.6 as follows: for F(D) = 60% and 10%, 60% = 

(D60/dM)3- and 10% = (D10/dM)3-2.6, then Cuf = D60/D10 = 61/(3-) = 88.18 is obtained. Therefore,

based on Eq. (1), the value of Bu can be obtained once Cu is measured after the test.  

The corrections of the volumetric change due to the membrane penetration is important for 

accuracy of analysis. We used the method proposed by Baldi and Nova (1984) to correct the test 

results. Baldi and Nova (1984) investigated the membrane penetration in triaxial tests and found 

that m
V  depended strongly on D50, '

3 , and the diameter of the specimen (Ds) as well as the 

membrane characteristics. The following equation was used to account for the membrane 

penetration effect: 

1
' 3

50 3 50
02m

s m m

D D
V V

D E t

    
            

(6) 

  where m
E is the Young’s modulus of the membrane material and m

t  is the thickness of the 

membrane. 
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4. RESULTS

4.1. TESTS UNDER MONOTONIC LOADING 

4.1.1. Tests at different confining stresses 

Drained triaxial tests under various constant confining stresses (constant-’3 tests) varying 

from 22 kPa to 800 kPa were carried out (Fig. 4). One can notice that, for elevated confining 

stresses, the material appears very ductile and the stress ratio q/p’ continues to increase even at 

large strains (Fig 4a). This is due to a large amount of particle breakage developing during 

loading, as shown in Fig. 4c. Figure 4b presents the volume changes during the drained triaxial 

tests. They show a dilative behaviour under low confining stresses of 22 kPa and 50 kPa, and a 

contractive behaviour under higher confining stresses of 100 kPa, 400 kPa and 800 kPa. For 

samples under high confining stresses, the large contraction is also a consequence of a significant 

grain breakage. The GSDs after testing were measured, as shown in Fig. 4c. Significant crushing 

occurs even under low confining stresses. The relative uniformity Bu and the modified relative 

breakage index Br
* were then obtained for each test, and the values summarised in this figure.

The results show that a higher confining stress induces a higher amount of grain breakage, thus 

raising the values of Bu and Br
*.

4.1.2. Tests with different loading paths 

A drained triaxial test under constant mean effective stress (constant-p’ test) p’ = 400 kPa up 

to a = 25 % was carried out, as shown in Fig. 5. The results are compared to the constant-’3 

test results at the same consolidation stress. During the constant-p’ test, the lateral stress is 

reduced in order to keep p’ constant, which also results in a smaller amplitude of the deviatoric 

stress. As a consequence, less grain breakage occurred compared to the constant-’3 test (Fig. 

5c). This leads to a stiffer stress-strain relationship and a smaller volume change for the 

constant-p’ test. The evolution of the stress-strain relationship with the grading change is similar 

to the one obtained for the previous constant-’3 tests. Note that the variability of the grading 

measurements for a given stress history is mainly due to the amount of fine particles (e.g. < 2 

mm). In Fig. 5c, the difference in the gradation curves between the constant p’ and the constant 
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’3 tests is statistically significant, especially for particles bigger than 2 mm. The values of Bu 

and Br
* for the constant-p’ test are smaller than those for the constant-’3 test.

4.1.3. Tests with different consolidation histories 

A conventional drained triaxial test at ’3 = 100 kPa up to a = 25 % on a sample 

isotropically consolidated up to 800 kPa and unloaded to 100 kPa was carried out, and compared 

to the constant-’3 test with ’3 = 100 kPa without an over-consolidation history (Fig. 6). 

Although the whole difference of grading between the two tests is small (Fig. 6c), the difference 

of distribution for particles larger than 2 mm was adequately measured. The results show the 

influence of stress history on the grain breakage: the test with the over-consolidation process 

results in slightly more grain breakage than the test without the over-consolidation history (Bu 

and Br
* for the former are higher than for the latter). This is essentially due to the isotropic

loading phase up to 800 kPa where plastic strains developed (see Fig. 3b). The shearing phase 

did not bring any significant additional grain breakage and, therefore, the stress-strain 

relationship and the volume change for these two tests are in agreement with what is usually 

observed by comparing normally and over-consolidated material behaviours: a stiffer and less 

contractive behaviour for the over-consolidated sample. 

4.2. CYCLIC LOADING TESTS 

In order to seek a unified approach for determining the breakage amount under different 

loading conditions, three types of drained cyclic triaxial tests on samples isotropically 

consolidated at 400 kPa were carried out:  

 Series 1: two tests with constant confining stress, CYC-CCS1 in which qmax and qmin increase

from one cycle to another, CYC-CCS2 with constant qmax and qmin, in order to investigate the

influence of the axial loading amplitude on grain breakage;

 Series 2: three tests under constant p’ with different number of cycles Ncycle = 0, 5, 20

(CYC-CP0, CYC-CP5 and CYC-CP20) to investigate the influence of the number of cycles

on grain breakage;
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 Series 3: a test with constant deviatoric stress with varying p’ (CYC-CDS) to investigate the

influence of the stress ratio on grain breakage.

4.2.1. Tests at constant confining stress 

Figure 7 shows stress-strain patterns and GSDs for two tests at constant confining stress 

(Series 1). The test CYC-CCS1 was strain-controlled with axial strains up to 1%, -1%, 2%, -2%, 

3%, -3%, 4%, and ending by -4%. qmax reached 370, 570, 770 and 890 kPa, and qmin reaches to 

-250, -310, -310, -310 kPa. The test CYC-CCS2 was stress-controlled with the axial stress 

varying between qmax = 865 kPa and qmin = -310 kPa for 4 cycles. The stress-strain curves in Fig. 

7a and the evolution of the volumetric strain in Fig. 7b can be used to calculate the plastic work 

during the tests. The amount of grain breakage in Test CYC-CCS1 is lower than the one in Test 

CYC-CCS2 (Fig. 7c), because the values of qmax during the first three cycles for Test CYC-CCS1 

are smaller than those applied in Test CYC-CCS2 (Fig. 7a). 

4.2.2. Tests with constant mean effective stress 

Figure 8 shows the GSDs for tests at constant p’ with different number of cycles (Series 2). 

For the test CYC-CP0, the sample was only monotonically sheared up to q = 730 kPa with a = 

10 % and q/p’ = 1.83. The other two tests CYC-CP5 and CYC-CP20 were carried out with qmax = 

730 kPa and qmin = -420 kPa (q/p’ between 1.83 to -1.05) up to 5 and 20 cycles, respectively. The 

stress-strain curves in Fig. 8a and the evolution of the volumetric strains in Fig. 8b can be used to 

calculate the plastic work. The amount of grain breakage observed after testing increases with the 

applied number of cycles (Fig. 8c). Figure 8d shows the evolution of Bu and Br
* with the number

of cycles Ncycle, which demonstrates that grain breakage occurs at fast pace at the beginning of 

the loading, and then slows down. Based on this figure, the evolution of these two variables can 

be expressed by 

   * *
max 0max 0 * *

0 0B  ;  
r r cycleu u cycle

u u r r

cycle cycle

B B NB B N
B B B

a N b N


   

 
(7) 

with B*
r0 = 0.065, B*

rmax = 0.215, a = 4; and Bu0 = 0.0054, Bumax = 0.037, b = 11 obtained by

curve fitting. 
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4.2.3. Tests with constant deviatoric stress 

The GSD for the test at constant deviatoric stress CYC-CDS (Series 3) is shown in Fig. 9. In 

this test, the sample was sheared up to q = 180 kPa with a = 0.1 % and p’ = 460 kPa after an 

isotropic compression up to 400 kPa; then it was stress-controlled by changing the axial stress 

and the confining stress simultaneously, keeping constant the value of q and varying p’ from 460 

kPa to 140 kPa (q/p’ varies from 0.39 to 1.29, less than q/p’=1.46 of the constant-’3 test at 

’3=400 kPa) with three cycles. Such low values of q and p’max were applied to ensure that little 

grain breakage would be caused by the applied stresses during the first loading. Therefore, the 

test can be used to investigate the influence of the stress ratio (changing between 0.39 and 1.29) 

on grain breakage. Note that the deviatoric stress varies from 190 to 170 kPa with an average of 

180 kPa due to the lack of very accurate test control; this average value is considered for the 

interpretation. The stress-strain curve in Fig. 9a and the volume change in Fig. 9b show that only 

small strains developed during the test. The increase of the volumetric strain during the stages of 

decreasing p’ is mainly due to elastic unloading. The amount of grain breakage observed after 

testing was very small (Fig. 9c), which demonstrates that the cyclic change of stress ratios with 

moderate amplitudes had little influence on grain breakage. 

5. INTERPRETATION OF THE RESULTS AND DISCUSSION

5.1. RELATION BETWEEN GRAIN BREAKAGE MEASURES AND PLASTIC WORK 

An energy input is needed for grains to break (McDowell et al., 1996). We decided to adopt 

the plastic work as a measure of this energy and to link it to the breakage measures Bu and Br
*

representing the evolution of GSD. Under axisymmetric loading condition, the plastic work wp 

defined in Eq. (2) can be expressed as follows 

d dp p

p v dw p q                                                         (8)

where dv
p and dd

p are the volumetric and deviatoric plastic strain increments. The plastic strain

increment can be calculated by subtracting the elastic strain increment to the total strain 

increment (dp = d-de) with dv
e = dp’/K and dd

e = dq/(3G). Under axisymmetric condition we

have d = 2(a-r)/3 and q = (a-r). The Macaulay function in Eq. (8) implies that the negative 
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plastic work due to shear induced dilation (dv
p <0) does not influence grain breakage.

The plastic work was calculated through Eqs. (3), (4), and (8) from the stress-strain patterns. 

Then, Bu and Br
* were plotted against the plastic work wp (Fig. 10). They can be expressed

univocally, regardless of the loading pattern as:  

* ;  p p

u r

p p

w w
B B

a w b w
 

 
(9) 

with the fitting parameters a = 6000 and b = 1000. Eq. (9) implies that the two breakage indices 

increase asymptotically to the value of 1 when the plastic work increases. There is no further 

breakage once the ultimate grading is reached, which agrees with Coop et al. (2004). Therefore, 

the plastic work appears to be a suitable variable to determine Bu and Br
*, and thus the evolution

of the GSD, independently of the (monotonic or cyclic) stress path. 

5.2. INFLUENCE OF GRAIN BREAKAGE ON THE EVOLUTION OF THE CSL 

In the literature, three main methods for describing the effect of particle crushing on the CSL 

have been developed: (1) movement of CSL with the amount of plastic work (e.g., Daouadji et 

al., 2001; Biarez and Hicher, 1997); (2) direct description of CSL by one or several segments for 

different stress levels (e.g., Russell and Khalili, 2004); (3) movement of CSL with the change of 

the grading state index IG (Kikumoto et al., 2010). The concept of the CSL relies on the 

assumption that, at the critical state, the material keeps its volume while undergoing deformation. 

If the CSL moves with the grading changing because of grain crushing, this concept becomes 

dynamic and its evolution needs to be specified. To investigate this, we carried out drained 

triaxial tests under a confining stress of 100 kPa and different stress paths (Fig. 11a), and tests 

with constant ’3 and constant p’ (Fig. 11c) (see Section 4.1.3). The hypothesis of a movement of 

the CSL can be justified on the basis of the e-logp’ patterns of the two tests shown by Fig. 11a 

with different amounts of crushing (Fig. 6c). If we assume that the CSL evolves with grain 

breakage, we need to determine its initial position. For our tested material, as well as for any 

easily crushable materials, it is difficult to measure the initial location of the CSL because 

significant breakage can occur even during triaxial tests at low confinement. We assumed that 
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tests performed at 22 kPa could be used to indicate the location of the initial CSL because 

crushing, if not absent, was very limited and could not change the GSD significantly (Fig. 4c).  

Furthermore, it is still unclear whether the slope of CSL is dependent or not on the GSD 

(Daouadji et al., 2001; Biarez and Hicher, 1997; Bandini and Coop, 2011). Here for simplicity 

we hypothesized a constant slope of the CSL, so that the CSL can be expressed by: 

lnc ref c

at

p
e e

p


 
   

 
(10) 

where eref is the critical void ratio for a reference stress (for convenience equal to pat), ec stands 

for the critical void ratio relative to the current p’, and c represents the slope of CSL in the 

e-lnp’ plane (Fig. 11b). 

Test results under different confining stresses (Fig. 11b) show the shift of the CSL with the 

confining stress increasing due to the increasing amount of grain breakage (Fig. 4c). Fig. 11c 

shows that the final value of the void ratio for the test under constant ’3 = 400 kPa is lower than 

that for the test under constant p’ = 400 kPa, due to the higher amount of grain breakage in the 

former test (Fig. 5c). Note that for tests under high confining stresses the critical state is not 

easily measurable (Fig. 4). Bandini and Coop (2011) proposed to perform a second (i.e. 

unloading and shearing) loading phase to measure the critical state line under an appropriate, 

much lower confining stress, under which only negligible further crushing occurs. In this study, 

the final states at a strain level of 25% for all tests were chosen (arbitrarily) to represent the 

“dynamic” critical state. This specific treatment does not affect the trend of the shift in the CSL. 

If we plot eref for each test against the breakage measures Bu and Br
* (Fig. 12b), we can relate the

evolutions of the CSL location and the GSD in the following way: 
*

0 0 *
 ;  u r

ref ref ref ref ref ref

u r

B B
e e e e e e

c B d B
   

 
(11) 

with eref0 = 1.43, eref = 0.5, and c = 0.006 and d = 0.035 by best fitting. The proposed 

formulation for the evolution of the CSL location with the grain breakage measures takes a 

different form with respect to the one proposed by Kikumoto et al. (2010) with the grading state 

index IG. Substituting Eq. (9) into Eq. (11), eref can be also related directly to wp as follows: 
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   0 0 ;  
1 1

p p

ref ref ref ref ref ref

p p

w w
e e e e e e

ac c w bd d w
   

   
(12) 

In Eq. (12), the values of (1+c) and (1+d) can be taken approximately equal to 1 because the 

values of c and d are much smaller than 1. Thus, only a·c and b·d control the evolution rate of the 

CSL location with the plastic work. It was found that the fitting curves based on Bu and Br
* in Fig.

12c are very close with a·c = 39 (based on Fig. 10a and Fig. 12a) and b·d = 35 (based on Fig. 10b 

and Fig. 12b). It should be noted that the CSL location cannot be directly measured in cyclic tests. 

If we assume that the results obtained from monotonic tests hold for more general loading 

conditions, than the CSL location for cyclic tests can be estimated from Fig. 12c and Eq. (12). 

This seems a reasonable assumption, since the grain breakage measures appear to be a univocal 

function of wp for various loading conditions including monotonic and some cyclic loadings (Eq. 

8). Therefore, it appears suitable to use the breakage measures Bu and Br
* to determine the CSL

location, which is of practical importance for constitutive modelling.  However, it should be 

pointed out that Eq. (8) should be still validated also through larger numbers of loading cycles 

under high confinement stresses 

5.3. APPLICATION TO OTHER GRANULAR MATERIALS 

The above relations between breakage measures, plastic work and CSL location obtained on 

the limestone grains were also used to interpret triaxial tests carried out on granite fragments, 

Cambria sand and Sydney sand. For the three granular materials, we plotted the relative 

uniformity and the modified relative breakage index versus the applied plastic work in Fig. 13a 

and Fig. 13b using Eq. (8). Furthermore, using Eq. (11), the reference critical void ratio was 

plotted with the relative uniformity and the modified relative breakage index in Fig. 13c and Fig. 

13d, respectively. Comparisons between experimental results and calculations show that the 

proposed relationships based on limestone grains are also suitable for other crushable granular 

materials. 

6. CONCLUSIONS

In this work, we employed the modified relative breakage index Br
* and the relative
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uniformity Bu as convenient measures for the engineering practice. Through triaxial tests on 

limestone fragments under monotonic loading, we demonstrated that the evolutions of these 

measures appear to be hyperbolic functions of the plastic work wp (which highlights their 

asymptotic nature). This relation was found to hold also under some cyclic loading conditions, 

suggesting that it should remain valid regardless of the loading nature. However, further tests 

remain necessary to confirm the relation also after larger numbers of loading cycles under high 

confinement stresses. 

We find the location of the critical state line changing as breakage proceeds. In absence of 

further constraints, we assumed for simplicity that a parallel shift of the critical state line occurs 

as breakage proceeds. This is a strong assumption that must be verified carefully through further 

tests. If deemed acceptable, the location of the critical state line can be found by evaluating the 

plastic work at any stage of loading. We validated our approach by applying the relations we 

found for the limestone to other granular materials (granite fragments, Cambria sand and Sydney 

sand), obtaining satisfactory predictions. 
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Fig. 1. Illustration of different measures of grain breakage. 

(a)            (b) 

Fig. 2. Photographs of a tested sample: (a) before testing, and (b) after testing under constant p’ = 
400 kPa. 
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(a) stress ratio versus axial strain, (b) volumetric strain versus axial strain, (c) grain size 
distributions. 
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Fig. 10. (a) Relative uniformity and (b) modified relative breakage index versus plastic work. 
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various confining stresses, and (c) with various stress paths. 
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Fig. 12. (a) eref against relative uniformity, (b) against the modified relative breakage index, and 
(c) against the plastic work. 
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Fig. 13. (a) Relative uniformity and (b) modified relative breakage index versus plastic work; (c) 
eref against the relative uniformity, and (d) against the modified relative breakage index. 
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