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Abstract: Extended mild-slope models (MMSs) are examined for predicting the characteristics of
normally incident waves propagating over sinusoidal bottom topography in the presence of opposing
shearing currents. It is shown that MMSs are able to provide quite good predictions in the case
of Bragg scattering of waves over rippled bathymetry without a current, but fail to provide good
predictions concerning the resonant frequency in the additional presence of a current. In order to
resolve the above mismatch, a two-equation mild-slope system (CMS2) is derived from a variational
principle based on the representation of the wave potential expressed as a superposition of the
forward and backward components. The latter system is compared against experimentally measured
data collected in a wave flume and is shown to provide more accurate predictions concerning both the
resonant frequency and the amplitude of the reflection coefficient. Future work will be devoted to the
examination of the derived model for a more general wave system over realistic seabed topography.

Keywords: wave-current interaction; sinusoidal bathymetry; resonant reflection; mild-slope equation;
coupled-mode system

1. Introduction

Interactions of waves with currents and bathymetry constitute interesting problems,
with an important effect on significant nearshore coastal processes and in finding useful applications
to coastal and harbor engineering. Especially when the currents vary with depth, as observed in cases
of strong tidal currents [1] or wind-driven currents [2], the presence of vorticity should be taken into
account in modelling the propagation of water waves. This is important in designing efficient energy
production devices and more generally in coastal zone management. This is especially true in coastal
and onshore regions [3,4], where additional factors due to bathymetry variations and flow termination
at the shoreline contribute to increasing the complexity of the flow. Furthermore, the strong reflection of
waves interacting with undular bottom topography, which has important effects on coastal dynamics,
adds to the complexity of the considered problems and requires the development and validation of
a special class of models to represent the involved physical processes.

In cases when vorticity is present in the current flow, the wave-vorticity interaction can have
a significant influence on water-wave dynamics. This is important, especially in the case of coastal
currents which vary slowly, horizontally, but are characterized by vertical gradients, as in the case
of tidal currents and in oceanic conditions where the vertical variation of the current might be
significant; see, e.g., [1,4]. Several authors developed models to treat the effects of shear current
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on water wave propagation; see, e.g., [5–7]. In the recent work by Quinn, et al. [8], a wave action
conservation equation is presented with application to slowly varying bathymetry and arbitrary shear
current. However, in its present form, this model is not directly applicable to wave systems containing
a forward propagating and a back-propagating component that could be excited by resonant reflection.
More recently, experimental and numerical studies on wave–current interaction have been presented
by Musumeci et al. [9] and Viviano et al. [10,11].

Moreover, simplified models based on the assumption of linear vertical current profile (e.g.,
Thomas and Klopman [4], Ch.3.1), corresponding to locally constant vorticity, have been developed,
supporting the study of the effects of vertically uniform shear on the dispersive properties of the
waves; see, [5,12,13]. Additional effects of bathymetric inhomogeneities on propagation and scattering
phenomena have been considered by Brink-Kjaer and Jonsson [14] and Brink-Kjaer [15]. In simplified
2D flow problems in the vertical plane, the wave flow can be approximated in the framework of
potential formulation, however, as clearly demonstrated by Ellingsen [16], in the case of general 3D
problems and the interaction of oblique waves with vertically sheared current, the latter assumption
turns out to be over-restrictive.

In recent works concerning the wave–current–seabed interaction problem, with application
to wave scattering by non-homogeneous, vertically linear sheared current over general
bathymetry extended mild-slope equations by Touboul et al. [17] and coupled-mode systems by
Belibassakis et al. [18] has been derived based on the potential approximation of wave flow. The latter
models are applicable to 2D flow problems with constant vorticity and approximately applicable
to 2D problems characterized by sufficiently slowly varying vorticity. More details concerning this
fact and additional limitations are discussed in Appendix A. In the above works, the scattered wave
potential is represented by a series of local vertical modes containing the propagating and evanescent
modes plus additional terms accounting for the satisfaction of the boundary conditions on a sloping
seabed. Using the above representation, in conjunction with a variational principle, a coupled system
of differential equations on the horizontal plane is derived, with respect to the unknown modal
amplitudes. In the case of no shear, the above coupled-mode system reduces exactly to the one
developed by Belibassakis et al. [19] for the propagation of small-amplitude water waves over variable
bathymetry regions in the presence of horizontally varying ambient currents. Furthermore, if only
the propagating mode is maintained in the local-mode series, the present coupled-mode system
naturally reduces to a simplified one-equation model for wave propagation, taking both current and
vorticity effects into account, thus saving a lot of computational burden when such a simplification is
permitted. The latter model is found to be compatible with the extended mild-slope equation for surface
waves interacting with a vertically sheared current recently derived and studied by Touboul et al. [17].
Furthermore, in the case of no current, it reduces exactly to the modified mild-slope equation, presented
by Massel [20] and Chamberlain and Porter [21].

In this work, the applicability of the extended mild-slope system (MMS) derived by
Touboul et al. [17] and of the enhanced version by Belibassakis et al. [18] is examined in the case
of Bragg scattering of waves in the presence of opposing shearing currents. It is shown that the MMS
is able to provide quite good predictions in the case of Bragg scattering of waves over sinusoidal
bathymetry without a current, however, it fails to accurately predict the resonant frequency in the
case of a current, although it still provides reasonable values of the reflected wave amplitudes.
In order to resolve the above mismatch, a two-equation mild-slope system (CMS2) is derived from
the variational principle presented in Belibassakis et al. [18], assuming representation of the wave
potential as a superposition of forward- and back-propagating modes. The latter system is shown to
provide more accurate predictions concerning both the resonant frequency and the amplitude of the
reflection coefficient.
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2. Experimental Results

For the validation of the coupled-mode system, comparisons with experimental data are presented
in the case of normally incident waves propagating over a trapezoidal bar, seated on a flat horizontal
bottom in the presence of an opposing vertically sheared current. The shear is obtained by means of
an appropriately designed screen, in order for the current to be numerically modelled by using a linear
profile in depth,

U(x, z) = U0(x) + S(x)z, (1)

where U0 denotes the surface current at z = 0, where z denotes the vertical coordinate positive
upwards, and S(x) denotes the locally constant shear in the vertical water column at any x-position.
The experiments were carried out in a 10 m long, 0.3 m wide and 0.50 m high wave flume (SeaTech,
University of Toulon, La Garde, France). The current was injected in the channel by a hydraulic
pump with a prescribed discharge rate of 0.01 m3/s. At the downstream end of the channel, regular
waves were generated by means of an electromagnetic piston-type wavemaker. At the upstream end,
a slopping beach was used to absorb the wave. Both the wave-maker paddle and the beach were
elevated to let the water flow in the channel. The experimental arrangement and details are presented
in Figure 1.
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Figure 1. Experimental arrangement with the trapezoidal bar in the wave-current flume of SeaTech.

For the experiments, the water depth was 0.305 m and experimental data were recorded for
wave frequencies ranging from 0.65 Hz to 1.3 Hz with amplitudes between 1–2 cm ensuring small
wave steepness both without current and with a vertically sheared current. In this case, the reflected
component is small and both the mild-slope model and the coupled-mode system provide good
predictions in comparison with experimental measurements. More details are available in [18].

The case of stronger reflection in resonant conditions of waves over sinusoidal bottom profiles,
in the presence of an opposing shear current, is experimentally and theoretically studied by
Laffite et al. [22]. The mean depth in the experiments is h = 0.22 m and the bottom profile consists of
10 sinusoidal ripples of amplitude ha = 0.035 m. The bathymetry is given by

h(x) = h + ha sin(Kb(x− x1)), x1 = 2 m < x < x2 = 7 m, and h(x) = h, for x < x1 and x > x2, (2)

and the wavelength of the sinusoidal bottom undulations is λb = 2π/Kb = 0.5m. A schematic
presentation of the experimental setup is presented in Figure 2. Three synchronized, resistive wave
probes were operated using a 128 Hz sampling rate within this study. They were devoted to the
computation of the reflexion coefficient, upwave of the sinusoidal bottom. The data presented in
the following are based on a three-probes method analysis, as described in detail by Rey et al. [23].
Current measurements were based on Vectrino™ acoustic doppler velocimeters, developed by the
Nortek Company, Rud, Norway. Their locations are also presented in Figure 2. These acoustic Doppler
velocimeters recorded data at a sampling rate of 200 Hz, and were mounted on vertically moving
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carriages, for the purpose of obtaining precise vertical profiles for the mean current velocities. These
profiles, obtained by averaging the data, are presented in Figure 3.
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It is clearly observed in Figure 3 that the current profiles are affected by boundary layer phenomena
in the vicinity of the bottom ripples. However, outside this zone, for depths smaller than 18.5 cm, locally
at each horizontal position, a linear approximation is indicated as a reasonable assumption.

3. The One-Equation Mild-Slope Model

In previous work by Touboul et al. [17], an one-equation mild-slope model (MMS) was developed
to represent the effect of a sheared current and variable bottom topography on the propagation of
waves. Remaining for simplicity in one horizontal dimension, the model is based on the following
representation of the harmonic wave potential ϕ(x, z; t) = Re{ϕ(x, z) exp(−iωt)}, where the involved
complex potential is

ϕ(x, z) = ϕp(x)Zp(z; x), Zp(z; x) = cosh
(
kp(x)(z + h(x))

)
/ cosh

(
kp(x)h(x)

)
, (3)

and ϕp(x) denotes the forward propagating mode complex amplitude. The MMS model in the
frequency domain is described by the following second-order equation

a(x)∂2
xx ϕp − ∂x

(
U0U2∂x ϕp

)
+ b(x)∂x ϕp + c(x)ϕp(x) = 0, (4a)

where the coefficients are given by
a(x) = CCg, (4b)



J. Mar. Sci. Eng. 2019, 7, 9 5 of 18

b(x) = ∂x
(
CCg

)
+ iω(U0 + U2), (4c)

c(x) = k2
pCCg + ω2 − σ2 + iω ∂xU0. (4d)

In the above equations, kp(x) denotes the propagating wavenumber obtained from a modified
version of the dispersion relation, formulated at a local horizontal position x,

σ2(x) = kp(x)g tanh
(
kp(x)h(x)

)
, (5)

where g is the gravity acceleration. Equation (5) is formulated with respect to an average
relative frequency

σ =
√(

ω−U0 · kp
)(

ω−U2 · kp
)
, (6a)

where U0 is the surface current and U2 = U0 − S(2d) is the value of the current at specific penetration
depth 2d defined as follows (see also Touboul et al. [17]):

d = tanh
(
kph
)
/
(
2kp
)
. (6b)

Finally, C = σ/kp and Cg = ∂σ/∂kp denote the local wave phase and group velocities of the
forward propagating mode relative to the current, respectively, calculated at the mean intrinsic
frequency σ.

3.1. An Enhanced Version of the MMS

In the case of mildly-sloped bathymetry and slowly varying horizontal current and shear, an
enhanced version of the above MMS has been derived by Belibassakis et al. [18] by considering
forward wave propagation and neglecting higher-order effects described by the evanescent and the
sloping-bottom modes, and it reduces to the following one-equation model on the horizontal plane,

∂x
(
CCg∂x ϕp

)
− ∂x

(
U2

0 ∂x ϕp

)
+ 2iω U0∂x ϕp + U0∂x(SΨ0)+

+
[
k2

pCCg + gc(2)00 + ω2 − σ2 + iω(∂xU0)
]

ϕp − (iω− ∂xU0)SΨ0 = −g fphS∂xh, (7)

and fp(x) = cosh−1(kph
)
. An essential difference between the above Equations (4a) and (7) is the

coefficient c(2)00 (x) defined as follows:

c(2)00 =
〈

∂2
xxZp, Zp

〉
+
(
∂xZp(−h)∂xh

)
Zp(−h), (8)

where the brackets denote the inner product 〈 f1, f2〉 =
z=0∫

z=−h
f1(z) f2(z) dz in the vertical interval

−h < z < 0. The coefficient c(2)00 contains terms proportional to the first and second horizontal
derivatives of the depth function h (i.e., terms involving the square of the bottom slope and curvature),
as well as first and second horizontal derivatives of the current velocity. Also, in Equation (7),
Ψ0 denotes the surface value (at z = 0) of a corresponding stream function defined by

Ψ(x, z) =
z∫

z=−h

∂x ϕ(x, z) dz =
(
∂x ϕp

)
Z̃p(z; x) + ϕpWp(z; x), (9a)

where

Z̃n(z; x) =
z∫

z=−h

Zp(z; x) dz =
sinh

[
kp(z + h)

]
kp cosh

(
kph
) , (9b)
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Wp(z, x) =
z∫

z=−h

∂xZp(z, x) dz = ∂xZ̃p − ∂xh Zn(z = −h) = ∂xZ̃n − fp∂xh. (9c)

From the solution of the above MMS, the free surface elevation is obtained as follows

η = − 1
g
(
−iω + U0 ∂x ϕp −Ψ0S

)
(10)

where Ψ0 = Ψ(x, z = 0).

3.2. Appropriate Boundary Conditions for the Second-Order MMS

Assuming weak shear and no variation of model parameters at the ends of the domain x = xa

corresponding to the wave incidence (in front of the wavemaker) and x = xb corresponding to the
wave transmission side (downwave end of the tank) the MMS becomes(

CCg − U0U2
)
∂2

x ϕp + iω(U0 + U2)∂x ϕp +
[
k2

pCCg + ω2 − σ2
]

ϕp = 0, (11a)

where
ω2 − σ2 = ω2 −

(
ω−U0kp

)(
ω−U2kp

)
= (U0 + U2)ωkp −U0U2k2

p. (11b)

Assuming solutions of the form exp(iλx), the following characteristic equation is derived(
CCg −U0U2

)2
λ2 + ω(U0 + U2)λ− k2

p
(
CCg −U0U2

)
−ω(U0 + U2)kp = 0, (12a)

which obviously has one root λ1 = kp and a second root λ2 = −|λ2| < 0 describing the reflected wave
component which is given by

λ2 = ω(U0+U2)−
√

∆
2(CCg −U0U2)

, ∆ = ω2(U0 + U2)
2 + 4

(
CCg −U0U2

)(
k2

p
(
CCg −U0U2

)
+ ω(U0 + U2)kp

)
. (12b)

According to the present setting of opposing waves and currents, U0, U2 < 0. Thus, the above
wavenumber λ2 < 0 characterizes the reflected wave as predicted by the MMS model, which is now
a component following the current. The latter is generally different to the root km of the dispersion
relation, as obtained from Equations (5) and (6) reformulated for waves and the following current:

(ω + |U0|km)(ω + |U2|km) = kmg tanh(kmh). (13)

On the basis of the above analysis, the solution of the present MMS model at the side of the wave
incidence (x = a) behaves like

ϕp(x) ≈ exp
(
ikpx

)
+ R exp(−i|λ2|x), (14a)

where R is the reflection coefficient (based on the wave field) which is given by

R = ϕp(xa)− exp
(
ikpxa

)
exp(i|λ2|xa), (14b)

and the wave incident boundary condition that is compatible with the above model is

∂x ϕp + i|λ2|ϕp = i
(
kp + |λ2|

)
exp

(
ikpxa

)
, x = xa, (15)

At the side of the wave transmission (x = xb), the wave field behaves like ϕp(x) ≈ T exp
(
ikpx

)
,

and the transmission coefficient is

T = exp
(
−ikpxb

)
ϕp(xb), (16)
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and the corresponding boundary condition describing outgoing waves is

∂x ϕp − ikp ϕp = 0, x = xb. (17)

Finally, using Equation (10), the free surface elevation is calculated in terms of the complex wave
potential. For example, in the wave incidence side (x = a) and neglecting the effect of the shear as
a higher-order effect, we have

ηMMS ≈ − 1
g (−iω + U0∂x)ϕp =

i(ω−U0kp)
g exp

(
ikpx

)
− i(ω+U0|λ2|)

g R exp(−i|λ2|x), at x ≈ xa, (18)

from which the following estimation of the reflection coefficient, based on the free surface elevation (as
in the experiments), is obtained

Rη = R
(ω + U0|λ2|)(

ω−U0kp
) exp(−i|λ2|xa) exp

(
ikpxa

)
, (19)

It is evident from the above equations that only in the case of waves without current that Rη = R .

3.3. Application of the MMS

We first consider the case of waves propagating over the sinusoidal bottom without any current.
The predictions of the present MMS are compared against measured data in Figure 4. We observe
that the present model is able to predict quite well the reflection properties including the resonance
frequency, which is estimated to be 1.17 Hz and the modulus of the reflection coefficient R = 0.56 in
comparison to the experimental measurements, which are denoted by using open circles and dashed
lines. Based on the measured data, the resonant frequency is 1.15 Hz and the reflection coefficient is
Rη = 0.56, respectively.

Next, we consider the reflection of waves in the same environment (Figure 5a) with addition
of an opposing current of mean speed 0.17 m/s. In this case, a distribution of the shear S(x) in the
domain is estimated based on the measured vertical current profiles (see Figure 3). This distribution
is presented in Figure 5b. The shear S(x) is negative near the entrance of the wave and becomes
oscillatory above the ripple bed while its mean value increases, and eventually becomes positive near
the downwave end of the sinusoidal bathymetry.

Based on the above data concerning S(x), the horizontal distribution of the surface current speed
in the domain is calculated assuming conservation of the current mass flow as follows:

U0(x) = (U(xa)− S(xa) h(xa)/2)h(xa)/h(x) + S(x)h(x)/2. (20)
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The comparison of the calculated reflection coefficient, based on wave potential (R) and the
free surface elevation (Rη), is presented in Figure 6a. We observe that the predicted modulus of the
reflection coefficient near resonance (R = 0.42 and Rη = 0.33) is in some agreement with experimental
data (Rexp = 0.37), which is based on wave amplitude measurements upwave of the sinusoidal bottom;
see also Figure 2. However, the MMS overestimates the resonance frequency which is calculated at
1.16 Hz as compared with the experiment measurement 1.11 Hz. For comparison purposes, in Figure 6b
another calculation of the reflection coefficient is presented as also obtained by the present MMS by
neglecting the shear. The latter assumption used in Equation (20) modifies slightly the surface current
speed, as shown in Figure 5d. We observe that the present MMS provides very similar predictions of
the peak frequency of the reflection coefficient, indicating that this model is relatively insensitive to the
shear contents of the opposing current field.
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Figure 6. Reflection coefficient (modulus) in the case of waves over the sinusoidal bottom with current
of mean speed 0.17 m/s. Experimental measurements are denoted by black circles. Predictions by
the present mild-slope model (MMS), based on wave potential (R) and the free surface elevation (Rη),
are denoted by blue and red solid lines and star symbols, respectively. (a) current with shear S(x),
with data as shown in Figure 5b. (b) current without shear S = 0, with data as shown in Figure 5d.
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3.4. Investigation of Resonance Conditions and Discussion

The observed behavior of the MMS in the case of Bragg scattering of waves propagating over
an undulating bottom in the presence of an opposing current, especially concerning the resonant
frequency, can be explained by studying the properties of the second-order Equation (7) in the context
of the parametric resonance of dynamical systems; see, e.g., [24].

We consider again the simplified version of the present MMS, under the assumption of the
small horizontal variation of parameters, as provided by Equation (11a), which is equivalently put in
the form:

∂2
x ϕp + β ∂x ϕp + γ2 ϕp = 0, β =

iω(U0 + U2)

CCg −U0U2
, γ2 = k2

p

[
ω

kp

(U0 + U2)(
CCg −U0U2

)]. (21)

We observe that due to the depth variations, as described by Equation (2), in conjunction with
variations of the current speed described by Equation (20), the dispersion relation Equation (5) will
eventually lead to similar variations of the wavenumber, kp(x) = kp(xa) + δkp sin(Kbx), with Kb
denoting the bottom wavenumber, and δkp the corresponding amplitude of the wavenumber due to
bottom perturbation. Therefore, all coefficients of Equation (21), i.e., both β and γ2, are characterized
by similar variations. Using the following representation of the solution

ϕp(x) ≈ exp(−D(x)) f (x), where D(x) =
1
2

∫
x

β(x) dx, (22)

Equation (21) is put in the form

∂2
x f + κ2 f = 0, κ2 = γ2 −

(
β2/4

)
, (23)

and the resonance is determined by the condition requiring the representative parameter κ to become
half of the bottom wavenumber Kb:

2κ ≡ 2kp

1 +
ω

kp

U0 + U2

CCg −U0U2
+

(
ω

2kp

)2
(U0 + U2)

2(
CCg −U0U2

)2

1/2

= Kb. (24a)

On the other hand, it is known from standard theory [25] that resonant reflection of surface water
waves by sandbars in the presence of a current is manifested when

kp + km = Kb, (24b)

where kp and km are obtained as the roots of Equations (5) and (13), respectively.
These dispersion relations are plotted together in Figure 7, in a configuration corresponding

to the present experimental conditions. The value of 2κ, as obtained from the left-hand side of
resonance condition, Equation (24a), appears as the solid line, denoted as “kmms (U = 0.17 m/s)”.
Moreover, the value of kp + km, corresponding to the left-hand side of the standard resonance condition
Equation (24b), is also shown as the solid line denoted as “standard theory, kp + km”. The dispersion
equation obtained by the present MMS model, Equation (24a), in the absence of a current, is also
plotted in this figure for reference, by using a dashed line denoted as “kmms (U = 0 m/s)”. In the specific
case examined, the resonant conditions are manifested when the above dispersion curves intersect
with the bottom wavenumber, Kb = 4π, which is shown by using a horizontal line.

It is shown that the present MMS provides a resonance frequency of 1.17 Hz without a current
and this value is slightly reduced to 0.165 Hz when a current of mean speed 0.17 m/s is considered.
On the contrary, the standard model, Equation (24b), results in a resonance frequency centered at
1.125 Hz, which is close to the experimental measurements; see also Figure 6. It is also remarked that
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in the absence of a current, the above dispersion relation reduces to the same predictions concerning
the resonant frequency.

It is concluded from the above analysis that the present one-equation MMS model, although it is
found to be able to provide good predictions in inhomogeneous environments and flow conditions in
the case of a smaller reflection where the direction of the wave propagation is well defined (as in the
case of the waves over trapezoidal bar), it fails to provide accurate results in the case of multidirectional
systems, as it happens to be near the resonance of scattered waves over bed ripples where both the
forward- and back-propagating modes are strong.
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4. Derivation of a Two-Equation Mild-Slope System

The purpose of the present work is first to explain why the MMS fails in the specific case
characterized by strong backscattering and to propose a method to overcome this problem. A solution
is offered by means of a coupled system describing the forward and backward wave propagation
components. Such a mild-slope, two-equation system (CMS2) is developed in this section following
the analysis presented by Belibassakis et al. [18]. For this purpose, we use a representation of the wave
system analyzed in forward- and back-propagating modes as follows:

ϕ(x, z) = ϕp(x)Zp(z; x) + ϕm(x)Zm(z; x), (25)

where the vertical structure of the modes is given by

Zp,m(z) = cosh
(
kp,m(z + h)

)
/ cosh

(
kp,mh

)
, (26)

and the wavenumbers, kp and km, are obtained from the dispersion relation of the forward and
backward modes by Equations (5) and (13), respectively. For the derivation of the CMS2, we consider
the variational principle presented by Belibassakis et al. [18]:

∫
x

dx

{
z=0∫

z=−h(x)

(
∂2

x ϕ + ∂2
z ϕ
)
dz δϕ + [∂z ϕ + ∂x ϕ ∂xh]z=−h(x)δϕ −

[
A+∂z ϕ

g − ( hS ∂xh)
]

z=0
δϕ
}
= 0 , (27)
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where the term

A = (−iω + U0∂x)
2 ϕ + (∂xU0)(−iω + U0∂x ϕ− SΨ(0))− (−iω + U0 · ∂x)(SΨ(0)). (28)

4.1. The New CMS2

A coupled system of second-order equations with respect to the unknown modal amplitudes
ϕ1(x) = ϕp(x) and ϕ2(x) = ϕm(x) is derived by using Expression (25) in the variational principle
Equation (27), considering the relationship between the infinitesimal variations, δϕ, δϕ1 and δϕ2:

δϕ(x, z) = δϕ1(x)Z1(z; x) + δϕ2(x)Z2(z; x), where Z1,2(z; x) = Zp,m (z; x) , (29)

resulting in the following system of two equations

∑
n=1,2

{
amn∂2

x ϕn + bmn∂x ϕn + cmn ϕn −
U2

0
g

∂2
x ϕn +

(
2iωU0

g
−

U0
g

∂xU0

)
∂x ϕn+

+
U0

g
∂x(SΨn0)−

(iω− ∂xU0)

g
SΨn0

}
= − fmhS∂xh, m = 1, 2, (30)

where Ψn0 = Ψn(x, z = 0) are given by Equations (9a)–(9c) and (10) using k1 = kp and k2 = km,
respectively. In Equation (30), the coefficients amn, bmn, cmn, m, n = 1, 2, are all functions of x and
are given by

amn = 〈Zn, Zm〉, (31a)

bmn = 2〈∂xZn, Zm〉+ Zn(−h)Zm(−h)∂xh, (31b)

cmn =
ω2 − σ2

m
g

+
iω
g
(∂xU0) +

〈
∂2

xZn + ∂2
z Zn, Zm

〉
+
(

∂zZn|z=−h + ∂xZn|z=−h∂xh
)
Zm(−h). (31c)

where σ1 = (ω + |U0|km)(ω + |U2|km) and σ2 = (ω− |U0|km)(ω− |U2|km).

4.2. Boundary Conditions for CMS2

Assuming weak shear at the ends of the domain x = a corresponding to the wave incidence (in
front of the wavemaker) and x = b corresponding to the wave transmission zone (downwave end of
the tank) and using the decomposition of the solution ϕ(x, z) = ϕ1(x)Zp(z; x) + ϕ2(x)Zm(z; x), the
following boundary conditions are easily derived

ϕp(x = xa) = 1, ∂x ϕm(x = xa) + ikm ϕm(x = xa) = 0, (32)

∂x ϕp(x = xb)− ikp ϕp(x = xb) = 0, ϕm(x = xb) = 0, (33)

which accurately model the required behavior of the wave components, respectively.
In the case of the CMS2, the reflection and transmission coefficients based on the wave potential

are easily obtained as follows
R = ϕm(xa), T = ϕp(xb), (34)

and the corresponding coefficients are obtained by similar formulas applied to the free-surface elevation
associated with each component

ηp = − 1
g

(
−iω + U0

∂ϕp

∂x
−Ψ0S

)
, ηm = − 1

g

(
−iω + U0

∂ϕm

∂x
−Ψ0S

)
. (35)
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4.3. Application of CMS2 to Wave Reflection by the Sinusoidal Bottom and Opposing Current

Results concerning the spatial evolution of waves in the considered environment with an opposing
current of mean speed 0.17 m/s are presented in Figures 8–11, for an incident wave frequency of
1.13 Hz near the expected resonance condition. Both cases of a shear current with S(x) distribution
based on the measured data (Figures 8 and 9) and of a current uniform in depth, involving no shear
(S = 0) (Figures 10 and 11), are considered.

In these figures, solid lines indicate the real part, dashed lines the imaginary part and thick
solid lines the spatial distribution of the modulus of both the forward and back-propagating modes,
both concerning the wave potential and the calculated free surface elevation.
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Figure 8. Velocity potential obtained by the two-equation mild-slope system (CMS2), for frequency
f = 1.13 Hz, in the case of an opposing current of mean strength 0.17 m/s and shear S(x) distribution
based on experimental data (as shown in Figure 5b). The blue solid lines indicate the real part, the green
dashed lines the imaginary part and the red thick solid lines the spatial distribution of the modulus of
both the forward- and back-propagating modes.J. Mar. Sci. Eng. 2019, 7, x 14 of 19 
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Figure 11. Same as in Figure 7, but for the free surface elevation also decomposed to forward and
backward components.

We observe in all cases that the back-propagating component, excited mainly over the rippled
bed, becomes quite strong in the upwave subregion. Also, the consideration of a shear provides more
complicated patterns of the physical quantities considered, especially over the sinusoidal bottom
profile. Finally, comparisons between the calculated results by CMS2 and the experimental data
concerning the modulus of the reflection coefficient are presented in Figure 12. We observe that the
present CMS2 is able to predict quite well the reflection properties including the resonance frequency,
which is estimated to be 1.13 Hz, and the modulus of the reflection coefficient R = 0.41 and Rη = 0.31
in comparison to the experimental measurements, which are denoted by using open circles and
dashed lines.

From the experimental data, the resonant frequency is observed to be 1.11 Hz and the reflection
coefficient Rη = 0.36, respectively. On the other hand, it is observed that the CMS2, for the same case of
waves and opposing current without shear, overestimates the resonance frequency and underestimates
the value of the reflection coefficient, indicating that in the examined case the CMS2 is more sensitive
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to shear S(x) than the more simplified one-equation MMS model. This is due to the fact that the
assumption of a vertically uniform current (S = 0) in Equation (20) results in a different distribution
of surface current U0(x), as presented comparatively in Figure 5b,d, which has an effect on the
coefficients of the present system CMS2 leading to the changes of reflection coefficient shown in
Figure 12b. As discussed in more detail in Appendix A, the present model is based on the assumption
that the shear S is a slowly varying function of the horizontal coordinate, and an additional source
of error is possible due to vertical variations of S near the seabed associated with boundary layer
viscous flow phenomena, which cannot be treated by the present model. Under the assumption
that the above viscous effects do not significantly affect the global wave characteristics outside the
seabed-boundary zone of small thickness compared to the water depth, it is shown that the present
MMS model, being an averaged, in depth, one-equation model based on a specific assumption
concerning the local vertical structure of the wave field of the form cosh

(
kp(x)(z + h(x))

)
, where kp(x)

is an estimation of the forward propagating wavenumber, does not adequately predict strong reflection
due to Bragg scattering.
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The reason is that a second wave component is generated characterized by a different wavenumber, 
and the vertical structure of the wave field outside the viscous bottom boundary layer zone is not 
well represented by the above form, unless the two wavenumbers associated with the forward and 
backward modes are equal, which is the case for waves propagating over the rippled bed without a 
current. The problem is resolved by a system consisting of two interacting modes (CMS2) which 
behaves more efficiently. 

5. Conclusions 

The applicability of the extended mild-slope system (MMS) derived by Touboul et al. [17] and 
its enhanced version by Belibassakis et al. [18] is examined in the case of Bragg scattering of 
normally incident waves over sinusoidal bottom topography in the presence of opposing shearing 
currents. It is shown that the MMS is able to provide quite good predictions in the case of Bragg 
scattering of waves over rippled bathymetry without a current. However, it fails to accurately 
predict the resonant frequency in the additional presence of a current, although it still provides 
reasonable values of the reflected wave amplitudes. In order to resolve the above mismatch, a 
two-equation mild-slope system (CMS2) is derived from the variational principle presented in [18], 
assuming representation of the wave potential as a superposition of the forward- and 
back-propagating modes. The latter system is compared against experimental measurements in a 
wave flume and is shown to provide more accurate predictions concerning both the resonant 
frequency and the amplitude of the reflection coefficient. Future work will be devoted to the 
examination of the derived model for a more general wave system over realistic seabed 
topography. 
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Figure 12. Reflection coefficient (modulus) in the case of waves over the sinusoidal bottom with
a current of mean speed 0.17 m/s. The experimental measurements are denoted by black circles.
The predictions by the present CMS2, based on wave potential (R) and the free surface elevation (Rη),
are denoted by blue and red solid lines and star symbols, respectively. (a) Results obtained using
current with shear S(x) distribution based on experimental data (as shown in Figure 5b). (b) Results
for a vertically uniform current without shear (S = 0).
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The reason is that a second wave component is generated characterized by a different wavenumber,
and the vertical structure of the wave field outside the viscous bottom boundary layer zone is not
well represented by the above form, unless the two wavenumbers associated with the forward and
backward modes are equal, which is the case for waves propagating over the rippled bed without
a current. The problem is resolved by a system consisting of two interacting modes (CMS2) which
behaves more efficiently.

5. Conclusions

The applicability of the extended mild-slope system (MMS) derived by Touboul et al. [17] and its
enhanced version by Belibassakis et al. [18] is examined in the case of Bragg scattering of normally
incident waves over sinusoidal bottom topography in the presence of opposing shearing currents.
It is shown that the MMS is able to provide quite good predictions in the case of Bragg scattering of
waves over rippled bathymetry without a current. However, it fails to accurately predict the resonant
frequency in the additional presence of a current, although it still provides reasonable values of the
reflected wave amplitudes. In order to resolve the above mismatch, a two-equation mild-slope system
(CMS2) is derived from the variational principle presented in [18], assuming representation of the
wave potential as a superposition of the forward- and back-propagating modes. The latter system is
compared against experimental measurements in a wave flume and is shown to provide more accurate
predictions concerning both the resonant frequency and the amplitude of the reflection coefficient.
Future work will be devoted to the examination of the derived model for a more general wave system
over realistic seabed topography.
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Appendix A

We consider the scattering of water waves propagating in a 2D strip characterized by slowly
varying bathymetry h = h(δx), δ being a small parameter, in the presence of a linear vertical shear
current, as defined by Equation (1), which is also considered to be slowly varying in the horizontal
directions, U0 = U0(δx) and S = S(δx). Let the flow be (U + u, w) and assume that the wave velocity
field (u, w) = (∂xφ, ∂zφ) exp(−iωt) is of small steepness. Separating the total pressure, P, into the
background flow component, p0, associated with the current, and the wave perturbation, p, inserting
the above decomposition into the Euler equations and maintain terms up to leading order in wave
steepness, we obtain for the total field

∂xU + ∂2
xxφ + ∂2

zzφ = 0, (A1)

−iω ∂xφ + (U + ∂xφ)
(
∂xU + ∂2

xxφ
)
+ ∂zφ ∂2

xzφ = − ∂x P
ρ , and

−iω ∂zφ + (U + ∂xφ)∂2
xzφ + ∂zφ∂2

zzφ = − ∂zP
ρ ,

(A2)

and for the steady background current field, respectively,

∂xU = 0, (A3)

U∂xU = −∂x p0

ρ
and 0 = −∂z p0

ρ
, (A4)
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where subindices denote differentiation with respect to the horizontal coordinate. Using Equation (A3)
placed into (A1) we obtain

∂2
xxφ + ∂2

zzφ = 0, (A5)

Moreover, using Equation (A4) placed into Equation (A2) and differentiating the first of them
with respect to z and the second with respect to x, and subtracting by parts we obtain

∂2
xxφ + ∂2

zzφ = −∂xS
S

∂xφ = −δ
S′

S
∂xφ, (A6)

where a prime denotes differentiation with respect to the argument of the shear function. Equation (A6)
is consistent with Equation (A5) only for constant shear, S. In addition, in the case of horizontally slowly
varying shear function (at the same order as the depth function) we see from the above equations that
the potential flow model could offer a plausible approximation.

In the experimental part of the present research, the generated currents are almost linear in
depth outside the region of the rippled bed zone, and the shear, S, is slowly varying horizontally.
However, due to boundary layer phenomena, the current velocity near the seabed departs from a linear
z-distribution and could have an effect especially for frequencies where the wave flow penetrates
deeply into the water column and interacts with the bottom. Within the rippled bed zone, the effects
of viscosity, including flow separation and recirculation could be important. However, under the
hypothesis that these effects do not significantly modify the global wave characteristics outside
the above seabed-boundary flow zone (of small thickness with respect to the water depth), in the
present work, simplified depth-integrated models, based on the specific vertical structure of the wave
field, are investigated to identify additional limitations due to the effects of strong backpropagating
components generated by resonant reflection.
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