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Abstract :  

The suitability of some second moment closures is discussed herein. A general frame of strongly 

realisable models is exhibited, and the ability of so-called "slow" terms to provide return-to-isotropy 

is examined. Hyperbolicity of first order differential systems is then investigated. When focusing on 

a simple so-called Gaussian closure, the solution of the Riemann problem associated to the 

generalised convection system is detailed, which confirms that realisability still holds when non 

regular solutions are involved. A priori suitable numerical consequences are then discussed. These 

results should be related to recent work pertaining to the numerical modelling of compressible flows 

using second order closures. 
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Nomenclature :

f,i    Partial derivative of f  with respect to xi

f,t    Partial derivative of f  with respect to t

f  = < f > + f' Reynolds decomposition 

Dt f  = f, t  + <Ui > f, i       Convective derivative of f  function 

<p>   Mean pressure  

<T>   Mean temperature  

<Ui >    Mean velocity in xi  direction 

 Rij = <ui uj >   (∈R3x3) Reynolds stress tensor 

X j = <θ  uj >  Turbulent heat flux 

<θ
2

>   Scalar (temperature) variance 

Zij   = <θ
2
> Rij   - X i X j    (∈R3x3)

I R = 2 K = trace ( R ) Turbulent kinetic energy 

II R = trace ( R2) Second invariant of R

III R = trace ( R3) Third invariant of R

Bij = Ui,j

S ij = Ui,j +Uj,i    

Gij = <ui uk>Uk , j + <uj uk>Uk , i = (R B  + B t R)ij

Pij = <ui uk >Uj,k + <uj uk >Ui,k = (R B t + B  R)ij

P = 1
2

 Pii = 1
2

 Gii

ε =   ν <ui,kui,k>  Dissipation rate of K 

εθ = λ <θ ,k θ ,k >  Dissipation rate of <θ
2

>

τK =  (ε / K)
-1

 Turbulent mechanical time scale 

τθ = (εθ / <θ
2

>)
-1

 Turbulent scalar time scale 

For i=1-> 3 : δ 1
 i
  = Rii      First fundamental minor of R (no summation) 

For i=1-> 3  :  

δ 2
 i
  =  Rαα Rββ   -  (Rαβ)2  

 Second fundamental minor of R  (no sum- 

   -mation), α  and β  non equal, non equal to i

δ 3  = det  ( Rij   )     Third fundamental minor of R  
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For i=1-> 3 : ∆ 1
i
  =  Zii      First fundamental minor of Z (no summation) 

For i=1-> 3  :  

∆ 2
 i
  =  Zαα Zββ   -  (Zαβ)2  

 Second fundamental minor of Z  (no sum- 

   -mation), α  and β  non equal, non equal to i

∆ 3  = det  ( Zij   )     Third fundamental minor of Z  
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Introduction

Statistical modelling of turbulence has generated the need for computation of complex sets of 

partial differential equations. This is mainly due to the highly non linear terms present in 

instantaneous Navier Stokes equations on which is based such a modelling process. This is true of 

course for both compressible and incompressible flow patterns. In both cases, numerical simulation 

requires applying for stable and accurate enough schemes in order to ensure convergence towards 

the right solution. When focusing on compressible flows, it is now well admitted that upwinding 

techniques have enabledgaining sufficient stabilizing effects to allow computation of flows 

including strong shocks, even when viscous effects are of small amplitude or even vanishing . It 

does not necessarily mean that these provide the ultimate numerical approach for such a purpose, 

since the balance between stability and accuracy is clearly in favour of the former, and consequently 

may penalize improvement of accuracy. Nonetheless, use of standard reconstruction techniques 

(such as MUSCL approach, or ENO schemes,...) has proved to be an efficient way to handle the 

whole. From a technical point of view, these upwinding techniques rely on the theory of hyperbolic 

systems of conservation laws, and have been recently extended to the framework of non linear 

hyperbolic systems which do not have any conservation form. Clearly, approximate Riemann 

solvers are almost overwhelmingly present in the frame of compressible flows, but are seldomly 

used in the frame of incompressible flows. They have been mainly used in the framework of 

conservative Euler -or Navier Stokes- equations for gas dynamics. More recently, they also have 

been applied for investigation of magneto hydrodynamics, and also to deal with averaged Navier 

Stokes equations with statistical Favre averaging. A first step has been devoted to the K or K-e type 

closures ( ? ? ? ?°), and in a second step to realisable second-moment closures ( ? ? ? ?). A unifying 

approach based on the entropy concept was also proposed  (see ? ?) in order to cope with first or 

second order closures. These methods have been successfully implemented in industrial codes using 

unstructured Finite Volume approach (N3S-NATUR ? ?, PLEXUS ? ,Code_Saturne ? ?). It has also 

been demonstrated that standard techniques based on Euler type algorithms lead to unstable 

computations (when focusing on impninging jets on walls for instance, see ? ? ? and ? ? among 

others) whiwh lead to blow up of codes. These techniques may also be used to enforce the coupling 

between Eulerian and Lagrangian approaches ( see ? ?, ? ?, ? ? and ? ? for instance). They are robust 

enough to be implement 

We examine here the suitability of some second moment (so-called Gaussian) closures involved in 

systems of partial differential equations which aim at predicting the behaviour of incompressible 

turbulent flows including buoyant effects. As in /5/, special emphasis is given on the realisability 

conditions and to the link between realisability requirement and hyperbolicity constraints. Present 

contribution is organised as follows. In section I, governing equations and realisability requirements 

are briefly recalled. In section II, the class of strongly realisable closures initially defined in /5/ is 
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extended to a more general framework when dealing with isothermal flows ; besides, some features 

concerning return to isotropy process are also recalled. In section III, a simple closure is proposed, 

which enables to achieve strong realisability in the non isothermal case. Section IV is devoted to the 

examination of the general eigenvalue problem, which confirms that realisability is compulsary to 

gain hyperbolicity. Since the result stated in section III requires the boundedness of two different 

tensors, which might be violated, especially when dealing with "non-viscous" Gaussian closures, the 

Riemann problem associated with the initial value problem obtained by getting rid off continuity 

constraint and eliminating mean pressure variable is examined in section V ; results obtained show 

that over-realisability still holds (in a standard sense) but that the maximum principle for mean 

temperature is no longer valid. Some numerical consequences of these results are given in the last 

section. 
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I - Basic set of equations and main requirements :

I.1 Governing equations 

For a wide variety of problems, temperature field is assumed not to have any significant 

influence on the velocity field, except through external gravity effects, which stands for usual 

Boussinesq approximation. Hence, instantaneous velocity field remains divergence free and 

the governing equation for the instantaneous temperature partially decouples with the 

remaining equations. Thus, no compressibility effect is accounted for in the present study, 

and the basic set of equations used to construct turbulent model writes : 

Ui, i = 0                                          (1.1) 

Ui ,t + Uj Ui ,  j = (
-p

ρ0
δij +ν  (Ui ,  j +Uj,  i ))

,j
+ βi  (T - T0)

                                       (1.2) 

T,t + Uj T,  j = (λ  T,  j  ),j                                         (1.3) 

Considering standard statistical approach and focusing on one point closures, the latter enable 

to derive the well-known unclosed set of equations to describe mean velocity, pressure and 

temperature fields, i.e. : 

<Ui >,i = 0                                        (2.1) 

<Ui >,t + <Uj > <Ui >, j = (<Σ ij >),j - (Rij ),j + βi (<T > - T0)                               (2.2) 

<T >,t + <Uj> <T >,  j = (λ  <T >,  j  ),j - X j,j                                        (2.3) 

where : 

<Σ ij > = -
<p >

ρ0
δij + ν  ( <Ui >,j + <Uj >,i)

           

In order to close previous set, governing equations for second moment unknowns Rij, Xj and 

<θ2> are needed ; these are listed below : 

(Rij ),t  + <Uk>  (Rij ),k   + Pij - ( βi X j +βj X i ) = Φij - (dijk ),k                              (2.4) 

(X i ), t  + <Uk>  (X i ),k   + X k <Ui>,k + Rik <T >,k -  βi <θ
2
>  = Φi - (dik ),k        (2.5) 

<θ
2
>, t  + <Uk>  <θ

2
>,k   +2 X k <T >,k   = Φ - (dk ),k                                        (2.6) 

while noting : 

Φij   = < uj Σik ,k
'

+ ui Σjk ,k
'

> dijk   = <ui uj uk >   (3) 

Φi  = < θ Σ ik ,k
'

> + λ <ui θ ,kk > dik   = <ui θ uk >

Φ   = 2 λ <θ θ ,kk > dk   = <θ θ uk >

Hence, set (2) requires the modelling of the Φij ,Φi, Φ    , dijk   ,dik , dk  contributions.  

          

I.2 Realisability requirements
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When dealing with non isothermal flows, the following realisability condition should hold 

(see /8/), which is: 

A =

R11 R12

R21 R22

R13 X 1

R23 X 2

R31 R32

X 1 X 2

R33 X 3

X 3 <θ
2
>

=
R X

X t <θ
2
>

must be positive half definite. Provided that < θ2> is non zero, the latter may be premultiplied 

on the left by the non singular matrix : 

B =
I -<θ

2
>

-1
X

0 1

and on the right by Bt ; thus : 

∀ Z  ∈ R4 ,  Z t A Z  ≥ 0

is achieved as soon as (see /8/ for similar statement) : 

∀ Y  ∈ R4 ,  Y t  
R-<θ

2
>

-1
XX t 0

0 <θ
2
>

 Y  ≥ 0

Hence, provided that < θ2> is non zero : 

(i) Z = (<θ
2
>R- XX t) must be half definite positive                                 (4.1) 

(ii)<θ
2
> must be  positive                                 (4.2) 

Moreover, if < θ2> is zero : 

(i)' R must be half definite positive

(ii)'X t X must be zero

Note that (i) implies : 

trace (Z) = <θ
2
> trace (R)- X tX ≥ 0

Thus, (ii)' is contained in (i). Note also that for non vanishing value of < θ2> which fulfills 

(ii), (i)' holds since : 

R = <θ
2
>

-1
(Z + XX t)

From now on, the limit case of vanishing value of scalar variance will be omitted, and (4.1) 

and (4.2) will be accounted for while ensuring that < θ2> and the three fundamental minors of 

Z (namely ∆1
1
, ∆2

3
, ∆3) remain positive (which stands for over-realisability concept as 

defined in /5/). Moreover, closures will be chosen in such a way that : 

 f  = 0 � ( Dt f = 0 and : Dt (Dt f  )  ≥ 0)  for : f  = ∆1
1
, ∆2

3
, ∆3 (5) 

Obviously, closures involving time scales τK and τθ  should be such that : 

τK > 0 and : τθ > 0

  

I.3 Maximum principle for mean temperature and scalar variance 
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Going back to the original system (1.1, 1.2, 1.3), and considering micro-gravity effects for 

sake of simplicity, we may expect that slightly different initial (or boundary) conditions will 

provide different solutions for (k) or (k+1) experiments ; denoting by U(k)(x,t), T(k)(x,t), 

P(k)(x,t) solutions associated to (k) experiment, it occurs that T(k)(x,t) will be solution of : 

T,t
(k )

+ Uj
(k )

 T,  j
(k )

= (λ  T,  j
(k )

  ),j where : (x ,  t  ) ∈ Ω x (0,T )

with given initial and boundary conditions, which may be of Dirichlet type i.e. : 

T (k )(x ,  t  = 0) = T0
(k )

(x )             for  : x ∈ Ω

T (k )(x ,  t  > 0) = T
δΩ
(k )

(x ,t )
          for  : (x ,t) ∈  δΩ  x  (0,T )

Provided that there exists two real constant values (independant of statistics) such that : 

Tlow ≤ T
δΩ
(k )

(x ,t ) ≤ Tup    and :  Tlow ≤ T0
(k )

(x) ≤ Tup

then T(k)(x,t) will be such that : 

Tlow ≤ T (k )(x ,t ) ≤ Tup

Consequently, the following constraint for the average value <T> (x,t) should hold : 

Tlow ≤ <T>(x ,t ) ≤ Tup   (6) 

Moreover, (<T>- T(k))(x,t) will be such that : 

0 ≤ (T (k )-<T>)
2
(x ,t ) ≤ (Tlow -Tup)2

    

Hence, scalar variance <θ2> should fullfill : 

0 ≤ <θ
2
>(x ,t ) ≤ (Tlow -Tup)2

                                         (7) 

It must be emphasized that the latter still holds when external (buoyancy) forces are 

accounted for. Note anyway that constraints (6) and (7) are not intrinsic to mean temperature 

and scalar variance entities, unlike (4.1) and (4.2) ; they occur in fact to stand for some 

counterpart of (5), in the sense that they arise while focusing on the instantaneous governing 

equations (1.1) to (1.3).  
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II Some more about isothermal turbulent flows

Before going ahead, let us go back to the isothermal case. In a previous work, it was 

suggested that the following closure of Reynolds stress governing equations enable to achieve 

strong realisability : 

Φij = α2 Rij + α3 Rij
2 + α5 ( Rik <Uj >,k+ Rjk <Ui >,k )

                                    (8.1) 

                   + α6 ( Rik <Uk >, j+ Rjk <Uk >, i )   

However, a few questions naturally arise. First of all, do "slow terms" enable to retrieve 

"return to isotropy" process which appears to be an important feature actually occuring in 

basic experimental apparatus ? Second, this closure obviously no longer contains tensorial 

forms proportionnal to either (δij ) or  ( <Ui >,j+ <Uj >,i )  ; does that mean that the latter 

may not appear in any formal development ? Third, and though it also does not contain any 

(δij ) or  ( <Ui >,j+ <Uj >,i )  terms, another proposal described in /11/ (see /12/ also), 

which fulfils realisability requirement writes : 

Φij
SL

=  -6

5 q2
( Rlk <Ul >,k ) Rij   +

3
5

( Rik <Uj >,k+ Rjk <Ui >,k )

       

+ 2

5 q2
( Rik

2 <Uj >,k+ Rjk
2 <Ui >,k - (Rjk  Rli + Rik  Rlj)<Ul >,k)

                (8.2) 

which actually differs from the one above ; does the whole make emerge any contradiction ?  

As far as second and third items are concerned, it seems that the answer dwells in a 

broadened frame of strongly realisable closures : 

φij = 2β0 Rij + 2 β1 Rij 
2 + 2 β2 Rij 

3 + β3 (RB + B tR)ij   

+ β4 (B R + RB t)ij + β5 (R 2B  + B tR 2)ij   

          +( β6 + β8)(R (B  + B t)R )ij   + β7 (R 2B t + B R 2)ij + β9 (R 3B  + B tR 3)ij    

          + β10 (R 2B t R + R B  R 2)ij + β11 (R 3B t  + B R 3)ij + β12 (R 2B  R + R B t R 2)ij   

          + β13 (R 2B  R + R B t R 2)ij + β14 (R 2B t R + R B R 2)ij                (8.3) 

where βi  's functions should obey some constraints and B should remain bounded (see 

appendix 1 for proof). Using Cayley-Hamiltonian identity provides a counterpart of the latter 

which makes "explicitely" arise (δij ) or  ( <Ui >,j+ <Uj >,i )  contributions. Even more, it 

must be noted that both (8.1) and (8.2) are included in the latter.  

If we turn now to return-to-isotropy topic, it may be checked that the behaviour of (realisable) 

solutions of : 

(Rij), t = α2 Rij + α3 Rij
2

   (9) 

is such that return to isotropy is achieved in the purely two-dimensional case, and in a weaker 

sense in the three-dimensional case, provided that first and second (negative) co-factor 
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functions are chosen in a suitable way. Previous result still holds in the three dimensional 

case, when dealing with the most general expansion of "slow" part : 

(Rij), t = α2 Rij + α3 Rij
2 + α4 Rij

3

provided that third co-factor function remains negative. Proof is given in appendix 3. Note 

that the present analysis also confirms the need for boundedness of the inverse of turbulent 

(mechanical) time scale τk . The anisotropy of the Reynolds stress tensor is indeed a very 

important feature since traceless part of R  which writes : 

aij = Rij - I
3

δij

explicitely contributes to the budget of rotational of mean velocity field : 

Ωi,t + <Uj > Ωi,  j + Ωl <Ui >,  l  - ν Ωi,  ll = - εijk (alj ),lk

(noting : Ωi  =  εijk (<Uj > ),k) 
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III A simple Gaussian closure for non isothermal turbulent flows

We examine here a very simple so-called Gaussian closure, setting : 

dijk   = <ui uj uk > = 0  ;  dik   = <ui θ uk > = 0  ;  dk   = <θ θ uk > = 0

and : 

Φij = α2 Rij + α3 Rij
2 + α5 ( Rik <Uj >,k+ Rjk <Ui >,k ) + α6 ( Rik <Uk >, j+ Rjk <Uk >, i )

Φi =
(α2+β1)

2
 X i + α3 (Rik  X k -

(X kX k)

2 <θ
2
>

X i ) + α5  X k <Ui >,k   + α6  X k <Uk >,i

Φ = β1 <θ
2

>   

with : 

α2  = α2
'   (IR ,  IIR ,  IIIR ) ε

IR
  ;  α3  = α3

'   (IR ,  IIR ,  IIIR ) ε
IIR

αi  = αi
'  (IR ,  IIR ,  IIIR )   for : i = 5, 6

β1  = β1
'
  (IR ,  IIR ,  IIIR )

εθ

<θ
2
>

where all primed functions stand for non dimensional bounded functions. We have the 

following result, defining : 

Cij = X i <T >, j / <θ
2

>   (10) 

Prop. III :

Provided that the inverses of turbulent mechanical and scalar time scales, and that Bij's and 

Cij's remain bounded, set (2) associated to above Gaussian closure is strongly realisable. 

This represents a straightforward extension of the one stated in /5/. The proof may be 

obtained as follows. First, (2.4, 2.5, 2.6) may be rewritten in : 

(Zij ), t  + <Uk>  (Zij ),k   + Zik <Uj>,k + Zjk <Ui>,k

  

+ 2  Zij (
X k <T>,k

<θ
2
>

) - Zik (
X j <T>,k

<θ
2
>

) - Zjk (
X i <T>,k

<θ
2
>

) = RHS ij

<θ
2
>, t  + <Uk>  <θ

2
>,k   +2 X k <T >,k   = Φ

(X i ), t  + <Uk>  (X i ),k   + X k <Ui>,k + Rik <T >,k -  βi <θ
2
>  = Φi         

noting : 

RHS ij   =  α5 (Zik   <Uj>,k + Zjk   <Ui>,k ) + α6 (Zik   <Uk>, j + Zjk   <Uk>, i )

  

+ (α2 + β1) Zij   + α3  
Zij

2

<θ
2
>

  

Introducing :  
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 Hkj   = (α5 -1)  <Uj>,k   + α6   <Uk>,j + Cjk + (
α2+β1

2
- Cll ) δjk + α3  

Zkj

2 < θ
2
>

enables to rewrite : 

(Zij ), t  + <Uk>  (Zij ),k   = Zik Hkj + Zjk Hki

and : 

<θ
2
>, t  + <Uk>  <θ

2
>,k   = (β1 - 2 Cll )  < θ

2
>

The latter enables to ensure that the scalar variance will remain positive, due to the 

boundedness of both inverse of turbulent scalar time scale and Cij 's components. Moreover, 

applying for appendix 1 permits to conclude that the model is strongly realisable, provided 

that, in addition, inverse of turbulent mechanical time scale and the Bij 's remain bounded, 

since : 

α3
Zkj

2 <θ
2

>

= α3
'   (IR ,  IIR ,  IIIR ) ( ε

IR
) (

IR
2

2IIR
) (

Rkj

IR
  -

X j X k

IR <θ
2

>

)

with : 

1 ≤
IR

2

IIR
≤ 3     and :   abs (

X j X k

IR <θ
2

>

) ≤
Rjj

1/2  Rkk
1/2

IR
≤ 1

2

It must be underlined anyway that the boundedness of Cij components does not arise naturally 

since Schwarz inequalities only provide : 

abs (Cij ) ≤  Rii
1/2 abs ( <T >, j )

<θ
2

>
1/2

This will be implicitely revisited in section V. 
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IV - The eigenvalue problem 

We focus now on the following non viscous realisable system while neglecting zeroth order 

terms associated to gravity, which writes : 

<Ui >,i = 0                                        (11) 

<Ui >, t + <Uj > <Ui >,  j + (Rij ), j + <p >,  i = 0

(Rij ),t  + <Uk>  (Rij ),k   + Pij -  Φij
r

= 0

(X i ),t  + <Uk>  (X i ),k   + X k <Ui>,k + Rik <T >,k -  Φi
r
= 0

<θ
2
>, t  + <Uk>  <θ

2
>,k   +2 X k <T >,k   = 0

<T >, t + <Uj> <T >,  j + X j, j = 0                                      

noting : 

Φij
r

=  α5 ( Rik <Uj >,k+ Rjk <Ui >,k ) + α6 ( Rik <Uk >,j+ Rjk <Uk >,i )

Φi
r
= α5  X k <Ui >,k   + α6  X k <Uk >,i

We assume here that : 

αi = αi
' (IR,  IIR,  IIIR ) for : i = 5, 6

We consider two-dimensional turbulence i.e. : 

<U3 > (x,  y,  z,  t ) = 0                      (H1) 

<u1u3> (x,  y,  z,  t ) = <u2u3> (x,  y,  z,  t ) = <θu3> (x,  y,  z,  t ) = 0       (H2) 

<φ >,3 (x,  y,  z,  t  ) = 0 , whatever φ  stands for.                      (H3) 

Provided that zero Dirichlet boundary conditions and initial conditions are retained, both (H1) 

and (H2) are consistent with (11), which may be rewriten in the form : 

A W , t + AxW ,x + AyW ,y = 0

while defining : 

W t = (<U1>,< U2>,< u1u1>,< u2u2>,< u1u2>,< u3u3>,< p >,<θu1>,<θu2>,<θ
2
> ,<T> ) ∈ R11

A ∈ R11x 11 ,  Ax ∈ R11x 11 ,  Ay ∈ R11x 11

This enables to state : 

Prop. IV :

System (11) is such that : 

∀(nx ,  ny) ∈ R 2 / nx
2 + ny

2 = 1,  det (nxAx + nyAy- λ A ) = 0 � λ ∈ R

if and only if : 

∀ ( nx ,  ny) ∈ R2,   ( nx ,  ny)
<u1u1> <u1u2>

<u1u2> <u2u2>

nx

ny
  ≥ 0

and : 

∀ n t = (nx ,  ny) ∈ R 2 ,  n tCn ≥ 0

noting : 
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C = (1 - α5)  
<u1u1> <u1u2>

<u1u2> <u2u2>
- α6

<u2u2> -<u1u2>

-<u1u2> <u1u1>

This deserves a few remarks. First condition stands for standard over-realisability 

requirement ; besides, second condition identifies with the one associated to the purely 

isothermal turbulent case. Moreover, both of these only require positivity of R-eigenvalues, 

which means that system (11) will remain hyperbolic even if determinant of submatrix below 

: 

<u1u1 > <u1u2 > <θu1 >

<u1u2 > <u2u2 > <θu2 >

<θu1 > <θu2 > <θ
2

>

takes (strictly) negative values. Note that the independance of the λi's with respect to thermal 

correlations might be expected since governing equation for instantaneous temperature 

weakly couples with the dynamical field. It should also be underlined that above proposition 

still holds when accounting for ε variable while adding  

(ε ), t  + <Uk>  (ε  ),k   +Cε1

ε
K

 Pkk   = 0
   (12) 

to previous system (11). Before going further on, we now set : 

(1 - α5)  ≥ 0   

- α6 ≥ 0
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V Analysis of the generalised convection system 

It looks of prime importance to have deeper insight in the behaviour of Reynolds stress tensor 

(and also thermal correlations). During past years, considerable efforts of workers have been 

devoted to the analysis of Reynolds stress asymptotical behaviour within the frame of 

homogeneous turbulence, i.e. discussing basic system : 

(Rij), t = φij
slow

( Rkl , ε )

However, very little is known about (non linear) generalised convection system issuing from 

(11). In section III, it was suggested that suitable forms for φij
rapid

, φi
rapid

 enable to ensure 

realisability of Reynolds stress tensor and thermal correlations. However, this is true under 

the assumption of boundedness of turbulent mechanical and thermal time scales τK and τθ  

(involved in slow part), but also requires that all Bij 's and Cij 's are bounded, even when so-

called "rapid terms" are neglected (due to the presence of Pij  ). Hence, what can be said about 

behaviour, and moreover about realisability of Reynolds stress tensor, viewed as a solution of 

the first order initial-value problem issuing from (11), which writes : 

<Ui >, t + <Uj > <Ui >,  j + (Rij ), j = 0   (13) 

(Rij ),t  + <Uk>  (Rij ),k   + Pij -  Φij
r

= 0

(X i ),t  + <Uk>  (X i ),k   + X k <Ui>,k + Rik <T >,k -  Φi
r
= 0

<θ
2
>, t  + <Uk>  <θ

2
>,k   +2 X k <T >,k   = 0

<T >, t + <Uj> <T >,  j + X j, j = 0                                      

This will be discussed afterwards, assuming that : 

Φij
r

=  α5 ( Rik <Uj >,k+ Rjk <Ui >,k ) + α6 ( Rik <Uk >,j+ Rjk <Uk >,i )

Φi
r
= α5  X k <Ui >,k + α6  X k <Uk >,i

and still setting : 

αi = αi
' (IR,  IIR,  IIIR ) for : i = 5, 6

Moreover, an additional hypothesis will be made (to ensure objectivity requirement) : 

α5
' (IR,  IIR,  IIIR ) = α6

' (IR,  IIR,  IIIR )   (14) 

We even more restrain our attention to the two-dimensional case, as defined in section IV, 

and use positivity constraint (see section IV) : 

- α6 ≥ 0

Now, we note :  

W t = ( <U >,< V >,< u 2>,< v 2>,< uv >,< θu >,< θv >,< θ
2
>,<T >) (15) 

and : β = 1 - 2 α5

 and introduce the non viscous problem : 

<U >, t + <U > <U >,x + <V > <U >,y + <u 2>,x + <uv >,y = 0   (16) 
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<V >, t + <U > <V >,x + <V > <V >,y + <uv >,x + <v 2 >,y = 0

<u 2 >,t + <U > <u 2>,x + <V > <u 2>,y + 2β  <u 2> <U >,x ... 

   + 2 (1- α5 ) <uv > <U >,y -  2  α5  <uv > <V >,x = 0

<v 2 >,t + <U > <v 2>,x + <V > <v 2>,y + 2β  <v 2> <V >,y

   + 2 (1- α5 ) <uv > <V >,x -  2  α5  <uv > <U >,y = 0

<uv  >,t + <U > <uv >,x + <V > <uv >,y + β  <uv >(<U >,x + <V >,y)

  +  (1- α5 ) (<v 2 > <U >,y + <u2 > <V >,x ) -   α5 ( <v 2 > <V >,x+ <u2 > <U >,y ) = 0

<θu  >,t + <U > <θu >,x + <V > <θu >,y + β <θu > <U >,x + <u 2> <T >,x + <uv > <T >,y

   - α5  <θv > <V >,x + (1 - α5)  <θv > <U >,y = 0

<θv  >,t + <U > <θv >,x + <V > <θv >,y + β <θv > <V >,y + <uv > <T >,x + <v 2 > <T >,y

   + (1- α5)  <θu > <V >,x   - α5  <θu > <U >,y = 0

<θ
2

>, t + <U > <θ
2
>,x + <V > <θ

2
>,y + 2 <θ u > <T >,x + 2 <θ v > <T >,y = 0

<T >,t + <U > <T>,x + <V > <T>,y   +  <θ u >,x +  <θ v >,y = 0

As happens in the isothermal case, it occurs that :

Prop. V.1 : 

System (16) , which may be rewritten in the form : 

W , t + Ax W ,x + Ay W ,y = 0

is such that : 

∀(nx ,  ny) ∈ R 2 / nx
2 + ny

2 = 1,  det (nxAx + nyAy- λ I) = 0 � λ ∈ R

if and only if Reynolds stress tensor R  is realisable and if : 

1- α5 ≥ 0  and :  - α5  ≥ 0

As underlined in section IV, over-realisability of R only is needed. However, we may get a 

better result, setting β to 1, and seeking one dimensional solutions of (16) independent of y-

direction (setting : W ,y = 0), which provides a similar system (see appendix 4) : 

W , t + Ax W ,x   = 0    (17) 

for which we get : 

Prop. V.2 : 

 * System (17) is strictly hyperbolic ; its eigenvalues read: 

λ1  = <U  > - (2  <u2> )1/2
   λ2,3   = <U  > - (  <u2> )1/2

λ 4,5,6   = <U  >

λ 7,8   = <U  > + (  <u2> )1/2
  λ9  = <U  > + ( 2  <u2> )1/2

          ** The Riemann problem associated to system (17) and initial conditions : 
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W (x,  t = 0) = WL    for :  x < 0

W (x,  t = 0) = WR    for :  x  > 0

         does admit a unique solution as soon as initial values are such that : 

         <U>R - <U>L < 21/2 ( <u2>R
1/2 + <u2>L

1/2 )

and the solution satisfies over-realisability requirement, provided that left and right (initial) 

states WL  and WR  fulfill it. 

  

* Despite from the fact that the proof requires tedious calculations, it happens to be quite 

simple (a sketch of the proof is given in appendix 4, and see /13/ for similar proof in the gas 

dynamics case) but deserves a few comments. First of all, jump conditions pertaining to 

governing equations of all corellations have been obtained choosing a path to connect two 

different states on each side of a discontinuity, due to the fact that these equations are not of 

conservative type. This path is given by (see /6/) : 

φ  (WL ,WR,  s ) = s WR + (1-s ) WL

Unlike in some other models (see /4/, /9/, /16/), pseudo conservative equations may be 

derived here, while introducing new variables : 

w ij = <Ui ><Uj > + Rij  (instead of Rij) 

Ξ
2

= <θ
2

> + <T >2  (instead of <θ
2

>) 

yi = <Ui ><T > + X i  (intead of X i) 

and rewriting (16) as follows: 

<Ui >, t + <Uj > <Ui >,  j + (w ij - <Uj > <Ui >), j = 0

(w ij ), t  + <Uk>  (w ij ),k   +   ( <Uj> w ik + <Ui> w jk - 2 <Ui><Uj><Uk> ),k   = 0

(yi ), t  + <Uk>  (yi ),k    + (yk <Ui> + w ik <T > - 2 <T > <Ui> <Uk> ),k   = 0

<Ξ
2
>, t  + <Uk>  <Ξ

2
>,k   + (2 yk <T > - 2 <T >2<Uk>),k   = 0

<T >, t + <Uj> <T >,  j + ( yj - <Uj> <T > )j = 0                                      

This allows to introduce new jump conditions, which may be shown to be fully compatible 

with the ones used in appendix 4 (lemma 4.d). 

Another point concerns weak entropy concept introduced in lemma 4.c to select the 

physically releavant solution to connect two different states on each side of a genuinely non 

linear field. It must be noted that the entropy function η is of course not strictly convex here 

since : 

η  (W ) = 1
2

<U >2 + <u2>  

This however is sufficient to connect states through genuinely non linear fields. 

** The proof contains the construction of the solution, which a posteriori  enables to check 

that over-realisability constraints are fulfilled :

(i)   <u2>(x,t )  ≥ 0   
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(ii) ( <u2><v 2> - <uv >2 )(x,t )  ≥ 0     

(iii) ( <u2><v 2><θ
2
> + 2 <uv ><θu ><θv > ... 

  - <θ
2
> <uv >2 - <u2> <θv >

2
- <v 2> <θu >

2
)(x,t )  ≥ 0     

(which was not quite obvious since the solution is neither C0 nor C1). This seems to be a 

rather important result (see section VI for further implications) ; as a matter of fact, it might 

be argued, looking at the eigenvalues expression, that the only important feature concerns the 

positivity of normal component <u2 > ; actually, this is not sufficient. In order to feel 

convinced of that, just introduce a change of frame due to some (time-space independant) 

rotation ; hence, define some normalised (statistics independent) vectors n  and ττττ  setting : 

n = (nx ,  ny)   and :  ττττ = (-ny ,  nx)  / nx
2 + ny

2 = 1

and also define transformed variables : 

��  > = nx <U > + ny <V >    and :  <���� = - ny <U > + nx <V >

�� �
�
�

�	 �
�
�

�� �	 ��

=  

nx
2 ny

2 2 nx  ny

ny
2 nx

2 - 2 nx  ny

- nx  ny  nx  ny nx
2 - ny

2

<u2>

<v 2>

<uv >

<θ
'
u '> = nx <θu  > + ny <θv >    and :  <θ

'
v ' >� = - ny <θu > + nx <θv >

System (16) is invariant under this frame rotation (see /14/ also) ; thus, the counterpart of the 

one dimensional Riemann problem associated with (17) in the n-direction, is exactly the one 

examined in previous section, except for the fact that the initial conditions for new normal 

component : 

�� �
�
�k =   ( nx ,  ny )  

<u2>k <uv >k

<uv >k <v 2>k

nx

ny
    for : k = L,  R

should be positive, whatever (nx, ny) stands for, which simply means that the Reynolds stress 

tensor should be over-realisable. Provided that the fluid is violently strechened so that 

condition involved in proposition V.2 is violated, some counterpart of gas dynamics vacuum 

(see /13/) will appear in the solution, which simply means that turbulence will locally vanish. 

Some miscellaneous remarks follow. First of all, the <w 2> component has not been retained 

in previous analysis to simplify presentation ; anyway, associated governing equation writes : 

<w 2 >, t + <U > <w 2>,x + <V > <w 2>,y = 0

It may be checked that results stated in prop. V.2 remain unchanged. A similar remark holds 

for turbulent mechanical dissipation ε , applying for (12). However, a somewhat annoying 

point is that the maximum principle for mean temperature (or scalar variance) does not hold 

through the convection system ; this is briefly discussed at the end of appendix 4.  

We now wish to deal with (constant) β non equal to 1, in order to check that previous results 

pertaining to existence, uniqueness and realisability of weak solutions remain ; to achieve 



20 

this, we only examine the pure one dimensional shock tube apparatus, setting initial 

conditions to : 

WL
t = ( <U >L,<V >L = 0,<u 2>L,<v 2>L = 0,<uv >L = 0,<θu >L,<θv >L = 0,<θ

2
>L,<T >L)

WR
t = ( <U >R,<V >R = 0,<u 2>r,<v 2>R = 0,<uv >R = 0,<θu >R,<θv >R = 0,<θ

2
>R,<T >R)

which enables to get : 

Prop. V.3 : 

         The Riemann problem associated to system (17) and initial conditions : 

W (x,  t = 0) = WL    for :  x < 0

W (x,  t = 0) = WR    for :  x  > 0

         does admit a unique solution as soon as initial conditions are such that : 

         

<U>R - <U>L < 21/2

β  
1/2

(<u2>R
1/2 + <u2>L

1/2 )

The solution satisfies over-realisability requirement, provided that initial conditions do. 

Main lines of the proof stand in appendix 2. In this case, the entropy-entropy flux pair (see 

apendix 2, sections c)which is used to select the admissible solution writes : 

η  (W ) =
2 β -1

2
<U >2 + <u2>  ;   Fη (W ) =

2 β -1

3
<U >3 + 2 β  <u2><U >

Previous remarks pertaining to the loss of maximum principle for mean temperature and 

scalar variance, or vacuum occurence still hold. 
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VI Discussion 

From now on, we no longer account for thermal effects. In order to solve laminar set (1.1, 

1.2), mainly two different numerical approaches are widely used. The first one, which is 

sometimes referred to as the projection method, has been initially proposed in /3/ and /15/ ; 

extensions of the original first-order in time scheme to second order in time schemes were 

recently suggested in /1/and /10/ among others. The basic idea contained in all these schemes 

is to compute an intermediate velocity field which is then projected onto a divergence free 

field. The second one, which is somewhat different, treats seperately linear and non linear 

operators, while solving Stokes problem and convection system in two different steps. In /2/, 

convection effects are accounted for, solving a linear initial value problem : 

φ,t + Ui
*(x )  φ,i  = 0    for (x ,  t ) ∈ Ω x  (tn ,  tn+ ∆t ) (18) 

(where φ  stands for any velocity component) while using the characteristic method (and 

appropriate boundary conditions) ; the starred field is chosen to be divergence free vector (at 

time n for instance). Once this has been computed, a generalised Stokes problem is solved 

which writes : 

(Ui
n +1(x )),i  = 0   (19) 

Ui
n +1(x ) - ∆t  (-1

ρ0
p, i

n +1(x ) + ν (Ui
n +1(x )), jj ) = Ui (x )

where right hand side accounts for velocity field issuing from (18). This step requires to 

choose pressure and velocity fields in suitable functional spaces, so that the inf-sup condition 

holds, either in a continuous way or in a discrete sense, when applying for finite element 

methodology. We refer for instance to /2/ which provides details of the implementation in an 

industrial CFD code. It should be underlined that convection step is sometimes treated in a 

non linear way, solving the counterpart of (18), i.e. : 

Ui, t + Uj   Ui, j  = 0  for (x ,  t ) ∈ Ω x  (tn ,  tn+ ∆t )

by means of a Godunov-type scheme (see /1/ for instance). 

We turn now to the turbulent system (2.1, 2.2, 2.4), still setting βi to zero. According to the 

litterature, a commonly used algorithm seems to apply for the "pseudo-viscosity" method ; 

this will not be detailed here but it is usually argued that this represents an efficient way to 

stabilise the whole algorithm, since (2.2) does not contain enough viscosity. Actually, it is 

implicitely assumed in this kind of aproach that the real convection system still writes (as in 

the purely laminar case) : 

φ,t + <Uj >   φ,j  = 0  for (x ,  t ) ∈ Ω x  (tn ,  tn+ ∆t )

where φ  stands for any variable among mean velocity or Reynolds stress components. When 

using finite difference or finite volume formulations, it is also usually wondered whether 
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Reynolds stress components and mean velocity components should have the same location, 

and how so-called production terms (namely Pij) should be discretized, and so on. However, 

examinating results of previous section suggests that straight extension of laminar algorithms 

might hold, successively solving a non linear non homogeneous first order differential system 

: 

<Ui >, t + <Uj > <Ui >,  j + (Rij ), j  = 0   (20) 

(Rij ), t  + <Uk>  (Rij ),k   + Pij -  Φij
r

= Φij
slow

(for (x ,  t ) ∈ Ω x  (tn ,  tn+ ∆t )) while applying for Godunov scheme (which requires 

solving the Riemann problems detailed in prop. V.2 or V.3), and a symmetrical Stokes 

problem similar to (19) : 

( <Ui >n+1(x )), i  = 0   (21) 

<Ui>
n +1(x ) - ∆t  (-1

ρ0
<p >, i

n +1(x ) + ν (<Ui>
n +1(x )), jj ) = <Ui> (x )

In practice, the Godunov solver will act in many regions of the physical domain as a simple 

upwinding technique, due to the fact that turbulent kinetic energy is usually small compared 

with the square of the norm of the mean velocity. Constraint on the time stepping which 

happens to prevent waves interaction, would write :

2 max  ( <U> + ( 2 <u2>)1/2 )  ∆t  ≤ h 

Recall that one of the main advantages of exact Godunov solver is that it essentially preserves 

occurence of negative values of realisable quantities, which is not the case when approximate 

Riemann solvers are considered (this is a very well-known feature for "compressible" 

community, in the laminar case). Moreover, it enables to derive suitable boundary condition 

treatment. Anyway, it contains one drawback since it requires to solve a non linear scalar 

equation (see appendix 2, section e) per mesh interface per time step. It must also be 

emphasised that simple algorithms to account for "slow terms" contribution may be exhibited 

which again enable to ensure discrete preservation of over-realisability concept. 
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Conclusion 

Intrinsic over-realisability conditions have been recalled here and extrinsic requirements have also 

been presented, which essentially consists in maximum principle for mean temperature and scalar 

variance. Some Gaussian second moment closures have been presented and discussed, either 

considering isothermal or non isothermal flows. These enable to gain strong realisability when 

dealing with smooth enough solutions and a rather wide class of so-called "slow" contributions 

which favour return-to-isotropy is exhibited. As in the purely isothermal case, it occurs that there is 

a strong link between over-realisability constraint and hyperbolicity requirement. While applying 

for some recent theoretical results (see /6/), the first order non conservative initial-value problems 

encountered in the whole system have been investigated ; it has been shown that the one 

dimensional Riemann problem does admit a unique realisable solution. This result might provide a 

useful (realisable!) numerical tool to investigate incompressible turbulent shear flows, especially 

when aiming at deriving finite-volume formulations on unstructured meshes (while using colocated 

arrangement). This of course requires numerical investigation. The loss of the maximum principle 

for mean temperature and scalar variance is due to the fact that the Reynolds decomposition has 

been used for instantaneous temperature, which results in the occurence of a scalar turbulent flux 

Xi, together with the fact that no gradient type theory has been retained here to model the latter. It 

has also been briefly mentionned here that investigation of generalised convection problems might 

indeed lead to a better understanding of the transition between turbulent and laminar regime.  
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Appendix 1 :

 Let us consider the following equation : 

(Zij ),t  + <Uk>  (Zij ),k     = Φij        (I) 

where : 

Φij = Zik  Hkj + Zjk  Hki              (II) 

Note that  Z is symmetrical but H  is not necessarily symmetrical. 

a) Recall that : 

For i=1-> 3 : ∆ 1
i
  =  Zii       

For i=1-> 3  : 
∆ 2

 i
  =  Zαα Zββ   -  (Zαβ)2  

  (α  ≠ β  ; α  ≠ i  ;  β   ≠ i   )

∆ 3  = det  ( Zij   )      

Then (I) enables to rewrite : 

(∆1
1

), t  + <Uk>  (∆1
1

),k     = 2 ∆1
1
 H11 + 2 ( Z12H21) + 2 ( Z13H31)  (1.1) 

(∆2
3

),t  + <Uk>  (∆2
3

),k     = 2 ∆2
3

(H11 + H22) + 2 (Z22Z13 - Z12  Z23) H31

                + 2 (Z11Z23 - Z12 Z13) H32  (2.3) 

(∆3 ),t  + <Uk>  (∆3 ),k     = 2 ∆3 (H11 + H22 + H33) `    (3) 

Equation (3) shows that ∆3 remains positive (see /5/). Hence, noting that : 

(Z12)2 ≤ ∆1
1

∆1
2

(Z13)2 ≤ ∆1
1

∆1
3

         (III.1) 

(Z22Z13 - Z12  Z23)2 ≤ ∆2
3

∆2
1

(Z11Z23 - Z12  Z13)2 ≤ ∆2
3

∆2
2

       (III.2) 

enables to rewrite (1.1) and (2.3) in the following way : 

(∆1
1

), t  + <Uk>  (∆1
1

),k     = (∆1
1
)
1/2

(∆1
1
)
1/2

 a11

     + (∆1
1
)
1/2

(∆1
2
)
1/2

 a12 + (∆1
1
)
1/2

(∆1
3
)
1/2

 a13   (1.1) 

(∆2
3

), t  + <Uk>  (∆2
3

),k     = (∆2
3
)
1/2

(∆2
3
)
1/2

 b33

     + (∆2
1
)
1/2

(∆2
3
)
1/2

 b13 + (∆2
2
)
1/2

(∆2
3
)
1/2

 b23   (2.3) 

while noting : 

a11 = 2 H11

a12 = 2 Z12  (∆1
1
)
-1/2

( ∆1
2

)
-1/2

 H21

a13 = 2 Z13  (∆1
1
)
-1/2

( ∆1
3

)
-1/2

 H31

b33 = 2 (H11 + H22)

b13 = 2 (Z22Z13 - Z12  Z23) (∆2
3
)
-1/2

( ∆2
1
)
-1/2

 H31

b23 = 2 (Z11Z23 - Z12  Z13) (∆2
3
)
-1/2

( ∆2
2
)
-1/2

 H32



27 

Moreover, using permutations over 1, 2 and 3 provides : 

(∆1
i

), t  + <Uk>  (∆1
i

),k     =  (∆1
i
)
1/2

(∆1
j
)
1/2

 aij�
j=1

3

     (1.i) 

(∆2
i

), t  + <Uk>  (∆2
i

),k     =  (∆2
i
)
1/2

(∆2
j
)
1/2

 bij�
j=1

3

     (2.i) 

Obviously, accounting for (III.1) and (III.2) enables to check that all aij  and bij  are bounded as  

soon as all Hij are bounded. Hence, at some point where ∆k
i
 vanishes : 

Dt (∆k
i
) = (∆k

i
), t  + <Ul>  (∆k

i
), l    =  0  and   : Dt (Dt (∆k

i
)) ≥ 0

  

b) Let us now set : Z = R  and let us suppose that the formal development H( B, R)  holds : 

Hij = β0 δij + β1 Rij + β2 Rij 
2 + β3 Bij   + β4 (B t)ij + β5 (RB )ij   + β6 (B R )ij 

+ β7 (RB t )ij + β 8 (B tR )ij + β9(R 2B  )ij + β10 (B R 2 )ij + β11 (R 2B t )ij + β12 (B tR 2 )ij 

+ β13 (R B R  )ij + β14 (R B tR  )ij 

This yields : 

φij = 2β0 Rij + 2 β1 Rij 
2 + 2 β2 Rij 

3 + β3 (RB + B tR)ij   + β4 (B R + RB t)ij + β5 (R 2B  + B tR 2)ij   

+( β6 + β8)(R (B  + B t)R )ij   + β7 (R 2B t + B R 2)ij + β9 (R 3B  + B tR 3)ij    

+ β10 (R 2B t R + R B  R 2)ij + β11 (R 3B t  + B R 3)ij + β12 (R 2B  R + R B t R 2)ij   

+ β13 (R 2B  R + R B t R 2)ij + β14 (R 2B t R + R B R 2)ij    

Cayley-Hamilton identity provides : 

Rij 
3 = I  Rij 

2   + 1
2

(II  - I2 ) Rij   +  1
6

(I3 + 2 III  - 3 (I)(II  )) δij   ≡ a  Rij 
2   + b  Rij + c  δij 

Hence, Φ ij  may be rewritten : 

φij = 2 β2c δij + 2(β0+β2b)  Rij + 2(β1 +β2a ) Rij 
2   +

+ c  ( β9+ β11) (B + B t)ij + ( β3+ b  β9) (RB + B tR)ij   + (β4+ b  β11)(B R + RB t)ij 

+( β6 + β8)(R (B  + B t)R )ij   + (β7 + a β11) (R 2B t + B R 2)ij + (β5 + a β9) (B t R 2+ R 2B )ij 

+ β10 (R 2B t R + R B  R 2)ij + β12 (R 2B  R + R B t R 2)ij   

+ β13 (R 2B  R + R B t R 2)ij + β14 (R 2B t R + R B R 2)ij    

Objectivity requirement will be achieved if : 

β3  = β4    ;  β5  = β7    ;  β9  = β11    ;  β10   = β12    ;  β13   = β14

Since the following inequalities hold : 

II  ≤ I2  ≤ 3 II     ;   III  ≤ I3  ≤ 9 III

boundedness of Η ij  will be achieved if : 

β0 = β0
'
(I,  II,  III ) ε

I
   ;  β1 = β1

'
(I,  II,  III ) ε

II
   ;  β2 = β2

'
(I,  II,  III ) ε

III
   

β3 = β3
'

(I,  II,  III )    ;  β4 = β4
'

(I,  II,  III )    

βi = βi
'
(I,  II,  III ) (I )-1  for  : i = 5 to  8

βi = βi
'
(I,  II,  III ) (I )-2  for  : i = 9 to  14

provided that (ε/I) andΒ ij  remain bounded. 
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Appendix 2 :

Let us consider the following non viscous problem (P) : 

<U >, t + <U > <U >,x + <u 2>,x = 0      (P1) 

<u 2 >,t + <U > <u 2>,x + 2β <u 2> <U >,x = 0     (P2) 

<θu  >,t + <U > <θu >,x + β <θu > <U >,x + <u 2> <T >,x = 0   (P3) 

<θ
2

>, t + <U > <θ
2
>,x   + 2 <θ u > <T >,x = 0     (P4) 

<T >,t + <U > <T>,x   +  <θ u >,x = 0      (P5) 

and associated viscous perturbated system (Pε) obtained by changing (P1) in (P1ε) : 

<U >, t + <U > <U >,x + <u 2>,x = ε  <U >,xx      (P1ε) 

We set : 

W t = ( <U > , <u 2> , <θu > ,   <θ
2
> , <T >)

Thus, (P) may be rewritten in the form : 

W , t + A (W )  W ,x = 0

Besides, (Pε) writes : 

W , t + A (W )  W ,x = ε  (DW ,x),x

noting : 

A =      

<U > 1

2 β <u2> <U >

    0   0

0     0   

0

0

  β <θu >          0      

0   0  

<U > 0

0 <U >

<u2>

2 <θu >

      0         0   1     0   < U  >

and :  

D11   = 1  ;  Dij   = 0  otherwise.

The following initial conditions will be considered : 

W (x,  t = 0) = WL    for :  x < 0

W (x,  t = 0) = WR    for :  x  > 0

Note that β is given by : 

β  = 1 - 2 α5   with :  -  α5 ≥ 0

which provides : β  ≥ 1

a) Lemma 2.a : 

System (P) is strictly hyperbolic and is characrerized by the following set of eigenvalues : 

λ1  = <U  > - (2 β  <u2> )
1/2
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λ2  = <U  > - (  <u2> )1/2

λ3  = <U  >

λ4  = <U  > + (  <u2> )1/2

λ5  = <U  > + ( 2β  <u2> )
1/2

and associated right eigenvectors : 

r1
t   = (1, -(2β <u2>)

1/2
,

-(2β )
1/2

β <θu >

(2β  - 1) <u2>1/2
,

-(2β )
1/2

  <θu >
2

(2β  - 1) <u2>3/2
,

β <θu >

(2β  - 1) <u2>
)

r2
t   = (0, 0 , - <u2>1/2 , -2  <θu >

<u2>1/2
, 1)

r3
t   = (0, 0 , 0 , 1 , 0)

r4
t   = (0, 0 ,   <u2>1/2 , 2  <θu >

<u2>1/2
, 1)

r5
t   = (1, (2β <u2>)

1/2
,

(2β )
1/2

β <θu >

(2β  - 1) <u2>1/2
,

(2β )
1/2

  <θu >
2

(2β  - 1) <u2>3/2
,

β <θu >

(2β  - 1) <u2>
)

From now on, it is assumed that β remains constant. 

b) Lemma 2.b :

The 1 and 5 characteristic fields are genuinely nonlinear (noted GNL afterwards) and the 2, 3, 4 

characteristic fields are linearly degenerate (noted LD afterwards). Moreover, each k-characteristic field 

does admit four independant Riemann invariants Φk
i(i=1 to 4) which are given by : 

1-characteristic family : 

φ1
1

(W ) = <U  >  + (2 <u2>

β
)
1/2

  ;  
φ1

2
(W ) = <T  > +  (2β  )

1/2 <θu >

<u2>1/2

φ1
3

(W ) = <θ
2

> -  <θu >
2

<u2>   ;  

φ1
4

(W ) =    <θu >

<u2>β  /(2β -1)

2-characteristic family : 

φ2
1

(W ) = <U  >   ;   φ2
2

(W ) = <u2>

φ2
3

(W ) = <θ
2

> -  <θu >
2

<u2>   ;  
φ2

4
(W ) = <T  > +  <θu >

<u2>1/2

3-characteristic family : 

φ3
1

(W ) = <U  >   ;   φ3
2

(W ) = <u2>   ;   φ3
3

(W ) = <θu > ;   ;   φ3
4

(W ) = <T >

4-characteristic family : 

φ4
1

(W ) = <U  >   ;   φ4
2

(W ) = <u2>

φ4
3

(W ) = <θ
2

> -  <θu >
2

<u2>   ;  
φ4

4
(W ) = <T  > -  <θu >

<u2>1/2

5-characteristic family : 

φ5
1

(W ) = <U  >  - (2 <u2>

β
)
1/2

  ;  
φ5

2
(W ) = <T  > -  (2β  )

1/2 <θu >

<u2>1/2
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φ5
3

(W ) = <θ
2

> -  <θu >
2

<u2>   ;  

φ5
4

(W ) =    <θu >

<u2>β  /(2β -1)

Proof : 

It is a simple matter to check that : 

∇W (λ1 (W )) .  r1 (W ) = ∇W (λ5 (W )) .  r5 (W ) = 1 + β    (strictly positive)

and : 

∇W (λk (W )) .  rk (W ) = 0   (for k = 2, 3, 4)

Moreover : 

∇W (φk
i

(W )) .  rk (W ) = 0 for given (k, i )

c) Lemma 2.c :

An admissible entropy-flux pair (
η , Fη) for system (P), consistent with perturbated system (Pε) writes : 

η  (W ) =
2 β -1

2
<U >2 + <u2>  ;   Fη (W ) =

2 β -1

3
<U >3 + 2 β  <u2><U >

Proof :

Straightforward computation enables to get : 

DW (η (W )) .  A (W )   = DW (Fη (W ))

noting : 

DW (ϕ (W ))  = (
∂ϕ

∂W1

,
∂ϕ

∂W2

,
∂ϕ

∂W3

,
∂ϕ

∂W4

,
∂ϕ

∂W5

)   whatever ϕ stands for.

Even more, η  is a (non strictly) convex function of W which is such that : 

∀ z  ∈R 5,   z t (η,WW  D ) z  =   (2β -1) (z1)2 ≥ 0

Recall that for regular enough solutions, entropy is governed by equation : 

η,t (W )  + (Fη (W )),x = 0

Let us now introduce the following notations : 

ϕ = ϕr - ϕl

ϕ = (ϕr + ϕl ) / 2

and jump conditions (see /6/) : 

σ  <U > - <U > <U > - <u2 > = 0

σ  <u2 > - <U > <u2 > - 2 β <u2 >  <U > = 0

σ  <θu  > - <U > <θu  > -  β  <θu  >  <U > - <u2  >  <T > = 0

σ  <θ
2

> - <U > <θ
2

>   - 2 <θu   >  <T > = 0

σ  <T > - <U > <T >   -  <θu  > = 0

σ  designates the speed of the travelling discontinuity. Moreover, we note : 
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γ  =  
2 β -1

β  

Taking into account the previous jump conditions enables to state : 

d) Lemma 2.d :

* States connected through the 1-shock family are such that : 

<u2>r = z  <u2>l   with : z  > 1

<U>r = <U>l +
(1-z )

(β  (1+z ))
1/2

  <u2>l
1/2

<θu  >r =  <θu  >l  
(γ  +1)z  + γ  - 1

(γ  -1)z  + γ  + 1
  

<θ
2

>r =  <θ
2

>l +  
(<θu  >r

2
-  <θu  >l

2
)

β  (z  + 1)<u2 >l

<T >r =  <T >l -  
(<θu  >r -  <θu  >l)

(β  (z  + 1)<u2 >l )
1/2

  

** States connected through the 5-shock family are such that : 

<u2>r = z  <u2>l   with : z  < 1

<U>r - <U>l =
(z - 1)

(β  (1+z ))
1/2

  <u2>l
1/2

<θu  >r =  <θu  >l  
(γ  +1)z  + γ  - 1

(γ  -1)z  + γ  + 1
  

<θ
2

>r =  <θ
2

>l +  
(<θu  >r

2
-  <θu  >l

2
)

β  (z  + 1)<u2 >l

<T >r =  <T >l +  
(<θu  >r -  <θu  >l)

(β  (z  + 1)<u2 >l )
1/2

  

*** States on each side of any linearly degenerate field (k = 2 or 3 or 4) may be connected in a similar 

way, either using previous jump conditions (see above) or using Riemann invariant approach. 

The proof is obvious and thus omitted. It must be emphasized that the physically releavant solution has 

been obtained applying for entropy concept (see lemma 2.c). Note also that the "limit case β=1" may be 

included in the previous parametrization. All these features enable to derive : 

e) Proposition 2 :

* The Riemann problem associated to system (P) and initial conditions : 

W (x,  t = 0) = WL    for :  x < 0

W (x,  t = 0) = WR    for :  x  > 0

does admit a unique solution as soon as initial values are close enough to each other in the following sense 

: 

<U>R - <U>L < 21/2

β  
1/2

(<u2>R
1/2 + <u2>L

1/2 )
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**Moreover, the solution expending in the (x,t) plane fullfills over-realisability requirement. 

Proof :

* It must be emphasized that the dynamical part of the unknowns, say <U > and <u 
2 

>, may be solved 

independently. We only focus on this subset here and define : 

h1 (z ) = 1 - z

(2 (1 + z ))1/2
  if  : z  > 1

     ;   
h1 (z ) = 1 - z 1/2    if  : z  ≤ 1

h2 (z ) = z - 1

(2z  (1 + z ))1/2
  if  : z  < 1

  ;   h2 (z ) = 1 - z -1/2    if  : z  ≥ 1

Obviously, h2 (resp. h1) is an increasing (resp. decreasing) function. 

Left and right states may then be connected writing : 

<u2 >R = z1 z2 <u2 >L       (1) 

<U >R =  <U >L + h2 (z2)  (2

β
)
1/2

  <u2 >R
1/2 +  (2

β
)
1/2

<u2 >L
1/2  h1 (z1)

 (2) 

Eliminating z1 from (1) enables to write : 

z1 = z1 (z2) with : z1
' (z2) < 0

Hence, (2) may be rewriten below : 

Ψ  (z2) =   h2 (z2)  (2

β
)
1/2

  <u2 >R
1/2 +  (2

β
)
1/2

<u2 >L
1/2  h1 (z1(z2)) =  <U >R -  <U >L

 (2') 

Evenmore, Ψ is an increasing function which is such that : 

Ψ  ( )0, +∞( ) = )-∞ ,    (2

β
)
1/2

( <u2 >R
1/2    + <u2 >L

1/2 ) (

Eventually, (2') will admit a unique solution as soon as above mentionned condition holds. As soon as 

z1 and z2 have been computed solving nonlinear system ((1), (2)), other state components referring to 

<θu > , <θ
2
>, <T > may be derived in an explicit way. 

** Obviously, parametrization provides positive values for <u2> variable. Moreover, provided that the 1-

family (respectively the 5-family) occurs to be a rarefaction wave, then the following Riemann invariant : 

φ1
3

(W ) = φ2
3

(W ) = φ4
3

(W ) = φ5
3

(W ) = <θ
2

> -  <θu >
2

<u2>

remains constant on the left side (respectively on the right side) of the 3-family.  

Provided that the 1-family occurs to be a shock wave, then 
<θ

2
> -  <θu >

2

<u2>  will strictly increase 

through the shock (from left to right) ; in a similar way, provided that the 5-family occurs to be a shock 

wave, 
<θ

2
> -  <θu >

2

<u2>  will strictly decrease through the shock (still from left to right). This eventually 

means that first and second fundamental minors of the correlation tensor remain positive in the (x,t) 

plane.It should be mentionned here that in the particular case "β = 1", 
<θ

2
> -  <θu >

2

<u2>  remains constant 

through genuinely non linear fields. 
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Appendix 3 :

Let us consider the following system : 

(Rij ),t = Φij            (1) 

where : 

Φij= a(I,  II,  III ) ε
I
 Rij + b(I,  II,  III ) ε

II
 Rij

2

The Reynolds stress tensor R ( in Rnxn ) is characterised by the initial realisable conditions : 

 Rij(0) =  (Q  (0) D (0) Q-1(0) )ij

D(0) stands for the diagonal matrix of (positive) R -eigenvalues. Furthermore, it is assumed that a and b 

design bounded functions of unknowns such that : 

bmin ≤ b (I,  II,  III ) ≤ bmax < 0

and that the following requirement pertaining to turbulent time scale holds : 

0 < ε
I min

≤ ε
I

≤ ε
I max

(1) admits solutions of the form : 

 Rij(t ) =  (Q  (0) D (t ) Q-1(0) )ij

The two and three dimensional cases must be examined seperately. 

* In the two dimensional case (n = 2), eigenvalues will fulfil : 

λi, t = ε
I

λi (a +
b  I λi

II
)    for : i = 1,2

       (1') 

and a straightforward measure of anisotropy amount is given by : 

ϕ  (D ) =  
( λ1 - λ2)

2

λ1
2

+ λ2
2

= 1 -  
2 λ1 λ2

λ1
2

+ λ2
2

which belongs to  0, 1

ϕ  variations  will  obey :  

ϕ, t = ( ε
I

) ( I2

II
) b (I,  II,  III ) ϕ  (1 - ϕ )

       (2) 

Recall here that : I  = λ1  + λ2  ;  II = λ1
2
  + λ2

2
  ;  III = λ1

3
  + λ2

3

Hence, noting that : II  ≤  I2 ≤ 2 II 

(2) enables to get a lower bound and upper bound for ϕ : 

K0 exp ( 2 ε
I max

bmin  t )

1 + K0 exp ( 2 ε
I max

bmin  t )
  ≤ ϕ (t ) ≤

K0 exp ( ε
I min

bmax  t )

1 + K0 exp (( ε
I min

bmax  t )

noting : 

K0 =
ϕ (0)

1 -ϕ (0)

which guarantees return to isotropy process. 

** In the three dimensional case (n = 3), eigenvalues will be governed by equation below : 
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λi, t = ε
I

λi (a +
b  I λi

II
)    for : i = 1,3

       (1") 

and ϕ (which belongs to  0, 1 ) now writes : 

ϕ  (D ) =  
( λ1 - λ2)

2
+ ( λ1 - λ3)

2
+ ( λ3 - λ2)

2

2 ( λ1
2

+ λ2
2

+ λ3
2
)

= 1 -  
λ1 λ2+ λ1 λ3 + λ3 λ2

λ1
2

+ λ2
2

+ λ3
2

Recall here that : I  = λ1  + λ2 + λ3 ;  II = λ1
2
  + λ2

2
  + λ3

2
;  III = λ1

3
  + λ2

3
+ λ3

3

which allows to derive : 

ϕ, t = ( ε
I

) ( I2

II
)b (I,  II,  III )

((I ) (III ) - II2 )

II2

Now : 

(I ) (III ) - II2 = λ1 λ2 (λ1- λ2)
2

+ λ1 λ3 (λ1- λ3)
2

+λ3 λ2 (λ3- λ2)
2

Thus : 

0 ≤
(I ) (III ) - II2

II2
≤ 2 ϕ  (1 -ϕ )

The whole only provides : 

K0 exp ( 6 ε
I max

bmin  t )

1 + K0 exp ( 6 ε
I max

bmin  t )
  ≤ϕ (t ) ≤ 1

However, return to isotropy process should at least occur in one "plane" ((e1, e2) or (e1, e3) or (e2, e3), 

where ei 's stand for right eigenvectors of R) ; this may be seen defining : 

ϕij   (D ) =  
( λi - λj)

2

λi
2

+ λj
2

= 1 -  
2 λi λj

λi
2

+ λj
2
  for : i  ≠ j

 (and i greater than j) 

ϕij will be such that : 

ϕij , t = ( ε
I

) ( I2

II
-

λk  I

II
) b (I,  II,  III ) ϕij   (1 - ϕij )

 (with k non equal to i and k non equal to j) 

This provides: 
ϕij ,t

ϕij   (1 - ϕij )
�

3 ≥i > j ≥ 1

= ( ε
I

) ( 2 I2

II
) b (I,  II,  III )

which ensures that : 
ϕij(t )

(1 - ϕij(t ) )
π

3 ≥i > j ≥ 1

  ≤
ϕij(0 )

(1 - ϕij(0 ) )
π

3 ≥i > j ≥ 1

 exp  ( 2 ( ε
I

)
min

 bmax  t )

or : 

ϕij(t )π
3 ≥i > j ≥ 1

≤
ϕij(0 )

(1 - ϕij(0 ) )
π

3 ≥i > j ≥ 1

 exp  ( 2 ( ε
I

)
min

 bmax  t )

*** Indeed, we may go further on in the three dimensional case, retaining third order contribution : 

Φij= a(I,  II,  III ) ε
I
 Rij + b(I,  II,  III ) ε

II
 Rij

2 + c(I,  II,  III ) ε
III

 Rij
3

assuming in addition that c stands for some dimensionless negative bounded function. 

Using similar definition : 
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ϕij   (D ) =  
( λi - λj)

2

λi
2

+ λj
2

= 1 -  
2 λi λj

λi
2

+ λj
2
  for : i  ≠ j

yields : 

ϕij , t

ϕij   (1 - ϕij )
= ( ε

I
) ( I  (

I- λk

II
) b (I,  II,  III ) +  I  

(I  - λk)
2

III
  c (I,  II,  III )  )

(with k non equal to i and k non equal to j), which also provides : 

ϕij(t )π
3 ≥i > j ≥ 1

≤
ϕij(0 )

(1 - ϕij(0 ) )
π

3 ≥i > j ≥ 1

 exp  ( 2 ( ε
I

)
min

 bmax  t )

Return to isotropy will only be ensured in one plane at least. 
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Appendix 4 :

Let us consider the following non viscous problem (P) : 

<U >, t + <U > <U >,x + <u 2>,x = 0      (P1) 

<V >, t + <U > <V >,x + <uv >,x = 0      (P2) 

<u 2 >, t + <U > <u 2>,x + 2 <u 2> <U >,x = 0     (P3) 

<v 2 >, t + <U > <v 2>,x + 2 <uv > <V >,x = 0     (P4) 

<uv >, t + <U > <uv >,x + <u2 > <V >,x + <uv > <U >,x = 0   (P5) 

<θu  >,t + <U > <θu >,x +  <θu > <U >,x + <u 2> <T >,x = 0   (P6) 

<θv  >,t + <U > <θv >,x +  <θu > <V >,x + <uv > <T >,x = 0   (P7) 

<θ
2

>, t + <U > <θ
2
>,x   + 2 <θ u > <T >,x = 0     (P8) 

<T >,t + <U > <T>,x   +  <θ u >,x = 0      (P9) 

and associated viscous perturbated system (Pε) obtained by changing (P1) and (P2) in : 

<U >, t + <U > <U >,x + <u 2>,x = ε  <U >,xx      (P1ε) 

<V >, t + <U > <V >,x + <uv >,x = ε  <V >,xx      (P2ε) 

We set : 

W t = ( <U > , <V > ,<u 2> , <v 2> ,<uv > ,<θu > ,   <θv > , <θ
2
> , <T >)

Thus, (P) may be rewritten in the form : 

W , t + A (W )  W ,x = 0

Besides, (Pε) writes : 

W , t + A (W )  W ,x = ε  (DW ,x),x

noting : 

D11   = 1  ; D22   = 1  ; Dij   = 0  otherwise.

The following initial conditions are considered : 

W (x,  t = 0) = WL    for :  x < 0

W (x,  t = 0) = WR    for :  x  > 0

a) Lemma 4.a : 

System (P) is strictly hyperbolic and is characrerized by the following set of eigenvalues : 

λ1  = <U  > - (2  <u2> )1/2

λ2,3   = <U  > - (  <u2> )1/2

λ 4,5,6   = <U  >

λ 7,8   = <U  > + (  <u2> )1/2

λ9  = <U  > + ( 2  <u2> )1/2

and associated right eigenvectors : 
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r1
t   = (1, <uv >

<u2>
, -(2 <u2>)1/2 ,

-(2)1/2 <uv >2

<u2>3/2
  ,

-(2)1/2   <uv >

<u2>1/2
,

-(2)1/2   <θu >

<u2>1/2
...

,
-(2)1/2 <uv > <θu >

<u2>3/2
,

-(2)1/2   <θu >
2

<u2>3/2
,   <θu >

<u2>
)

r2
t   = (0, 0 , 0, 0, 0, - <u2>1/2 , - <uv >

<u2>1/2
, -2  <θu >

<u2>1/2
, 1)

r3
t   = (0, 1 , 0, -2 <uv >

<u2>1/2
, - <u2>1/2 , 0 , -  <θu >

<u2>1/2
, 0, 0)

r4
t   = (0, 0, 0, 1 , 0, 0 , 0 , 0, 0)

r5
t   = (0, 0, 0, 0 , 0, 0 , 1 , 0, 0)

r6
t   = (0, 0, 0, 0 , 0, 0 , 0 , 1, 0)

r7
t   = (0, 1 , 0, 2 <uv >

<u2>1/2
,   <u2>1/2 , 0 , <θu >

<u2>1/2
, 0, 0)

r8
t   = (0, 0 , 0, 0, 0,   <u2>1/2 , <uv >

<u2>1/2
, 2  <θu >

<u2>1/2
, 1)

r9
t   = (1, <uv >

<u2>
, (2 <u2>)1/2 ,

(2)1/2 <uv >2

<u2>3/2
  ,

(2)1/2   <uv >

<u2>1/2
,

(2)1/2   <θu >

<u2>1/2
...

,
(2)1/2 <uv > <θu >

<u2>3/2
,

(2)1/2   <θu >
2

<u2>3/2
,   <θu >

<u2>
)

b) Lemma 4.b :

The 1 and 9 characteristic fields are genuinely nonlinear and the 2, 3, 4, 5, 6, 7, 8 characteristic fields are 

linearly degenerate. Moreover, each k-characteristic field does admit eight independant Riemann 

invariants Φk
i (i=1 to 8) which are given by : 

1-characteristic family : 

φ1
1

(W ) = <U  >  + (2 <u2>)1/2
  ; φ1

2
(W ) = <V  >  + ( 2)1/2 <uv > ( <u2>)-1/2

φ1
3

(W ) = <v 2 > -  <uv >2

<u2>  ;  
φ1

4
(W ) =   <uv >

<u2>
;  φ1

5
(W ) =   

δ3

<u2>

φ1
6

(W ) = <θ
2

> -  <θu >
2

<u2>   ;  
φ1

7
(W ) =    <θu >

<u2>   ;  
φ1

8
(W ) = <T  > +  (2 )1/2 <θu >

<u2>1/2

2-characteristic family : 

φ2
1

(W ) = <U  >   ;   φ2
2

(W ) = <u2>  ;   φ2
3

(W ) = <v 2> ;   φ2
4

(W ) = <uv > ;   φ2
5

(W ) = <V >

φ2
6

(W ) = <θ
2

> -  <θu >
2

<u2>   ; φ2
7

(W ) = δ3 ;  
φ2

8
(W ) = <T  > +  <θu >

<u2>1/2

3-characteristic family : 

φ3
1

(W ) = <U  >   ;   φ3
2

(W ) = <u2> ; φ3
3

(W ) = <V  >  +  <uv > ( <u2>)-1/2

φ3
4

(W ) = <v 2 > -  <uv >2

<u2>  ; 
φ3

5
(W ) = <θ

2
> -  <θu >

2

<u2>  ; 
φ3

6
(W ) =    <θu >

<u2>

φ3
7

(W ) = δ3 ; φ3
8

(W ) = <T  >

4-characteristic family : 
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φ5
1

(W ) = <U  >   ;   φ5
2

(W ) = <u2>  ;    φ5
3

(W ) = <uv > ;   φ5
4

(W ) = <V >

φ5
5

(W ) = <θu >  ;  φ5
6

(W ) = <θv >  ; φ5
7

(W ) = <θ
2
> ;   φ5

8
(W ) = <T> ;   

5-characteristic family : 

φ4
1

(W ) = <U  >   ;   φ4
2

(W ) = <u2>  ;   φ4
3

(W ) = <v 2> ;   φ4
4

(W ) = <uv > ;   φ4
5

(W ) = <V >

φ4
6

(W ) = <θu >  ;   φ4
7

(W ) = <θ
2
> ;   φ4

8
(W ) = <T> ;   

6-characteristic family : 

φ6
1

(W ) = <U  >   ;   φ6
2

(W ) = <u2>  ;    φ6
3

(W ) = <uv > ;   φ6
4

(W ) = <V >

φ6
5

(W ) = <v 2>  ;φ6
6

(W ) = <θu >  ;  φ6
7

(W ) = <θv >   ;   φ6
8

(W ) = <T> ;   

7-characteristic family : 

φ7
1

(W ) = <U  >   ;   φ7
2

(W ) = <u2> ; φ7
3

(W ) = <V  >  -  <uv > ( <u2>)-1/2

φ7
4

(W ) = <v 2 > -  <uv >2

<u2>   ;  
φ7

5
(W ) = <θ

2
> -  <θu >

2

<u2>  ; 
φ7

6
(W ) =    <θu >

<u2>

φ7
7

(W ) = δ3  ;  φ7
8

(W ) = <T  >

8-characteristic family : 

φ8
1

(W ) = <U  >   ;   φ8
2

(W ) = <u2>  ;   φ8
3

(W ) = <v 2> ;   φ8
4

(W ) = <uv > ;   φ8
5

(W ) = <V >

φ8
6

(W ) = <θ
2

> -  <θu >
2

<u2>   ;  φ8
7

(W ) = δ3  ;  
φ8

8
(W ) = <T  > -  <θu >

<u2>1/2

9-characteristic family : 

φ9
1

(W ) = <U  >  - (2 <u2>)1/2
  ;  φ9

2
(W ) = <V  >  - ( 2)1/2 <uv > ( <u2>)-1/2

φ9
3

(W ) = <v 2 > -  <uv >2

<u2>   ;  
φ9

4
(W ) =   <uv >

<u2>
;  φ9

5
(W ) =   

δ3

<u2>

φ9
6

(W ) = <θ
2

> -  <θu >
2

<u2>   ;  
φ9

7
(W ) =    <θu >

<u2>   ;  
φ9

8
(W ) = <T  > -  (2 )1/2 <θu >

<u2>1/2

It has been set here : 

δ3 = <θ
2
> <u2> <v 2> + 2 <θu ><θv > <uv > - <θ

2
> <uv >2 - <u2> <θv >

2
- <v 2> <θu >

2

Proof : 

It may be checked that : 

∇W (λ1 (W )) .  r1 (W ) = ∇W (λ9 (W )) .  r9 (W ) = 2

and : 

∇W (λk (W )) .  rk (W ) = 0   (for k = 2 to 8)

Moreover : 

∇W (φk
i

(W )) .  rk (W ) = 0 for given (k, i )

c) Lemma 4.c :

An admissible entropy-flux pair (
η , Fη) for system (P), consistent with perturbated system (Pε) writes : 

η  (W ) = 1
2

<U >2 + <u2>  ;   Fη (W ) = 1
3

<U >3 + 2  <u2><U >
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Proof :

Again, η  is a (non strictly) convex function of W which is such that : 

∀ z  ∈R 9,   z t (η,WW  D ) z  =   (z1)2 ≥ 0

and : 

DW (η (W )) .  A (W )   = DW (Fη (W ))

which implies that, for regular enough solutions : 

η,t (W )  + (Fη (W )),x = 0

Using previously defined notations enables to write approximate jump conditions : 

σ  <U > - <U > <U > - <u2 > = 0

σ  <V > - <U > <V > - <uv > = 0

σ  <u2 > - <U > <u2 > - 2  <u2 >  <U > = 0

σ  <v 2 > - <U > <v 2 > - 2  <uv >  <V > = 0

σ  <uv  > - <U > <uv  > -   <uv >  <U > -   <u2 >  <V > = 0

σ  <θu  > - <U > <θu  > -    <θu  >  <U > - <u2  >  <T > = 0

σ  <θv  > - <U > <θv  > -    <θu  >  <V > - <uv  >  <T > = 0

σ  <θ
2

> - <U > <θ
2

>   - 2 <θu   >  <T > = 0

σ  <T > - <U > <T >   -  <θu  > = 0

Now, it may be stated that : 

d) Lemma 4.d :

* States connected through the 1-shock family are such that : 

<u2>r = z  <u2>l   with : z  > 1

<v 2>r = <v 2>l +
(z - 1 )

<u2>l

  <uv >l
2

<uv >r = z  <uv >l  

<U>r = <U>l +
(1-z )

(1+z )1/2
  <u2>l

1/2

<V>r = <V>l +
(1-z )

(1+z )1/2
  

<uv >l

<u2 >l
1/2

<θu  >r = z  <θu  >l   

<θv  >r =  <θv  >l  + (z - 1) <θu  >l  
<uv  >l

<u 2 >l

<θ
2

>r =  <θ
2

>l + (z  - 1)  
   <θu  >l

2

  <u2 >l

<T >r =  <T >l -  
(z  - 1)  <θu  >l

  (z  + 1)1/2 <u2 >l
1/2

  

** States connected through the 9-shock family are such that : 

<u2>r = z  <u2>l   with : z  < 1
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<v 2>r = <v 2>l +
(z - 1 )

<u2>l

  <uv >l
2

<uv >r = z  <uv >l  

<U>r = <U>l +
(z - 1)

(1+z )1/2
  <u2>l

1/2

<V>r = <V>l +
(z  - 1)

(1+z )1/2
  

<uv >l

<u2 >l
1/2

<θu  >r =  z  <θu  >l    

<θv  >r =  <θv  >l  + (z - 1) <θu  >l  
<uv  >l

<u 2 >l

<θ
2

>r =  <θ
2

>l + (z  - 1)  
   <θu  >l

2

  <u2 >l

<T >r =  <T >l +  
(z  - 1)  <θu  >l

  (z  + 1)1/2 <u2 >l
1/2

  

*** States on each side of any linearly degenerate field (k = 2 to 8) may be connected in a similar way, 

either using previous jump conditions (see above) or using Riemann invariant approach. 

The proof is straightforward and omitted. Here again, the physically releavant solution has been obtained 

applying for entropy concept (see above). Eventually, we get : 

e) Proposition 4 :

* The Riemann problem associated to system (P) and initial conditions : 

W (x,  t = 0) = WL    for :  x < 0

W (x,  t = 0) = WR    for :  x  > 0

does admit a unique solution as soon as initial values are close enough to each other in the following sense 

: <U>R - <U>L <  (2<u2>)R
1/2 + (2<u2>)L

1/2 )

**Moreover, the solution expending in the (x,t) plane fulfils over-realisability requirement. 

The proof is very similar to the one given in appendix 2 and thus omitted. One only needs to have a glance 

at the parametrization given above for either GNL or LD fields.  

f) We have more than that in fact, since the solution is only governed by the dynamical part of the initial 

conditions. Let us have a look at the 1-characteristic field for instance. We imagine first that the solution 

of the RP is such that the 1-characteristic field occurs to be a shock ; hence, we get : 

<T >1 =  <T >L -  
(z1  - 1)  <θu  >L

  (z1  + 1)1/2 <u2 >L
1/2

    with :  z1 > 1

Since the solution of the RP does not depend on the initial values <T >R ,   <T >L and <θu  >L ,  we may 

choose them such that : 

<T >R  >  <T >L     and : <θu  >L > 0
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Consequently, we get : 

<T >1 < min ( <T >R  ,   <T >L )  

which means that the maximum principle for <T> variable no longer holds. If we turn now to the case 

where 1-characteristic field occurs to be a rarefaction wave, we get : 

<T >1 = <T >L  +  (2 )1/2   
<θu >L

<u2>L

<u2>L
1/2 (1 -   z1

1/2 )   with : z1 ≤ 1

Thus, if <T >R ,   <T >L and <θu  >L ,  are such that : 

<T >R  <  <T >L     and : <θu  >L > 0

intermediate state will be such that : 

<T >1 > max  ( <T >R  ,   <T >L )  

which confirms result stated above when dealing with shocks. 

View publication statsView publication stats

D20319
Barrer 


