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Introduction

This work is a sequel of some previous work on one and two-equation

turbulent models for single phase compressible flows (B. Audebert, C.

Berthon, F. Coquel, A. Forestier, S.Gavrilyuk, X. Louis, E. Xeuxet,

[1,2,3,4,6,8] among others...).

The main objective is to get a meaningful and cheap conservative model for

turbulent industrial unsteady applications (with little information on boundary

and/or initial conditions for the turbulent kinetic energy) .

Another goal is to obtain a rough way in order to account for Reynolds stress

tensors in two-phase flow two-fluid models.
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Governing equations

In the following, ρ(x, t), U(x, t), P(x, t) and K (x, t) respectively denote the
mean density, the mean velocity, the mean pressure ate the turbulent kinetic

energy.

The governing set of equations is:

8

<

:

∂t (ρ) +∇ · (ρU) = 0 ;
∂t (ρU) +∇ · (ρU⊗ U + (P + 2K/3)Id) = ∇ · (σv) ;
∂t (ρE) +∇ · (U(ρE + P + 2K/3)) = ∇ · (σv : U) .

(1)

Where we note :

ρE = ρǫ (P, ρ) + ρU · U/2 + K (2)

and also:

K = K0ρ
5/3

(3)
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Main properties of this set of PDEs in a 1D framework

We introduce the condensed form of (1) which reads:

∂t (W ) + B(W )∂x (W ) = 0 (4)

and introduce c(P, ρ) such that:

c
2(P, ρ) =

„

P

ρ2
− ∂ρ (ǫ(P, ρ))

«

/(∂P (ǫ(P, ρ)))

Property 1 (Hyperbolicity):

In a 1D framework, system (1) is strictly hyperbolic:

λ1 = U , λ2 = U − c̃ , λ3 = U + c̃ (5)

where : (c̃)2 = c2 + 10K τ/ 9.

The 1-field is LD and the 2− 3- fields are GNL.
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Entropy inequality

We define S(P, ρ) such that:

c
2(P, ρ)∂P (S(P, ρ)) + ∂ρ (S(P, ρ)) = 0

Property 2 (Entropy inequality):

We note:
η = ρLog(S)
fη = ρLog(S)U

(6)

the entropy-entropy flux pair.

Solutions W (x , t) of (1) comply with:

∂t (η) +∇.(fη) ≤ 0 . (7)
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Jump conditions

Owing to the conservative form, we get jump conditions at once; noting σ the

speed of the travelling discontinuity seperating two physical states Wl and

Wr , we have:

−σ[W ]rl + [F (W )]rl = 0 (8)

or:
[ρv ]rl = 0

ρlρr ([v ]rl )
2 = [P + 2K/3]rl [ρ]

r
l

ρv
“

[ǫ(P, ρ) + K τ ]l r + (P l,r + 2K l,r /3)[τ ]rl

”

= 0

(9)

setting :

v = U − σ

and also:

[ψ]rl = ψr − ψl , (ψ)l,r = (ψr + ψl)/2.
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Jump conditions (remark)

We focus on a -γ-perfect gas EOS (with γ> 1). We recall that in that case, a

shock wave separating two states Zr and Zl is such that:

(β)−1
≤

ρ∗r

ρ∗l

≤ β

where: β = γ+1
γ−1

.

We can derive the exact form of the EOS for the mean variables, that is:

ρǫ (P, ρ) = P/(γ − 1). (10)

What about the shock wave separating mean variables Wl , Wr ?

Actually, the answer is, as expected:

(β)−1
≤

ρr

ρl

≤ β
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Solution of the 1D Riemann problem

Once more, we focus on a -γ-perfect gas EOS (with γ> 1).

Property 3 (Solution of the 1D RP):

The Riemann problem associated with initial states W (x < 0, t = 0) = WL

and W (x > 0, t = 0) = WR admits a unique self-similar solution:

W (x , t) = ω(x/t)

with no vacuum occurence, provided that initial left and right states WL,R are

such that:

UR − UL < h(SL, PL) + h(SR , PR)

where:

h(SL,R , PL,R) =

Z PL,R

0

1

γP

„

γSL,R(P/SL,R)
γ−1

γ +
10K0

9
(P/SL,R)

2
3γ

«1/2

dP

Intermediate states ρ1,2 and P1,2 are in the physical range.
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Summary and perspectives

Summary and perspectives

A simple turbulent model for single-phase flow applications, even if

complex EOS are involved, with an interesting behaviour in shock waves;

Approximate solutions using Finite Volume methods: exact Godunov

scheme or approximate Godunov scheme (VFRoe-ncv using

U, P + 2K/3, S variables [5]);

The solution of the 1DRP enables to derive suitable boundary conditions

for computational purposes;

A comparison with recent models for shallow water flows, proposed by

G.L. Richard and S. Gavrilyuk, might be of interest [9,10];

An extended version of the Baer-Nunziato model (Int. J. Multiphase

Flow, 1986) has been recently derived (hyperbolic system, entropy

inequality, unique jump conditions in single fields, see [7]).
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