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Binge drinking is now considered a central public health issue and is associatedwith emotional and interpersonal
problems, but the neural implications of these deficits remain unexplored. The present study aimed at offering
the first insights into the effects of binge drinking on the neural processing of vocal affect. On the basis of an
alcohol-consumption screening phase (204 students), 24 young adults (12 binge drinkers and 12 matched con-
trols, mean age: 23.8 years) were selected and performed an emotional categorisation task on morphed vocal
stimuli (drawn from a morphed fear–anger continuum) during fMRI scanning. In comparison to controls,
binge drinkers presented (1) worse behavioural performance in emotional affect categorisation; (2) reduced
activation of bilateral superior temporal gyrus; and (3) increased activation of right middle frontal gyrus.
These results constitute the first evidence of altered cerebral processing of emotional stimuli in binge drinking
and confirm that binge drinking leads tomarked cerebral changes,which has important implications for research
and clinical practice.

© 2013 The Authors. Published by Elsevier Inc.Open access under CC BY-NC-SA license. 
1. Introduction

Binge drinking refers to repeated alternation betweenmassive alco-
hol intakes and abstinence periods, and is becoming increasingly prom-
inent among young adults (Johnston et al., 2012). Its deleterious
consequences have been described at medical, cognitive and social
levels (Laghi et al., 2012), but the influence of binge drinking on brain
functioning has received only limited attention. However, as it is largely
established that long-term excessive alcohol consumption leads to
marked cerebral impairments (Bühler and Mann, 2011a; Duka et al.,
2004, 2011) and as binge drinking might constitute a first step towards
alcohol-dependence (Sanhueza et al., 2011; Tucker et al., 2003), young
binge drinkers may already present cerebral changes. This proposal is
further reinforced by two arguments: First, binge drinking is char-
acterized by repeated alternations between intense alcohol consump-
tion and withdrawal periods which are harmful for brain functioning
(Maldonado-Devincci et al., 2010; Obernier et al., 2002; Overstreet
ouvain, Institut de Psychologie,
Neuve, Belgium. Tel.: +32 10

rage).
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et al., 2002). Second, the adolescent brain is in an intense neuronal
remodelling phase and is thus highly sensitive to the effects of alcohol
(Bava and Tapert, 2010; Blakemore, 2012).

Nevertheless, very few functional neuroimaging studies have
explored the cerebral consequences of binge drinking habits in humans.
Several studies have investigated the cerebral effects of alcohol-
dependence in young individuals (De Bellis et al., 2005; Schweinsburg
et al., 2005) or the anatomical consequences of binge drinking
(McQueeny et al., 2009; Squeglia et al., 2012a) but without exploring
the related functional changes. Moreover, electrophysiological studies
suggested altered brain functioning in binge drinking but without
precisely identifying the brain regions involved (Crego et al., 2009;
López-Caneda et al., 2012; Maurage et al., 2009a, 2012). Actually, only
five studies have specifically explored the functional correlates of
binge drinking using fMRI (Campanella et al., 2013; Schweinsburg
et al., 2010, 2011; Squeglia et al., 2011; Xiao et al., 2013). These
studies showed that binge drinking in adolescence is associated with
decreased activity in occipital, hippocampal and prefrontal areas, but
with increased activity in amygdala, insula, parietal and superior frontal
regions during memory and decision making tasks. While contributing
to a better understanding of cerebral changes in binge drinking, these
preliminary studies have not answered several crucial questions:

(1.) It is unclear whether the cerebral changes observed are specific to
the high-level tasks used earlier or would also be observed when
other cognitive abilities are required. Specifically, as large-scale
se. 
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Table 1
Results for demographic, psychopathological and alcohol consumption measures for
controls (CR) and binge drinkers (BD): mean (S.D.).

CR (N = 12) BD (N = 12)

AgeNS 23.4 (4.21) 24.2 (4.49)
Gender ratio (female/male) 5/7 5/7
Educational levelNS 17.2 (1.53) 15.9 (1.56)
BDINS 1.75 (1.48) 2.83 (1.85)
STAI-ANS 30.33 (7.26) 32.42 (7.99)
STAI-BNS 36.75 (6.78) 39.17 (12.46)
OCDSNS 5.4 (2.18) 6.9 (3.72)
Age at first alcohol consumptionNS 15.2 (4.02) 13.6 (3.6)
Age when starting binge drinking habits / 19.04 (2.55)
Duration of binge drinking habits (in months) / 63.1 (41.92)
Consumption speedab⁎ .86 (.68) 2.51 (1.06)
Number of doses per weekb⁎⁎ .5 (1.17) 31.7 (18.19)
Mean number of occasions per weekb⁎⁎ .33 (.65) 4.1 (1.16)
Mean number of doses per occasionb⁎⁎ 1.37 (1.13) 7.5 (3.01)
Number of drunkenness episodesb⁎ .17 (0.57) 8.83 (8.41)

BDI = Beck Depression Inventory; STAI = State-Trait Anxiety Inventory (A = state
anxiety; B = trait anxiety); OCDS = Obsessive–Compulsive Drinking Scale.
NS = non-significant.

a In doses per hour.
b During the last six months.
⁎ p b 0.01.
⁎⁎ p b 0.001.
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emotional impairments have been shown in alcohol-dependence
(Maurage et al., 2008a, 2009b) and as affective deficits have
been suggested in binge drinking (Stephens and Duka, 2008),
the brain deficits may also be present during the processing of
emotions.

(2.) Most of these studies focused on adolescent binge drinkers, but
this habit is far more frequent among young adults (Naimi et al.,
2003) and the generalisation of earlier results to the global binge
drinking population remains unknown. As brain remodelling is
more limited among young adults, binge drinking might indeed
have less cerebral effects in this population.

(3.) Binge drinkers with current marijuana use (Schweinsburg
et al., 2010) or other drug abuse (Campanella et al., 2013;
Schweinsburg et al., 2011) have been included in previous
studies, and subclinical comorbidities have not always been
controlled for, leading to group differences in depression
and anxiety (Squeglia et al., 2011). Given that marijuana,
subclinical depression and anxiety affect brain activity
(Cavanagh and Geisler, 2006; Jager and Ramsey, 2008), the
cerebral changes reported might partly be due to these
comorbidities.

Here, we used an auditory affective two-alternative forced choice
task among young adult binge drinkerswithout comorbidities and addi-
tional drug abuse to avoid the aforementioned shortcomings. Our main
hypothesis is that the functional brain changes due to binge drinking,
thus far observed during cognitive tasks, are also present in emotional
tasks.We specifically hypothesized a reduced performance during audi-
tory emotional processing in binge drinking, associated with a reduced
activation of the brain regions classically involved in the processing
of vocally expressed emotions. Specifically, earlier studies conducted
among healthy participants have shown that the processing of human
affective bursts and prosodymainly relies not only on superior temporal
gyri (Beaucousin et al., 2007; Ethofer et al., 2009a, 2012; Grandjean
et al., 2005), but also on the right middle temporal gyrus (Ethofer
et al., 2006; Imaizumi et al., 1997; Mitchell, 2007) and inferior frontal
gyri (Ethofer et al., 2009b; Wildgruber et al., 2005). Moreover, as our
population consisted of young adults without psychopathological
comorbidities, the present study will also test whether the deficit
observed in previous studies on adolescent binge drinkers can be gener-
alised to the core population of binge drinkers, and whether this deficit
persists when comorbidities are controlled for.

2. Material and methods

2.1. Participants

A general screening phase was first conducted among the under- and
postgraduate community of theUniversity of Glasgow(UnitedKingdom).
204 students filled in a questionnaire assessing psychological measures
and alcohol-drug consumption characteristics. On the basis of this
evaluation, 24 students were selected, fulfilling the following conditions:
no positive personal or family history of alcohol-dependence, absence of
past or current other drug or psychotropic medication consumption,
absence of present nicotine dependence, no major medical problems, no
central nervous system disorder (including epilepsy and history of brain
trauma), no auditory impairment, low depression (i.e. score lower than
8 at the Beck Depression Inventory, BDI (Beck and Steer, 1987)) and
anxiety scores (i.e. scores lower than 45 and 52 at the State and Trait
Anxiety Inventory, STAI A–B (Spielberger et al., 1983), respectively), and
right-handedness.

Three variableswere used to determine the groups:mean number of
alcohol doses per drinking occasion (i.e. per day during which alcoholic
drinks are consumed), mean number of drinking occasions per week
and consumption speed in doses per hour. One dose corresponds to
10 g of pure ethanol. According to their alcohol consumption during
the last six months, subjects were distributed among two groups of 12
participants (see Table 1 for descriptive data): controls (CR; doses per
occasion b2; occasions per week b1; consumption speed b1) and
binge drinkers (BD; doses per occasion N5; occasions per week N3;
consumption speed N2). One-way analyses of variance (ANOVAs)
were performed to check if the participants were correctly distributed
across groups. These analyses showed that groups did not significantly
differ for age at first alcohol consumption [F(1,22) = 1.03, NS], but
binge drinkers presented as expected higher number of drinking
occasions per week [F(1,22) = 94.78, p b .001], doses per occasion
[F(1,22) = 72.67, p b .001], doses per week [F(1,22) = 35,26,
p b .001] and drunkenness episodes [F(1,22) = 12.69, p b .01] than
controls, as well as a faster consumption speed [F(1,22) = 10.05,
p b .01]. Groups were matched for age (age range: 19–32 years in
each group), gender (7 males per group) and education. Education
level was assessed according to the number of years of education
completed since starting primary school. Participants were asked to
abstain from any alcohol consumption for at least three days before
the scanning session. Before starting the fMRI study, a brief hearing
test was performed to ensure that all participants were of normal
hearing, and they were assessed for psychological control measures to
evaluate subclinical depression (BDI), anxiety (STAI A–B) and current
alcohol craving (as assessed by the Obsessive–Compulsive Drinking
Scale, OCDS (Anton et al., 1995)). Participants were provided with full
details regarding the aims of the study and the procedure to be follow-
ed. After receiving this information, all participants gave their informed
consent. The study was approved by the local ethics committee and
carried out according to the Declaration of Helsinki. Participants were
reimbursed £12 for their time.

2.2. Stimuli and tasks

Participants performed a two-alternative forced choice task regarding
one of two emotion categories of morphed affective bursts. Original re-
cordings were taken from the Montreal Affective Voices Battery (Belin
et al., 2008) in which actors were instructed to produce emotional inter-
jections using the vowel /a/. We chose four identities (two female), each
expressing two emotions (anger and fear). The use of auditory stimuli ex-
pressing negative emotions is justifiedby earlier studies showing a strong
deficit for the processing of these stimuli in alcohol-dependence and
binge drinking (Maurage et al., 2008b, 2009a). Stimuli were normalised
in energy (rootmean square) before and aftermorphing. Angry to fearful



Fig. 1. Behavioural results for eachmorph step (numbers represent the percentage of fear
in the affective bursts) among controls (in blue) and binge drinkers (in red). The left part
shows themean response (from 1 “anger” to 2 “fear”) and the right part depicts themean
reaction time (in seconds). Error bars represent standard error of the mean (S.E.M.).
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continua were created separately for each identity, in seven steps that
corresponded to 5/95%, 20/80%, 35/65%, 50/50%, 65/35%, 80/20%
and 95/5% fear/anger. The duration of the bursts within each contin-
uumwas kept constant (range: .6–9 s). We used STRAIGHT software
(Kawahara and Matsui, 2003) for stimulus manipulation and
Psychtoolbox3 (Brainard, 1997) for stimulus presentation and re-
sponse recording. Both programmes are based on MatlabR2009b
(Mathworks, Inc.). Acoustic analyses of the stimuli are published
elsewhere (Bestelmeyer et al., 2010).

A continuous carry-over design (Aguirre, 2007) was employed to
control for the effects of one stimulus upon the next using a first-
order serially balanced sequence of stimuli known as type-1-index-1
(Nonyane and Theobald, 2007). In this sequence each stimulus is pre-
ceded and followed by every other stimulus (seven morph steps and
one silence, i.e. a period without auditory stimulation) with an equal
number of times, totalling 65 stimuli. The sequence was repeated six
times in each of three runs. Each run started with two silences, and
each sequence of 65 stimuli was followed by nine TRs of silences. The
total number of events per run was thus 446 (each corresponding to
one fMRI volume), and the total number of trials for each morph step
was 144.

Stimuli were presented binaurally using the electrostatic NNL head-
phone system (NordicNeuroLab, Inc.) at 80 dB SPL(C). Participants
were asked to perform a two-alternative forced choice task in which
each affective voice had to be categorised as angry or fearful by means
of two button presses mounted on an MRI compatible response box
(NordicNeuroLab, Inc.). Subjects had to react as fast as possible and
keep their eyes closed. Response to each stimulus and reaction times
were recorded. Only correct answers were considered for behavioural
analysis. As the 50/50% morph step equally comprises fear and anger,
there is no correct response for this level, and it has not been included
in the behavioural analyses. Before the experiment, each subject
underwent a short training session to practise the task.

2.3. Imaging procedure and fMRI data analysis

Scans were acquired in a 3.0 Tesla Siemens Tim Trio scanner using a
12-channel head coil. Whole brain T1-weighted anatomical scans were
performed using fast gradient echo known as T1 ‘Magnetization Pre-
pared Rapid Gradient Echo’ (MPRAGE) consisting of 192 axial slices of
1 mm thickness with an inplane resolution of 1 × 1 × 1 (FOV = 256)
and a matrix of 256 × 256 performed at the end of the experiment.
T2-weighted functional scans were acquired using an interleaved as-
cending sequence consisting of 32 slices of 3 mm thickness (3 mm
gap) with an inplane resolution of 3 × 3 × 3 (FOV = 1260) and an ac-
quisition matrix of 70 × 70. The three runs (TR = 2 s, TE = 30 ms)
consisted of 446 volumes each. The presentation of a stimulus coincided
with the beginning of the TR. Vocal stimuli ranged in duration between
600 and 900 ms. A voice localizer scan (TR = 2 s, TE = 30 ms, 310 vol-
umes) was performed before the experimental scans, allowing reliable
identification of the temporal voice areas using the vocal versus non-
vocal contrast (Belin et al., 2000). This voice localizer tested whether
groups differed concerning basic cerebral activations related to human
voice processing.

All MRI data were analysed using SPM8 (Wellcome Department of
Cognitive Neurology, University College London). Pre-processing of
functional scans consisted of corrections for headmotion (trilinear inter-
polation) and scans were realigned to the first volume. Functional runs
were then coregistered to their corresponding individual anatomical
scans. Functional (3 mm isotropic voxels) and anatomical (1 mm isotro-
pic voxels) data were transformed to Montreal Neurological Institute
(MNI) space after segmentation of the anatomical scans. Normalised
data were spatially smoothed by applying a Gaussian kernel of 8 mm
full width at half maximum (FWHM). Condition-related changes in
regional brain activity were estimated for each participant by computing
the contrasts between the mean hemodynamic responses evoked by
each morph step relative to the silent baseline periods between runs.
Significant cerebral activations were then examined by means of a full-
factorial model with group as between-subjects factor and morph step
as within-subjects factor. The statistical threshold was set to p b .05
FWE-corrected at cluster level for multiple comparisons with a cluster
size of at least 10 contiguous voxels. Random effects analyses with one-
sample t-tests were also used to explore the global activations found in
each group and each emotion type, with statistical threshold set to
p b .05 FWE-corrected for multiple comparisons using cluster size and
extending to at least 20 voxels. Beta-values of the peak activity recorded
in the superior temporal and middle frontal gyri were extracted using
rfxplot toolbox (Gläscher, 2009) in order to perform Pearson's correla-
tions with behavioural data.

3. Results

3.1. Demographic and psychopathological measures

ANOVAs showed that groups did not significantly differ for age
[F(1,22) = .18, NS], gender, educational level [F(1,22) = 3.92, NS], de-
pression [F(1,22) = 2.50, NS], state anxiety [F(1,22) = .44, NS], trait
anxiety [F(1,22) = .35, NS] and alcohol craving [F(1,22) = 1.57, NS],
confirming the correct matching of groups. These results are described
in Table 1.

3.2. Behavioural data

These results are shown in Fig. 1. 6 × 2 ANOVAs with morph step
(5–20–35–65–80–95% of fear) as within-factor and group (CR, BD) as
between-factor were conducted separately for reaction times and be-
havioural responses, with post-hoc paired-samples t-tests:

– Reaction times: we found no significant group effect [F(1,22) = .39,
NS] and no group X morph step interaction [F(5,110) = 1.23, NS],
but obtained a significant main effect of morph step [F(1,22) =
94.78, p b .001] which was due to shorter reaction times to the
less ambiguous morphs.

– Behavioural responses: we found no group X morph step interaction
[F(5,110) = .73, NS] but a significant group effect [F(1,22) = 9.62,
p b .01] was identified: BD presented lower correct response rates
than CR, independently of the morph step. We also obtained a signif-
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icant main effect of morph step [F(5,110) = 24.94, p b .001], which
was driven by higher correct response rates for the less ambiguous
morphs.

3.3. fMRI data

The voice localizer showed the classical activations in areas along
bilateral superior temporal sulcus/superior temporal gyrus (Belin
et al., 2000) for both groups with no significant group differences.
The 7 × 2 full-factorial model with morph step as within-factor
and group (CR, BD) as between-factor showed two main effects:

– Main effect of morph step (Table 2, part a): Both anger (i.e. 5–20–35%
morph steps) and fear (i.e. 65–80–95%morph steps) bursts activated
right cerebellum, left inferior frontal gyrus, left supplementary motor
area and bilateral superior temporal gyri. Moreover, activations were
found in bilateral thalami for anger stimuli and in left insula, right
amygdala and right medial frontal gyrus for fear stimuli. Themain
effect of morph step showed that: (1) anger stimuli led to
significantly higher activations than fear ones in left inferior
frontal gyrus and supplementary motor area; and (2) fear
stimuli led to higher activations than anger in bilateral insula
and right medial frontal gyrus.
Table 2
Brain regions showing significant activation related to themain effect of emotion (anger versus
drinkers (BD), part B].

Contrast Brain area x y

(A) Main effect of emotion type
Anger Cerebellum 9 −64

Inferior frontal gyrus −48 5
Superior temporal gyrus −51 −19
Superior temporal gyrus 54 −16
Supplementary motor area −6 5
Thalamus −12 −16
Thalamus 12 −13

Fear Amygdala 21 −6
Cerebellum 9 −59
Inferior frontal gyrus −48 5
Insula −39 −1
Medial frontal gyrus 51 2
Superior temporal gyrus −53 −21
Superior temporal gyrus 63 −25
Supplementary motor area −9 18

Anger N fear Inferior frontal gyrus −45 17
Supplementary motor area 9 23

Fear N anger Insula 33 22
Insula −33 20
Medial frontal gyrus 9 52

(B) Main effect of group
CR Cerebellum 18 −52

Inferior frontal gyrus 42 38
Medial frontal gyrus 51 2
Superior temporal gyrus −51 −30
Superior temporal gyrus 54 −19
Thalamus −12 −16

BD Cerebellum 24 −49
Inferior frontal gyrus 42 7
Inferior parietal lobule −36 −37
Medial frontal gyrus 9 8
Superior temporal gyrus −54 −21
Superior temporal gyrus 54 −16
Thalamus −18 −13

CR N BD Superior temporal gyrus −57 −31
Superior temporal gyrus 60 −22

BD N CR Middle frontal gyrus 42 38

x, y and z are stereotaxic coordinates of peak-height voxels.
BA = Brodmann's area, L = left hemisphere, R = right hemisphere, k = cluster size.
Threshold set at p b .05 FWE corrected with a minimum cluster size of 20 contiguous voxels.
Presented data result from the contrast between themean hemodynamic responses evoked by
(e.g. “anger” = mean cerebral activations during anger stimuli presentationminus mean cereb
during the task minus mean cerebral activations shown by controls during silent baseline).
– Main effect of group (Table 2, part b): Both groups presented signifi-
cant activations in right cerebellum, right inferior and medial frontal
gyri, bilateral superior temporal gyri and left thalamus. Moreover,
activations were found in left inferior parietal lobule for binge
drinkers. The main effect of group showed that: (1) control partici-
pants presented higher activations than binge drinkers in bilateral
superior temporal gyri; and (2) binge drinkers presented higher acti-
vations than controls in right middle frontal gyrus. These results are
illustrated in Fig. 2.

– No significant activations were found for the interaction between
group and morph step.

3.4. Correlational analyses

Pearson's correlationswere performed to explore the links between:

(1.) Behavioural results and cerebral activations: A significant positive
correlationwas found between behavioural accuracy (i.e. percent-
age of correct responses) and peak voxel activity in the superior
temporal gyri (r = 0.435, p b .05), higher activation in the superi-
or temporal gyri thus being related to better performance. More-
over, a significant negative correlation was found between
behavioural reaction times and peak voxel activity in the middle
fear stimuli, part A) and to themain effect of group [control participants (CR) versus binge

z BA L/R k t-Statistic p-Value

−14 / R 148 8.72 b .0001
40 9 L 53 5.73 b .001
7 22 L 1079 20.76 b .0001
4 22 R 885 17.34 b .0001

56 32 L 69 8.94 b .0001
7 / L 223 8.08 b .0001
7 / R 26 5.9 b .05

−13 / R 84 6.15 b .05
−10 30 R 192 9.52 b .0001

34 9 L 29 6.21 b .05
−3 13 L 296 8.16 b .05
44 6 R 20 6.72 b .05
7 22 L 1046 19.41 b .0001
4 22 R 901 16.11 b .0001

46 32 L 41 8.37 b .001
10 44 L 26 5.95 b .05
49 32 R 27 6.13 b .05
7 13 R 36 5.32 b .05
4 13 L 41 5.18 b .05
4 10 R 359 5.71 b .05

−20 / R 112 8.04 b .0001
16 46 R 67 6.77 b .001
46 6 R 26 7.56 b .05
1 22 L 879 15.81 b .0001
1 22 R 822 15.14 b .0001
7 / L 79 6.52 b .0001

−20 / R 32 5.98 b .05
36 9 R 51 5.77 b .001
39 40 L 41 5.4 b .001
49 6 R 74 8 b .001
4 22 L 755 14.06 b .0001
4 22 R 443 9.63 b .0001

17 / L 93 5.95 b .0001
4 22 L 41 5.49 b .05

−2 22 R 124 6.32 b .0001
25 46 R 101 4.95 b .05

each experimental condition and those evoked by the silent baseline periods between runs
ral activations during silent baseline/“CR” = mean cerebral activations shown by controls



Fig. 2. Neuroimaging results for the group comparison (across all morph steps) between controls (CR) and binge drinkers (BD). Activations are illustrated on inflated cortex and SPM template for p b .001 (uncorrected) with an extent threshold of
40 voxels. Contrast of controls N binge drinkers is illustrated in redwhile the contrast of binge drinkers N controls is shown in blue. Bar graphs represent parameter estimates with error bars (S.E.M.). All activations (except left frontal) survive FWE-
correction at the cluster level (see Table 2b).
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frontal gyri (r = −0.387, p b .05), higher activation in themiddle
frontal gyri thus being related to shorter reaction times.

(2.) Superior temporal and middle frontal gyrus activations: a
significant negative correlation was found between the
peak voxel activity in the superior temporal and middle fron-
tal gyri (r = −0.338, p b .05) showing that a reduced activa-
tion of the superior temporal gyri is linked with increased
activation in the middle frontal gyri.

4. Discussion

This studywas thefirst to explore the cerebral correlates of emotion-
al processing in binge drinking, and the results clearly suggest that
binge drinkers present impaired behavioural and cerebral processing
of emotional bursts. At the behavioural level, binge drinkers presented
altered processing of negative prosody, which constitutes the primary
observation of impaired emotional decoding in this population. At the
neuroimaging level, the classical activation pattern related to emotional
bursts processing was totally replicated: In both groups, both emotions
activated the bilateral superior temporal gyri (the key region for human
voice processing (Beaucousin et al., 2007; Belin et al., 2000; Ethofer
et al., 2009a, 2012; Grandjean et al., 2005)) and the left inferior frontal
gyrus (involved in the conscious categorization of emotional sounds
(Ethofer et al., 2009b; Wildgruber et al., 2005)). Moreover, in line with
earlier results, fear led to increased activations in the amygdala, insula
and medial frontal gyrus (Mothes-Lasch et al., 2011), while anger led
to increased activations in the inferior frontal gyrus and supplementary
motor area (Sander et al., 2005). More centrally, twomain group differ-
enceswere found: (1) Binge drinkers had reduced activations in bilater-
al superior temporal gyri, which is involved in the processing of
affective bursts (Beaucousin et al., 2007; Ethofer et al., 2009a, 2012;
Grandjean et al., 2005). This result corroborates behavioural ones and
constitutes the first description of the cerebral correlates of impaired
prosody processing in binge drinking; and (2) Binge drinkers had
increased activations in the right middle frontal gyrus. This region is
involved in the processing of the social characteristics of human voice
(Szameitat et al., 2010) and is strongly connected with the superior
temporal gyrus (Ethofer et al., 2012), but is not directly involved in
the decoding of affective bursts.

These increased frontal activations among binge drinkers reflect the
enhanced involvement of alternative areas usually not activated during
affective bursts processing, and could index a compensatory activity
aiming at counterbalancing the reduced activations in the superior
temporal gyri. Earlier studies already showed increased frontal and
parietal activations among populations with alcohol-related problems
to compensate for impaired temporal activations during memory
tasks (Campanella et al., 2013; Schweinsburg et al., 2010). The present
results reinforce this “compensation hypothesis” suggesting that binge
drinking leads to a double functional change: reduced activation of the
areas typically activated during the task and increased activation of
alternative regions to compensate for this deficit. This suggestion is
further reinforced by the correlational analyses, as they showed (1) that
higher activity in the middle frontal gyri is associated with improved
performance (i.e. faster reaction times), confirming that increasing the
activity of this area can lead to faster emotional processing and (2) cen-
trally, that the activations of the superior temporal gyri andmiddle frontal
gyri are negatively correlated, which support the proposal that the in-
creased middle frontal gyrus activations might compensate altered supe-
rior temporal gyrus functioning. Our results also support the “continuum
hypothesis” (Enoch, 2006) suggesting that binge drinking and alcohol-
dependence could constitute two successive steps of a same pa-
thology, leading to analogous impairments. Indeed, as alcohol-
dependence is associated with marked emotion decoding deficits
(Maurage et al., 2008a, 2009b) and marked grey matter loss in the
superior temporal gyri (Demirakca et al., 2011), the similarities
between our results in binge drinking and earlier ones in alcohol-
dependence are in line with the proposal of a continuum in the
brain deficits between these two populations. This “continuum hy-
pothesis” should nevertheless be specifically tested in studies of-
fering a direct comparison between binge drinkers and alcohol-
dependent individuals. Moreover, the cerebral correlates of the
transition from binge drinking to alcohol-dependence should also
be explored, as it could be postulated that binge drinkers are still able
to activate alternative brain areas to compensate for impaired activations,
while during the evolution towards alcohol-dependence, this compensa-
tion might disappear due to the generalisation of brain impairments,
particularly in frontal areas (Bühler and Mann, 2011b; Taki et al., 2006).

Centrally, our results confirmed our main hypothesis by showing for
the first time that cerebral changes in binge drinking are present not
only during cognitive processes but also during affective ones, and that
binge drinking is deleterious not only for the adolescent brain but also
among young adults. Importantly, the strict control of comorbidities
ensures that these cerebral changes observed are related to alcohol con-
sumption per se andnot to other drug dependence or psychopathological
states. It should however be noted that, while we postulate (in line with
earlier longitudinal studies (Maurage et al., 2009a; Norman et al., 2011;
Squeglia et al., 2009)) that these cerebral changes are the direct conse-
quence of alcohol consumption, the reverse causation cannot be totally
excluded as several brain modifications could precede and influence the
development of binge drinking habits (Squeglia et al., 2012b). The ab-
sence of group effect concerning current alcohol craving also suggests
that the results are not due to stronger alcohol-related thoughts (which
might have impaired the performance) among binge drinkers. In view
of the limited sample size and variety of emotional bursts, future studies
on larger populations are needed to confirm these results, notably to
explore the specificity of these deficits for emotional processing (by
including control non-emotional stimuli) and the persistence of these
brain changes when binge drinking habits end. Moreover, while the
participants were repeatedly asked to avoid any alcohol consumption
during the three days preceding scanning, the absence of acute alcohol
consumption measure at testing day does not allow to totally make
sure that no participant had consumed alcohol in the days preceding
scanning. Despite these limits, this study clearly shows that binge
drinking is associated with impaired emotional processing, as indexed
by reduced performance in affective bursts categorization and decreased
activations in superior temporal gyri. Moreover, the increased activations
in an alternative voice processing network among binge drinkers support
the “compensation hypothesis” (Campanella et al., 2013; Schweinsburg
et al., 2010, 2011) and show that binge drinking leads to a reorganisation
of brain functioning, combining reduced and increased activations.

In conclusion, the present results offer the first insights concerning
the cerebral correlates of emotional impairments in binge drinking
and could constitute a first step towards the development of the affec-
tive neurosciences of binge drinking, potentially bearing crucial funda-
mental and clinical implications. At the experimental level, this could
shed new light on the causes and development of alcohol-dependence
by underlining the involvement of emotional impairments in the early
stages of this pathology. At the therapeutic level, understanding emo-
tional impairments in binge drinking could assist in the development
of prophylactic interventions such as focusing on the rehabilitation of
emotional and interpersonal skills. Our results highlight that binge
drinking, despite constituting a widespread alcohol consumption habit
among young people in Western countries, is associated with deleteri-
ous effects at behavioural and cerebral levels. We contribute to a grow-
ing body of literature emphasising the urgent need for more education
among binge drinkers and for a reconsideration of public health policies
among adolescents and young adults.
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