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Abstract: We report mid-IR supercontinuum generation, from 2.9 to 7.7µm, in a CMOS 

compatible silicon-germanium waveguide. This 1.3 octave bright supercontinuum has been 

achieved in a low loss dispersion engineered air-clad Si0.6Ge0.4/Si waveguide. 
 
OCIS codes: (320.6629) Supercontinuum generation; (190.4390) Nonlinear optics, Integrated optics; (140.3070) Infrared 

and far-infrared lasers. 

 

1. Introduction  

The generation in a CMOS compatible platform of a spectrally bright supercontinuum covering the mid-wavelength 

infrared band (MWIR – at 3 – 8µm) is a technological challenge that is promising to have a strong impact on 

molecular detection, as most chemical and biological compounds exhibit strong and unique absorption features in 

this spectral region [1]. The miniaturization of broadband octave-spanning sources (SCG) in the mid-IR has been 

already demonstrated on a chalcogenide chip [2]. Yet, these materials do not allow exploiting the advantages of the 

CMOS fabrication technologies in terms of reliability, mass manufacturing and cost. On the other hand, a mid-IR 

supercontinuum generation in group IV materials based platforms remains challenging. Although supercontinuum 

generation has been demonstrated in CMOS compatible platforms like silicon nitride-on-insulator [3, 4], silicon-on-

insulator [5, 6], silicon-germanium-on-insulator [7] and silicon-on sapphire [8], these sources are limited to 3.5µm 

and 6µm, due to the absorption in the silica and sapphire substrates, respectively. By taking advantage of the wider 

transparency window of the silicon substrate, the recently proposed silicon germanium-on-silicon platform is 

promising to overcome these limitations [9-11], potentially extending the spectral region of integrated sources at 

least up to 8µm [12].   

 

2. Waveguide design and experiments 

We just reported the generation of an octave spanning supercontinuum from 3 to 8.5µm in TE polarization in a 

silicon germanium-on-silicon waveguide [11]. Here, we demonstrate the generation of 1.3 octave spanning 

supercontinuum in the MWIR from 2.9 to 7.7μm in TM polarization, with a useful on-chip average power greater 

than 7mW by pumping dispersion engineered silicon germanium-on-silicon waveguide [9, 10]. Our waveguide 

consists of a 4.2μm thick and 4.5μm wide Si0.6Ge0.4 ridge with a top air cladding that seats on a silicon substrate (see 

inset Fig. 1a). The air clad design with a large SiGe cross-section (effective area of ~10.5µm2) results in low 

anomalous dispersion across a large bandwidth (see figure 1a), a cut-off wavelength of 8.2µm, a strong mode 

confinement in the waveguide core material (>98 % at 4.15µm) and a reduction of the contribution from surface 

roughness to the propagation loss.  

Waveguide propagation losses were measured to be between 0.3 and 0.4dB/cm in the 4 – 5µm wavelength range 

with the minimum value being 0.32dB/cm at 5µm.  

Supercontinuum was then achieved by pumping the waveguide with ~200fs pulses delivered from a mid-infrared 

MIROPA-fs optical parametric amplifier at a repetition rate of 63MHz. Using a 7cm long waveguide pumped at 

4.15μm close to the first zero-dispersion wavelength, we obtained the spectra shown in Fig. 1b for average coupled 

powers increasing from ~1mW to 21mW. At 21.1mW coupled average power (~3kW coupled peak power), we 

measured a supercontinuum spanning 1.3 octaves, from 2.9 to 7.7μm at the -30 dB level was achieved. Besides, the 

output spectrum is relatively smooth with a large -10dB bandwidth from 3.0 – 7.4μm. 
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Figure 1 a) Calculated group velocity dispersion (GVD) and confinement of the mode field in the waveguide core (dashed lines), black arrow 

indicate pump wavelength, blue arrow indicates the cut-off wavelength, schematic of an air clad SiGe waveguide as an insert, b) Output spectra 

measured at different average coupled power. Coupled average power is calculated assuming 4.5dB coupling loss. 

3. Conclusion 

In summary, we report supercontinuum generation in TM polarization from a silicon germanium-on-silicon platform 

covering almost the whole mid-wavelength infrared, where most molecules in atmosphere have relevant 

fingerprints. The generated on-chip supercontinuum MWIR power and bandwidth exceed that produced so far by 

other Si-based platforms that are intrinsically limited by the silica or sapphire substrate absorption. This establishes 

silicon germanium-on-silicon as a promising platform for integrated nonlinear photonics in MWIR, with the 

potential to extend the operating range beyond 8µm. 
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