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THE KATO SQUARE ROOT PROBLEM ON AN ARBITRARY
DOMAIN OF R¢

JULIAN BAILEY AND EL MAATI OUHABAZ

To the memory of Alan Mclntosh

ABSTRACT. Let Q be an open subset of R? and Lo = —divAV an elliptic operator with
bounded measurable and complex coefficients on L?(£2). The operator Lq is subject to
Dirichlet boundary conditions. We solve the Kato square root problem for arbitrary 2.
We prove that D(v/Lq) = H} () and there exist a constant C' > 0 such that

CHVully < || VEau, < € IVull,, u e H(@).
1

We also allow perturbations by general potentials: for any V' € L, . () with range con-
tained in a sector of C* with angle wy € [O, g) there exists Cy > 0 such that

et (it + 1941) < | VER Tl < 0 (it + 15w

forallu € D (VLo +V) = H}(Q)ND («/\V\). The constant Cy depends on V' only

through wy . In particular, Cy is independent of V for 0 <V € L, ().
We prove similar results for systems.
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1. INTRODUCTION AND THE MAIN RESULTS

We consider on L? (]Rd> divergence form elliptic operators Lu = —divAVu, where A =
(ax;) with ag € L™ (Rd, C) satisfies the usual ellipticity condition

d

(1.1) Re D ap(r)6& > maltl®

k=1

for a.e. x € R? and all ¢ = (&,...,&;) € C4. Here k4 > 0 is a constant. Owing to the
accretivity of £ one can define its square root v/£. A famous problem posed by T. Kato
asks whether the domain of /£ coincides with the Sobolev space H* (Rd>. The problem
was open for decades until it was solved in 2002 by S. Hofmann, M. Lacey and A. McIntosh
[17] and P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and Ph. Tchamitchian [3]. We
give a rapid review of the history of the problem and refer the reader to [17] and [3] and the
references therein for additional information. The first positive answer to the Kato square
root problem was given by R. Coifman, A. McIntosh and Y. Meyer [7] in dimension d = 1.
For higher dimension, R. Coifman, D. Deng and Y. Meyer [8] and E. Fabes, D. Jerison
and C. Kenig [12] proved the Kato square root property under the condition that the
matrix A is a relatively small perturbation of the identity. A. McIntosh [20] gave a positive
answer under the assumption that the coefficients aj; act boundedely on some Sobolev
spaces (which requires some regularity on the coefficients). S. Hofmann, M. Lacey and A.
MeclIntosh [17] solved the problem for elliptic operators whose corresponding heat kernel
has Gaussian upper bounds (such as the case of bounded measurable and real coefficients
for example). The general case of bounded measurable and complex coefficients was solved
by P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and Ph. Tchamitchian [3].

Next, we move to the case of elliptic operators on domains. Let {2 be an open subset of
R? and consider as above an elliptic operator Lq on L? () that is subject to Dirichlet, Neu-
mann or mixed boundary conditions. Kato’s square root problem in this setting becomes
whether the domain of /Lq coincides with the domain of the corresponding sesquilin-
ear form. That is, H} (Q), H' (Q) or an appropriate subspace between these two spaces
for Dirichlet, Neumann or mixed boundary conditions respectively. P. Auscher and Ph.
Tchamitchian [4] proved the Kato square root property for either Dirichlet or Neumann
boundary conditions provided {2 is a strongly Lipschitz domain. Based on their abstract
approach in [5], A. Axelsson, S. Keith and A. McIntosh dealt in [6] with mixed boundary
conditions under the assumption that 2 is a bi-Lipschitz image of a certain smooth domain.
The regularity required on €2 was then improved by M. Egert, R. Haller-Dintelmann and
P. Tolksdorf [10]. They assume that € has an interior corkscrew condition together with
the fact that it decomposes into a part D which satisfies the Ahlfors-David condition and
09\ D has local bi-Lipschitz charts. The problem for an arbitrary domain of R? is open.
One of our main contributions in this paper is to provide a solution to this problem in the
case of Dirichlet boundary conditions. See Corollary 1.2 below for the statement and the
homogeneous estimate as in the case of the whole space R?.

There is another motivation for this paper. We deal with the stability of the Kato
square root estimate under perturbation by unbounded potential V. A. Axelsson, S. Keith



THE KATO SQUARE ROOT PROBLEM ON AN ARBITRARY DOMAIN OF R? 3

and A. McIntosh considered non-homogeneous operators on Lipschitz domains with mixed
boundary conditions in [6] using the techniques developed in [5]. The potentials that
they considered were, however, bounded both from above and below. In [13] and [14], F.
Gesztesy, S. Hofmann and R. Nichols studied the domains of square root operators using
techniques distinct from those developed in [5]. The aim in [13] and [14] is to prove that the
square root property carries over from the homogeneous elliptic operator £ (or systems)
with boundary conditions to £ 4+ V for V € L? 4+ L* for appropriate p > g. As a result,
they deal with mixed boundary conditions if (2 satisfies the assumptions of [10] mentioned
above.

In the present paper we deal with general potentials and prove the square root property
with homogeneous estimates.

Let V € Lj,.(Q) and suppose that the range of V is contained in the sector

Sup+ i={z € CU{oo}: |arg (2)] <wy or z =0, oo}

for some wy € {0, g) Define the subspace

(1.2) HYY (Q) := H ()N D (|V|%) ={ueH(Q): V|7 ue L2 (@)}
We denote by Lo + V the operator —divAV 4 V with Dirichlet boundary conditions. Our

main result is the following theorem.
Theorem 1.1. Let ) be an open subset of R? (d > 1) and 'V as above. Then D (\/Eg + V) =
HyV (Q) and there exist a constant Cy > 0 such that

cit (Ivall + Vi ]) < | Vea+ vl < ov (19ul+ 1vIE o)

forallu € H&’V(Q). Moreover, the constant Cy is dependent on the potential only through
Wy .

Here ||-|| is of course the usual norm in L?(Q). In this paper we use ||-|| to denote
the norm of the Hilbert space under consideration. In particular, [|-|| is either |||/, or

-1l 2 (r) depending on the context. The notation (-, -) will be used to denote the associated

inner product.

The previous theorem contains, as a particular case, the solution of the Kato square root
problem for elliptic operators with Dirichlet boundary conditions on an arbitrary domain
Q. Simply set V' = 0 in the above theorem. Due to the importance of this case, it is stated
as its own result in the below corollary.

Corollary 1.2. We have D (\/£Q> = Hj (Q) and there exists a constant C' > 0 such that

V||Vl < H Lou

<c|vul

for allu € H} ().
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We also mention that these results remain valid for systems. See Section 6.

Now we explain our strategy of proof. Theorem 1.1 will be proved by first considering
the particular case @ = R%. We explain some of the main ideas used to obtain this case.

A few years following the solution to the original Kato square root problem in [3],
an alternate method of proof appeared in [5]. This method of proof, in contrast to the
original solution, considered first-order operators as opposed to second-order operators.
Our solution to the Kato problem with potential for Q2 = R? will be based on this method.

Let IT := T+ I'"* be a Dirac-type operator on a Hilbert space H and Ilg := 1"+ BB,
be a perturbation of II by bounded operators By and Bsy. Typically, II is considered to be a
first-order system acting on H := L? (Rd; cN ) for some d, N € N* and the perturbations B;

and By are multiplication by matrix-valued functions By, By € L™ (Rd; L (CN )) In their

seminal paper [5], A. Axelsson, S. Keith and A. McIntosh developed a general framework
for proving that the perturbed operator Il possessed a bounded holomorphic functional
calculus. This ultimately amounted to obtaining square function estimates of the form

00 2
(13) [ @] <~ .

0 t
where QP := tIlz (I +t*11%)"" and u is contained in the range R (Ilg). They proved
that this estimate would follow entirely from a set of simple conditions imposed upon the
operators I', By and Bs, labelled (H1) - (H8). Then, by checking this list of conditions, the
Axelsson-Keith-McIntosh framework, or AKM framework by way of abbreviation, could
be used to conclude that the particular selection of operators

0 0 I 0
» e (20) men me(10)

defined on L? (Rd) @ L2 (Rd; Cd), would satisfy (1.3) and therefore I1g possess a bounded
holomorphic functional calculus. The Kato square root estimate then followed almost
trivially from this.

In direct analogy to the potential free case, the Kato problem with potential on R¢ will be
solved by constructing appropriate potential dependent Dirac-type operators and demon-
strating that they retain a bounded holomorphic functional calculus under perturbation.
In particular, this strategy will be applied to the Dirac-type operator

0 00 0 V] —div
(1.5) My =Ty +T5:=| V]2 00 |+]|0 0 0
vV 00 0 0 0

defined on L*(R%) @ L2 (Rd) ®L? (Rd; Cd>, under the perturbation

I 0 0
(1.6) By=1I, By:=| 0 e
0 0 A

It should be observed that the operator I'y, will not necessarily satisfy the cancellation and
coercivity conditions, (H7) and (HS8), of [5] due to the presence of the zero-order potential
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term. As such, the original framework developed by Axelsson, Keith and McIntosh cannot
be directly applied. The key difficulty in proving our result is then to alter the original
framework in order to allow for such operators. The technical challenge presented by the
inclusion of the zero-order potential V' will be overcome by separating our square function
norm into components and demonstrating that the zero-order term will allow for the first
two components to be bounded while the third component will be handled by similar
arguments as in [5]. We make use of a range of techniques including diagonalisation, a
local T'(b) type argument and Carleson measure estimates. Our task, comparing with [5]
and the other papers mentioned above, is made a bit more complicated by the fact that
we keep track of the dependence of the estimates in terms of V' in order to have constants
which depend only the sectoriality angle wy. This dependence only through wy is the
keystone of our proof for the Kato square root problem on domains.

This strategy does not however allow us to deal directly with general sectorial V' €

L. ( d). We first restrict attention to the class W, of potentials V' for which

v Il

= < 00
weD(—A+|V)) H(—A +1|V])z uH

for some o € (1,2]. Using the above ideas borrowed from [5] we prove the quadratic
estimate

(v (1 VE)) "l < [Tl % < 0 (14 VE) P

with Q"% = tly g (I + t2H§B)_1 and Ily g = Ty + BiI'},Bs. As mentioned above, we
pay attention to the constants involved in the estimates in order to have Cy, which is
independent of o and depends on V' only through the angle of sectoriality wy . This leads
to the existence of a bounded holomorphic functional calculus for the bisectorial operator
Iy, g, which in turn leads to

(Cv (1 W)™ (19l + [vEu]) < [VEFV] < v (14 V) (19l + V2.

The rest of the proof of Theorem 1.1 for 2 = R¢ takes place in two stages. The first consists
in removing the dependence of the above estimate on [V], by letting o — 1. The second
one uses an approximation argument. Here we use some ideas from E.M. Ouhabaz [23]
in order to approximate in the resolvent sense £ 4+ V' by a sequence £ + V,, with sectorial
potentials V,, € W, for some a € (1,2].

In order to deal with a general domain {2 in Theorem 1.1 we use two approximation
arguments. For smooth €, the idea is to approximate Lq + V', as an operator on L?(2), by
the sequence of Schrodinger type operators £+ V' +nlga  acting on L? (Rd). For general
2, we approximate Lo+ V by Lg, +V with an increasing sequence of smooth open sets (2,,.
The control of the constants will be given by the dependence of the constants for Q) = R?
on V only through wy .
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2. PRELIMINARIES

2.1. Forms and Operators. Let 2 be an open subset of R%. Let A be a d x d-matrix
whose coefficients ay; € L (€, C) satisfy the ellipticity condition (1.1) on 2. We define the
sesquilinear form
p S
ou 0
ag(u,v) = /Q(A(m)Vu, Vo)de =) /Rd akl&:@;}l dx

k=1

for u, v € H}(Q). Then ag is a densely defined, sectorial and closed form. Its associated
operator Lg is formally given by

,CQU = —divAVu

and subject to Dirichlet boundary conditions.

For a given potential V' € L}, (Q,C) with range contained in a sector S, of angle
wy € [0,7), we denote by Lo + V' the operator associated with the sectorial and closed
form

ag (u,v) = ag(u, v) + /Q Vuv dx
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with domain

HYY (Q) = {u e H (), [ VI[P dr < oo} |
0
The form ag clearly satisfies the Garding inequality (or coercivity inequality)
1 2
(2.1) Reag (u,u) > kY4 (H‘V‘Q UH + HVUH2>

for all u € Hy" (), where kY is a positive constant which depends on the potential only
through wy . Recall that

D(Lo+V)={ueHy" (Q):3we L*(Q) st af (u,0) = (w,v) Vv e H" (Q)}.

In the particular case where 2 = R? we drop the subscript €2 in the notation and write a,
a¥, £ and £ 4 V for the corresponding forms and operators.
Note that the operators defined above are all maximal accretive and hence we can define

their square roots VLq, /Lo +V, VL and VL +V.

Remark 2.1. Note that the results in this paper remain valid under the assumption that
the form aq satisfies the corresponding Garding inequality

Re ag (u,u) > k4 |Vul’
for allu € D (aq), for some k4 > 0, instead of the pointwise ellipticity condition (1.1).

2.2. Holomorphic Functional Calculus for Bisectorial Operators. Let us briefly
recall what it means for a bisectorial operator to possess a bounded holomorphic functional
calculus. For a thorough treatment of functional calculus for bisectorial operators, it is
recommended that the reader refer to [21], [9], [15], [18] or [1].

For p € [0, 7), define the open and closed sectors

o .:{{ZEC\{U}ilarg(z)Ku} p e (0,m)
a (0700) p=20

and
g {zeCU{oo} :|arg(z)| < por 2=0, oo} pe (0,7)
e [0, oc] p=0.

Then, for p € [O, g), define the open and closed bisectors
- (50) U (-5t.)

Su = (Su+) U (=Su4)
respectively. Throughout this section we consider bisectorial operators defined on a Hilbert
space H.

Definition 2.2 (Bisectorial Operator). A linear operator T : D (T') C H — H is said to
be w-bisectorial for w € [0, g) if the spectrum o (T') is contained in the bisector S, and if

and

for any pu € (w, %), there exists C,, > 0 such that the resolvent bound

(22) <l]jcr =) < c.



8 JULIAN BAILEY AND EL MAATI OUHABAZ

holds for all ( € C\'S,,. T is said to be bisectorial if it is w-bisectorial for some w € [0, g)

An interesting fact concerning bisectorial operators is the following decomposition result.

Proposition 2.3 (|9, Thm. 3.8)). Let T : D(T) C H — H be a bisectorial operator. Then
T is necessarily densely defined and the Hilbert space H admits the following decomposition

H=N(T)® R(T).

Let T be an w-bisectorial operator for w € [0, g) and p € (w, g) Define the following
algebras of functions

H*> (SZ) = {f holomorphic : ||f|| . = ZSSSB 1f(2)] < oo}

KN

HgO(S,j)::{feHOO(Sg):ao,a>os.t.|()|<C vzes;;}.

| |2a

For any f € Hg® (SZ), one can define the operator f(7') as follows. For u € H, define

I T udz
2my{f (2 ’

yoi= {ireii”:0§r<oo}

where the curve

for some v € (w, u) is traversed anticlockwise. This association is a well-defined algebra
homorphism from Hg° (SZ) to £ (H).

Definition 2.4. Let 0 < w < pu < 5. An w-bisectorial operator T : D(T) C H — H is
satd to have a bounded H*> (SZ) -functional calculus if there exists ¢ > 0 such that

(2.3) 1f (DI < cellfll
forall f € HY® (S;j) T is said to have a bounded holomorphic functional calculus if it has

a bounded H* (SZ) -functional calculus for some p.

It is a well known fact that if (2.3) holds for all f € Hg® (Sﬁ) then there exists a
well-defined extension of the homomorphism f — f(T") to all of H*® (SZ) Moreover,

g(T) € £ (H) and (2.3) holds for all g € H* (S5).
Let ¢ : S, = C be defined through
z

q(z) = e

1
For t > 0, let g; denote the function ¢(2) := q(tz) for z € 5. Then ¢, € Hg® (S") for any
t > 0 and one can define ¢ (7).

5, 2 €S
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Definition 2.5 (Square Function Estimates). A bisectorial operator T' on a Hilbert space
H is said to satisfy square function estimates if there exists a constant C'sgp > 0 such that

dt
(2.4 CtlulP < [ NaTyull® S

for allu € R(T).

Remark 2.6. The use of the function q in the above definition of square function esti-
mates is somewhat arbitrary. Indeed, it can be swapped with v for any i € HG® (SZ) not

< Csp |Jul®

identically equal to zero on either Sy or (—SZ+>. This follows from the equivalence of
these two norms as stated in [21] or [15, Thm. 7.3.1].

For self-adjoint operators, the following basic result holds.

Proposition 2.7. Suppose that T is self-adjoint. Then for any u € H,

00 dt
[ lamyl? S < Sl
0
FEquality will hold if u € R(T).

The proof of the following theorem can be found in [9] or [1]. The constant dependence is
not explicitly stated in either of these references but it is straightforward to trace through
their arguments to obtain the below dependence.

Theorem 2.8. Let T' be an w-bisectorial operator on H for w € {0, g) Suppose that T
satisfies square function estimates with constant Csp > 0. Then T must have a bounded
H*> (SZ) -functional calculus for any p € (w,g . In particular, there exists a constant
¢ > 0, independent of T', such that

1A < e Csp Cu (I fll
for all f € HE® (SZ), where C,, > 0 is the constant from the resolvent estimate (2.2).

2.3. AKM without Cancellation and Coercivity. The operators that we wish to
consider, I'y,, will satisfy the first six conditions of [5]. However, they will not necessarily
satisfy the cancellation condition (H7) and the coercivity condition (HS8). It will therefore
be fruitful to see what happens to the original AKM framework when the cancellation and
coercivity conditions are removed.

Similar to the original result, we begin by assuming that we have operators that satisfy
the hypotheses (H1) - (H3) from [5]. Recall these conditions for operators I', B; and Bs
on a Hilbert space H.

(H1) I': D(I') — H is a closed, densely defined, nilpotent operator.
(H2) B; and Bs satisfy the accretivity conditions

Re(Byu, u) > kq ||ul|” and — Re(Byv,v) > Ky ||v]?
for all v € R(I'*) and v € R (I') for some k1, kg > 0.



10 JULIAN BAILEY AND EL MAATI OUHABAZ

(H3) The operators I' and I'* satisfy
F*BzBlf* =0 and FBlBQF = 0.

In [5] Section 4, the authors assume that they have operators that satisfy the hypotheses
(H1) - (H3) and they derive several important operator theoretic consequences from only
these three hypotheses. As our operators I', By and By also satisfy (H1) - (H3), it follows
that the results in [5] Section 4 can be applied for these operators. In the interest of making

this article as self-contained as possible, we will now restate any such result that is to be
used in this paper.

Proposition 2.9 ([5]). Define the perturbation dependent operators
'y = BI"By, TI'p:=BI'Bf and llp:=1+T15%.
The Hilbert space H has the following Hodge decomposition into closed subspaces:

(2.5) H=N(Ig)dR(Iy) & R(T).
Moreover, we have N (Ilg) = N (I';) N N(I') and R(llg) = R(I'y) & R(I'). When
By = By = I these decompositions are orthogonal, and in general the decompositions

are topological. Similarly, there is also a decomposition

H=N(I) e RTs &R T.

Proposition 2.10 ([5]). The perturbed Dirac-type operator Ilg is an w-bisectorial operator

with w := § (wy + ws) where

wp = sup |arg(Biu,u)| < z

ueR(M*)\{0} 2

and -
wy = sup |arg(Bou,u)| < =.

ueR(D)\{0} 2

The bisectoriality of I1g ensures that the following operators will be well-defined.

Definition 2.11. Fort € R\ {0}, define the perturbation dependent operators
RP = (I+itlly)™, PP = (I+61p)7)

QF :=tlgP? and OF :=tI'yPP.
When there is no perturbation, i.e. when By = By = I, the B will dropped from the

superscript or subscript. For example, instead of ©F or I1; the notation ©; and IT will be
employed.

Remark 2.12. An easy consequence of Proposition 2.10 is that the operators R, PP and
QF are all uniformly H-bounded in t. Furthermore, on taking the Hodge decomposition
in Proposition 2.9 into account, it is clear that the operators OF will also be uniformly
H-bounded in t.

The next result tells us how the operators Il and PP interact with I' and I';.
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Lemma 2.13 ([5]). The following relations are true.
Hpl'u =T3pu  for all uw e D (I'sllp),
Hplyu =THgu for all uw € D (I'lp),
I'PPu=PPTu forallue D(I'), and
I'5PPu= PPThu  for all ue D(Ty).
The subsequent lemma provides a square function estimate for the unperturbed Dirac-
type operator II. When considering square function estimates for the perturbed operator,
there will be several instances where the perturbed case can be reduced with the assistance

of this unperturbed estimate. Its proof follows directly from the self-adjointness of the
operator II and Proposition 2.7.

Lemma 2.14 ([5]). The quadratic estimate

a1
(2.6) | 1@l S < 5 el
0

t
holds for all w € H. Equality holds on R (II).

The following result will play a crucial role in the reduction of the square function
estimate (1.3).

Proposition 2.15 ([5]). Assume that the estimate
o0 2 dt
(27) | lerpal S < e jul?

holds for all w € R(I') and some constant ¢ > 0, together with three similar estimates
obtained on replacing {T', By, Bo} by {I'*, By, B1}, {I'*, B5, Bi} and {I', BY, B3}. Then Ilp

satisfies the quadratic estimate
(2.8) (cC |M|</’H@t\*f<conm

for allu € R(Ilp), for some C > 0 entirely dependent on (H1)- (H3).

The constant dependence of (2.8) is not explicitly mentioned in Proposition 4.8 of [5],
but it is relatively easy to trace through their argument and record where (2.7) is used.
The following corollary is proved during the course of the proof of Proposition 4.8 of [5].

Corollary 2.16 (High Frequency Estimate). For any u € R ("), there exists a constant

c > 0 for which

|7 et -ry uf@q”uu

From this point onwards, it will also be assumed that our operators satisfy the additional
hypotheses (H4) - (H6). These hypotheses are stated below for reference.

(H4) The Hilbert space is H = L? (Rd; CN) for some d, N € N*.
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(H5) The operators By and B, represent multiplication by matrix-valued functions. That
is,

Bi(f)(x) = Bi(z)f(z)  and  Bs(f)(x) = Ba2(x)f(x)
for all f € H and z € R, where By, By € L™ (Rd;ﬁ (CN)).

(H6) For every bounded Lipschitz function n : R — C, we have that nD(I") C D (T')
and nD (I'*) € D (I'*). Moreover, the commutators [[',n/] and [['™*, n/] are multi-
plication operators that satisfy the bound

oI ()], ([0 nl] (2)] < c|[Vn(z)|

for all z € R% and some constant ¢ > 0.

In contrast to the original result, our operators will not be assumed to satisfy the can-
cellation condition (H7) and the coercivity condition (H8). Without these two conditions,
many of the results from Section 5 of [5] will fail. One notable exception to this is that
the bounded operators associated with our perturbed Dirac-type operator I1g will satisfy
off-diagonal estimates.

Definition 2.17 (Off-Diagonal Bounds). Define (x) := 1+ |x| for x € C and dist(E, F) :=
inf{|x —y|:x € E,y € F} for E, F CR.

Let {Uy},-, be a family of operators on H = L? (Rd; CN). This collection is said to have
off-diagonal bounds of order M > 0 if there exists Cyy > 0 such that

(2.9) 1Tl 2y < Crr{dist(E, F) /)™ [|ul|
whenever E, F C R? are Borel sets and u € H satisfies suppu C F.

Proposition 2.18 ([5]). Let U; be given by either RZ, RP,, PP, QF or ©F for every
t > 0. The collection of operators {U;},., has off-diagonal bounds of every order M > 0.
Moreover, the constant Cyy in the estimate (2.9) depends only on M and the hypotheses
(H1) - (HG).

Introduce the following dyadic decomposition of RY. Let O = U52 Do where O; :=
{27 (k4 (0,1]") : k € Z"} if 277! < t < 27. Define the averaging operator A; : H — H
through

1
Avilz) Q(z, )] Jo uly) dy
for z € R4 ¢t > 0 and u € H, where Q(z,t) is the unique dyadic cube in O; that contains
the point .

For an operator family {U:},., that satisfies off-diagonal bounds of every order, there
exists an extension U; : L™ (Rd; cN ) — L? (Rd; cN ) for each t > 0. This is constructed

loc

by defining
Uu(z) == lim Y U;(1gu) (2),

T—00 RG
O¢
dist(Q,R) <"
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forx € Q € O; and u € L™ (Rd;CN ) The convergence of the above limit is guaranteed
by the off-diagonal bounds of {U,},.,. Further detail on this construction can be found in
[5], [11], [22]. Following [5], the above extension then allows us to introduce the principal
part of the operator Uj.

Definition 2.19. Let {U;},., be operators on H that satisfy off-diagonal bounds of every
order. Fort > 0, the principal part of U, is the operator ¢, : RY — L (CN) defined through

[G(@)] (w) := (Uw) ()
for each v € R* and w € CV.
The following generalisation of Corollary 5.3 of [5] will also be true with an identical
proof.

Proposition 2.20. Let {U.},., be operators on H that satisfy off-diagonal bounds of every
order. Let ¢, :R* = L (CN) denote the principal part of the operator U;. Then there exists

¢ > 0 such that
J 16w dy < c

for all Q € O;,. Moreover, the operators (;A; are uniformly H-bounded in t.

Finally, the ensuing partial result will also be valid. Its proof follows in an identical
manner to the first part of the proof of Proposition 5.5 of [5].

Proposition 2.21. Let {U,},., be operators on H that satisfy off-diagonal bounds of every

order. Let ¢, : R — L (CN) denote the principal part of U;. Then there exists ¢ > 0 such
that

(2.10) [(Ur = GA) ]| < ¢ [[tVol].
for any v € H! (Rd;CN) CHandt>0.

3. PROOF OF KATO WITH POTENTIAL ON R?

The aim of this section is to prove Theorem 1.1 for Q = R? As explained in the
introduction, the proof is based on the holomorphic functional calculus (equivalently square
function estimates) for Dirac-type operators. The proof of one of the square function
estimates will be postponed to the next section.

We start by introducing a class of potentials. For « € [1,2], define W, to be the class

of all measurable functions V € L}, (Rd) for which

) 17 ] + -2 o
[V]a T Sup 2
wep(-a+V)) ||(=A+|V])F o

The supremum is taken over D (—A + |V]) but it coincides with the supremum over
D ((—A + |V\)%) since D (—A +|V) is a core of the operator (—A + |V|)2.
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As will be proved in Lemma 3.9, W, is a decreasing class of potentials and W, =
Ll

loc (Rd) :
As a first step, we state a weaker version of Theorem 1.1 for 2 = R? for potentials which
are in W, for some a € (1,2].

Proposition 3.1. Let V€ W, for some o € (1,2] and suppose that the range of V is
contained in a sector S, + for some wy € {O, g) Then there exists Cy > 0, dependent on
the potential only through wy, for which

(3.1)

(v (1+ 1) (Ivull + Vi

)< IVEFV| < v (1 VE) (Il + [VEd])
for alluw e D(L+ V). The constant Cy is independent of o € (1,2].

Remark 3.2. In the previous proposition, as well as in the forthcoming results, we em-
phasize the independence of Cy from a. The reason for this lies in the fact that we will let
a — 1 in (3.1) in order to obtain the resull for general potentials. Therefore we at least
need a constant that does not explode when taking the limit.

Notation. For the remainder of this article, the notation A < B and A ~ B will be used
to denote that there exists a constant Cy > 0, independent of o and dependent on the
potential only through wy, such that A < Cy B and C';IB < A<LZCyB.

Fix V e W, for some a € (1, 2] with angle of sectoriality wy € {0, g) Define the Hilbert
space

H o= L? (RLC™?) = 12 (R4 C) @ L? (R% C) © L2(RY CY).

Let P; denote the natural projection map onto the subspace corresponding to the ith
component of H for ¢ = 1, 2 and 3. The notation P; will also be used to denote the
projection map onto the ith subspace of C**? = C @ C @& C*. The ith component of a
vector v € H will be denoted by v; so that v = (vy,ve,v3) with vy, vy € L? (Rd) and
vy € L2 (Rd; Cd).

Let I'y, be the operator on H defined by

0 00
1
Ty:=| V]2 0 0
vV 00
Also define
000 0 00
To:=| 0 00|, My=|[ ] 00|,
vV 00 0 00

HO = F() + FS and HV = FV + F?/
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Let By, By € L™ (Rd; L (Cd+2)) be the matrix-valued multiplication operators

I 0 0
(3.2) Bi=1I, By:=| 0 e=2"
0 0 A

Proposition 3.3. The family of operators {T'o, By, Bo} satisfies the conditions (H1) - (HS)
of [5] while {T'v, By, Ba} satisfies only (H1) - (H6).

Proof. Assumptions (H1), (H3), (H4) and (H5) are obvious from the definitions of the
operators. (H2) follows from the ellipticity assumption (1.1) for {I'g, By, B2} and from
(2.1) for {I'y, By, Bo}. (H6) for both sets of operators follows from the fact that the order
of the operators I'y and I'y is less than or equal to one. (H7) for {I'g, By, Ba} is given
by the homogeneity of I'y and (H8) is given by the boundedness of the Riesz transforms

3j3k (—A)_l on L? (Rd) for j, k=1,---,d. o

For reference, the cancellation condition (H7) and the coercivity condition (H8) are given
below for the operator I'.

(H7) For any u € D (I'y) and v € D (I%), both compactly supported,

/ Fou=0 and / Ljv = 0.
Rd Rd

(H8) There exists ¢ > 0 such that
Vul] < ¢ [Toull
for all uw € R (Ily) N D (IIp).

Remark 3.4. Since the operators {1y, By, Ba} satisfy all eight conditions (H1) - (H8) of
[5], we can then apply the results from that paper to these operators.

Definition 3.5. Fort € R\ {0}, define the perturbation dependent operators
F*{/,B = Bl].—w{/BQ, HV,B = FV + F*V,Bv

) - -1
RIP = (I +itllyp) ™", PP o= (148 (vp)’)

VB .= thBPtV’B and ©)F = tF*V’BPtV’B.
When there is no perturbation, i.e. when By = By = I, the B will dropped from the
superscript or subscript. For example, instead of @,Y’I the notation ©) will be employed.

The main result that will be used to prove the Kato estimate with potential on R? is the
following square function estimate.

Theorem 3.6. Let {I'y, By, Bo} be as defined above. There exists a constant Cy > 0,
dependent on the potential only through wy, such that

(3.3) /. H@Y’BPtVuH“f <Cy (1+ V) lul’
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for allu € R(Ty). The constant Cy is independent of a € (1, 2].

The proof of this theorem will be reserved for Section 4. Next, we consider an estimate
that serves as a dual to (3.3).

Proposition 3.7. Fort > 0, define the operator
—1
Py = (T4 + BoIvB)?)

The square function estimate

(3.4) /OOO HPY’BtBQFVBlptVuH“? < lul)®

will hold for all u € H.

Proof. Since {I'v, By, B} satisfies (H1) - (H6) it follows that {I'};, B2, B1 } will also satisfy
(H1) - (H6). Proposition 2.10 then implies that the operators P;” are well-defined and

uniformly L?-bounded (by a constant depending on V' only through wy/). On applying this
to the left-hand side of (3.4),

/Oo |PYPtBaTy B PY u| g /Oo |¢Bay BiPY o dt
0 t 0 t
2 dt

t
2 dt

t

< [ rvrad
0

< ’tH\/PtVUH
1

2
where the inequality ||I'yo|| < ||IIyv]| for v € D (Ily) follows immediately from the three-

by-three matrix form of the operators and Lemma 2.14 was applied to obtain the last
line. O

2
™

From Theorem 3.6 and the previous proposition, the upper and lower square function
estimates for Q;"® can be proved.

Theorem 3.8. The estimate
(3.5) (L+V2) " llul* < [ @i

holds for all w € R (Iy).

< (T4 [VE) [lul?

Proof. Proposition 2.15 states that in order to prove the square function estimate (3.5), it is
sufficient for the estimate (3.3) to be valid for the permutations of operators {I'y, By, Bs},
{T'v, B}, Bs}, {I't/, B2, B1} and {I'}{,, By, By}. The first permutations {I'y, By, Bo} and
{T'v, Bf, B3} both come under the umbrella of Theorem 3.6. The permutations {I'},, B2, By}
and {I'},, B3, Bi} are handled by Proposition 3.7 by observing that BX’B and BsI'y By com-
mute on an appropriate space (cf. Lemma 2.13). i
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Proof of Proposition 3.1. From the upper and lower estimates of the previous theorem,
Theorem 2.8 then implies that Iy, 5 has a bounded holomorphic functional calculus. Ap-

plying this with the functions f(2) = % and g(z) = @ to a vector (u,0,0) € H with
ue D (\/E + V) then completes the proof of Proposition 3.1. O

Let us now dispose of the dependence of the Kato estimate on the constant [V] , through
an interpolation argument.

Lemma 3.9. Suppose that the potential V' is in W, for some o € (1,2]. Then V € Wg
for any B € [1, o] with
-1

(3.6) V], <2([V],)™.

Proof. The first observation is that [V], < 2 for any locally integrable V : R? — C. Indeed,
due to positivity of the operator (—A),

[IVEw| = (Viau)
< (A +[V])u, u)
— —a+ vt
Identical reasoning can be applied to obtain the bound
o] < l-a+1vpa].

This proves that [V], < 2 and therefore W is the class of all V € L}, (Rd) with no further
restriction.

Assume that V' € W, for some « € (1,2]. We use interpolation to prove that V' € Wg
for 5 € [1, a with the constant given in (3.6). Define the Banach spaces

1 1

Xoi= {uwe 12 (R £ oy, o= g7l + (=8 + VD, < oo
and 1

Vom {uwe 22 (&) s ulhg o= 5 b+ (=8 + V)l < oo}
where M > 0. The corresponding complex interpolation space is

1
L 2 (pd) . —
(X1, Y], = {u €L (R ) : ||u||[X1,Y1]9 M lull, +

for 0 <6 < 1. Also set

N

‘(—A+ ) +(“21)"UH < oo},
2
X =Y, =L*(RY).
For z in the strip
S:={z€C:0<Rez<1},
define the operator T, on X; NY; through

a—1

T.u:= |V|%+(T)Z u,
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for u € Xy NY;. Then, if t € R,
[Tivullx, = [ Tiull 2

L2

V|Zu

(=A+V])

< lullx,

NI

IN

U
LQ
for u € X; NY;. This implies that T}; can be extended to a linear operator on X; with

1Tl 2, 0y < 1

Similarly,

[Thvieully, = || Trieull 2

< [Vl llully,

for v € Xy NY;. This implies that T, extends to a linear operator on Y; with

1Tt 2 vy vy < [V

Hence,
- 0
(3.7) 1Tl x, v, < 177 VI Nullix, v,

for any 0 < 0 < 1. Setting # = 2=% in (3.7) then gives

a—1

ng UH < Vi) (]\14 lull + H(—A V)7 u

Let M — oo to obtain
V1% < ) =+ vt

A similar interpolation argument can be applied to obtain the bound

-2)

for any uw € D (—A + |V]). It proceeds identically but it should be noted that the bound-
edness of the imaginary powers of (—A) must be used when evaluating the endpoints of
the interpolation argument. O

B
2

uH < [v](F) H(—A L V)* uH
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It is now possible to get rid of the dependence of (3.1) on the constant [V],. Since
V' € W,, it follows from the previous lemma that [V],; < oo for all 8 € [1, a]. This implies
that (3.1) is valid for all g € [1, o],

(3.8)
(cv (1+ [V]g))’1 (V12 af + 1vull) < || VE+Va| < v (1+ V) (|IVI2 | + [9ull) -

Moreover, the previous lemma also allows us to deduce that

lim [V]; <2.
B—1t
Sending  — 17 in (3.8) leads to
(3.9) Cot ([IVIE ] + 1vull) < [ VEF V| < Cv (VI ] + [ vall).

In order to conclude our proof of Theorem 1.1 for £ = R¢ we have to extend (3.9) to all
sectorial V' € L}, (Rd). This will be achieved by an approximation argument. In order to

do so, we need to approximate in the strong resolvent sense £ + V' by a sequence £ + V,,
with V,, € W,, and apply (3.9). We shall borrow some ideas from [23].

Let V € L}, (Rd) with angle of sectoriality wy € [0,5). For each m, n € ||* with m <n
set
Vi = (ReV) Ly + i (Im V)" Ly — i (Im V)™ Lyjcpn.

It is clear that for m < n the potential V,,,, € L™ (Rd) will have angle of sectoriality at
most wy. Obviously, for each € > 0 we have V,,,, + € € W, and so (3.9) implies

(3.10) O3 (||IVan 2 | + 1)) < || /£ + Vi + etu]| < O (Vi + €2 ]| + V] ) -

In particular, the operators |Vn7m|% (L4 Viom + 6)7% and V (L + V. + 6)7% are uniformly
L?-bounded in n, m and € for m < n. Our aim is to take the limit as n — oo and m — oo.
We deal with V (£ + V.., + 6)_%. The arguments are similar for \Vn,m|% (L+ Vom+ 6)_%.
For a given f € L? (Rd), the sequence ((ﬁ + Vi + 6)_% f)n is bounded in H! (Rd).
Hence, after extraction of a subsequence, we may assume that this sequence converges
weakly in H! (Rd) as n — oo. We prove that (£ +V,,, +¢€), converges to (£ + V;, + €)
in the strong resolvent sense. Here
Vi i=ReV +i(ImV)" —i(Im V)™ Lyyj<pm.

Once this is proved we obtain

HV (L+ Vi + 6)_% fH < lim inf HV (L4 Vi + e)_% fH

which will imply that (V (L+V,, + 6)7%) is uniformly L2-bounded in m and e. We then
repeat the same argument by letting m — oo and obtain

(3.11) (V12 |+ IVul) < Cv || VE+V +eul|.
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We let ¢ — 0 and obtain the first estimate in Theorem 1.1. The second estimate is the
obtained from the first one by a well known duality argument as follows

Hmu1\=sup{|<<£+V>u7v>% }

= sup { / AVuVv + Vuo|, |\ (L+ V) ‘ }

(£+V

< sup { IVl [Vl + IVI a [V .

—~

L+ V)

Y

(L+ V)

< sup { I9all + |IVIE uf] [IV0ll + VI

—

<1}

where in the last inequality we use the lower estimate (we just proved) of Theorem 1.1 for
the adjoint operator (£ + V)"

Our final task is to prove the above claims on the convergence in the strong resolvent
sense. Recall that any sesquilinear form € on a complex Hilbert space can be written as

(3.12) € = b+ ic

where b = (€ + €*) (called the real part of €) and ¢ = o-(€ — €*) (the imaginary part).
We apply this decomposition to the sesquilinear forms a* and a"»m%¢ (for m < n)

Ve —p+ic and oYemte =pnm 4 qm
We introduce the forms
a"*(2) =b+2c and a"mte(z) =BV 4 2T

for z € St; := {z € C, [Im(z)| < 6}. The sectoriality of V,,,, + ¢ implies that for 6 > 0
small enough, each form a"»m%¢(2) and aV¢(2) is sectorial for every z € Sts. On the other
hand, these forms are of type (a) in the sense of [19, p. 393] and hence the corresponding
resolvents are holomorphic in the strip Sts and uniformly L?-bounded. Observe that for
z € [0,0) the forms a"»m%¢(z) are symmetric and the sequence is increasing in the sense
that

aV"’mJ“E(z) (u,u) < aV"“’mJ“E(z) (u,u).

When n — oo, a¥»m+¢(2)(u, u) converges to the form a"=*¢(2)(u, u). The monotone conver-
gence theorem for non-decreasing forms [19, p. 461] implies the convergence in the strong
resolvent sense of a"»m%¢(z) to a"m*¢(2) as n — oo for all z € [0,4). We conclude by
Vitali’s theorem (see [16, Thm. 3.14.1] or [2, p. 458]) that the strong convergence holds
for all z in the strip and in particular for z = 4. This proves the strong convergence in
the resolvent sense of L+ V,,,,, + € to L+ V,,, + €. We repeat the same argument either
by taking z € (=6, 0] and use convergence of non-decreasing symmetric forms as above or
z € ]0,0) and then use convergence of non-increasing symmetric forms. This concludes our
proof of Theorem 1.1 for Q = R
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4. SQUARE FUNCTION ESTIMATES

In this section a proof of Theorem 3.6 will be provided. The first part of the proof
consists in showing that the operators P} can effectively be diagonalised when estimating
square function norms from above.

Throughout this section we assume that V' is sectorial and belongs to W, for some
a € (1,2]. Recall that < means that the implicit constant depends on V' only through its
angle of sectoriality wy and is independent of « € (1, 2].

4.1. Diagonalisation of the PV Operators. Define, for ¢ > 0, the bounded operator
PY : H — H through

I+ (-A+|V])™ 0 0
P = 0 I+ V) 0
0 0 (I —2Vdiv) ™"

Observe that since the operators (—A + |V|), |[V| and (—Vdiv) are all self-adjoint, it follows
from Proposition 2.7 that square function estimates hold for each of these operators with
constant bounded by 1. Therefore each of these operators possess a bounded holomorphic
functional calculus with constant bounded by 1 and thus the operators P} are uniformly
L?-bounded by 1. The following theorem will be proved.

Theorem 4.1. The estimate

(4.1) L@ =)l s (L VI2) ful?
holds for all u € R (I'y).

Such a diagonalisation will aid us tremendously in bounding our main square function
estimate (3.3). This theorem will be proved by inspecting each component separately.

Remark 4.2. [t is easy to see that the diagonalisation estimate (4.1) is trivially satisfied
on the first component for any u € H since PyPY =P PY.

Proposition 4.3. For any u € H,
(4.2) LT IPE (R =1yl S s

Proof. The estimate is trivially satisfied on N (Ily ) since (PtV -1 ) u = 0 for any u € N(Ily)

and t > 0. Suppose that u € R (IIy). Using a Schur argument identical to Proposition 5.7
of [5], the proof of (4.2) for u € R (Ily) can be reduced to the statement

(4.3) HPtV (PtV ) QVH < min {Z i} : t,s>0.
First assume that ¢t < s. On noting that ( ) QY = tQt (PSV -1 ) we obtain
o e (- ner = e (r - )]s
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Next, suppose that ¢ > s. Then the equality PYQY = %Qf PY gives
[Py (B = )@Y < [Pray|+[Prer] s+ Pret].

The term PY QY will be considered component-wise. For the first component, recall that
P,P} =P, PV and observe

[prpr @y = [PapY sty Y|
_ % Py PVt PY |
=1 [Pt e

<

| »

For the second component, note that
—1
PPl = (I+#|V]) By and Blly = |V|2 By,
This gives

poplal] =

(I+t2|V|)_1 |V|5P1PSVH

S

Lastly, for the third component, we have

P3P} = P3P = PPPs,

leading to
B Qx| = | Prpastly £ |
- HPtOP?,SHOPSV H
_ ; Py P21 PY |
et
<2
t
Putting everything together gives (4.3). m|

Proposition 4.4. The estimate
L7 (1= PY) RY o S < 2

holds for any uw € R (I'y).
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Proof. Observe that

|2 (1 =) 7] =

-1
2V (142 V) PQPtVuH

< et IPQPtVuH .

Asu € R(Ty) and PY commutes with Ty, through Lemma 2.13, there must exist some
v = (v1,0,0) € D (Ty) for which PYu = Ty (v1,0,0). This then gives

[z (1 =) 2Vl 5 =V

<V, [ (A + V) E
= V], ¢t Ty | o

< V], et v |

= V], et oyt

where [IIy/| := /11, and in the fourth line we applied the bounded holomorphic functional
calculus of the operator IIy,. Therefore

/ |22 (1 - p)pvuyfdf <Vl / Jeot ,alpvu\fdt

< VI llull?,

where we used the fact that Il satisfies quadratic estimates and Remark 2.6 in the last
line. O

Proposition 4.5. The estimate

(4.5) /0°° [Bs (1 7)) PtVuH”; < VI [lul)®
holds for allu € R(L'y).
Proof. First note that the integrand of (4.5) can be re-written as
Py (I—P/)Pu=Ps (1 - P) P u=(I-P)P;sP u.
It then follows from the bounded holomorphic functional calculus of I, that
|(1 = P?) B3PV u|| 5 ([t 00| By PY || = ||Rst " |TTo|* " P

On recalling that u = I'yv for some v = (v1,0,0) € D (I'y) and that 'y commutes with
Py,
dt dt
JA e A A = e AT

_/ [Bgto 11 T, P v Hth
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On exploiting the bounded holomorphic functional calculus of the operator Iy once more,
2 dt / Hta L[ PYo H2 dt
Observe that since PY v is non-zero only in the first entry,
il o] = [[(=2)% BaPo
VI (V1= 2) B RV
= [V], [[[mv]* PYol.

/ st T "~ TP o H

The bounded holomorphic functional calculus of the operator Il then leads to

VE [T et Bl S s R [ e i R

=[V]2 / (1 8 el A H““

< VI lull®,

where we used the fact that Iy, satisfies quadratic estimates in the final line. |

Proof of Theorem 4.1. We combine Propositions 4.3, 4.4 and 4.5 together and note that
P, PYu =0 for u € R(T'y) to obtain Theorem 4.1. O

Continuing with the proof of Theorem 3.6, split our main square function into compo-

nents
[Clerr S s [T ety
0 i=1,2,370

Notice that the first component vanishes since Py PY'u = 0 for u € R (I'y). For the second
component, the triangle inequality gives

[ lemrrl” < [* el e, (P~ RVl F + [ ol et uf

The uniform L%-boundedness of the operators ©)F together with Theorem 4.1 give

[T e, (PY — BY)ul S < (14 VIZ)

For the second term, observe that PyP)u € D( v B) Lemma 2.13 together with the

uniform L? boundedness of the operators P, v:B gives

[ e e,y HZ@ P wvuuzdf
<[ BWVuH”t
- 0°° ‘¢|V|zeiargv (1+t2|V|)‘1P2u‘26f
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1
where the last line follows from the fact that the multiplication operator |V|? is self-adjoint
and therefore satisfies square function esimates with constant independent of V' and « by
Proposition 2.7. This reduces our theorem to proving boundedness of the third component.

4.2. The Third Component. This section is dedicated to bounding the third component
of our square function norm thus completing the proof of Theorem 3.6. Specifically, it will
be proved that

(4.6) [ el S < (14 VE) P

holds for any u € R (I'y). A similar argument to that of [5] will be used but one will need
to keep track of the effect of the projection P3 and the dependence of the constants on V'
and «.

4.2.1. T(1)-Reduction. Our first step towards a T'(1)-reduction is to use the splitting
T R e A Y G T e A e

The uniform L2-boundedness of the operators @,Y ‘B and Theorem 4.1 can be applied to the
first term to obtain

[ et ee (PY — Pl

< (1+VE) llull®.

On recalling that P3P = P3P?, this reduces the task of proving our square function
estimate to obtaining the bound

I et mesren s (14 VEE)

Introduce the notation éy ‘% 0 denote the operators (E)Y’B = @Y’B]Pg. Let %V B and ’yz/ B
denote the principal parts of the operators @Y B and @,Y B respectively. That is, they are
the multiplication operators defined through

WP @) = 0P (w)(x) and 5 (x)(w) = (6] "Ps) (w)(w),

for w € C¥?2 and x € R Evidently we must have 5, (z)w = 7" (2)Psw.
Our square function norm can be reduced to this principal part by applying the splitting

(@7) /OOO Hé;/,BPtouWC?f < /0°° H(éz/B ~VBAt) P’u H2 dt

VBAtPouH
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Since the operator ©}7 satisfies the conditions of Proposition 2.21, it follows that

[T16r" —area) pou* % = [T (01 — A2 a) yptul &
< [7 Jrorpl
0
< [ |moprul
0
1
= 5 llull®,

where the estimate ||VPs PPu|| < ||TToPPul| follows from (H8) for the operator Tg. It should
be noted that in order to use (H8) we had to use the fact that u = I'yv for some v € D (T'y)
and therefore

Pg.PtOU = Ptopgrvl) = PLLO]PP,F()’U = F()PtOU €ER (Fo) .

Our theorem has thus been reduced to a proof of the following square function estimate

Bl T < (L4 VE)

“2V,B
/ TVt

0
The triangle inequality leads to

(4.8) / H VBAtPouHQ dt /OO Hf%}/’BAt (Pto )UH2 dt n o0 ”'72/7191415“"2 @

Proposition 2.20 states that the uniform estimate H% AtH < 1 is true for all ¢ > 0.

Furthermore, notice that A? = A, and P3A; = A;P3 for all t > 0. These facts combine
together to produce

[T (= 1yl 5 = [T A (R - 1) G

< [ (0 - 1)

According to the argument from Proposition 5.7 of [5], this final term can be bounded by

00 0 2 dt
b N =0yl 5 s b
since {I'o, By, Bo} by hypothesis satisfies (H1) - (HS).

Recall the definition of the Carleson norm for a measure v on R4t := R

v(Rg)
14 = sup ,
H HC Oco ‘Q’

4 % 10, 00),

where R := @ % [0,1(Q)). For the second term in (4.8), apply Carleson’s theorem (]26,
p. 59]) to obtain
/IR

~V.B
AtUH — < uvslle Jul,
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where py g is the measure on Rffrl defined through

2 dxdt
dpvp(x,t) = |5 (@)| xt , z€RY >0

The proof of Theorem 3.6 has thus been reduced to showing that the measure puy p is a
Carleson measure with constant smaller than a multiple of (1 + [V]i)

4.2.2. Carleson Measure Estimate. Our goal now is to prove the following Carleson
measure estimate,

1 Q) 2 dx dt
4.9 su —/ / VB (g < (14 VI?) < oo.
(4.9) sup o, [P @) == < (1+ V)

Let L3 denote the subspace
(4.10) Ls:={ve L (C")\{0}:vPs=v}.
By construction, we have 3, ’B(:U) € L for any t > 0 and = € R? since
P (@) Byw = (O)7Py) (Pyw) ()
(4.11) = (61"Py) (w)(x)
=3 (@) (w).

Let 0 > 0 be a constant to be determined at a later time. Let V be a finite set consisting
of v € L3 with |v| =1 such that U,ep K, = L3\ {0}, where
/

|/| SU}.

Then, in order to prove our Carleson measure estimate (4.9), it is sufficient to fix v € V
and prove that

-V

K, {y € L3\ {0}

2 dx dt

(4.12) sup — 1] // “)GRQ o (:E)‘ S1T+[V] < 0.

Qen

The John-Nirenberg lemma for Carleson measures, as applied in [5] and [3], can then be
used to reduce the proof of our theorem to the following proposition.

Proposition 4.6. There exists f > 0 and o > 0 that will satisfy the following conditions.

For everyv € V and Q € O, there is a collection {Qy}, C O of disjoint subcubes of Q) such

that Eg, = Q \ UrQy satisﬁes |Eg.| > B|Q| and such that

2 dx dt
t

$1+[V}Z<oo,

VB(x)’

(4.13) SUp 10] //mt)eE

~VB

where Ef, , == Rq \ UpRq,. Moreover, 3 and o are independent of a and dependent on V.
only through wy .
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For now, fix v € Vand Q € 0. Let w”, @" € C¥2 with |0”| = |w”| = 1 and v* (@") = w"”.
To simplify notation, when superfluous, this dependence will be kept implicit by defining
w :=w” and w := w". Notice that since v satisfies v = vP3, w must satisfy Psw = w.

For € > 0 the function f& can be defined in an identical manner to [5]. Specifically, let
ng : R4 — [0,1] be a smooth cutoff function equal to 1 on 2Q), with support in 4Q and
with || Vgl < 7, where [ ;= (Q). Then define wg := now and

co = 17

fo. = wq —elil'y (I + elilly.p) " wg = (I + elif*‘}73> (I + elilly.3) " we.

Lemma 4.7. There exists a constant C > 0 that satisfies Hfé”6 <C \Q]%,

(4.14) // o4 13 (v >‘2dxtdt<C|Q| nd

(4.15) ‘][ ngé”e—w‘ <Cé
Q b

for any € > 0. Moreover, C' is independent of @), v, € and « and is dependent on V only
through wy .

Proof. The first two parts of this lemma follow in an identical manner to [5, Lem. 5.10].
For the third part, recall that w is zero in the first two components. This gives

2 2
‘]é P3f5,6 —w

_ ‘ ][ Pyelily (I + elilly 5) " wo
Q

2
_ ‘ ][ elily (I + elilly.5) " wo
Q

At this point, apply Lemma 5.6 of [5] to the operator T = T’y to obtain

9 l 2 1
< (El) (][ ‘(I + EliHV’B)_l wa) ’
Q

<][ ’FO I—}—GZZH\/B wQ’ )

’][ Eliro (I + dl'HV’B)_l wq
Q

. . 1 5
Se <][ ‘EZZFO (I + elilly p) wQ‘ )
Q

A

< (][ eliTy (1 + elilly,p) ™ wg| )
Q

€,

A

where the inequality [|[Tov| < [|[T'vo|| for v € D (T'y) follows trivially from the matrix form
of I'y and I'y. |

From this point forward, with C' as in Lemma 4.7, set € := ﬁ and introduce the notation
f§ == 5. With this choice of € it must be true that

oot =<5
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That is,
1 —2Re <][ ngg,'w> = |w|2 — 2Re <][ ngg,ll)>
Q Q

2
S‘][wa—w
P
1
<

On rearranging we find that

(4.16) Re <7[Q ngé“,w> > 411

In this context, Lemma 5.11 of [5] will take on the below form.

Lemma 4.8. There exists 3, c¢1, co > 0 and a collection {Qx} of dyadic subcubes of Q
such that |Eq,| > B|Q| and such that

Re<w,][ P3f3> > and ][ ‘ngé‘" < ¢y
Q' Q'

for all dyadic subcubes Q" € O of Q which satisfy R N K, # (. Moreover, B, c1 and cy
are independent of Q, o, v and o and dependent on V' only through wy .

The proof of this statement follows in an identical manner to the argument in [5]. If we
set o0 = 7L, then the following pointwise estimate can be deduced.

Lemma 4.9. If (v,t) € £, and 3P (z) € K, then

(4.17) 378 (@) (Afg@)| > g3 (@)
Proof. First observe that
v (A5 (@)] = Re (w0, v (Aufg(2)) )
= Re {w, A, f5(x))
= Re <w, AtIP)gfé"(x)>

> .
Then

) (o 2 [ 2@ e e
W (Ath (56))| = m (AtP3fQ (q;))‘

> | (A @)| — | g — v |ABa 5 (@)

Yo X )
> 1 —0C
1
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PROOF OF PROPOSITION 4.6. From the pointwise bound of the previous lemma,
2 dx dt 2 dx dt
//xt)eE*V ’Yt 95 // Ath( )‘ .

..VB t
At this stage we can begin to unravel our square function norm,

// B (@) A 2da:dt // ’@ VB (@) A )‘2d:z:dt

t
dz dt
I o

The second part of Lemma 4.7 states that the final term in the above estimate will be
bounded from above by a multiple of |@Q]. This reduces the task of proving the proposition
to bounding the first term of the above splitting. Recall that fg can be expressed in the
form

l/

(4.18)

J§ == wq —ugp,
where uf € R (I'y) is given by
ug = elil'y (I + elilly )~ we.

An application of the triangle inequality then leads to

[ [l @ -3t @A) =

(4.19) <[], |efugla) - a%B(x)Ath(x)\ ;

4 // @VB _ VB (ﬂf)Atug(:z:)‘z dz dt_
On noticing that for every x € Q and 0 <t < [(Q)
6V Pug(r) — VP (x) Awig(z) = OF Pug(z) — OFF (Aswg(v)) ()
=0," ((ng — D w) (),

it is clear that the first term in (4.19) can be handled in an identical manner as in the proof
of Proposition 5.9 from [5]. Specifically, since (supp (79 — 1) w) N2Q = 0, the off-diagonal
estimates of the operator 6} lead to

|16 (g = 1) w) (a)

teQ|

2
’da:< )

which implies that

//RQ‘@X’BwQ("’”)_%V’B(x)Ath(:v)\ — < Q.
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As for the second term in (4.19),

- w, 1|2 dxdt
// \@X’Bug — ’y,Y’B(ZE)AtUQ<£L')’
Rg t
w, 1|2 dxdt
(4.20) g//RQ‘@y,B (1— PY) (o) g
. w, |2 dxdt
[ [ |erP R @) - 3P @) Awiy ()]
Q

Since ug € R (I'y), Corollary 2.16 gives

[ [ 1o (1= Ryl S s g

For the remaining term in (4.20) we use the triangle inequality and the definition 0, =
0,"PP, to write

[ [, ere s 5" @ ang (o) 5
(4.21) //RQ\@ (I —P3) PVu \Zd‘zdt
+//RQ ’@VBPV A (x)Atug(x)f dxtdt

Since we have already proved the boundedness of the first and second components,

[ [, 1087 1 —p) Y S s (1 V) o

<(1+VE) el

For the second term in (4.21),

[ [ |ermpruse) -3¢ (I)Atug(;ﬁ)f d“”tdt
Q
(4.22) //RQ ‘@VBPV _ VB, )Atptvug(@r dxtdt
[ [ e (ary - ) () L

where we have used (4.11). To bound the first term on the right-hand side of the above
estimate notice that

Y PY uly(x) — 3P (@) AP uly(x) = (OFF — WP A) ByPY ().
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Theorem 4.1 allows us to diagonalise our P operators in the first term of (4.22) to get

[0 Ay epugl Y s (1 VE) @)

L2(Q) t
+ /0°° [(817 = ¥ 4,) ByPY ui H“ff-

From Proposition 2.21 we know that
[T s a) et < [~ ieaptu]
- [ eveypPus &
</ \tnopouw\f@
0
_ /000 ‘Q Hz dt

s el

where in the third line we applied (H8) for the operators {T'g, By, Bo}. It remains to bound
the second term in (4.22),

[ J, Preemamy g S = [ [ R aza (e - 1) S

On noting the uniform L2-boundedness of the ~,"” A, operators and applying the triangle
inequality,
2 dx dt

b ams i t
<[ L (B =)o S
+ /000 /Rd ‘PSAt (Ptv — [) ug(aj)‘? dxtdt'

Applying Theorem 4.1 and recalling that P3P} = P3P?,

//RQ P ARy A (PY =) ug(x)f d“””tdt < (14 V) [Jul?

A, (Ptv — I) ug(:c)‘

From the proof of Proposition 5.7 of [5] we know that

[7 = Do “ < jal,

allowing us to finally conclude our proof.
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5. PrRoOOF OF KATO ON DOMAINS

In this section, we give the proof of the full statement of Theorem 1.1, the Kato square
root property with potential on an arbitrary domain. Recall that Lo = —divAV is an
elliptic operator with bounded measurable and complex coefficients on L?(£2) and subject
to Dirichlet boundary conditions. Given V € L. (€) with range contained in a sector
Swy+ C CT for some wy € [O, g), recall that Lo 4+ V' is the maximal accretive operator

defined via the sesquilinear form af, as in Section 2.1.

Proof of Theorem 1.1. First, we extend the coefficients ay; to R? in such a way that the
extension satisfies again the ellipticity condition (1.1) on R%. One may take for example
Sr on RE\ Q. For simplicity we denote this extension by ay as well. We extend V to all
of R¢ by setting it equal to zero on R%\ €. The extension will also be denoted by V. We

define £L+V = —divAV + V on L? (Rd). We consider the sequence of operators
Ly =L+V, Z:£+V+€—|—k}ﬂRd\Q.

Each L}, is defined by the corresponding sesquilinear form a'*. We apply Theorem 1.1 for
the already proved case 2 = R? to £}, and find Cy > 0 such that

(5.1) Cit (| Witk + 19ul) < | 2wu| < v (JIVilu] + 1val)

The constant Cy- depends on V' only through wy since V' + klga\q is sectorial with angle
at most wy. In particular, Cy is independent of k. Now the idea is to take the limit as
k — oo. In order to do so, we argue similarly to the end of the proof of Theorem 1.1 for
the case Q = R%. We consider first the case of domains with smooth boundary.

- Step 1: smooth domain. We assume that each connected component of Q) has smooth
boundary (C! for example). It follows from (o 1) that the operators Vﬁk and |V|2 L, :

are uniformly L?-bounded. We deal with V£, 2 only since the arguments for |V|? £ 2 are
similar. For f € L? (Rd)

(5.2) Vet s el

On the other hand since
Re (Lyu,u) > € Hu||2
it follows that

H 1+t2£k fH

In particular, the sequence ([,k 2 f> is L2-bounded. This and (5.2) show that <£k2 f> is
k k

_1
bounded in H* (Rd). Hence, after extracting a subsequence we may assume that <£k :f >
k

converges weakly in H'! (Rd) to some W,

Let f € L? () and set f to be the extension of f to R? obtained by setting it equal to
zero outside of 2. We claim that:
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the sequence <£k2f> converges in L* (Rd) (as k — o0) to (Lo +V + 6)7% f onQ and 0
k

outside €. .

Suppose for a moment that we have proved this claim. Then W = (Lo +V +¢€)"2 f on Q

and 0 outside 2. In addition, the above weak convergence implies

v(eif) 7

< lim inf

|V (catV+ef )

L2(R4)

Inserting (5.2) yields the following estimate on L? (£2)

(5.3) |vcatveas<cvisl.
We let € — 0 and obtain
(5.4) |V (ca+v) 2 f| < Cviifl-

This together with the same estimate for |V|% (La+ V)fé imply the lower estimate in
Theorem 1.1. The upper estimate follows by a duality argument as we did in the case of
Q =R4

It remains to prove the above claim. We apply the decomposition (3.12) to aj,™ and
a"#*¢ (and noting that the imaginary part of the latter form is independent of k)

ay T =b+ic and "¢ =D, +ic.
We introduce the forms
agk e (2) == by, + ¢
for z in the strip St = {z € C,|Re z| < d}. It follows from ellipticity that for § > 0 small
enough, the forms are closed (with domain H%V (Rd> ). These forms are a family of type (a)

in the sense of [19, p. 393] and hence the corresponding resolvents are holomorphic in the
strip. For z € (=6, ) the forms a"**¢(2) are symmetric and the sequence is non-decreasing.
When k — oo, aV+7¢(2)(u, u) converges to the form

agy T (2) (u, u) = b(u, u) + zc(u, u)
with domain
D(adt(2)) = {u c HY (Rd) ,u=0a.c. onR?\ Q} :
It is well known that for smooth € (or star shaped) the set
{uGH1 (Rd),u:()a.e. oan\Q}

coincides with H} (€2). We apply the monotone convergence theorem for the symmetric
forms (cf. [25, Thm. 4.1]) to obtain that the corresponding resolvents of a"*™¢(z) converge
strongly on L? (Rd) to the resolvent of the form a,™(z). We apply again Vitali’s theorem

to obtain this strong convergence when z = 4. This proves the claim.

- Step 2: General domain. Let now € be an arbitrary open subset of RY. We take a
sequence §2,, of smooth subdomains of €2 such that €2, C €2,,,; and 2 = U, 2,,. For each n,
we have L,, := Lq, +V + € as an operator on L? (£2,). We denote by a, the corresponding
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sesquilinear forms. We keep the notation ag, ™ for the sesquilinear form of L +V + €. For

each n, the form a, is seen as a form on L2 (Q) with (non-dense) domain Hy"" (Q,). By
(5.3) we have

(5.5) HV/J;QfH < Ov £l 2@y -
L2(2n)

1
for all f € L?(€2,). The same estimate holds for |V|é L2 f. We can then argue exactly as
in Step 1. What remains to prove is the strong convergence of the resolvent sense of a, to
the resolvent of agJ“E. For this, we decompose as above the forms a,, = b,,+1%¢, and introduce
a,(2) = b, + z¢ for z in a strip St for § > 0 and small enough. We observe that for real z
in the strip, the symmetric forms a,(z) satisfy a,.; < a, since HJ (Q,) C H (Qpy1). We
apply the monotone convergence theorem for symmetric forms (see again [25, Thm. 4.1])
and obtain the strong convergence of the resolvents. We appeal again to Vitali’s theorem
as above. O

Remark 5.1. Our Kato estimates on L? extend to LP in the following way. Suppose that
the semigroup e~"“otV) js uniformly bounded on LP° for some py € [1,2). Then for all

p € (po, 2]
(H|V;§UHP + ||Vu||p> < (JH VLo +Vu )

together with a weak type (po, po) estimate for the end-point. In particular, if the coefficients
ay are real-valued then this holds with pg = 1. The extension from L? to LP uses LP — L4
off-diagonal estimates (or Gaussian estimates for real-valued coefficients). We refer to [3]
or [24] and the references therein. We may also add terms of order one to the differential
operator.

6. KATO FOR SYSTEMS

In this section we describe how our proof for Kato with potential on an arbitrary domain
carries over to systems. Once more, let Q C R? be an arbitrary domain. Fix m > 1 and let
Ae L™ (Q; L (Cd ® Cm>> be uniformly elliptic. That is, there exists a constant k4 > 0
such that

(6.1) Re (A(2)€,€) > kal€]?

fora.e. z € Qand all £ € C¢®@C™. Let V : Q — £ (C™) be a matrix-valued function with
coefficients in L}, (€2). Suppose that the numerical range of V() is contained in S, ; for

some wy € [0, g) for a.e. x € R%

One can then define sesquilinear forms aq and af, with affilitated maximal accretive
operators Lq and Lo + V as in Section 2.1. The notation a, "', £ and £ + V will once
again be used to denote the case = R?. The sectoriality of the potential and the ellipticity
condition (6.1) imply that the form af satisfies the corresponding Garding inequality

Re ag (u,u) > K,X (H\Vﬁ UHQ + HVUH2>
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for all w € Hy" (Q;C™) := HL (Q:C™) N D (|V|%), where £Y > 0 depends on V only
through wy .
The following system version of Theorem 1.1 will be proved.

Theorem 6.1. Let A € L™ (Q;E (Cd ® Cm)> and V : Q@ — L(C™) be as defined above.
Assume that V (z) is a normal matriz for almost every x € Q2. We have D (\/LQ + V) =
HyV (Q:C™) and there exists a constant Cy > 0 such that

S (I9ul + [IVIF o) < H Ny Vu’

for allu € H&’V (Q; C™). Moreover, the constant Cy depends on the potential only through
Wy .

< Gy (IVull +[[[VI* u])

Proof for Q = R?. As in the scalar case, we start by considering Q = R%. Fix V satisfying
the hypotheses of the theorem. As V(z) is normal for a.e. x € RY, it follows from the polar
decomposition theorem that there must exist some U : R? — £ (C™), with U(x) unitary
for all x € RY, such that

V(z) = U(z) |V (2)]

for a.e. z € RY where |V (z)| := /V(2)*V(z). For V(z) normal, it is well known that the
matrices U(x) and |V (z)| commute. Therefore V' can be decomposed as
(62) Viw) = V(@)|* Ule) |V (2)]?

for a.e. x € R?. Consider the Hilbert space
H:=L* (R4 C™) @ L* (RGC™) @ L2 (RG CY o C™).
Define the operators {I'y, By, By} on H through

0 00 I 00
Ty:=| V|7 0 , Bi:=I1 and By:=| 0 U 0
v 0 0 00 A

Let Iy, Ily s and Qv be defined as in the scalar case. It follows from (6.2) that the
operator 1T}, 5 will be of the form

L+V 0 0
0 * %

Let [V], denote the system analogue of the quantity defined in Section 3 for o € [1,2].
The proof of the following theorem is identical to that of the scalar case m = 1.

Theorem 6.2. Suppose that V(x) is normal for almost every x € R and [V], < oo for
some « € (1,2]. The estimate

(Cv (L4 VE)) "l < [T Qb ol § < v (14 1VE)
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holds for all uw € R(Ily). Moreover, the constant Cy is independent of o and depends on
V' only through wy .

The above estimate implies that the operator Iy g has a bounded holomorphic functional

calculus. This can be applied with the functions f(z) = —= and g(z) = \ﬁ to the vector
(u,0,0) € H with uw € D (L + V) to obtain the Kato estimate

(cv (1+ V) (Iull + [ IVIE ) < | VEF V| < cv (14 VIE) (Iull + VI o).

provided that [V, < oo for some o € (1,2]. An interpolation argument identical to that of
Section 3 will then allow us to dispose of the dependence of this estimate on the quantity
[V],,, giving us Theorem 6.1 for when © = R? and [V]_, < oo for some « € (1,2].

For a general potential V', define

Vnm(l’) = (Re V(JZ)) ﬂuv( )|<n + 7 (Im V(JZ))+ 1||V(x)|\<n —1 (Im V(m))_ ]l||V(473)HSm

for all z € R™ and m, n € ||* with m < n. In the above definition, ||V (z)|| denotes the
matrix norm of V(z), ReV(z) := M , ImV(z) = V(z);izv() and M+ and M~
denote the positive and negative parts of a self—adpmt matrix M. Observe that V,, ,,(x)
is a normal matrix for a.e. € R? and all m, n with m < n. This is trivial for z € R¢
with either ||V (2)|| < m or |V (x)| > n. For z € R with m < ||V (z)|| < n, this can be
derived from the fact that a matrix M is normal if and only if its real and imaginary parts
commute. Note that for this case we have

Vim(x) = Re V(x) +i (Im V(x))*

2
Since (ImV (x))" = (Imv(x); V@ it follows that the real part of V,,,,(z) commutes
with its imaginary part and therefore V,, ,,,(x) is normal.

The potentials V;,,, + € will also clearly be normal for ¢ > 0 and a.e. z € R%. On noting

that [V, + €], < 0o, we obtain the estimate

Cv ([[IVa + el | + I97ull) < [ V£ + Vi + €| < Cor ([|[Vin + €l ]| + 970

where the constant in the above estimate only depends on V' through wy and is independent
of ¢, m and n. Applying the limiting argument from Section 3 verbatim then allows us to
conclude the proof of Theorem 6.1 for the case Q = R O

Proof for General Domains. Start by considering smooth Q C R%. Fix V satisfying the
hypotheses of the theorem. Extend V to all of R? by setting it equal to zero on R?\ €.
Then consider the potentials

Vk 2:V+€+k'1d‘ﬂRd\Q

for e > 0 and k € ||*, where Id denotes the identity matrix acting on C™. It is obvious that
V. is normal for a.e. z € R

Theorem 6.1 for the case = R? then gives the Kato estimate for V}, with constant
independent of k, e and V. The approximation argument from Section 5 can then be applied
verbatim to obtain Theorem 6.1 for smooth €. Arbitrary domains are then obtained using
the second approximation argument of Section 5. O
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