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THE KATO SQUARE ROOT PROBLEM ON AN ARBITRARY
DOMAIN OF Rd

JULIAN BAILEY AND EL MAATI OUHABAZ

To the memory of Alan McIntosh

Abstract. Let Ω be an open subset of Rd and LΩ = −divA∇ an elliptic operator with
bounded measurable and complex coefficients on L2(Ω). The operator LΩ is subject to
Dirichlet boundary conditions. We solve the Kato square root problem for arbitrary Ω.
We prove that D(

√
LΩ) = H1

0 (Ω) and there exist a constant C > 0 such that

C−1 ‖∇u‖2 ≤
∥∥∥√LΩ u

∥∥∥
2
≤ C ‖∇u‖2 , u ∈ H1

0 (Ω).

We also allow perturbations by general potentials: for any V ∈ L1
loc (Ω) with range con-

tained in a sector of C+ with angle ωV ∈
[
0, π2

)
there exists CV > 0 such that

C−1
V

(∥∥∥|V | 12 u
∥∥∥

2
+ ‖∇u‖2

)
≤
∥∥∥√LΩ + V u

∥∥∥
2
≤ CV

(∥∥∥|V | 12 u
∥∥∥

2
+ ‖∇u‖2

)
for all u ∈ D

(√
LΩ + V

)
= H1

0 (Ω) ∩ D
(√
|V |
)

. The constant CV depends on V only
through ωV . In particular, CV is independent of V for 0 ≤ V ∈ L1

loc (Ω).
We prove similar results for systems.
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1. Introduction and the main results

We consider on L2
(
Rd
)

divergence form elliptic operators Lu = −divA∇u, where A =
(akl) with akl ∈ L∞

(
Rd,C

)
satisfies the usual ellipticity condition

(1.1) Re
d∑

k,l=1
akl(x)ξkξl ≥ κA|ξ|2

for a.e. x ∈ Rd and all ξ = (ξ1, ..., ξd) ∈ Cd. Here κA > 0 is a constant. Owing to the
accretivity of L one can define its square root

√
L. A famous problem posed by T. Kato

asks whether the domain of
√
L coincides with the Sobolev space H1

(
Rd
)
. The problem

was open for decades until it was solved in 2002 by S. Hofmann, M. Lacey and A. McIntosh
[17] and P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and Ph. Tchamitchian [3]. We
give a rapid review of the history of the problem and refer the reader to [17] and [3] and the
references therein for additional information. The first positive answer to the Kato square
root problem was given by R. Coifman, A. McIntosh and Y. Meyer [7] in dimension d = 1.
For higher dimension, R. Coifman, D. Deng and Y. Meyer [8] and E. Fabes, D. Jerison
and C. Kenig [12] proved the Kato square root property under the condition that the
matrix A is a relatively small perturbation of the identity. A. McIntosh [20] gave a positive
answer under the assumption that the coefficients akl act boundedely on some Sobolev
spaces (which requires some regularity on the coefficients). S. Hofmann, M. Lacey and A.
McIntosh [17] solved the problem for elliptic operators whose corresponding heat kernel
has Gaussian upper bounds (such as the case of bounded measurable and real coefficients
for example). The general case of bounded measurable and complex coefficients was solved
by P. Auscher, S. Hofmann, M. Lacey, A. McIntosh and Ph. Tchamitchian [3].

Next, we move to the case of elliptic operators on domains. Let Ω be an open subset of
Rd and consider as above an elliptic operator LΩ on L2 (Ω) that is subject to Dirichlet, Neu-
mann or mixed boundary conditions. Kato’s square root problem in this setting becomes
whether the domain of

√
LΩ coincides with the domain of the corresponding sesquilin-

ear form. That is, H1
0 (Ω), H1 (Ω) or an appropriate subspace between these two spaces

for Dirichlet, Neumann or mixed boundary conditions respectively. P. Auscher and Ph.
Tchamitchian [4] proved the Kato square root property for either Dirichlet or Neumann
boundary conditions provided Ω is a strongly Lipschitz domain. Based on their abstract
approach in [5], A. Axelsson, S. Keith and A. McIntosh dealt in [6] with mixed boundary
conditions under the assumption that Ω is a bi-Lipschitz image of a certain smooth domain.
The regularity required on Ω was then improved by M. Egert, R. Haller-Dintelmann and
P. Tolksdorf [10]. They assume that Ω has an interior corkscrew condition together with
the fact that it decomposes into a part D which satisfies the Ahlfors-David condition and
∂Ω \D has local bi-Lipschitz charts. The problem for an arbitrary domain of Rd is open.
One of our main contributions in this paper is to provide a solution to this problem in the
case of Dirichlet boundary conditions. See Corollary 1.2 below for the statement and the
homogeneous estimate as in the case of the whole space Rd.

There is another motivation for this paper. We deal with the stability of the Kato
square root estimate under perturbation by unbounded potential V . A. Axelsson, S. Keith
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and A. McIntosh considered non-homogeneous operators on Lipschitz domains with mixed
boundary conditions in [6] using the techniques developed in [5]. The potentials that
they considered were, however, bounded both from above and below. In [13] and [14], F.
Gesztesy, S. Hofmann and R. Nichols studied the domains of square root operators using
techniques distinct from those developed in [5]. The aim in [13] and [14] is to prove that the
square root property carries over from the homogeneous elliptic operator L (or systems)
with boundary conditions to L + V for V ∈ Lp + L∞ for appropriate p ≥ d

2 . As a result,
they deal with mixed boundary conditions if Ω satisfies the assumptions of [10] mentioned
above.

In the present paper we deal with general potentials and prove the square root property
with homogeneous estimates.

Let V ∈ L1
loc (Ω) and suppose that the range of V is contained in the sector

SωV + := {z ∈ C ∪ {∞} : |arg (z)| ≤ ωV or z = 0, ∞}

for some ωV ∈
[
0, π2

)
. Define the subspace

(1.2) H1,V
0 (Ω) := H1

0 (Ω) ∩D
(
|V |

1
2
)

:=
{
u ∈ H1 (Ω) : |V |

1
2 u ∈ L2 (Ω)

}
.

We denote by LΩ + V the operator −divA∇+ V with Dirichlet boundary conditions. Our
main result is the following theorem.

Theorem 1.1. Let Ω be an open subset of Rd (d ≥ 1) and V as above. Then D
(√
LΩ + V

)
=

H1,V
0 (Ω) and there exist a constant CV > 0 such that

C−1
V

(
‖∇u‖+

∥∥∥|V | 12 u∥∥∥) ≤ ∥∥∥∥√LΩ + V u
∥∥∥∥ ≤ CV

(
‖∇u‖+

∥∥∥|V | 12 u∥∥∥)
for all u ∈ H1,V

0 (Ω). Moreover, the constant CV is dependent on the potential only through
ωV .

Here ‖·‖ is of course the usual norm in L2 (Ω). In this paper we use ‖·‖ to denote
the norm of the Hilbert space under consideration. In particular, ‖·‖ is either ‖·‖L2(Ω) or
‖·‖L2(Rd) depending on the context. The notation 〈·, ·〉 will be used to denote the associated
inner product.

The previous theorem contains, as a particular case, the solution of the Kato square root
problem for elliptic operators with Dirichlet boundary conditions on an arbitrary domain
Ω. Simply set V ≡ 0 in the above theorem. Due to the importance of this case, it is stated
as its own result in the below corollary.

Corollary 1.2. We have D
(√
LΩ
)

= H1
0 (Ω) and there exists a constant C > 0 such that

C−1 ‖∇u‖ ≤
∥∥∥∥√LΩu

∥∥∥∥ ≤ C ‖∇u‖

for all u ∈ H1
0 (Ω).
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We also mention that these results remain valid for systems. See Section 6.
Now we explain our strategy of proof. Theorem 1.1 will be proved by first considering

the particular case Ω = Rd. We explain some of the main ideas used to obtain this case.
A few years following the solution to the original Kato square root problem in [3],

an alternate method of proof appeared in [5]. This method of proof, in contrast to the
original solution, considered first-order operators as opposed to second-order operators.
Our solution to the Kato problem with potential for Ω = Rd will be based on this method.

Let Π := Γ + Γ∗ be a Dirac-type operator on a Hilbert space H and ΠB := Γ +B1Γ∗B2
be a perturbation of Π by bounded operators B1 and B2. Typically, Π is considered to be a
first-order system acting onH := L2

(
Rd;CN

)
for some d, N ∈ N∗ and the perturbations B1

and B2 are multiplication by matrix-valued functions B1, B2 ∈ L∞
(
Rd;L

(
CN

))
. In their

seminal paper [5], A. Axelsson, S. Keith and A. McIntosh developed a general framework
for proving that the perturbed operator ΠB possessed a bounded holomorphic functional
calculus. This ultimately amounted to obtaining square function estimates of the form

(1.3)
∫ ∞

0

∥∥∥QB
t u
∥∥∥2 dt

t
' ‖u‖2 ,

where QB
t := tΠB (I + t2Π2

B)−1 and u is contained in the range R (ΠB). They proved
that this estimate would follow entirely from a set of simple conditions imposed upon the
operators Γ, B1 and B2, labelled (H1) - (H8). Then, by checking this list of conditions, the
Axelsson-Keith-McIntosh framework, or AKM framework by way of abbreviation, could
be used to conclude that the particular selection of operators

(1.4) Γ :=
(

0 0
∇ 0

)
, B1 = I, B2 =

(
I 0
0 A

)
,

defined on L2
(
Rd
)
⊕ L2

(
Rd;Cd

)
, would satisfy (1.3) and therefore ΠB possess a bounded

holomorphic functional calculus. The Kato square root estimate then followed almost
trivially from this.

In direct analogy to the potential free case, the Kato problem with potential on Rd will be
solved by constructing appropriate potential dependent Dirac-type operators and demon-
strating that they retain a bounded holomorphic functional calculus under perturbation.
In particular, this strategy will be applied to the Dirac-type operator

(1.5) ΠV := ΓV + Γ∗V :=

 0 0 0
|V |

1
2 0 0
∇ 0 0

+

 0 |V |
1
2 −div

0 0 0
0 0 0


defined on L2(Rd)⊕ L2

(
Rd
)
⊕ L2

(
Rd;Cd

)
, under the perturbation

(1.6) B1 = I, B2 :=

 I 0 0
0 ei·argV 0
0 0 A

 .
It should be observed that the operator ΓV will not necessarily satisfy the cancellation and
coercivity conditions, (H7) and (H8), of [5] due to the presence of the zero-order potential
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term. As such, the original framework developed by Axelsson, Keith and McIntosh cannot
be directly applied. The key difficulty in proving our result is then to alter the original
framework in order to allow for such operators. The technical challenge presented by the
inclusion of the zero-order potential V will be overcome by separating our square function
norm into components and demonstrating that the zero-order term will allow for the first
two components to be bounded while the third component will be handled by similar
arguments as in [5]. We make use of a range of techniques including diagonalisation, a
local T (b) type argument and Carleson measure estimates. Our task, comparing with [5]
and the other papers mentioned above, is made a bit more complicated by the fact that
we keep track of the dependence of the estimates in terms of V in order to have constants
which depend only the sectoriality angle ωV . This dependence only through ωV is the
keystone of our proof for the Kato square root problem on domains.

This strategy does not however allow us to deal directly with general sectorial V ∈
L1
loc

(
Rd
)
. We first restrict attention to the class Wα of potentials V for which

[V ]α := sup
u∈D(−∆+|V |)

∥∥∥|V |α2 u∥∥∥+
∥∥∥(−∆)

α
2 u
∥∥∥∥∥∥(−∆ + |V |)

α
2 u
∥∥∥ <∞

for some α ∈ (1, 2]. Using the above ideas borrowed from [5] we prove the quadratic
estimate (

CV
(
1 + [V ]2α

))−1
‖u‖2 ≤

∫ ∞
0

∥∥∥QV,B
t u

∥∥∥2 dt

t
≤ CV

(
1 + [V ]2α

)
‖u‖2

with QV,B
t = tΠV,B

(
I + t2Π2

V,B

)−1
and ΠV,B = ΓV + B1Γ∗VB2. As mentioned above, we

pay attention to the constants involved in the estimates in order to have CV which is
independent of α and depends on V only through the angle of sectoriality ωV . This leads
to the existence of a bounded holomorphic functional calculus for the bisectorial operator
ΠV,B, which in turn leads to
(
CV

(
1 + [V ]2α

))−1 (
‖∇u‖+

∥∥∥V 1
2u
∥∥∥) ≤ ∥∥∥√L+ V u

∥∥∥ ≤ CV
(
1 + [V ]2α

) (
‖∇u‖+

∥∥∥V 1
2u
∥∥∥) .

The rest of the proof of Theorem 1.1 for Ω = Rd takes place in two stages. The first consists
in removing the dependence of the above estimate on [V ]α by letting α → 1. The second
one uses an approximation argument. Here we use some ideas from E.M. Ouhabaz [23]
in order to approximate in the resolvent sense L+ V by a sequence L+ Vn with sectorial
potentials Vn ∈ Wα for some α ∈ (1, 2].

In order to deal with a general domain Ω in Theorem 1.1 we use two approximation
arguments. For smooth Ω, the idea is to approximate LΩ +V , as an operator on L2(Ω), by
the sequence of Schrödinger type operators L+V +n1Rd\Ω acting on L2

(
Rd
)
. For general

Ω, we approximate LΩ +V by LΩn +V with an increasing sequence of smooth open sets Ωn.
The control of the constants will be given by the dependence of the constants for Ω = Rd
on V only through ωV .
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2. Preliminaries

2.1. Forms and Operators. Let Ω be an open subset of Rd. Let A be a d × d-matrix
whose coefficients akl ∈ L∞(Ω,C) satisfy the ellipticity condition (1.1) on Ω. We define the
sesquilinear form

aΩ(u, v) =
∫

Ω
〈A(x)∇u,∇v〉 dx =

d∑
k,l=1

∫
Rd
akl

∂u

∂xk

∂v

∂xl
dx

for u, v ∈ H1
0 (Ω). Then aΩ is a densely defined, sectorial and closed form. Its associated

operator LΩ is formally given by
LΩu = −divA∇u

and subject to Dirichlet boundary conditions.
For a given potential V ∈ L1

loc (Ω,C) with range contained in a sector SωV + of angle
ωV ∈ [0, π2 ), we denote by LΩ + V the operator associated with the sectorial and closed
form

a
V
Ω(u, v) = aΩ(u, v) +

∫
Ω
V uv dx
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with domain
H1,V

0 (Ω) =
{
u ∈ H1

0 (Ω) ,
∫

Ω
|V ||u|2 dx <∞

}
.

The form aVΩ clearly satisfies the Gårding inequality (or coercivity inequality)

(2.1) Re aVΩ(u, u) ≥ κVA

(∥∥∥|V | 12 u∥∥∥2
+ ‖∇u‖2

)
for all u ∈ H1,V

0 (Ω), where κVA is a positive constant which depends on the potential only
through ωV . Recall that

D (LΩ + V ) =
{
u ∈ H1,V

0 (Ω) : ∃w ∈ L2 (Ω) s.t. aVΩ (u, v) = 〈w, v〉 ∀ v ∈ H1,V
0 (Ω)

}
.

In the particular case where Ω = Rd we drop the subscript Ω in the notation and write a,
aV , L and L+ V for the corresponding forms and operators.

Note that the operators defined above are all maximal accretive and hence we can define
their square roots

√
LΩ,

√
LΩ + V ,

√
L and

√
L+ V .

Remark 2.1. Note that the results in this paper remain valid under the assumption that
the form aΩ satisfies the corresponding Gårding inequality

Re aΩ (u, u) ≥ κA ‖∇u‖2

for all u ∈ D (aΩ), for some κA > 0, instead of the pointwise ellipticity condition (1.1).
2.2. Holomorphic Functional Calculus for Bisectorial Operators. Let us briefly
recall what it means for a bisectorial operator to possess a bounded holomorphic functional
calculus. For a thorough treatment of functional calculus for bisectorial operators, it is
recommended that the reader refer to [21], [9], [15], [18] or [1].

For µ ∈ [0, π), define the open and closed sectors

Soµ+ :=
{
{z ∈ C \ {0} : |arg (z)| < µ} µ ∈ (0, π)

(0,∞) µ = 0
and

Sµ+ :=
{
{z ∈ C ∪ {∞} : |arg (z)| ≤ µ or z = 0, ∞} µ ∈ (0, π)

[0,∞] µ = 0.
Then, for µ ∈

[
0, π2

)
, define the open and closed bisectors

Soµ :=
(
Soµ+

)
∪
(
−Soµ+

)
and

Sµ := (Sµ+) ∪ (−Sµ+)
respectively. Throughout this section we consider bisectorial operators defined on a Hilbert
space H.
Definition 2.2 (Bisectorial Operator). A linear operator T : D (T ) ⊆ H → H is said to
be ω-bisectorial for ω ∈

[
0, π2

)
if the spectrum σ (T ) is contained in the bisector Sω and if

for any µ ∈
(
ω, π2

)
, there exists Cµ > 0 such that the resolvent bound

(2.2) |ζ|
∥∥∥(ζI − T )−1

∥∥∥ ≤ Cµ
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holds for all ζ ∈ C\Sµ. T is said to be bisectorial if it is ω-bisectorial for some ω ∈
[
0, π2

)
.

An interesting fact concerning bisectorial operators is the following decomposition result.

Proposition 2.3 ([9, Thm. 3.8]). Let T : D (T ) ⊂ H → H be a bisectorial operator. Then
T is necessarily densely defined and the Hilbert space H admits the following decomposition

H = N (T )⊕R (T ).

Let T be an ω-bisectorial operator for ω ∈
[
0, π2

)
and µ ∈

(
ω, π2

)
. Define the following

algebras of functions

H∞
(
Soµ
)

:=
{
f holomorphic : ‖f‖∞ := sup

z∈Soµ
|f(z)| <∞

}

H∞0
(
Soµ
)

:=
{
f ∈ H∞

(
Soµ
)

: ∃ C, α > 0 s.t. |f(z)| ≤ C
|z|α

1 + |z|2α
∀ z ∈ Soµ

}
.

For any f ∈ H∞0
(
Soµ
)
, one can define the operator f(T ) as follows. For u ∈ H, define

f (T )u := 1
2πi

∮
γ
f (z) (zI − T )−1 u dz,

where the curve
γ :=

{
±re±iν : 0 ≤ r <∞

}
for some ν ∈ (ω, µ) is traversed anticlockwise. This association is a well-defined algebra
homorphism from H∞0

(
Soµ
)

to L (H).

Definition 2.4. Let 0 ≤ ω < µ < π
2 . An ω-bisectorial operator T : D(T ) ⊂ H → H is

said to have a bounded H∞
(
Soµ
)
-functional calculus if there exists c > 0 such that

(2.3) ‖f (T )‖ ≤ c ‖f‖∞

for all f ∈ H∞0
(
Soµ
)
. T is said to have a bounded holomorphic functional calculus if it has

a bounded H∞
(
Soµ
)
-functional calculus for some µ.

It is a well known fact that if (2.3) holds for all f ∈ H∞0
(
Soµ
)

then there exists a
well-defined extension of the homomorphism f 7→ f(T ) to all of H∞

(
Soµ
)
. Moreover,

g (T ) ∈ L (H) and (2.3) holds for all g ∈ H∞
(
Soµ
)
.

Let q : Soµ → C be defined through

q(z) := z

1 + z2 , z ∈ Soµ.

For t > 0, let qt denote the function qt(z) := q(tz) for z ∈ Soµ. Then qt ∈ H∞0
(
Soµ
)

for any
t > 0 and one can define qt (T ).
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Definition 2.5 (Square Function Estimates). A bisectorial operator T on a Hilbert space
H is said to satisfy square function estimates if there exists a constant CSF > 0 such that

(2.4) C−1
SF ‖u‖

2 ≤
∫ ∞

0
‖qt(T )u‖2 dt

t
≤ CSF ‖u‖2

for all u ∈ R (T ).
Remark 2.6. The use of the function q in the above definition of square function esti-
mates is somewhat arbitrary. Indeed, it can be swapped with ψ for any ψ ∈ H∞0

(
Soµ
)

not
identically equal to zero on either Soµ+ or

(
−Soµ+

)
. This follows from the equivalence of

these two norms as stated in [21] or [15, Thm. 7.3.1].
For self-adjoint operators, the following basic result holds.

Proposition 2.7. Suppose that T is self-adjoint. Then for any u ∈ H,∫ ∞
0
‖qt(T )u‖2 dt

t
≤ 1

2 ‖u‖
2 .

Equality will hold if u ∈ R (T ).
The proof of the following theorem can be found in [9] or [1]. The constant dependence is

not explicitly stated in either of these references but it is straightforward to trace through
their arguments to obtain the below dependence.
Theorem 2.8. Let T be an ω-bisectorial operator on H for ω ∈

[
0, π2

)
. Suppose that T

satisfies square function estimates with constant CSF > 0. Then T must have a bounded
H∞

(
Soµ
)
-functional calculus for any µ ∈

(
ω, π2

)
. In particular, there exists a constant

c > 0, independent of T , such that
‖f(T )‖ ≤ cCSF Cµ ‖f‖∞

for all f ∈ H∞0
(
Soµ
)
, where Cµ > 0 is the constant from the resolvent estimate (2.2).

2.3. AKM without Cancellation and Coercivity. The operators that we wish to
consider, ΓV , will satisfy the first six conditions of [5]. However, they will not necessarily
satisfy the cancellation condition (H7) and the coercivity condition (H8). It will therefore
be fruitful to see what happens to the original AKM framework when the cancellation and
coercivity conditions are removed.

Similar to the original result, we begin by assuming that we have operators that satisfy
the hypotheses (H1) - (H3) from [5]. Recall these conditions for operators Γ, B1 and B2
on a Hilbert space H.

(H1) Γ : D(Γ)→ H is a closed, densely defined, nilpotent operator.

(H2) B1 and B2 satisfy the accretivity conditions
Re〈B1u, u〉 ≥ κ1 ‖u‖2 and Re〈B2v, v〉 ≥ κ2 ‖v‖2

for all u ∈ R(Γ∗) and v ∈ R (Γ) for some κ1, κ2 > 0.
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(H3) The operators Γ and Γ∗ satisfy
Γ∗B2B1Γ∗ = 0 and ΓB1B2Γ = 0.

In [5] Section 4, the authors assume that they have operators that satisfy the hypotheses
(H1) - (H3) and they derive several important operator theoretic consequences from only
these three hypotheses. As our operators Γ, B1 and B2 also satisfy (H1) - (H3), it follows
that the results in [5] Section 4 can be applied for these operators. In the interest of making
this article as self-contained as possible, we will now restate any such result that is to be
used in this paper.

Proposition 2.9 ([5]). Define the perturbation dependent operators
Γ∗B := B1Γ∗B2, ΓB := B∗2ΓB∗1 and ΠB := Γ + Γ∗B.

The Hilbert space H has the following Hodge decomposition into closed subspaces:
(2.5) H = N (ΠB)⊕R (Γ∗B)⊕R (Γ).

Moreover, we have N (ΠB) = N (Γ∗B) ∩ N (Γ) and R (ΠB) = R (Γ∗B) ⊕ R (Γ). When
B1 = B2 = I these decompositions are orthogonal, and in general the decompositions
are topological. Similarly, there is also a decomposition

H = N (Π∗B)⊕R (ΓB)⊕R (Γ∗).

Proposition 2.10 ([5]). The perturbed Dirac-type operator ΠB is an ω-bisectorial operator
with ω := 1

2 (ω1 + ω2) where

ω1 := sup
u∈R(Γ∗)\{0}

|arg〈B1u, u〉| <
π

2
and

ω2 := sup
u∈R(Γ)\{0}

|arg〈B2u, u〉| <
π

2 .

The bisectoriality of ΠB ensures that the following operators will be well-defined.

Definition 2.11. For t ∈ R \ {0}, define the perturbation dependent operators

RB
t := (I + itΠB)−1 , PB

t :=
(
I + t2 (ΠB)2

)−1
,

QB
t := tΠBP

B
t and ΘB

t := tΓ∗BPB
t .

When there is no perturbation, i.e. when B1 = B2 = I, the B will dropped from the
superscript or subscript. For example, instead of ΘI

t or ΠI the notation Θt and Π will be
employed.

Remark 2.12. An easy consequence of Proposition 2.10 is that the operators RB
t , PB

t and
QB
t are all uniformly H-bounded in t. Furthermore, on taking the Hodge decomposition

in Proposition 2.9 into account, it is clear that the operators ΘB
t will also be uniformly

H-bounded in t.

The next result tells us how the operators ΠB and PB
t interact with Γ and Γ∗B.
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Lemma 2.13 ([5]). The following relations are true.
ΠBΓu = Γ∗BΠBu for all u ∈ D (Γ∗BΠB) ,
ΠBΓ∗Bu = ΓΠBu for all u ∈ D (ΓΠB) ,

ΓPB
t u = PB

t Γu for all u ∈ D (Γ) , and

Γ∗BPB
t u = PB

t Γ∗Bu for all u ∈ D (Γ∗B) .

The subsequent lemma provides a square function estimate for the unperturbed Dirac-
type operator Π. When considering square function estimates for the perturbed operator,
there will be several instances where the perturbed case can be reduced with the assistance
of this unperturbed estimate. Its proof follows directly from the self-adjointness of the
operator Π and Proposition 2.7.

Lemma 2.14 ([5]). The quadratic estimate

(2.6)
∫ ∞

0
‖Qtu‖2 dt

t
≤ 1

2 ‖u‖
2

holds for all u ∈ H. Equality holds on R (Π).

The following result will play a crucial role in the reduction of the square function
estimate (1.3).

Proposition 2.15 ([5]). Assume that the estimate

(2.7)
∫ ∞

0

∥∥∥ΘB
t Ptu

∥∥∥2 dt

t
≤ c ‖u‖2

holds for all u ∈ R (Γ) and some constant c > 0, together with three similar estimates
obtained on replacing {Γ, B1, B2} by {Γ∗, B2, B1}, {Γ∗, B∗2 , B∗1} and {Γ, B∗1 , B∗2}. Then ΠB

satisfies the quadratic estimate

(2.8) (cC)−1 ‖u‖2 ≤
∫ ∞

0

∥∥∥QB
t u
∥∥∥2 dt

t
≤ cC ‖u‖2

for all u ∈ R (ΠB), for some C > 0 entirely dependent on (H1)- (H3).

The constant dependence of (2.8) is not explicitly mentioned in Proposition 4.8 of [5],
but it is relatively easy to trace through their argument and record where (2.7) is used.
The following corollary is proved during the course of the proof of Proposition 4.8 of [5].

Corollary 2.16 (High Frequency Estimate). For any u ∈ R (Γ), there exists a constant
c > 0 for which ∫ ∞

0

∥∥∥ΘB
t (I − Pt)u

∥∥∥2 dt

t
≤ c ‖u‖2 .

From this point onwards, it will also be assumed that our operators satisfy the additional
hypotheses (H4) - (H6). These hypotheses are stated below for reference.

(H4) The Hilbert space is H = L2
(
Rd;CN

)
for some d, N ∈ N∗.
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(H5) The operators B1 and B2 represent multiplication by matrix-valued functions. That
is,

B1(f)(x) = B1(x)f(x) and B2(f)(x) = B2(x)f(x)
for all f ∈ H and x ∈ Rd, where B1, B2 ∈ L∞

(
Rd;L

(
CN

))
.

(H6) For every bounded Lipschitz function η : Rd → C, we have that ηD(Γ) ⊂ D (Γ)
and ηD (Γ∗) ⊂ D (Γ∗). Moreover, the commutators [Γ, ηI] and [Γ∗, ηI] are multi-
plication operators that satisfy the bound

|[Γ, ηI] (x)| , |[Γ∗, ηI] (x)| ≤ c |∇η(x)|

for all x ∈ Rd and some constant c > 0.

In contrast to the original result, our operators will not be assumed to satisfy the can-
cellation condition (H7) and the coercivity condition (H8). Without these two conditions,
many of the results from Section 5 of [5] will fail. One notable exception to this is that
the bounded operators associated with our perturbed Dirac-type operator ΠB will satisfy
off-diagonal estimates.

Definition 2.17 (Off-Diagonal Bounds). Define 〈x〉 := 1+ |x| for x ∈ C and dist(E,F ) :=
inf {|x− y| : x ∈ E, y ∈ F} for E, F ⊂ Rd.

Let {Ut}t>0 be a family of operators on H = L2
(
Rd;CN

)
. This collection is said to have

off-diagonal bounds of order M > 0 if there exists CM > 0 such that

(2.9) ‖Utu‖L2(E) ≤ CM〈dist(E,F )/t〉−M ‖u‖

whenever E, F ⊂ Rd are Borel sets and u ∈ H satisfies suppu ⊂ F .

Proposition 2.18 ([5]). Let Ut be given by either RB
t , RB

−t, PB
t , QB

t or ΘB
t for every

t > 0. The collection of operators {Ut}t>0 has off-diagonal bounds of every order M > 0.
Moreover, the constant CM in the estimate (2.9) depends only on M and the hypotheses
(H1) - (H6).

Introduce the following dyadic decomposition of Rd. Let � = ∪∞j=−∞�2j where �t :=
{2j (k + (0, 1]n) : k ∈ Zn} if 2j−1 < t ≤ 2j. Define the averaging operator At : H → H
through

Atu(x) := 1
|Q(x, t)|

∫
Q(x,t)

u(y) dy

for x ∈ Rd, t > 0 and u ∈ H, where Q(x, t) is the unique dyadic cube in �t that contains
the point x.

For an operator family {Ut}t>0 that satisfies off-diagonal bounds of every order, there
exists an extension Ut : L∞

(
Rd;CN

)
→ L2

loc

(
Rd;CN

)
for each t > 0. This is constructed

by defining
Utu(x) := lim

r→∞

∑
R∈�t

dist(Q,R)<r

Ut (1Ru) (x),
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for x ∈ Q ∈ �t and u ∈ L∞
(
Rd;CN

)
. The convergence of the above limit is guaranteed

by the off-diagonal bounds of {Ut}t>0. Further detail on this construction can be found in
[5], [11], [22]. Following [5], the above extension then allows us to introduce the principal
part of the operator Ut.

Definition 2.19. Let {Ut}t>0 be operators on H that satisfy off-diagonal bounds of every
order. For t > 0, the principal part of Ut is the operator ζt : Rd → L

(
CN

)
defined through

[ζt(x)] (w) := (Utw) (x)
for each x ∈ Rd and w ∈ CN .

The following generalisation of Corollary 5.3 of [5] will also be true with an identical
proof.

Proposition 2.20. Let {Ut}t>0 be operators on H that satisfy off-diagonal bounds of every
order. Let ζt : Rd → L

(
CN

)
denote the principal part of the operator Ut. Then there exists

c > 0 such that
−
∫
Q
|ζt(y)|2 dy ≤ c

for all Q ∈ �t. Moreover, the operators ζtAt are uniformly H-bounded in t.

Finally, the ensuing partial result will also be valid. Its proof follows in an identical
manner to the first part of the proof of Proposition 5.5 of [5].

Proposition 2.21. Let {Ut}t>0 be operators on H that satisfy off-diagonal bounds of every
order. Let ζt : Rd → L

(
CN

)
denote the principal part of Ut. Then there exists c > 0 such

that
(2.10) ‖(Ut − ζtAt) v‖ ≤ c ‖t∇v‖ .

for any v ∈ H1
(
Rd;CN

)
⊂ H and t > 0.

3. Proof of Kato with Potential on Rd

The aim of this section is to prove Theorem 1.1 for Ω = Rd. As explained in the
introduction, the proof is based on the holomorphic functional calculus (equivalently square
function estimates) for Dirac-type operators. The proof of one of the square function
estimates will be postponed to the next section.

We start by introducing a class of potentials. For α ∈ [1, 2], define Wα to be the class
of all measurable functions V ∈ L1

loc

(
Rd
)

for which

[V ]α := sup
u∈D(−∆+|V |)

∥∥∥|V |α2 u∥∥∥+
∥∥∥(−∆)

α
2 u
∥∥∥∥∥∥(−∆ + |V |)

α
2 u
∥∥∥ <∞.

The supremum is taken over D (−∆ + |V |) but it coincides with the supremum over
D
(
(−∆ + |V |)

α
2
)

since D (−∆ + |V |) is a core of the operator (−∆ + |V |)
α
2 .
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As will be proved in Lemma 3.9, Wα is a decreasing class of potentials and W1 =
L1
loc

(
Rd
)
.

As a first step, we state a weaker version of Theorem 1.1 for Ω = Rd for potentials which
are in Wα for some α ∈ (1, 2].

Proposition 3.1. Let V ∈ Wα for some α ∈ (1, 2] and suppose that the range of V is
contained in a sector SωV + for some ωV ∈

[
0, π2

)
. Then there exists CV > 0, dependent on

the potential only through ωV , for which
(3.1)(
CV

(
1 + [V ]2α

))−1 (
‖∇u‖+

∥∥∥V 1
2u
∥∥∥) ≤ ∥∥∥√L+ V u

∥∥∥ ≤ CV
(
1 + [V ]2α

) (
‖∇u‖+

∥∥∥V 1
2u
∥∥∥)

for all u ∈ D (L+ V ). The constant CV is independent of α ∈ (1, 2].

Remark 3.2. In the previous proposition, as well as in the forthcoming results, we em-
phasize the independence of CV from α. The reason for this lies in the fact that we will let
α → 1 in (3.1) in order to obtain the result for general potentials. Therefore we at least
need a constant that does not explode when taking the limit.

Notation. For the remainder of this article, the notation A . B and A ' B will be used
to denote that there exists a constant CV > 0, independent of α and dependent on the
potential only through ωV , such that A ≤ CVB and C−1

V B ≤ A ≤ CVB.

Fix V ∈ Wα for some α ∈ (1, 2] with angle of sectoriality ωV ∈
[
0, π2

)
. Define the Hilbert

space

H := L2
(
Rd;Cd+2

)
= L2

(
Rd;C

)
⊕ L2

(
Rd;C

)
⊕ L2(Rd;Cd).

Let Pi denote the natural projection map onto the subspace corresponding to the ith
component of H for i = 1, 2 and 3. The notation Pi will also be used to denote the
projection map onto the ith subspace of Cn+2 = C ⊕ C ⊕ Cn. The ith component of a
vector v ∈ H will be denoted by vi so that v = (v1, v2, v3) with v1, v2 ∈ L2

(
Rd
)

and
v3 ∈ L2

(
Rd;Cd

)
.

Let ΓV be the operator on H defined by

ΓV :=

 0 0 0
|V |

1
2 0 0
∇ 0 0

 .
Also define

Γ0 :=

 0 0 0
0 0 0
∇ 0 0

 , MV :=

 0 0 0
|V |

1
2 0 0

0 0 0

 ,

Π0 := Γ0 + Γ∗0 and ΠV := ΓV + Γ∗V .
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Let B1, B2 ∈ L∞
(
Rd;L

(
Cd+2

))
be the matrix-valued multiplication operators

(3.2) B1 = I, B2 :=

 I 0 0
0 ei·argV 0
0 0 A

 .
Proposition 3.3. The family of operators {Γ0, B1, B2} satisfies the conditions (H1) - (H8)
of [5] while {ΓV , B1, B2} satisfies only (H1) - (H6).

Proof. Assumptions (H1), (H3), (H4) and (H5) are obvious from the definitions of the
operators. (H2) follows from the ellipticity assumption (1.1) for {Γ0, B1, B2} and from
(2.1) for {ΓV , B1, B2}. (H6) for both sets of operators follows from the fact that the order
of the operators Γ0 and ΓV is less than or equal to one. (H7) for {Γ0, B1, B2} is given
by the homogeneity of Γ0 and (H8) is given by the boundedness of the Riesz transforms
∂j∂k (−∆)−1 on L2

(
Rd
)

for j, k = 1, · · · , d. �

For reference, the cancellation condition (H7) and the coercivity condition (H8) are given
below for the operator Γ0.

(H7) For any u ∈ D (Γ0) and v ∈ D (Γ∗0), both compactly supported,∫
Rd

Γ0u = 0 and
∫
Rd

Γ∗0v = 0.

(H8) There exists c > 0 such that
‖∇u‖ ≤ c ‖Π0u‖

for all u ∈ R (Π0) ∩D (Π0).

Remark 3.4. Since the operators {Γ0, B1, B2} satisfy all eight conditions (H1) - (H8) of
[5], we can then apply the results from that paper to these operators.

Definition 3.5. For t ∈ R \ {0}, define the perturbation dependent operators
Γ∗V,B := B1Γ∗VB2, ΠV,B := ΓV + Γ∗V,B,

RV,B
t := (I + itΠV,B)−1 , P V,B

t :=
(
I + t2 (ΠV,B)2

)−1
,

QV,B
t := tΠV,BP

V,B
t and ΘV,B

t := tΓ∗V,BP
V,B
t .

When there is no perturbation, i.e. when B1 = B2 = I, the B will dropped from the
superscript or subscript. For example, instead of ΘV,I

t the notation ΘV
t will be employed.

The main result that will be used to prove the Kato estimate with potential on Rd is the
following square function estimate.

Theorem 3.6. Let {ΓV , B1, B2} be as defined above. There exists a constant CV > 0,
dependent on the potential only through ωV , such that

(3.3)
∫ ∞

0

∥∥∥ΘV,B
t P V

t u
∥∥∥2 dt

t
≤ CV

(
1 + [V ]2α

)
‖u‖2
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for all u ∈ R (ΓV ). The constant CV is independent of α ∈ (1, 2].

The proof of this theorem will be reserved for Section 4. Next, we consider an estimate
that serves as a dual to (3.3).

Proposition 3.7. For t > 0, define the operator

P V,B
t :=

(
I + t2 (Γ∗V +B2ΓVB1)2

)−1
.

The square function estimate

(3.4)
∫ ∞

0

∥∥∥P V,B
t tB2ΓVB1P

V
t u
∥∥∥2 dt

t
. ‖u‖2

will hold for all u ∈ H.

Proof. Since {ΓV , B1, B2} satisfies (H1) - (H6) it follows that {Γ∗V , B2, B1} will also satisfy
(H1) - (H6). Proposition 2.10 then implies that the operators P V,B

t are well-defined and
uniformly L2-bounded (by a constant depending on V only through ωV ). On applying this
to the left-hand side of (3.4),∫ ∞

0

∥∥∥P V,B
t tB2ΓVB1P

V
t u
∥∥∥2 dt

t
.
∫ ∞

0

∥∥∥tB2ΓVB1P
V
t u
∥∥∥2 dt

t

.
∫ ∞

0

∥∥∥tΓV P V
t u
∥∥∥2 dt

t

≤
∫ ∞

0

∥∥∥tΠV P
V
t u
∥∥∥2 dt

t

= 1
2 ‖u‖

2 ,

where the inequality ‖ΓV v‖ ≤ ‖ΠV v‖ for v ∈ D (ΠV ) follows immediately from the three-
by-three matrix form of the operators and Lemma 2.14 was applied to obtain the last
line. �

From Theorem 3.6 and the previous proposition, the upper and lower square function
estimates for QV,B

t can be proved.

Theorem 3.8. The estimate

(3.5)
(
1 + [V ]2α

)−1
‖u‖2 .

∫ ∞
0

∥∥∥QV,B
t u

∥∥∥2 dt

t
.
(
1 + [V ]2α

)
‖u‖2

holds for all u ∈ R (ΠV ).

Proof. Proposition 2.15 states that in order to prove the square function estimate (3.5), it is
sufficient for the estimate (3.3) to be valid for the permutations of operators {ΓV , B1, B2},
{ΓV , B∗1 , B∗2}, {Γ∗V , B2, B1} and {Γ∗V , B∗2 , B∗1}. The first permutations {ΓV , B1, B2} and
{ΓV , B∗1 , B∗2} both come under the umbrella of Theorem 3.6. The permutations {Γ∗V , B2, B1}
and {Γ∗V , B∗2 , B∗1} are handled by Proposition 3.7 by observing that P V,B

t and B2ΓVB1 com-
mute on an appropriate space (cf. Lemma 2.13). �
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Proof of Proposition 3.1. From the upper and lower estimates of the previous theorem,
Theorem 2.8 then implies that ΠV,B has a bounded holomorphic functional calculus. Ap-
plying this with the functions f(z) = z√

z2 and g(z) =
√
z2

z
to a vector (u, 0, 0) ∈ H with

u ∈ D
(√
L+ V

)
then completes the proof of Proposition 3.1. �

Let us now dispose of the dependence of the Kato estimate on the constant [V ]α through
an interpolation argument.

Lemma 3.9. Suppose that the potential V is in Wα for some α ∈ (1, 2]. Then V ∈ Wβ

for any β ∈ [1, α] with

(3.6) [V ]β ≤ 2 ([V ]α)
β−1
α−1 .

Proof. The first observation is that [V ]1 ≤ 2 for any locally integrable V : Rd → C. Indeed,
due to positivity of the operator (−∆),∥∥∥|V | 12 u∥∥∥2

= 〈|V |u, u〉
≤ 〈(−∆ + |V |)u, u〉

=
∥∥∥(−∆ + |V |)

1
2 u
∥∥∥2
.

Identical reasoning can be applied to obtain the bound∥∥∥(−∆)
1
2 u
∥∥∥ ≤ ∥∥∥(−∆ + |V |)

1
2 u
∥∥∥ .

This proves that [V ]1 ≤ 2 and thereforeW1 is the class of all V ∈ L1
loc

(
Rd
)

with no further
restriction.

Assume that V ∈ Wα for some α ∈ (1, 2]. We use interpolation to prove that V ∈ Wβ

for β ∈ [1, α] with the constant given in (3.6). Define the Banach spaces

X1 :=
{
u ∈ L2

(
Rd
)

: ‖u‖X1
:= 1

M
‖u‖2 +

∥∥∥(−∆ + |V |)
1
2 u
∥∥∥

2
<∞

}
and

Y1 :=
{
u ∈ L2

(
Rd
)

: ‖u‖Y1
:= 1

M
‖u‖2 +

∥∥∥(−∆ + |V |)
α
2 u
∥∥∥

2
<∞

}
,

where M > 0. The corresponding complex interpolation space is

[X1, Y1]θ :=
{
u ∈ L2

(
Rd
)

: ‖u‖[X1,Y1]θ
:= 1

M
‖u‖2 +

∥∥∥∥(−∆ + |V |)
1
2 +(α−1

2 )θ u
∥∥∥∥

2
<∞

}
,

for 0 ≤ θ ≤ 1. Also set
X2 = Y2 = L2

(
Rd
)
.

For z in the strip
S := {z ∈ C : 0 ≤ Re z ≤ 1} ,

define the operator Tz on X1 ∩ Y1 through

Tzu := |V |
1
2 +(α−1

2 )z u,
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for u ∈ X1 ∩ Y1. Then, if t ∈ R,

‖Titu‖X2
= ‖Titu‖L2

=
∥∥∥∥|V | 12 +(α−1

2 )it u
∥∥∥∥
L2

=
∥∥∥|V | 12 u∥∥∥

L2

≤
∥∥∥(−∆ + |V |)

1
2 u
∥∥∥
L2

≤ ‖u‖X1

for u ∈ X1 ∩ Y1. This implies that Tit can be extended to a linear operator on X1 with

‖Tit‖L(X1,X2) ≤ 1.

Similarly,

‖T1+itu‖Y2
= ‖T1+itu‖L2

=
∥∥∥|V |α2 u∥∥∥

L2

≤ [V ]α
∥∥∥(−∆ + |V |)

α
2 u
∥∥∥
L2

≤ [V ]α ‖u‖Y1

for u ∈ X1 ∩ Y1. This implies that T1+it extends to a linear operator on Y1 with

‖T1+it‖L(Y1,Y2) ≤ [V ]α .

Hence,

‖Tθu‖[X2,Y2]θ
≤ 11−θ [V ]θα ‖u‖[X1,Y1]θ

(3.7)

for any 0 ≤ θ ≤ 1. Setting θ = β−1
α−1 in (3.7) then gives∥∥∥∥|V |β2 u∥∥∥∥ ≤ [V ](

β−1
α−1)

α

( 1
M
‖u‖+

∥∥∥∥(−∆ + |V |)
β
2 u
∥∥∥∥) .

Let M →∞ to obtain ∥∥∥∥|V |β2 u∥∥∥∥ ≤ [V ](
β−1
α−1)

α

∥∥∥∥(−∆ + |V |)
β
2 u
∥∥∥∥ .

A similar interpolation argument can be applied to obtain the bound∥∥∥∥(−∆)
β
2 u
∥∥∥∥ ≤ [V ](

β−1
α−1)

α

∥∥∥∥(−∆ + |V |)
β
2 u
∥∥∥∥

for any u ∈ D (−∆ + |V |). It proceeds identically but it should be noted that the bound-
edness of the imaginary powers of (−∆) must be used when evaluating the endpoints of
the interpolation argument. �
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It is now possible to get rid of the dependence of (3.1) on the constant [V ]α. Since
V ∈ Wα, it follows from the previous lemma that [V ]β <∞ for all β ∈ [1, α]. This implies
that (3.1) is valid for all β ∈ [1, α],
(3.8)(
CV

(
1 + [V ]2β

))−1 (∥∥∥|V | 12 u∥∥∥+ ‖∇u‖
)
≤
∥∥∥√L+ V u

∥∥∥ ≤ CV
(
1 + [V ]2β

) (∥∥∥|V | 12 u∥∥∥+ ‖∇u‖
)
.

Moreover, the previous lemma also allows us to deduce that

lim
β→1+

[V ]β ≤ 2.

Sending β → 1+ in (3.8) leads to

(3.9) C−1
V

(∥∥∥|V | 12 u∥∥∥+ ‖∇u‖
)
≤
∥∥∥√L+ V u

∥∥∥ ≤ CV
(∥∥∥|V | 12 u∥∥∥+ ‖∇u‖

)
.

In order to conclude our proof of Theorem 1.1 for Ω = Rd we have to extend (3.9) to all
sectorial V ∈ L1

loc

(
Rd
)
. This will be achieved by an approximation argument. In order to

do so, we need to approximate in the strong resolvent sense L + V by a sequence L + Vn
with Vn ∈ Wα and apply (3.9). We shall borrow some ideas from [23].

Let V ∈ L1
loc

(
Rd
)

with angle of sectoriality ωV ∈ [0, π2 ). For each m, n ∈ ‖∗ with m ≤ n
set

Vn,m := (ReV )1|V |≤n + i (ImV )+
1|V |≤n − i (ImV )− 1|V |≤m.

It is clear that for m ≤ n the potential Vn,m ∈ L∞
(
Rd
)

will have angle of sectoriality at
most ωV . Obviously, for each ε > 0 we have Vn,m + ε ∈ W2 and so (3.9) implies

(3.10) C−1
V

(∥∥∥|Vn,m| 12 u∥∥∥+ ‖∇u‖
)
≤
∥∥∥√L+ Vn,m + ε u

∥∥∥ ≤ CV
(∥∥∥|Vn,m + ε|

1
2 u
∥∥∥+ ‖∇u‖

)
.

In particular, the operators |Vn,m|
1
2 (L+ Vn,m + ε)−

1
2 and ∇ (L+ Vn,m + ε)−

1
2 are uniformly

L2-bounded in n,m and ε for m ≤ n. Our aim is to take the limit as n→∞ and m→∞.
We deal with ∇ (L+ Vn,m + ε)−

1
2 . The arguments are similar for |Vn,m|

1
2 (L+ Vn,m + ε)−

1
2 .

For a given f ∈ L2
(
Rd
)
, the sequence

(
(L+ Vn,m + ε)−

1
2 f
)
n

is bounded in H1
(
Rd
)
.

Hence, after extraction of a subsequence, we may assume that this sequence converges
weakly in H1

(
Rd
)

as n → ∞. We prove that (L+ Vn,m + ε)n converges to (L+ Vm + ε)
in the strong resolvent sense. Here

Vm := ReV + i (ImV )+ − i (ImV )− 1|V |≤m.

Once this is proved we obtain∥∥∥∇ (L+ Vm + ε)−
1
2 f
∥∥∥ ≤ lim inf

n

∥∥∥∇ (L+ Vn,m + ε)−
1
2 f
∥∥∥

which will imply that
(
∇ (L+ Vm + ε)−

1
2
)
m

is uniformly L2-bounded in m and ε. We then
repeat the same argument by letting m→∞ and obtain

(3.11)
(∥∥∥|V | 12 u∥∥∥+ ‖∇u‖

)
≤ CV

∥∥∥√L+ V + ε u
∥∥∥ .
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We let ε → 0 and obtain the first estimate in Theorem 1.1. The second estimate is the
obtained from the first one by a well known duality argument as follows∥∥∥√L+ V u

∥∥∥ = sup
{
|〈(L+ V )u, v〉| ,

∥∥∥∥√(L+ V )∗v
∥∥∥∥ ≤ 1

}
= sup

{∣∣∣∣∫
Rd
A∇u∇v + V uv

∣∣∣∣ , ∥∥∥∥√(L+ V )∗v
∥∥∥∥ ≤ 1

}
. sup

{
‖∇u‖ ‖∇v‖+

∥∥∥|V | 12 u∥∥∥ ∥∥∥|V | 12 v∥∥∥ , ∥∥∥∥√(L+ V )∗v
∥∥∥∥ ≤ 1

}
. sup

{[
‖∇u‖+

∥∥∥|V | 12 u∥∥∥] [‖∇v‖+
∥∥∥|V | 12 v∥∥∥] , ∥∥∥∥√(L+ V )∗v

∥∥∥∥ ≤ 1
}

. ‖∇u‖+
∥∥∥|V | 12 u∥∥∥ ,

where in the last inequality we use the lower estimate (we just proved) of Theorem 1.1 for
the adjoint operator (L+ V )∗.

Our final task is to prove the above claims on the convergence in the strong resolvent
sense. Recall that any sesquilinear form E on a complex Hilbert space can be written as

(3.12) E = b+ ic

where b = 1
2(E + E∗) (called the real part of E) and c = 1

2i(E − E
∗) (the imaginary part).

We apply this decomposition to the sesquilinear forms aV and aVn,m+ε (for m ≤ n)

a
V+ε = b+ ic and a

Vn,m+ε = bn,m + icn,m.

We introduce the forms

a
V+ε(z) = b+ zc and a

Vn,m+ε(z) = bn,m + zcn,m

for z ∈ Stδ := {z ∈ C, |Im (z)| < δ}. The sectoriality of Vn,m + ε implies that for δ > 0
small enough, each form aVn,m+ε(z) and aV+ε(z) is sectorial for every z ∈ Stδ. On the other
hand, these forms are of type (a) in the sense of [19, p. 393] and hence the corresponding
resolvents are holomorphic in the strip Stδ and uniformly L2-bounded. Observe that for
z ∈ [0, δ) the forms aVn,m+ε(z) are symmetric and the sequence is increasing in the sense
that

a
Vn,m+ε(z)(u, u) ≤ aVn+1,m+ε(z)(u, u).

When n→∞, aVn,m+ε(z)(u, u) converges to the form aVm+ε(z)(u, u). The monotone conver-
gence theorem for non-decreasing forms [19, p. 461] implies the convergence in the strong
resolvent sense of aVn,m+ε(z) to aVm+ε(z) as n → ∞ for all z ∈ [0, δ). We conclude by
Vitali’s theorem (see [16, Thm. 3.14.1] or [2, p. 458]) that the strong convergence holds
for all z in the strip and in particular for z = i. This proves the strong convergence in
the resolvent sense of L + Vn,m + ε to L + Vm + ε. We repeat the same argument either
by taking z ∈ (−δ, 0] and use convergence of non-decreasing symmetric forms as above or
z ∈ [0, δ) and then use convergence of non-increasing symmetric forms. This concludes our
proof of Theorem 1.1 for Ω = Rd.
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4. Square Function Estimates

In this section a proof of Theorem 3.6 will be provided. The first part of the proof
consists in showing that the operators P V

t can effectively be diagonalised when estimating
square function norms from above.

Throughout this section we assume that V is sectorial and belongs to Wα for some
α ∈ (1, 2]. Recall that . means that the implicit constant depends on V only through its
angle of sectoriality ωV and is independent of α ∈ (1, 2].

4.1. Diagonalisation of the P V
t Operators. Define, for t > 0, the bounded operator

PVt : H → H through

PVt :=

 (I + t2 (−∆ + |V |))−1 0 0
0 (I + t2 |V |)−1 0
0 0 (I − t2∇div)−1

 .
Observe that since the operators (−∆ + |V |), |V | and (−∇div) are all self-adjoint, it follows
from Proposition 2.7 that square function estimates hold for each of these operators with
constant bounded by 1. Therefore each of these operators possess a bounded holomorphic
functional calculus with constant bounded by 1 and thus the operators PVt are uniformly
L2-bounded by 1. The following theorem will be proved.

Theorem 4.1. The estimate

(4.1)
∫ ∞

0

∥∥∥(PVt − P V
t

)
u
∥∥∥2 dt

t
.
(
1 + [V ]2α

)
‖u‖2

holds for all u ∈ R (ΓV ).

Such a diagonalisation will aid us tremendously in bounding our main square function
estimate (3.3). This theorem will be proved by inspecting each component separately.

Remark 4.2. It is easy to see that the diagonalisation estimate (4.1) is trivially satisfied
on the first component for any u ∈ H since P1PVt = P1P

V
t .

Proposition 4.3. For any u ∈ H,

(4.2)
∫ ∞

0

∥∥∥PVt (P V
t − I

)
u
∥∥∥2 dt

t
. ‖u‖2 .

Proof. The estimate is trivially satisfied onN(ΠV ) since
(
P V
t − I

)
u = 0 for any u ∈ N(ΠV )

and t > 0. Suppose that u ∈ R (ΠV ). Using a Schur argument identical to Proposition 5.7
of [5], the proof of (4.2) for u ∈ R (ΠV ) can be reduced to the statement

(4.3)
∥∥∥PVt (P V

t − I
)
QV
s

∥∥∥ . min
{
t

s
,
s

t

} 1
2
, t, s > 0.

First assume that t ≤ s. On noting that
(
P V
t − I

)
QV
s = t

s
QV
t

(
P V
s − I

)
we obtain

(4.4)
∥∥∥PVt (P V

t − I
)
QV
s

∥∥∥ ≤ ∥∥∥(P V
t − I

)
QV
s

∥∥∥ = t

s

∥∥∥QV
t

(
P V
s − I

)∥∥∥ . t
s
.
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Next, suppose that t > s. Then the equality P V
t Q

V
s = s

t
QV
t P

V
s gives∥∥∥PVt (P V

t − I
)
QV
s

∥∥∥ ≤ ∥∥∥P V
t Q

V
s

∥∥∥+
∥∥∥PVt QV

s

∥∥∥ . s
t

+
∥∥∥PVt QV

s

∥∥∥ .
The term PVt QV

s will be considered component-wise. For the first component, recall that
P1PVt = P1P

V
t and observe ∥∥∥P1PVt QV

s

∥∥∥ =
∥∥∥P1P

V
t sΠV P

V
s

∥∥∥
= s

t

∥∥∥P1P
V
t tΠV P

V
s

∥∥∥
= s

t

∥∥∥P1Q
V
t P

V
s

∥∥∥
.
s

t
.

For the second component, note that

P2PVt =
(
I + t2 |V |

)−1
P2 and P2ΠV = |V |

1
2 P1.

This gives ∥∥∥P2PVt QV
s

∥∥∥ = s
∥∥∥∥(I + t2 |V |

)−1
|V |

1
2 P1P

V
s

∥∥∥∥
.
s

t
.

Lastly, for the third component, we have

P3PVt = P3P
0
t = P 0

t P3,

leading to ∥∥∥P3PVt QV
s

∥∥∥ =
∥∥∥P 0

t P3sΠV P
V
s

∥∥∥
=
∥∥∥P 0

t P3sΠ0P
V
s

∥∥∥
= s

t

∥∥∥P3P
0
t tΠ0P

V
s

∥∥∥
= s

t

∥∥∥P3Q
0
tP

V
s

∥∥∥
.
s

t
.

Putting everything together gives (4.3). �

Proposition 4.4. The estimate∫ ∞
0

∥∥∥P2
(
I − PVt

)
P V
t u
∥∥∥2 dt

t
. [V ]2α ‖u‖

2

holds for any u ∈ R (ΓV ).
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Proof. Observe that∥∥∥P2
(
I − PVt

)
P V
t u
∥∥∥ =

∥∥∥∥t2 |V | (1 + t2 |V |
)−1
P2P

V
t u
∥∥∥∥

.
∥∥∥∥tα−1 |V |

α−1
2 P2P

V
t u

∥∥∥∥ .
As u ∈ R (ΓV ) and P V

t commutes with ΓV through Lemma 2.13, there must exist some
v = (v1, 0, 0) ∈ D (ΓV ) for which P V

t u = ΓV (v1, 0, 0). This then gives∥∥∥P2
(
I − PVt

)
P V
t u
∥∥∥ . ∥∥∥tα−1V

α
2 v1

∥∥∥
≤ [V ]α

∥∥∥tα−1 (−∆ + |V |)
α
2 v1

∥∥∥
= [V ]α

∥∥∥tα−1 |ΠV |α v
∥∥∥

. [V ]α
∥∥∥tα−1 |ΠV |α−1 ΠV v

∥∥∥
= [V ]α

∥∥∥tα−1 |ΠV |α−1 P V
t u
∥∥∥ ,

where |ΠV | :=
√

Π2
V and in the fourth line we applied the bounded holomorphic functional

calculus of the operator ΠV . Therefore∫ ∞
0

∥∥∥P2
(
I − PVt

)
P V
t u
∥∥∥2 dt

t
. [V ]2α

∫ ∞
0

∥∥∥tα−1 |ΠV |α−1 P V
t u
∥∥∥2 dt

t

. [V ]2α ‖u‖
2 ,

where we used the fact that ΠV satisfies quadratic estimates and Remark 2.6 in the last
line. �

Proposition 4.5. The estimate

(4.5)
∫ ∞

0

∥∥∥P3
(
I − PVt

)
P V
t u
∥∥∥2 dt

t
. [V ]2α ‖u‖

2

holds for all u ∈ R (ΓV ).

Proof. First note that the integrand of (4.5) can be re-written as

P3
(
I − PVt

)
P V
t u = P3

(
I − P 0

t

)
P V
t u =

(
I − P 0

t

)
P3P

V
t u.

It then follows from the bounded holomorphic functional calculus of Π0 that∥∥∥(I − P 0
t

)
P3P

V
t u
∥∥∥ . ∥∥∥tα−1 |Π0|α−1 P3P

V
t u
∥∥∥ =

∥∥∥P3t
α−1 |Π0|α−1 P V

t u
∥∥∥ .

On recalling that u = ΓV v for some v = (v1, 0, 0) ∈ D (ΓV ) and that ΓV commutes with
P V
t , ∫ ∞

0

∥∥∥P3t
α−1 |Π0|α−1 P V

t u
∥∥∥2 dt

t
=
∫ ∞

0

∥∥∥P3t
α−1 |Π0|α−1 ΓV P V

t v
∥∥∥2 dt

t

=
∫ ∞

0

∥∥∥P3t
α−1 |Π0|α−1 Π0P

V
t v
∥∥∥2 dt

t
.
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On exploiting the bounded holomorphic functional calculus of the operator Π0 once more,∫ ∞
0

∥∥∥P3t
α−1 |Π0|α−1 Π0P

V
t v
∥∥∥2 dt

t
.
∫ ∞

0

∥∥∥tα−1 |Π0|α P V
t v
∥∥∥2 dt

t
.

Observe that since P V
t v is non-zero only in the first entry,∥∥∥|Π0|α P V

t v
∥∥∥ =

∥∥∥(−∆)
α
2 P1P

V
t v
∥∥∥

≤ [V ]α
∥∥∥(|V | −∆)

α
2 P1P

V
t v
∥∥∥

= [V ]α
∥∥∥|ΠV |α P V

t v
∥∥∥ .

The bounded holomorphic functional calculus of the operator ΠV then leads to

[V ]2α
∫ ∞

0

∥∥∥tα−1 |ΠV |α P V
t v
∥∥∥2 dt

t
. [V ]2α

∫ ∞
0

∥∥∥tα−1 |ΠV |α−1 ΠV P
V
t v
∥∥∥2 dt

t

= [V ]2α
∫ ∞

0

∥∥∥tα−1 |ΠV |α−1 P V
t u
∥∥∥2 dt

t

. [V ]2α ‖u‖
2 ,

where we used the fact that ΠV satisfies quadratic estimates in the final line. �

Proof of Theorem 4.1. We combine Propositions 4.3, 4.4 and 4.5 together and note that
P1P

V
t u = 0 for u ∈ R (ΓV ) to obtain Theorem 4.1. �

Continuing with the proof of Theorem 3.6, split our main square function into compo-
nents ∫ ∞

0

∥∥∥ΘV,B
t P V

t u
∥∥∥2 dt

t
.

∑
i=1, 2, 3

∫ ∞
0

∥∥∥ΘV,B
t PiP

V
t u
∥∥∥2 dt

t
.

Notice that the first component vanishes since P1P
V
t u = 0 for u ∈ R (ΓV ). For the second

component, the triangle inequality gives∫ ∞
0

∥∥∥ΘV,B
t P2P

V
t u
∥∥∥2 dt

t
.
∫ ∞

0

∥∥∥ΘV,B
t P2

(
PVt − P V

t

)
u
∥∥∥2 dt

t
+
∫ ∞

0

∥∥∥ΘV,B
t P2PVt u

∥∥∥2 dt

t
.

The uniform L2-boundedness of the operators ΘV,B
t together with Theorem 4.1 give∫ ∞

0

∥∥∥ΘV,B
t P2

(
PVt − P V

t

)
u
∥∥∥2 dt

t
.
(
1 + [V ]2α

)
‖u‖2 .

For the second term, observe that P2PVt u ∈ D
(
Γ∗V,B

)
. Lemma 2.13 together with the

uniform L2 boundedness of the operators P V,B
t gives∫ ∞

0

∥∥∥ΘV,B
t P2PVt u

∥∥∥2 dt

t
=
∫ ∞

0

∥∥∥P V,B
t tΓ∗V,BP2PVt u

∥∥∥2 dt

t

.
∫ ∞

0

∥∥∥tΓ∗V,BP2PVt u
∥∥∥2 dt

t

=
∫ ∞

0

∥∥∥∥t |V | 12 eiargV
(
1 + t2 |V |

)−1
P2u

∥∥∥∥2 dt

t

. ‖u‖2 ,



THE KATO SQUARE ROOT PROBLEM ON AN ARBITRARY DOMAIN OF Rd 25

where the last line follows from the fact that the multiplication operator |V |
1
2 is self-adjoint

and therefore satisfies square function esimates with constant independent of V and α by
Proposition 2.7. This reduces our theorem to proving boundedness of the third component.

4.2. The Third Component. This section is dedicated to bounding the third component
of our square function norm thus completing the proof of Theorem 3.6. Specifically, it will
be proved that

(4.6)
∫ ∞

0

∥∥∥ΘV,B
t P3P

V
t u
∥∥∥2 dt

t
.
(
1 + [V ]2α

)
‖u‖2

holds for any u ∈ R (ΓV ). A similar argument to that of [5] will be used but one will need
to keep track of the effect of the projection P3 and the dependence of the constants on V
and α.

4.2.1. T (1)-Reduction. Our first step towards a T (1)-reduction is to use the splitting
∫ ∞

0

∥∥∥ΘV,B
t P3P

V
t u
∥∥∥2 dt

t
.
∫ ∞

0

∥∥∥ΘV,B
t P3

(
P V
t − PVt

)
u
∥∥∥2 dt

t
+
∫ ∞

0

∥∥∥ΘV,B
t P3PVt u

∥∥∥2 dt

t
.

The uniform L2-boundedness of the operators ΘV,B
t and Theorem 4.1 can be applied to the

first term to obtain ∫ ∞
0

∥∥∥ΘV,B
t P3

(
PVt − P V

t

)
u
∥∥∥2 dt

t
.
(
1 + [V ]2α

)
‖u‖2 .

On recalling that P3PVt = P3P
0
t , this reduces the task of proving our square function

estimate to obtaining the bound
∫ ∞

0

∥∥∥ΘV,B
t P3P

0
t u
∥∥∥2 dt

t
.
(
1 + [V ]2α

)
‖u‖2 .

Introduce the notation Θ̃V,B
t to denote the operators Θ̃V,B

t := ΘV,B
t P3. Let γV,Bt and γ̃V,Bt

denote the principal parts of the operators ΘV,B
t and Θ̃V,B

t respectively. That is, they are
the multiplication operators defined through

γV,Bt (x)w := ΘV,B
t (w)(x) and γ̃V,Bt (x)(w) :=

(
ΘV,B
t P3

)
(w)(x),

for w ∈ Cd+2 and x ∈ Rd. Evidently we must have γ̃V,Bt (x)w = γV,Bt (x)P3w.
Our square function norm can be reduced to this principal part by applying the splitting

(4.7)
∫ ∞

0

∥∥∥Θ̃V,B
t P 0

t u
∥∥∥2 dt

t
.
∫ ∞

0

∥∥∥(Θ̃V,B
t − γ̃V,Bt At

)
P 0
t u
∥∥∥2 dt

t
+
∫ ∞

0

∥∥∥γ̃V,Bt AtP
0
t u
∥∥∥2 dt

t
.
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Since the operator ΘV,B
t satisfies the conditions of Proposition 2.21, it follows that∫ ∞

0

∥∥∥(Θ̃V,B
t − γ̃V,Bt At

)
P 0
t u
∥∥∥2 dt

t
=
∫ ∞

0

∥∥∥(ΘV,B
t − γV,Bt At

)
P3P

0
t u
∥∥∥2 dt

t

.
∫ ∞

0

∥∥∥t∇P3P
0
t u
∥∥∥2 dt

t

.
∫ ∞

0

∥∥∥tΠ0P
0
t u
∥∥∥2 dt

t

= 1
2 ‖u‖

2 ,

where the estimate ‖∇P3P
0
t u‖ . ‖Π0P

0
t u‖ follows from (H8) for the operator Γ0. It should

be noted that in order to use (H8) we had to use the fact that u = ΓV v for some v ∈ D (ΓV )
and therefore

P3P
0
t u = P 0

t P3ΓV v = P 0
t P3Γ0v = Γ0P

0
t v ∈ R (Γ0) .

Our theorem has thus been reduced to a proof of the following square function estimate∫ ∞
0

∥∥∥γ̃V,Bt AtP
0
t u
∥∥∥2 dt

t
.
(
1 + [V ]2α

)
‖u‖2 .

The triangle inequality leads to

(4.8)
∫ ∞

0

∥∥∥γ̃V,Bt AtP
0
t u
∥∥∥2 dt

t
.
∫ ∞

0

∥∥∥γ̃V,Bt At
(
P 0
t − I

)
u
∥∥∥2 dt

t
+
∫ ∞

0

∥∥∥γ̃V,Bt Atu
∥∥∥2 dt

t
.

Proposition 2.20 states that the uniform estimate
∥∥∥γ̃V,Bt At

∥∥∥ . 1 is true for all t > 0.
Furthermore, notice that A2

t = At and P3At = AtP3 for all t > 0. These facts combine
together to produce∫ ∞

0

∥∥∥γ̃V,Bt At
(
P 0
t − I

)
u
∥∥∥2 dt

t
=
∫ ∞

0

∥∥∥γV,Bt AtP3At
(
P 0
t − I

)
u
∥∥∥2 dt

t

.
∫ ∞

0

∥∥∥P3At
(
P 0
t − I

)
u
∥∥∥2 dt

t
.

According to the argument from Proposition 5.7 of [5], this final term can be bounded by∫ ∞
0

∥∥∥At (P 0
t − I

)
u
∥∥∥2 dt

t
. ‖u‖2 ,

since {Γ0, B1, B2} by hypothesis satisfies (H1) - (H8).
Recall the definition of the Carleson norm for a measure ν on Rd+1

+ := Rd × [0,∞),

‖ν‖C := sup
Q∈�

ν(RQ)
|Q|

,

where RQ := Q × [0, l(Q)). For the second term in (4.8), apply Carleson’s theorem ([26,
p. 59]) to obtain ∫ ∞

0

∥∥∥γ̃V,Bt Atu
∥∥∥2 dt

t
. ‖µV,B‖C ‖u‖

2 ,
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where µV,B is the measure on Rd+1
+ defined through

dµV,B(x, t) :=
∣∣∣γ̃V,Bt (x)

∣∣∣2 dx dt
t

, x ∈ Rd, t > 0.

The proof of Theorem 3.6 has thus been reduced to showing that the measure µV,B is a
Carleson measure with constant smaller than a multiple of

(
1 + [V ]2α

)
.

4.2.2. Carleson Measure Estimate. Our goal now is to prove the following Carleson
measure estimate,

(4.9) sup
Q∈�

1
|Q|

∫ l(Q)

0

∫
Q

∣∣∣γ̃V,Bt (x)
∣∣∣2 dx dt

t
.
(
1 + [V ]2α

)
<∞.

Let L3 denote the subspace

(4.10) L3 :=
{
ν ∈ L

(
Cd+2

)
\ {0} : νP3 = ν

}
.

By construction, we have γ̃V,Bt (x) ∈ L3 for any t > 0 and x ∈ Rd since

γ̃V,Bt (x)P3w =
(
ΘV,B
t P3

)
(P3w) (x)

=
(
ΘV,B
t P3

)
(w)(x)

= γ̃V,Bt (x)(w).

(4.11)

Let σ > 0 be a constant to be determined at a later time. Let V be a finite set consisting
of ν ∈ L3 with |ν| = 1 such that ∪ν∈VKν = L3 \ {0}, where

Kν :=
{
ν ′ ∈ L3 \ {0} :

∣∣∣∣∣ ν ′|ν ′| − ν
∣∣∣∣∣ ≤ σ

}
.

Then, in order to prove our Carleson measure estimate (4.9), it is sufficient to fix ν ∈ V
and prove that

(4.12) sup
Q∈�

1
|Q|

∫ ∫
(x,t)∈RQ

γ̃V,Bt (x)∈Kν

∣∣∣γ̃V,Bt (x)
∣∣∣2 dx dt

t
. 1 + [V ]2α <∞.

The John-Nirenberg lemma for Carleson measures, as applied in [5] and [3], can then be
used to reduce the proof of our theorem to the following proposition.

Proposition 4.6. There exists β > 0 and σ > 0 that will satisfy the following conditions.
For every ν ∈ V and Q ∈ �, there is a collection {Qk}k ⊂ � of disjoint subcubes of Q such
that EQ,ν = Q \ ∪kQk satisfies |EQ,ν | > β |Q| and such that

(4.13) sup
Q∈�

1
|Q|

∫ ∫
(x,t)∈E∗Q,ν
γ̃V,Bt (x)∈Kν

∣∣∣γ̃V,Bt (x)
∣∣∣2 dx dt

t
. 1 + [V ]2α <∞,

where E∗Q,ν := RQ \ ∪kRQk . Moreover, β and σ are independent of α and dependent on V
only through ωV .
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For now, fix ν ∈ V and Q ∈ �. Let wν , ŵν ∈ Cd+2 with |ŵν | = |wν | = 1 and ν∗ (ŵν) = wν .
To simplify notation, when superfluous, this dependence will be kept implicit by defining
w := wν and ŵ := ŵν . Notice that since ν satisfies ν = νP3, w must satisfy P3w = w.

For ε > 0 the function fwQ,ε can be defined in an identical manner to [5]. Specifically, let
ηQ : Rd → [0, 1] be a smooth cutoff function equal to 1 on 2Q, with support in 4Q and
with ‖∇ηQ‖∞ ≤

1
l
, where l := l(Q). Then define wQ := ηQw and

fwQ,ε := wQ − εliΓV (I + εliΠV,B)−1wQ =
(
I + εliΓ∗V,B

)
(I + εliΠV,B)−1wQ.

Lemma 4.7. There exists a constant C > 0 that satisfies
∥∥∥fwQ,ε∥∥∥ ≤ C |Q|

1
2 ,

(4.14)
∫ ∫

RQ

∣∣∣ΘV,B
t fwQ,ε(x)

∣∣∣2 dx dt
t
≤ C
|Q|
ε2
, and

(4.15)
∣∣∣∣−∫
Q
P3f

w
Q,ε − w

∣∣∣∣ ≤ C ε
1
2 ,

for any ε > 0. Moreover, C is independent of Q, ν, ε and α and is dependent on V only
through ωV .

Proof. The first two parts of this lemma follow in an identical manner to [5, Lem. 5.10].
For the third part, recall that w is zero in the first two components. This gives∣∣∣∣−∫

Q
P3f

w
Q,ε − w

∣∣∣∣2 =
∣∣∣∣−∫
Q
P3εliΓV (I + εliΠV,B)−1wQ

∣∣∣∣2
=
∣∣∣∣−∫
Q
εliΓ0 (I + εliΠV,B)−1wQ

∣∣∣∣2 .
At this point, apply Lemma 5.6 of [5] to the operator Υ = Γ0 to obtain∣∣∣∣−∫

Q
εliΓ0 (I + εliΠV,B)−1wQ

∣∣∣∣2 . (εl)2

l

(
−
∫
Q

∣∣∣(I + εliΠV,B)−1wQ
∣∣∣2) 1

2

·
(
−
∫
Q

∣∣∣Γ0 (I + εliΠV,B)−1wQ
∣∣∣2) 1

2

. ε
(
−
∫
Q

∣∣∣εliΓ0 (I + εliΠV,B)−1wQ
∣∣∣2) 1

2

≤ ε
(
−
∫
Q

∣∣∣εliΓV (I + εliΠV,B)−1wQ
∣∣∣2) 1

2

. ε,

where the inequality ‖Γ0v‖ ≤ ‖ΓV v‖ for v ∈ D (ΓV ) follows trivially from the matrix form
of Γ0 and ΓV . �

From this point forward, with C as in Lemma 4.7, set ε := 1
4C2 and introduce the notation

fwQ := fwQ,ε. With this choice of ε it must be true that∣∣∣∣−∫
Q
P3f

w
Q − w

∣∣∣∣ ≤ 1
2 .
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That is,

1− 2Re
〈
−
∫
Q
P3f

w
Q , w

〉
= |w|2 − 2Re

〈
−
∫
Q
P3f

w
Q , w

〉
≤
∣∣∣∣−∫
Q
P3f

w
Q − w

∣∣∣∣2
≤ 1

4 .

On rearranging we find that

(4.16) Re
〈
−
∫
Q
P3f

w
Q , w

〉
≥ 1

4 .

In this context, Lemma 5.11 of [5] will take on the below form.

Lemma 4.8. There exists β, c1, c2 > 0 and a collection {Qk} of dyadic subcubes of Q
such that |EQ,ν | > β |Q| and such that

Re
〈
w,−
∫
Q′
P3f

w
Q

〉
≥ c1 and −

∫
Q′

∣∣∣P3f
w
Q

∣∣∣ ≤ c2

for all dyadic subcubes Q′ ∈ � of Q which satisfy RQ′ ∩ E∗Q,ν , ∅. Moreover, β, c1 and c2
are independent of Q, σ, ν and α and dependent on V only through ωV .

The proof of this statement follows in an identical manner to the argument in [5]. If we
set σ = c1

2c2 , then the following pointwise estimate can be deduced.

Lemma 4.9. If (x, t) ∈ E∗Q,ν and γ̃V,Bt (x) ∈ Kν then

(4.17)
∣∣∣γ̃V,Bt (x)

(
Atf

w
Q (x)

)∣∣∣ ≥ 1
2c1

∣∣∣γ̃V,Bt (x)
∣∣∣ .

Proof. First observe that ∣∣∣ν (AtfwQ (x)
)∣∣∣ ≥ Re

〈
ŵ, ν

(
Atf

w
Q (x)

)〉
= Re

〈
w,Atf

w
Q (x)

〉
= Re

〈
w,AtP3f

w
Q (x)

〉
≥ c1.

Then ∣∣∣∣∣∣ γ̃
V,B
t (x)∣∣∣γ̃V,Bt (x)

∣∣∣
(
Atf

w
Q (x)

)∣∣∣∣∣∣ =

∣∣∣∣∣∣ γ̃
V,B
t (x)∣∣∣γ̃V,Bt (x)

∣∣∣
(
AtP3f

w
Q (x)

)∣∣∣∣∣∣
≥
∣∣∣ν (AtfwQ (x)

)∣∣∣−
∣∣∣∣∣∣ γ̃

V,B
t (x)∣∣∣γ̃V,Bt (x)

∣∣∣ − ν
∣∣∣∣∣∣
∣∣∣AtP3f

w
Q (x)

∣∣∣
≥ c1 − σc2

= 1
2c1.
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�

Proof of Proposition 4.6. From the pointwise bound of the previous lemma,∫ ∫
(x,t)∈E∗Q,ν
γ̃V,Bt (x)∈Kν

∣∣∣γ̃V,Bt (x)
∣∣∣2 dx dt

t
.
∫ ∫

RQ

∣∣∣γ̃V,Bt (x)AtfwQ (x)
∣∣∣2 dx dt

t
.

At this stage we can begin to unravel our square function norm,∫ ∫
RQ

∣∣∣γ̃V,Bt (x)AtfwQ (x)
∣∣∣2 dx dt

t
.
∫ ∫

RQ

∣∣∣ΘV,B
t fwQ (x)− γ̃V,Bt (x)AtfwQ (x)

∣∣∣2 dx dt
t

+
∫ ∫

RQ

∣∣∣ΘV,B
t fwQ (x)

∣∣∣2 dx dt
t

.

(4.18)

The second part of Lemma 4.7 states that the final term in the above estimate will be
bounded from above by a multiple of |Q|. This reduces the task of proving the proposition
to bounding the first term of the above splitting. Recall that fwQ can be expressed in the
form

fwQ := wQ − uwQ,
where uwQ ∈ R (ΓV ) is given by

uwQ := εliΓV (I + εliΠV,B)−1wQ.

An application of the triangle inequality then leads to∫ ∫
RQ

∣∣∣ΘV,B
t fwQ (x)− γ̃V,Bt (x)AtfwQ (x)

∣∣∣2 dx dt
t

.
∫ ∫

RQ

∣∣∣ΘV,B
t wQ(x)− γ̃V,Bt (x)AtwQ(x)

∣∣∣2 dx dt
t

+
∫ ∫

RQ

∣∣∣ΘV,B
t uwQ(x)− γ̃V,Bt (x)AtuwQ(x)

∣∣∣2 dx dt
t

.

(4.19)

On noticing that for every x ∈ Q and 0 < t < l(Q)

ΘV,B
t wQ(x)− γ̃V,Bt (x)AtwQ(x) = ΘV,B

t wQ(x)−ΘV,B
t (AtwQ(x)) (x)

= ΘV,B
t ((ηQ − 1)w) (x),

it is clear that the first term in (4.19) can be handled in an identical manner as in the proof
of Proposition 5.9 from [5]. Specifically, since (supp (ηQ − 1)w)∩ 2Q = ∅, the off-diagonal
estimates of the operator ΘV,B

t lead to∫
Q

∣∣∣ΘV,B
t ((ηQ − 1)w) (x)

∣∣∣2 dx . t |Q|
l
,

which implies that ∫ ∫
RQ

∣∣∣ΘV,B
t wQ(x)− γ̃V,Bt (x)AtwQ(x)

∣∣∣2 dx dt
t
. |Q| .
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As for the second term in (4.19),∫ ∫
RQ

∣∣∣ΘV,B
t uwQ − γ̃

V,B
t (x)AtuwQ(x)

∣∣∣2 dx dt
t

.
∫ ∫

RQ

∣∣∣ΘV,B
t

(
I − P V

t

)
uwQ(x)

∣∣∣2 dx dt
t

+
∫ ∫

RQ

∣∣∣ΘV,B
t P V

t u
w
Q(x)− γ̃V,Bt (x)AtuwQ(x)

∣∣∣2 dx dt
t

.

(4.20)

Since uwQ ∈ R (ΓV ), Corollary 2.16 gives∫ ∫
RQ

∣∣∣ΘV,B
t

(
I − P V

t

)
uwQ
∣∣∣2 dx dt

t
.
∥∥∥uwQ∥∥∥2

. |Q| .

For the remaining term in (4.20) we use the triangle inequality and the definition Θ̃V,B
t :=

ΘV,B
t P3 to write∫ ∫

RQ

∣∣∣ΘV,B
t P V

t u
w
Q(x)− γ̃V,Bt (x)AtuwQ(x)

∣∣∣2 dx dt
t

.
∫ ∫

RQ

∣∣∣ΘV,B
t (I − P3)P V

t u
w
Q

∣∣∣2 dx dt
t

+
∫ ∫

RQ

∣∣∣Θ̃V,B
t P V

t u
w
Q(x)− γ̃V,Bt (x)AtuwQ(x)

∣∣∣2 dx dt
t

.

(4.21)

Since we have already proved the boundedness of the first and second components,∫ ∫
RQ

∣∣∣ΘV,B
t (I − P3)P V

t u
w
Q

∣∣∣2 dx dt
t
.
(
1 + [V ]2α

) ∥∥∥uwQ∥∥∥2

.
(
1 + [V ]2α

)
|Q| .

For the second term in (4.21),∫ ∫
RQ

∣∣∣Θ̃V,B
t P V

t u
w
Q(x)− γ̃V,Bt (x)AtuwQ(x)

∣∣∣2 dx dt
t

.
∫ ∫

RQ

∣∣∣Θ̃V,B
t P V

t u
w
Q(x)− γ̃V,Bt (x)AtP V

t u
w
Q(x)

∣∣∣2 dx dt
t

+
∫ ∫

RQ

∣∣∣γV,Bt (x)P3
(
AtP

V
t − At

)
uwQ(x)

∣∣∣2 dx dt
t

,

(4.22)

where we have used (4.11). To bound the first term on the right-hand side of the above
estimate notice that

Θ̃V,B
t P V

t u
w
Q(x)− γ̃V,Bt (x)AtP V

t u
w
Q(x) =

(
ΘV,B
t − γV,Bt At

)
P3P

V
t u

w
Q(x).
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Theorem 4.1 allows us to diagonalise our P V
t operators in the first term of (4.22) to get∫ l(Q)

0

∥∥∥(ΘV,B
t − γV,Bt At

)
P3P

V
t u

w
Q

∥∥∥2

L2(Q)

dt

t
.
(
1 + [V ]2α

)
|Q|

+
∫ ∞

0

∥∥∥(ΘV,B
t − γV,Bt At

)
P3PVt uwQ

∥∥∥2 dt

t
.

From Proposition 2.21 we know that∫ ∞
0

∥∥∥(ΘV,B
t − γV,Bt At

)
P3PVt uwQ

∥∥∥2 dt

t
.
∫ ∞

0

∥∥∥t∇P3PVt uwQ
∥∥∥2 dt

t

=
∫ ∞

0

∥∥∥t∇P3P
0
t u

w
Q

∥∥∥2 dt

t

.
∫ ∞

0

∥∥∥tΠ0P
0
t u

w
Q

∥∥∥2 dt

t

=
∫ ∞

0

∥∥∥Q0
tu

w
Q

∥∥∥2 dt

t
. |Q| ,

where in the third line we applied (H8) for the operators {Γ0, B1, B2}. It remains to bound
the second term in (4.22),∫ ∫

RQ

∣∣∣γV,Bt (x)P3At
(
P V
t − I

)
uwQ(x)

∣∣∣2 dx dt
t

=
∫ ∫

RQ

∣∣∣γV,Bt AtP3At
(
P V
t − I

)
uwQ(x)

∣∣∣2 dx dt
t

On noting the uniform L2-boundedness of the γV,Bt At operators and applying the triangle
inequality,∫ ∫

RQ

∣∣∣γV,Bt AtP3At
(
P V
t − I

)
uwQ(x)

∣∣∣2 dx dt
t
.
∫ ∞

0

∫
Rd

∣∣∣P3At
(
P V
t − I

)
uwQ(x)

∣∣∣2 dx dt
t

.
∫ ∞

0

∫
Rd

∣∣∣P3At
(
P V
t − PVt

)
uwQ(x)

∣∣∣2 dx dt
t

+
∫ ∞

0

∫
Rd

∣∣∣P3At
(
PVt − I

)
uwQ(x)

∣∣∣2 dx dt
t

.

Applying Theorem 4.1 and recalling that P3PVt = P3P
0
t ,∫ ∫

RQ

∣∣∣γV,Bt AtP3At
(
P V
t − I

)
uwQ(x)

∣∣∣2 dx dt
t
.
(
1 + [V ]2α

)
‖u‖2

+
∫ ∞

0

∫
Rd

∣∣∣P3At
(
P 0
t − I

)
uwQ(x)

∣∣∣2 dx dt
t

.

From the proof of Proposition 5.7 of [5] we know that∫ ∞
0

∫
Rd

∣∣∣At (P 0
t − I

)
uwQ(x)

∣∣∣2 dx dt
t
. |Q| ,

allowing us to finally conclude our proof.
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5. Proof of Kato on Domains

In this section, we give the proof of the full statement of Theorem 1.1, the Kato square
root property with potential on an arbitrary domain. Recall that LΩ = −divA∇ is an
elliptic operator with bounded measurable and complex coefficients on L2(Ω) and subject
to Dirichlet boundary conditions. Given V ∈ L1

loc (Ω) with range contained in a sector
SωV + ⊂ C+ for some ωV ∈

[
0, π2

)
, recall that LΩ + V is the maximal accretive operator

defined via the sesquilinear form aVΩ as in Section 2.1.
Proof of Theorem 1.1. First, we extend the coefficients akl to Rd in such a way that the
extension satisfies again the ellipticity condition (1.1) on Rd. One may take for example
δkl on Rd \ Ω. For simplicity we denote this extension by akl as well. We extend V to all
of Rd by setting it equal to zero on Rd \ Ω. The extension will also be denoted by V . We
define L+ V = −divA∇+ V on L2

(
Rd
)
. We consider the sequence of operators

Lk := L+ Vk := L+ V + ε+ k1Rd\Ω.

Each Lk is defined by the corresponding sesquilinear form aVk . We apply Theorem 1.1 for
the already proved case Ω = Rd to Lk and find CV > 0 such that

(5.1) C−1
V

(∥∥∥|Vk| 12u∥∥∥+ ‖∇u‖
)
≤
∥∥∥∥√Lk u∥∥∥∥ ≤ CV

(∥∥∥|Vk| 12u∥∥∥+ ‖∇u‖
)
.

The constant CV depends on V only through ωV since V + k1Rd\Ω is sectorial with angle
at most ωV . In particular, CV is independent of k. Now the idea is to take the limit as
k → ∞. In order to do so, we argue similarly to the end of the proof of Theorem 1.1 for
the case Ω = Rd. We consider first the case of domains with smooth boundary.

- Step 1: smooth domain. We assume that each connected component of Ω has smooth
boundary (C1 for example). It follows from (5.1) that the operators ∇L−

1
2

k and |V |
1
2 L−

1
2

k

are uniformly L2-bounded. We deal with ∇L−
1
2

k only since the arguments for |V |
1
2 L−

1
2

k are
similar. For f ∈ L2

(
Rd
)

(5.2)
∥∥∥∥∇L− 1

2
k f

∥∥∥∥ ≤ CV ‖f‖ .

On the other hand since
Re 〈Lku, u〉 ≥ ε ‖u‖2

it follows that ∥∥∥∥(1 + t2Lk
)−1

f
∥∥∥∥ ≤ t−2

t−2 + ε
‖f‖ .

In particular, the sequence
(
L−

1
2

k f
)
k

is L2-bounded. This and (5.2) show that
(
L−

1
2

k f
)
k

is

bounded in H1
(
Rd
)
. Hence, after extracting a subsequence we may assume that

(
L−

1
2

k f
)
k

converges weakly in H1
(
Rd
)

to some Ψ.
Let f ∈ L2 (Ω) and set f̃ to be the extension of f to Rd obtained by setting it equal to
zero outside of Ω. We claim that:



34 JULIAN BAILEY AND EL MAATI OUHABAZ

the sequence
(
L−

1
2

k f̃
)
k

converges in L2
(
Rd
)

(as k →∞) to (LΩ + V + ε)−
1
2 f on Ω and 0

outside Ω.
Suppose for a moment that we have proved this claim. Then Ψ = (LΩ + V + ε)−

1
2 f on Ω

and 0 outside Ω. In addition, the above weak convergence implies∥∥∥∇ (LΩ + V + ε)−
1
2 f
∥∥∥
L2(Ω)

≤ lim inf
∥∥∥∥∥∇

(
L−

1
2

k f̃
)− 1

2
f̃

∥∥∥∥∥
L2(Rd)

.

Inserting (5.2) yields the following estimate on L2 (Ω)

(5.3)
∥∥∥∇ (LΩ + V + ε)−

1
2 f
∥∥∥ ≤ CV ‖f‖ .

We let ε→ 0 and obtain
(5.4)

∥∥∥∇ (LΩ + V )−
1
2 f
∥∥∥ ≤ CV ‖f‖ .

This together with the same estimate for |V |
1
2 (LΩ + V )−

1
2 imply the lower estimate in

Theorem 1.1. The upper estimate follows by a duality argument as we did in the case of
Ω = Rd.

It remains to prove the above claim. We apply the decomposition (3.12) to aV+ε
Ω and

aVk+ε (and noting that the imaginary part of the latter form is independent of k)
a
V+ε
Ω = b+ ic and a

Vk+ε = bk + ic.

We introduce the forms
a
Vk+ε
Ω (z) := bk + zc

for z in the strip St′δ = {z ∈ C, |Re z| < δ}. It follows from ellipticity that for δ > 0 small
enough, the forms are closed (with domain H1,V

(
Rd
)
). These forms are a family of type (a)

in the sense of [19, p. 393] and hence the corresponding resolvents are holomorphic in the
strip. For z ∈ (−δ, δ) the forms aVk+ε(z) are symmetric and the sequence is non-decreasing.
When k →∞, aVk+ε(z)(u, u) converges to the form

a
V+ε
Ω (z)(u, u) = b(u, u) + zc(u, u)

with domain
D(aVk+ε

Ω (z)) =
{
u ∈ H1,V

(
Rd
)
, u = 0 a.e. on Rd \ Ω

}
.

It is well known that for smooth Ω (or star shaped) the set{
u ∈ H1

(
Rd
)
, u = 0 a.e. on Rd \ Ω

}
coincides with H1

0 (Ω). We apply the monotone convergence theorem for the symmetric
forms (cf. [25, Thm. 4.1]) to obtain that the corresponding resolvents of aVk+ε(z) converge
strongly on L2

(
Rd
)

to the resolvent of the form aV+ε
Ω (z). We apply again Vitali’s theorem

to obtain this strong convergence when z = i. This proves the claim.

- Step 2: General domain. Let now Ω be an arbitrary open subset of Rd. We take a
sequence Ωn of smooth subdomains of Ω such that Ωn ⊂ Ωn+1 and Ω = ∪nΩn. For each n,
we have Ln := LΩn + V + ε as an operator on L2 (Ωn). We denote by an the corresponding
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sesquilinear forms. We keep the notation aV+ε
Ω for the sesquilinear form of LΩ +V + ε. For

each n, the form an is seen as a form on L2 (Ω) with (non-dense) domain H1,V
0 (Ωn). By

(5.3) we have

(5.5)
∥∥∥∥∇L− 1

2
n f

∥∥∥∥
L2(Ωn)

≤ CV ‖f‖L2(Ωn) .

for all f ∈ L2 (Ωn). The same estimate holds for |V |
1
2 L−

1
2

n f . We can then argue exactly as
in Step 1. What remains to prove is the strong convergence of the resolvent sense of an to
the resolvent of aV+ε

Ω . For this, we decompose as above the forms an = bn+icn and introduce
an(z) = bn + zc for z in a strip St′δ for δ > 0 and small enough. We observe that for real z
in the strip, the symmetric forms an(z) satisfy an+1 ≤ an since H1

0 (Ωn) ⊂ H1
0 (Ωn+1). We

apply the monotone convergence theorem for symmetric forms (see again [25, Thm. 4.1])
and obtain the strong convergence of the resolvents. We appeal again to Vitali’s theorem
as above. �

Remark 5.1. Our Kato estimates on L2 extend to Lp in the following way. Suppose that
the semigroup e−t(LΩ+V ) is uniformly bounded on Lp0 for some p0 ∈ [1, 2). Then for all
p ∈ (p0, 2] (∥∥∥|V | 12u∥∥∥

p
+ ‖∇u‖p

)
≤ C

∥∥∥∥√LΩ + V u
∥∥∥∥
p
.

together with a weak type (p0, p0) estimate for the end-point. In particular, if the coefficients
akl are real-valued then this holds with p0 = 1. The extension from L2 to Lp uses Lp − Lq
off-diagonal estimates (or Gaussian estimates for real-valued coefficients). We refer to [3]
or [24] and the references therein. We may also add terms of order one to the differential
operator.

6. Kato for Systems

In this section we describe how our proof for Kato with potential on an arbitrary domain
carries over to systems. Once more, let Ω ⊂ Rd be an arbitrary domain. Fix m ≥ 1 and let
A ∈ L∞

(
Ω;L

(
Cd ⊗ Cm

))
be uniformly elliptic. That is, there exists a constant κA > 0

such that

(6.1) Re 〈A(x)ξ, ξ〉 ≥ κA |ξ|2

for a.e. x ∈ Ω and all ξ ∈ Cd ⊗ Cm. Let V : Ω→ L (Cm) be a matrix-valued function with
coefficients in L1

loc (Ω). Suppose that the numerical range of V (x) is contained in SωV + for
some ωV ∈

[
0, π2

)
for a.e. x ∈ Rd.

One can then define sesquilinear forms aΩ and aVΩ with affilitated maximal accretive
operators LΩ and LΩ + V as in Section 2.1. The notation a, aV ,L and L + V will once
again be used to denote the case Ω = Rd. The sectoriality of the potential and the ellipticity
condition (6.1) imply that the form aVΩ satisfies the corresponding Gårding inequality

Re aVΩ (u, u) ≥ κVA

(∥∥∥|V | 12 u∥∥∥2
+ ‖∇u‖2

)
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for all u ∈ H1,V
0 (Ω;Cm) := H1

0 (Ω;Cm) ∩ D
(
|V |

1
2
)
, where κVA > 0 depends on V only

through ωV .
The following system version of Theorem 1.1 will be proved.

Theorem 6.1. Let A ∈ L∞
(
Ω;L

(
Cd ⊗ Cm

))
and V : Ω → L (Cm) be as defined above.

Assume that V (x) is a normal matrix for almost every x ∈ Ω. We have D
(√
LΩ + V

)
=

H1,V
0 (Ω;Cm) and there exists a constant CV > 0 such that

C−1
V

(
‖∇u‖+

∥∥∥|V | 12 u∥∥∥) ≤ ∥∥∥∥√LΩ + V u
∥∥∥∥ ≤ CV

(
‖∇u‖+

∥∥∥|V | 12 u∥∥∥)
for all u ∈ H1,V

0 (Ω;Cm). Moreover, the constant CV depends on the potential only through
ωV .

Proof for Ω = Rd. As in the scalar case, we start by considering Ω = Rd. Fix V satisfying
the hypotheses of the theorem. As V (x) is normal for a.e. x ∈ Rd, it follows from the polar
decomposition theorem that there must exist some U : Rd → L (Cm), with U(x) unitary
for all x ∈ Rd, such that

V (x) = U(x) |V (x)|
for a.e. x ∈ Rd, where |V (x)| :=

√
V (x)∗V (x). For V (x) normal, it is well known that the

matrices U(x) and |V (x)| commute. Therefore V can be decomposed as

(6.2) V (x) = |V (x)|
1
2 U(x) |V (x)|

1
2

for a.e. x ∈ Rd. Consider the Hilbert space

H := L2
(
Rd;Cm

)
⊕ L2

(
Rd;Cm

)
⊕ L2

(
Rd;Cd ⊗ Cm

)
.

Define the operators {ΓV , B1, B2} on H through

ΓV :=

 0 0 0
|V |

1
2 0 0
∇ 0 0

 , B1 := I and B2 :=

 I 0 0
0 U 0
0 0 A

 .
Let ΠV , ΠV,B and QV,B be defined as in the scalar case. It follows from (6.2) that the
operator Π2

V,B will be of the form

Π2
V,B =

 L+ V 0 0
0 ∗ ∗
0 ∗ ∗

 .
Let [V ]α denote the system analogue of the quantity defined in Section 3 for α ∈ [1, 2].
The proof of the following theorem is identical to that of the scalar case m = 1.

Theorem 6.2. Suppose that V (x) is normal for almost every x ∈ Rd and [V ]α < ∞ for
some α ∈ (1, 2]. The estimate(

CV
(
1 + [V ]2α

))−1
‖u‖2 ≤

∫ ∞
0

∥∥∥QV,B
t u

∥∥∥2 dt

t
≤ CV

(
1 + [V ]2α

)
‖u‖2
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holds for all u ∈ R(ΠV ). Moreover, the constant CV is independent of α and depends on
V only through ωV .

The above estimate implies that the operator ΠV,B has a bounded holomorphic functional
calculus. This can be applied with the functions f(z) = z√

z2 and g(z) =
√
z2

z
to the vector

(u, 0, 0) ∈ H with u ∈ D (L+ V ) to obtain the Kato estimate(
CV

(
1 + [V ]2α

))−1 (
‖∇u‖+

∥∥∥|V | 12 u∥∥∥) ≤ ∥∥∥√L+ V u
∥∥∥ ≤ CV

(
1 + [V ]2α

) (
‖∇u‖+

∥∥∥|V | 12 u∥∥∥) ,
provided that [V ]α <∞ for some α ∈ (1, 2]. An interpolation argument identical to that of
Section 3 will then allow us to dispose of the dependence of this estimate on the quantity
[V ]α, giving us Theorem 6.1 for when Ω = Rd and [V ]α <∞ for some α ∈ (1, 2].

For a general potential V , define
Vn,m(x) := (ReV (x))1‖V (x)‖≤n + i (Im V (x))+

1‖V (x)‖≤n − i (Im V (x))− 1‖V (x)‖≤m

for all x ∈ Rn and m, n ∈ ‖∗ with m ≤ n. In the above definition, ‖V (x)‖ denotes the
matrix norm of V (x), ReV (x) := V (x)+V (x)∗

2 , Im V (x) := V (x)−V (x)∗
2i and M+ and M−

denote the positive and negative parts of a self-adjoint matrix M . Observe that Vn,m(x)
is a normal matrix for a.e. x ∈ Rd and all m, n with m ≤ n. This is trivial for x ∈ Rd
with either ‖V (x)‖ ≤ m or ‖V (x)‖ > n. For x ∈ Rd with m < ‖V (x)‖ ≤ n, this can be
derived from the fact that a matrix M is normal if and only if its real and imaginary parts
commute. Note that for this case we have

Vn,m(x) = ReV (x) + i (Im V (x))+ .

Since (Im V (x))+ =
√

(ImV (x))2+ImV (x)
2 , it follows that the real part of Vn,m(x) commutes

with its imaginary part and therefore Vn,m(x) is normal.
The potentials Vn,m + ε will also clearly be normal for ε > 0 and a.e. x ∈ Rd. On noting

that [Vn,m + ε]2 <∞, we obtain the estimate

CV
(∥∥∥|Vn,m + ε|

1
2 u
∥∥∥+ ‖∇u‖

)
≤
∥∥∥√L+ Vn,m + ε u

∥∥∥ ≤ CV
(∥∥∥|Vn,m + ε|

1
2 u
∥∥∥+ ‖∇u‖

)
,

where the constant in the above estimate only depends on V through ωV and is independent
of ε, m and n. Applying the limiting argument from Section 3 verbatim then allows us to
conclude the proof of Theorem 6.1 for the case Ω = Rd. �

Proof for General Domains. Start by considering smooth Ω ⊂ Rd. Fix V satisfying the
hypotheses of the theorem. Extend V to all of Rd by setting it equal to zero on Rd \ Ω.
Then consider the potentials

Vk := V + ε+ k · Id · 1Rd\Ω
for ε > 0 and k ∈ ‖∗, where Id denotes the identity matrix acting on Cm. It is obvious that
Vk is normal for a.e. x ∈ Rd.

Theorem 6.1 for the case Ω = Rd then gives the Kato estimate for Vk with constant
independent of k, ε and V . The approximation argument from Section 5 can then be applied
verbatim to obtain Theorem 6.1 for smooth Ω. Arbitrary domains are then obtained using
the second approximation argument of Section 5. �
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2011. xii+539 pp. ISBN: 978-3-0348-0086-0. 20

[3] P. Auscher, S. Hofmann, M. Lacey, A. McIntosh, and P. Tchamitchian, The solution of the Kato
square root problem for second order elliptic operators on Rn, Ann. of Math. (2), (2002), pp. 633–654.
1, 2, 3, 26, 35

[4] P. Auscher and Ph. Tchamitchian, Square roots of elliptic second order divergence operators on
strongly Lipschitz domains: L2 theory. J. Anal. Math. 90 (2003), pp. 1–12. 2

[5] A. Axelsson, S. Keith and A. McIntosh, Quadratic estimates and functional calculi of perturbed Dirac
operators, Invent. Math., 163 (2006), pp. 455–497. 2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 15, 21, 24, 25, 26,
27, 28, 30, 32

[6] A. Axelsson, S. Keith and A. McIntosh, The Kato square root problem for mixed boundary value
problems, J. Lond. Math. Soc. (2), 74 (2006), pp. 113–130. 2

[7] R.R. Coifman, A. McIntosh and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur L2
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