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The present article reports on a formal derivation of a macroscopic model for unsteady
one-phase incompressible flow in rigid and periodic porous media using an upscaling tech-
nique. The derivation is carried out in the time domain in the general situation where
inertia may have a significant impact. The resulting model is non-local in time and
involves two effective coefficients in the macroscopic filtration law, namely a dynamic
apparent permeability tensor, Ht, and a vector, α, accounting for the time-decaying in-
fluence of the flow initial condition. This model generalizes previous non-local macroscale
models restricted to creeping flow conditions. Ancillary closure problems are provided,
which allow computing the effective coefficients. Symmetry and positiveness analyses of
Ht are carried out, evidencing that this tensor is symmetric only in the creeping regime.
The effective coefficients are functions of time, geometry, macroscopic forcings and the
initial flow condition. This is illustrated through numerical solutions of the closure prob-
lems. Predictions are made on a simple periodic structure for a wide range of Reynolds
numbers smaller than the critical value characterizing the first Hopf bifurcation. Finally,
the performance of the macroscopic model for a variety of macroscopic forcing and ini-
tial conditions is examined in several case studies. Validation through comparisons with
direct numerical simulations is performed. It is shown that the purely heuristic classical
model, widely used for unsteady flow, consisting in a Darcy-like model complemented
with an accumulation term on the filtration velocity, is inappropriate.

1. Introduction

Unsteady flow in porous media has been the subject of active research over, at least,
the past sixty years. One of the main interests has been the propagation of acoustic
waves in porous structures with applications in seismic waves, enhanced oil recovery,
ocean bottom interactions and coastal waves, superfluid flow in porous media, among
many others, in addition to the fundamental nature of deriving appropriate physical
models. This was initiated by the pioneer works from Biot (1956a,b) to analyze effects
such as wave speed, attenuation, viscous dissipation and anisotropy. An overview of the
literature on the subject may lead to classify studies into three main groups, namely
studies about elastic media without any fluid external forcing, studies of time-dependent
flow in rigid porous media and fluid flow through elastic media. In the present work,
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the interest is focused upon incompressible and unsteady single-phase flow through rigid
homogeneous periodic porous media. Existing reported works may be conveniently sum-
marized by distinguishing those carried out in the time-domain from those developed in
the frequency-domain. In the following paragraphs a non-exhaustive literature review of
both branches is presented.

Description of unsteady incompressible one-phase flow in porous media has been widely
relying on extensions to the steady version of Darcy’s law, or, when inertia is taken into ac-
count, to the Darcy-Forchheimer corrected form. To the best of our knowledge, one of the
earliest extensions to account for unsteady effects was put forth by Polubarinova-Kochina
(1962). In this work, an acceleration term on the filtration velocity was kept in the
macroscopic momentum equation as obtained from a direct analogy with the Stokes
(or Navier-Stokes) equation in which the point velocity is replaced by the average ve-
locity and the external force by the average friction on the solid surface of the porous
matrix, i.e. the Darcy term. Despite its lack of rigorous formal derivation, this type of
approach has been considered as a valid one and became classical over the past half
century (Rajagopal 2007; Bories et al. 2008; Nield & Bejan 2013). This model will be
referred to as the “heuristic model ”. It has been widely used, for instance, in numerical
simulations (Dogru et al. 1978), for stability analysis of fluid-flow between an imperme-
able plate an a porous wall (Hill & Straughan 2008, 2009) or for turbulence in a similar
configuration (Breugem et al. 2006) or in a confined porous medium (Jin & Kuznetsov
2017) as well as for three-dimensional stability analysis of flow between two parallel
porous walls (Tilton & Cortelezzi 2008); for the analysis of forced or natural convection
in porous media (Kuznetsov & Nield 2006); the transition to chaos in natural convection
(Vadasz 1999), among many other applications. Few formal analyses were dedicated to
tentatively derive the heuristic model and some of them may have been inspired by the
development of the steady macroscopic model of one-phase flow in porous media includ-
ing inertia by Whitaker (1996). In fact, in this reference, the acceleration term was kept
in a large part of the development although it was clearly stated, at the final stage, that
the steady ancillary closure problem used to derive the closed average model was only
compatible with a steady version of this model (see section 2.8 in this reference). How-
ever, the unsteady version of this model was used by Tilton & Cortelezzi (2008) with a
reference to Whitaker (1996). Two other works (Teng & Zhao 2000; Breugem et al. 2006)
proposed a development yielding the unsteady form of the macroscopic model developed
by Whitaker (1996) (equation (2.26)) that, indeed, corresponds to the heuristic model.
However, in these works, the closure procedure is not considered and the time-scale
constraint is not addressed. Nevertheless, in a recent paper, Zhu et al. (2014) further
considered this version of the unsteady model and showed, from comparison with direct
numerical simulation (DNS), that it was inappropriate. With the sake of keeping the
same form of the unsteady model, the acceleration term was modified by conveniently
introducing a time constant obtained by averaging the energy equation, an idea that was
employed by Laushey & Popat (1968) to interpret results obtained on model unconfined
aquifers. Comparisons with DNS results showed agreement. However, this time constant
requires knowledge of the pore-scale flow field featuring a non-closed overall model that
can not be used as a predictive one even under creeping flow conditions.

The approach making use of the heuristic model has been also very popular in wave
dampening models in coastal engineering (Hall et al. 1995; Corvaro et al. 2010). In this
field, however, the lack of accuracy of the approach, compared to experimental data,
led numerous authors to modify the heuristic model by affecting a premultiplying fac-
tor, usually called “inertial coefficient ”, to the accumulation term. Without any formal
derivation, this was justified by an analogous concept of an added virtual mass force
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used for modelling flow around an isolated obstacle. This concept was first introduced by
Sollitt & Cross (1972) and many different forms of the inertial coefficient were proposed
since then (see a short review in Burcharth & Andersen (1995)). A formal derivation of
this modified version of the heuristic model was attempted (Abderahmane et al. 2002)
but the development suffers again, at the final stage, from a formal identification of
the macroscopic model to be obtained with the microscopic model. The misleading use
of the heuristic model was pointed out by Auriault (1999) indicating that the macro-
scopic momentum equation should contain a memory effect expressed by a convolu-
tion product between the filtration velocity and a memory function. The proof of this
form was anticipated by the same author (Auriault 1980), and almost simultaneously
by Lions (1981). It was later reconsidered by Allaire (1992), Mikelić (1994) and more
recently in Mei & Vernescu (2010) (the term “permeability” attributed to the memory
function in the latter references is inadequate as it is dimensionally incorrect). However,
as will be commented in the following sections, the reported developments require to
be completed, either by taking into account the initial condition or by explicitly pro-
viding the closure problems yielding the effective coefficients, in particular in the case
where inertia is significant. Upscaling the Navier-Stokes (or Euler) equations was also
addressed using the homogenization technique (Sanchez-Palencia 1980; Masmoudi 1998,
2002; Lions & Masmoudi 2005). However, as will be further commented in section 3.2,
no complete unsteady macroscopic model was reported with this technique. Some other
derivations were reported in the literature, mainly developed in the Fourier domain.

Regarding the literature about unsteady flow modelling in porous media in the fre-
quency domain, it is worth mentioning that one serious drawback of early Biot’s theory
lies in the lack of providing numerical predictions of the effective medium coefficients
involved in the macroscale model. This issue was addressed by Auriault et al. (1985)
who used the homogenization technique to derive a Darcy-law type model to describe
unsteady creeping flow in rigid and deformable porous media, assuming the fluid to be at
rest in the porous matrix as the initial condition. Predictions of the model were validated
with experimental results. This study is a continuation of previous works by Lévy (1979)
and Auriault (1980), where the homogenization method was used to study flow through
elastic porous media. In the work by Lévy, the resulting expression is also a Darcy-law
type model in the frequency domain, while the work by Auriault is an extension to
include inertial effects and multiphase flow. This upscaling approach was also used by
Sheng & Zhou (1988) (see also Zhou & Sheng (1989)) to predict the dynamic permeabil-
ity as a function of frequency for a variety of microstructures in the creeping flow regime.
These authors proposed to scale the predicted dynamic permeability, κ(ω), by its static
value, κ0, in order to produce a universal curve independent of the microstructure when
plotted against a scaled frequency (ωc) that is particular of the microscale geometry and
flow properties. In this way, these authors proposed the following empirical relationship

κ(ω)

κ0
= f

(
ω

ωc

)

(1.1)

with f being a so-called universal structure function independent of the microstructure.
Later on, Charlaix et al. (1988) reported experimental measurements of the dynamic
permeability on capillary tubes and model porous media made of fused glass beads and
crushed glass of different sizes for conditions in which the flow was in the transition
between the creeping and inertial regimes. These authors found that their experimen-
tal measurements were in agreement with the relationship proposed by Sheng & Zhou
(1988). However, their experiments were performed on samples featuring a rather nar-
row range of topology varieties. A few time later, Johnson (1989) proposed an ana-
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lytical expression for f , which is given not only in terms of ωc, but also of a parameter
M = 8ατκ0/εΛ2, with ατ , ε and Λ being the tortuosity factor, the porosity and a charac-
teristic length that was taken to be twice the pore volume to surface ratio (Johnson et al.
1987), respectively.

Advances in numerical capabilities made possible predictions of the dynamics of the
permeability in more complex geometries than those used before. In this regard, Chapman & Higdon
(1992) solved the unsteady version of the Stokes problem in several three-dimensional
periodic unit cells. The resulting average velocity was used in the unsteady version of
Darcy’s law in the frequency domain to predict the dynamic permeability. In order to em-
phasize porosity and frequency effects, the permeability dependence upon frequency was
not represented in the universal curve suggested above. In the same year, Smeulders et al.
(1992) reported numerical simulations and experimental measurements that corrobo-
rated the universal relationship proposed by Sheng & Zhou (1988) when more parame-
ters are considered in the structure function. In addition, these authors rigorously derived
the analytical relationship proposed by Johnson et al. (1987) using the homogenization
technique. Departures from the relationship given in equation (1.1) were reported by
Achdou & Avellaneda (1992) for microgeometries consisting of corrugated tubes. These
authors observed a slower convergence of the dynamic permeability towards its steady
state value than that predicted by the empirical relationship. This issue was later ad-
dressed by Cortis et al. (2003), who used direct numerical simulations to show that the
predictions from the relationship in equation (1.1) are justified for microchannels with
corrugated, and even wedge-shaped, walls. In the present work, the issue of the univer-
sality of the above mentioned empirical relation is not going to be further discussed.

The purpose of this article is to carry out a careful derivation of the macroscopic un-
steady model for one-phase flow in rigid and periodic porous media including inertial
effects and taking into account the influence of the initial flow condition. This is achieved
by upscaling the unsteady solution of the initial boundary value problem operating at
the pore-scale using a short-cut version of the volume averaging technique, which has the
nice feature to lead to a closure scheme for the prediction of the corresponding effective
medium coefficients. The developments detailed hereafter are organized as follows. After
recalling the pore-scale model in section 2, the upscaling procedure is detailed in section
3. The development is performed in the time-domain yielding the unsteady macroscopic
model which involves the time rate of change of the convolution product between the
dynamic apparent permeability tensor, Ht, and the macroscopic pressure gradient, as
well as an effective vectorial term, α, which accounts for the effect of the initial con-
dition. The two effective coefficients Ht and α can be computed from the solution of
two time-dependent closure problems that are explicitly provided. This general model
encompasses the special case of creeping flow. Symmetry and positiveness properties of
the dynamic apparent permeability tensor are investigated. In addition, illustrative ex-
amples of the dynamics of the effective coefficients are provided. Section 4 is dedicated
to results obtained for a model periodic porous structure involving four stiff case studies,
which serve as tests of the performance of the upscaled and heuristic models with respect
to direct numerical simulations. Concluding remarks are presented in section 5.

2. Pore-scale model

The development starts with the classical mass and momentum Navier-Stokes equa-
tions describing flow of a single Newtonian and incompressible fluid phase β that satu-
rates the void space of a porous medium whose skeleton is made of a non deformable solid
phase σ such as the one sketched in figure 1a. At any point in the pore-space occupied
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Figure 1. a) Sketch of a porous medium including a sample of the averaging volume and the
characteristic length-scales. VM denotes the entire domain composed of the homogeneous part
(VMh) and the region near the boundary (I(∂VM )), i.e. VM = VMh∪I(∂VM). b) Position vectors
associated to the averaging volume.

by the β-phase, Vβ,M , and at any instant, these equations are given by

∇ · vβM = 0, in Vβ,M , t > 0 (2.1a)

ρ

(
∂vβM

∂t
+ vβM ·∇vβM

)

= −∇pβM + ρb+ µ∇2vβM , in Vβ,M , t > 0 (2.1b)

where pβM and vβM are the fluid pressure and velocity, respectively; t denotes time, ρb is
the body force per unit volume, b being space-independent (but eventually time-varying)
while ρ and µ represent the density and dynamic viscosity of the fluid, respectively, which
are considered constants. Furthermore, the no-slip boundary condition is enforced at the
fixed solid-fluid interface, Aβσ,M

vβM = 0, at Aβσ,M , t ! 0 (2.1c)

In addition, the velocity at the macroscopic boundaries, Aβ,M , is assumed to be known
and can be expressed as

vβM = vin or pβM = pin, at Aβ,M , t > 0 (2.1d)

Finally, the corresponding initial condition is given by

vβM = v0, when t = 0, in Vβ,M (2.1e)

It is worth mentioning that, in general, measurements of vin (or pin) and v0 are not
easily obtained but, nonetheless, for the development that follows, it is assumed that this
information is available. However, as it will be shown in the next paragraphs, not all of
this information is actually required in the final upscaled model.

3. Averaging

On the basis of the above stated initial boundary value problem, the purpose of
the analysis is to derive a macroscopic unsteady flow model including inertia. To this
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end, an upscaling procedure must be applied. Among techniques like homogenization
(Auriault et al. 2009) or the Thermodynamically Constrained Averaging Technique (Gray & Miller
2014) and many others (Cushman et al. 2002), the method of volume averaging (Whitaker
1999) is retained in this work. In order to spatially smooth the pore-scale heterogeneities,
it is necessary to introduce an averaging operator, which can be applied to the field of
any piece-wise continuous function, ψ, defined everywhere in the β-phase as

⟨ψ⟩|
x,t =

1

V

∫

Vβ(x)

ψ(r, t) dV (3.1a)

where the position vector x locates the centroid of the averaging domain, whereas y and
r = y+x locate points within the β-phase with respect to x and a fixed coordinate system,
respectively, as indicated in figure 1b. In the above expression V , denotes the averaging
volume of measure V and radius r0 (see figure 1a). The averaging operator defined in
equation (3.1a) is usually denoted as the superficial averaging operator (Whitaker 1999), a
nomenclature that is employed throughout the article. In addition, the intrinsic averaging
operator is defined as

⟨ψ⟩β
∣
∣
x,t

=
1

Vβ(x)

∫

Vβ(x)

ψ(r, t) dV (3.1b)

where Vβ(x) represents the volume of the β-phase within V . The superficial and intrinsic
averaging operators are related by the Dupuit-Forchheimer relationship

⟨ψ⟩|
x,t = ε(x) ⟨ψ⟩β

∣
∣
x,t

(3.2)

with ε(x) ≡ Vβ(x)/V denoting the porosity which is a constant due to the rigid and
homogeneous character of the medium. To facilitate the notation, subscripts x and t will
be omitted in the remainder of the article.

While carrying out the analysis, the general transport theorem (Truesdell & Toupin
1960; Slattery 1999) and the spatial averaging theorem (Howes & Whitaker 1985) will
be employed. They are respectively given by

〈
∂ψ

∂t

〉

=
∂⟨ψ⟩

∂t
−

1

V

∫

Aβσ

n · wψ dA (3.3a)

⟨∇ψ⟩ = ∇⟨ψ⟩+
1

V

∫

Aβσ

nψ dA (3.3b)

In the equations above, n is the unit normal vector at Aβσ directed from the β-phase
towards the σ-phase as indicated in figure 1a and w denotes the displacement velocity
of Aβσ. Because the porous medium is assumed to be rigid, w = 0 and, together with
the fact the structure is homogeneous, the above theorems may be rewritten in terms of
intrinsic averages as follows

〈
∂ψ

∂t

〉β

=
∂⟨ψ⟩β

∂t
(3.4a)

⟨∇ψ⟩β = ∇⟨ψ⟩β +
1

Vβ

∫

Aβσ

nψ dA (3.4b)

As for any upscaling technique, a scale hierarchy is assumed as a prerequisite, namely
a separation of characteristic length-scales that can be stated as
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Unit cell

ℓ
β − phase

σ − phase

Figure 2. Two-dimensional sketch of a periodic structure and a geometrical periodic unit cell
of side length ℓ.

ℓβ ≪ r0 ≪ L (3.5)

where ℓβ represents the characteristic pore length-scale and L the size of the macroscopic
domain.

In order to derive a model that is expressed only in terms of macroscopic quantities,
it is convenient to introduce the following spatial decomposition (Gray 1975)

ψ = ⟨ψ⟩β + ψ̃, ψ = v, p (3.6)

This decomposition is intended to operate a spatial length-scale decoupling as the de-
viation field, ψ̃, is expected to vary at the scale ℓβ while the intrinsic average, ⟨ψ⟩β ,
experiences significant variations at the scale L. This contrast can be clearly established
at steady-state and, for the dynamic flow process under consideration, it is assumed that
this condition is satisfied at any time. As a consequence of the scale hierarchy expressed
in (3.5), ⟨ψ⟩β can be treated as a constant at all times within the averaging volume
(Whitaker 1999), with the consequence that

⟨ψ̃⟩β ≃0 (3.7)

The development of the macroscopic model is now carried out considering that the
porous medium is periodic, which represents a classical hypothesis in upscaling methods.
Under these circumstances, it is sufficient to consider the above stated initial boundary
value problem (equations (2.1)) over a periodic unit cell that will be corresponding to
the averaging volume V . Here, special attention should be paid to the fact that, for
unsteady flow, this periodic unit cell may not necessarily coincide with the geometrical
one depicted in figure 2. This was highlighted in the study of the first Hopf bifurcation
in model periodic structures in the work by Agnaou et al. (2016).

3.1. Formal solution in a unit cell

With the above materials at disposal, the analysis can be directed to the homogeneous
part VMh of the entire domain, i.e. excluding the region I(∂VM ) near the macroscopic
boundary of the system. A development similar to that reported by Whitaker (1996) may
be followed to reach a macroscopic model involving only the average velocity and pressure.
However, following the idea used in section 2 of the article by Barrere et al. (1992), a
shorter alternative procedure, which basically consists in expressing the formal solution
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of the pore-scale initial boundary value problem over a periodic unit cell in terms of the
driving forces, followed by an averaging step, may be adopted to considerably simplify
the development. The use of periodicity is more a convenience than a necessity, since
the same procedure can be adopted without this restriction. This approach is consistent
with the assumption of separation of length-scales in the homogeneous region of the
porous medium. With this purpose in mind, the pore-scale problem in equations (2.1) is
re-written in a periodic unit cell in terms of the dependent variables v and p. Unlike v,
p is not a periodic field but the decomposition provided in equation (3.6) shall be used
so that p̃ is periodic, yielding

∇ · v = 0, in Vβ, t > 0 (3.8a)

ρ

(
∂v

∂t
+ v ·∇v

)

= −∇p̃+ µ∇2v +
(

−∇⟨p⟩β + ρb
)

︸ ︷︷ ︸

source

, in Vβ, t > 0 (3.8b)

v = 0, at Aβσ, t ! 0 (3.8c)

v = v0
︸︷︷︸

source

, in Vβ, when t = 0 (3.8d)

⟨p̃⟩β = 0, t > 0 (3.8e)

v(r + li) = v(r); p̃(r + li) = p̃(r), t > 0, i = 1, 2, 3 (3.8f )

where Vβ and Aβσ respectively designate the region occupied by the β-phase and the
solid-fluid interface within the unit cell of periodic lattice vectors li. Notice that equations
(3.8e) and (3.8f) replace the external boundary condition in equation (2.1d).

The nonlinear character of the above problem makes a formal solution very difficult to
obtain and, for this reason, a linearization approach is of interest. Indeed, a solution at
time t can be sought assuming that the convective velocity exists and is available at a
time t−∆t, for any small enough value of ∆t. Under these circumstances, the momentum
equation (3.8b) can be approximated using a 0th order Taylor expansion in time, leading
to the approximation v|t ≈v|t−∆t ≡ v∆. In this way, equation (3.8b) takes the form

ρ

(
∂v

∂t
+ v∆ ·∇v

)

= −∇p̃+ µ∇2v +
(

−∇⟨p⟩β + ρb
)

︸ ︷︷ ︸

source

, in Vβ, t > 0 (3.9)

This type of approximation is a consistent one and is typical in a numerical approach
consisting of a linearization of the convective term that makes use of an explicit form of
the convective velocity. As it will be shown later, the information about the time step
and the rest of the terms of the Taylor expansion in time are ultimately not required
in the resulting closure problems. With the momentum balance in the form of equation
(3.9), the initial and boundary-value problem is a linear one for which a formal solution
can be obtained using an integral equation formulation in terms of Green’s functions as
shown by Wood & Valdés-Parada (2013). This solution can be written as

v =
1

µ

(
∂D

∂t
∗ ·
(

−∇⟨p⟩β + ρb
)

+m0

)

, in Vβ , t > 0 (3.10a)

p̃ =
∂d

∂t
∗ ·
(

−∇⟨p⟩β + ρb
)

+ n0, in Vβ , t > 0 (3.10b)

In these two equations, as in the remainder of the article, the notation ∗· is adopted to
denote the combined convolution and dot products. For two time-dependent tensors of
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Macroscopic model for unsteady flow in porous media 9

any order, κ1 and κ2, this product is given by

κ1 ∗ ·κ2 =

t0=t∫

t0=0

κ1|t−t0
· κ2|t0 dt0 =

t0=t∫

t0=0

κ1|t0 · κ2|t−t0
dt0 (3.11)

While writing the representations in equations (3.10), it is meant that ∂D/∂t (respec-
tively ∂d/∂t) is the closure variable that maps

(

−∇⟨p⟩β + ρb
)

onto v (respectively p̃)
while m0 (respectively n0) is the closure variable that maps v0 onto v (respectively p̃).
At this point, it is worth mentioning that the initial conditions for D and d yield unique
solutions that are driven by the sources as it will be provided later in the derivations.

It must be mentioned that the formal solution given in equations (3.10) does not
correspond, except when v0 = 0, to the one reported by Lions (1981) (see equation
(5.20) therein), under creeping flow conditions, and by Mikelić (1994) (see equation (P)
for the creeping regime solution and the "Proof of Theorem 1.4" in section 2.4, for the
inertial case solution in the Laplace domain, therein). The difference lies in the fact that
these authors considered the initial condition to be a function only of x as proposed in
equation (5.10) of Chapter 2 in Lions (1981). Notice that this assumption is physically
questionable and it is not retained in the present work just as it was not considered by
Allaire (1992) for the study of unsteady creeping flow in porous media.

The macroscopic mass and momentum conservation equations can now be obtained by
applying the superficial averaging operator on equations (3.8a) and (3.10a), respectively.
In order to obtain the macroscale mass conservation equation, it is also necessary to make
use of the averaging theorem, together with the no slip boundary condition, leading to

∇ · ⟨v⟩ = 0, in VMh, t > 0 (3.12a)

In addition, the macroscale filtration velocity equation is given by

⟨v⟩ = −
1

µ

(
∂⟨D⟩

∂t
∗ ·
(

∇⟨p⟩β − ρb
)

− ⟨m0⟩

)

, in VMh, t > 0 (3.12b)

Here, the assumption that ∇⟨p⟩β can be considered as a constant within V was taken into
account. The effective coefficients ⟨D⟩ and ⟨m0⟩ are determined by solving the closure
problems detailed in the following section. Comments about the physics of the upscaled
model and its coefficients are also provided below, together with some remarks on the
existing related literature.

3.2. Closure problems and macroscopic model

Substitution of the formal solution given in equations (3.10) into the initial boundary
value problem in equations (3.8) and separating the contributions from the two sources,
while maintaining the convolution product with the volume source, leads to the following
equations for D and d

t0=t∫

t0=0

(

∇ ·
∂D

∂t

∣
∣
∣
∣
t−t0

)

·
(

−∇⟨p⟩β + ρb
)

t0
dt0 = 0, in Vβ , t > 0 (3.13a)
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10 D. Lasseux, F. J. Valdés-Parada, F. Bellet

t0=t∫

t0=0

[

ρ

µ

(

∂2D

∂t2

∣
∣
∣
∣
t−t0

+ v∆ ·
∂∇D

∂t

∣
∣
∣
∣
t−t0

)

+
∂∇d

∂t

∣
∣
∣
∣
t−t0

−
∂∇2D

∂t

∣
∣
∣
∣
t−t0

− I
dH

dt

∣
∣
∣
∣
t−t0

]

·
(

−∇⟨p⟩β + ρb
)

t0
dt0 = 0, in Vβ , t ! 0

(3.13b)

t0=t∫

t0=0

∂D

∂t

∣
∣
∣
∣
t−t0

·
(

−∇⟨p⟩β + ρb
)

t0
dt0 = 0, at Aβσ, t ! 0 (3.13c)

where H represents the Heaviside function. These equations are completed with periodic
boundary conditions for D and d and ⟨∂d/∂t⟩β = 0. Notice that, at this point, the initial
condition for the closure variables has not yet been defined.

In order to satisfy the above equations, valid for any macroscopic forcing
(

−∇⟨p⟩β + ρb
)

and at any time, D and d must satisfy the following equations, in general (this may be in-
ferred from considering the particular case in which the macroscopic forcing is a constant)

∇ ·
∂D

∂t
= 0, in Vβ, t > 0 (3.14a)

ρ

µ

(
∂2D

∂t2

∣
∣
∣
∣
τ

+ v ·
∂∇D

∂t

∣
∣
∣
∣
τ

)

+
∂∇d

∂t

∣
∣
∣
∣
τ

−
∂∇2D

∂t

∣
∣
∣
∣
τ

− I
dH

dt

∣
∣
∣
∣
τ

= 0, in Vβ , 0 " τ " t; t > 0 (3.14b)

∂D

∂t
= 0, at Aβσ, t > 0 (3.14c)

with τ denoting the elapsed time involved in the convolution product. Note that equation
(3.14b) is the result of taking the limit ∆t → 0, so that v∆ → v. The value of the time
step ∆ and the information from the rest of the terms in the Taylor expansion in time is
hence no longer required.

A subsequent time integration step of equations (3.14) from τ = 0 to τ = t yields

[∇ · D]τ=t
τ=0 = 0, in Vβ, t > 0 (3.15a)

[
ρ

µ

(
∂D

∂t

∣
∣
∣
∣
τ

+ v ·∇ D|τ

)

+∇ d|τ −∇2
D|τ − I H |τ

]τ=t

τ=0

= 0, in Vβ , t > 0

(3.15b)

[D]τ=t
τ=0 = 0, at Aβσ, t > 0 (3.15c)

At this point, initial conditions for D and d are chosen to be zero.
As a consequence, equations (3.15) give rise to the following initial and boundary-value

problem for the closure variables D and d
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Macroscopic model for unsteady flow in porous media 11

Problem I

∇ · D = 0, in Vβ, t > 0 (3.16a)

ρ

µ

(
∂D

∂t
+ v ·∇D

)

= −∇d +∇2
D + I, in Vβ , t > 0 (3.16b)

D = 0, at Aβσ, t > 0 (3.16c)

D = 0, when t = 0 (3.16d)

⟨d⟩β = 0, t > 0 (3.16e)

D(r + li) = D(r); d(r + li) = d(r), t > 0, i = 1, 2, 3 (3.16f )

Note that in equation (3.14b), D, d and v are all evaluated at the same time t, which
improves the exactness of the solution. Practically, this is possible because the pore-scale
flow problem in equations (3.8) (the solution of which provides the field of v at time t)
can be solved independently from the closure problem on D and d. On the basis of this
closure problem, it is readily deduced that the contribution from the remaining source
(i.e., the initial velocity) leads to the following problem for m0 and n0

Problem II

∇ · m0 = 0, in Vβ, t > 0 (3.17a)

ρ

µ

(
∂m0

∂t
+ v ·∇m0

)

= −∇n0 +∇2m0, in Vβ, t > 0 (3.17b)

m0 = 0, at Aβσ, t > 0 (3.17c)

m0 = µv0, when t = 0 (3.17d)

⟨n0⟩
β = 0, t > 0 (3.17e)

m0(r + li) = m0(r); n0(r + li) = n0(r), t > 0, i = 1, 2, 3 (3.17f )

As expected, closure problems I and II are not intrinsic as they depend on the fluid
properties and flow conditions or, as will be shown in section 3.4 below, on the Reynolds
number characteristic of the flow. A possible way of resolving this issue is to follow an
approach used in the homogenization theory, to the cost, however, of making a priori
scaling assumptions on the viscosity and velocity so that the pore-scale Reynolds number
can be expressed as a power of the scale ratio ℓβ/L (see Sanchez-Palencia (1980), chapter
7, section 4, p.142 and following). This was further investigated by Bourgeat et al. (1996)
and also by Marušić-Paloka & Mikelić (2000) in the steady regime, but the procedure
could be carried out for a power on the Reynolds number up to 0 (see also (Balhoff et al.
2010)). The approach followed here is quite different and leads to closure problems that
depend on the pore-scale flow field, or more precisely, on the macroscopic forcing, as will
be shown below. Indeed, an alternative formulation of the closure problems I and II is
possible by substituting the formal solution given in equation (3.10a) into the convective
terms of the closure problems to obtain

ρ

µ

[
∂D

∂t
+

1

µ

(
∂D

∂t
∗ ·
(

−∇⟨p⟩β + ρb
)

+m0

)

·∇D

]

= −∇d+∇2
D + I, in Vβ , t > 0

(3.18a)

ρ

µ

[
∂m0

∂t
+

1

µ

(
∂D

∂t
∗ ·
(

−∇⟨p⟩β + ρb
)

+m0

)

·∇m0

]

= −∇n0 +∇2m0, in Vβ, t > 0

(3.18b)
These equations are interesting from a fundamental viewpoint because they show that
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12 D. Lasseux, F. J. Valdés-Parada, F. Bellet

the closure problems are ultimately not functions of the velocity but of the macroscopic
forcing given by −∇⟨p⟩β + ρb and the initial field of the velocity, v0. However, from a
practical viewpoint this formulation is not attractive because it involves the coupled and
non-local in time solution of both closure problems, which have also become nonlinear.
For the sake of ease in the computations, the strategy to follow is: 1) solve the flow
problem given by equations (3.8) and 2) substitute the solution of the velocity into
closure problems I and II written in the form given in equations (3.16) and (3.17),
which is linear because the numerical solution of v does not require knowledge of the
closure variables. Note that, in both approaches, the inputs are the macroscopic driving
force and the initial flow condition. The dependence on the latter is lost under steady
flow and both functionalities are not present under creeping flow conditions. In fact, only
in this very specific case, the closure problems are intrinsic.

Letting

Ht = ⟨D⟩ (3.19a)

α =
⟨m0⟩

µ
(3.19b)

the macroscopic momentum equation (3.12b) can be finally written as

⟨v⟩ = −
1

µ

∂Ht

∂t
∗ ·
(

∇⟨p⟩β − ρb
)

+α, in VMh, t > 0 (3.20)

or, equivalently

⟨v⟩ = −
1

µ

∂

∂t

(

Ht ∗ ·
(

∇⟨p⟩β − ρb
))

+α, in VMh, t > 0 (3.21)

and this represents one of the major results of this work. It clearly shows the existence of
a memory effect expressed by the convolution product that was anticipated by Auriault
(1980) leading to an unsteady macroscopic momentum equation, which does not resemble
the heuristic model given by

ρ
∂⟨v⟩β

∂t
= −

(

∇⟨p⟩β − ρb
)

− µεH−1 · ⟨v⟩β , in VMh, t > 0 (3.22)

where H is the steady apparent permeability tensor introduced by Whitaker (1996) for
the average model of steady inertial one-phase flow in homogeneous porous media. The
two models only match under steady conditions. This can be proved, for instance, by
considering that the macroscoping forcing remains constant after a given time. Under
such conditions, α → 0 in the long time limit. Moreover, in this time limit, closure
problem I in equations (3.16) conveniently coincides with the one obtained by Whitaker
(1996) for steady inertial flow in homogeneous porous media and Ht → H. Under these
circumstances, the final value theorem applied to equations (3.20) (or (3.21)) indicates
that the average model derived above reduces to the steady form of the macroscopic
inertial momentum equation (3.22) also reported by Whitaker (1996).

In the macroscopic equation (3.20) (or (3.21)), Ht is homogeneous to a permeability and
shall be referred to as the dynamic apparent permeability tensor, the apparent character
being inherent to its dependence on inertial effects. It should be noticed that, except
in the creeping flow regime, the effective coefficient Ht depends on the initial condition
and on the macroscopic forcing through the convective inertial term in closure problem
I. In addition, α, which has the unit of a velocity, only contains a source due to the
initial velocity field, v0, and is zero when v0 = 0. However, the values of α are also
driven by the macroscopic forcing by means of the convective term in problem II. It is
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Macroscopic model for unsteady flow in porous media 13

important to emphasize this feature and make clear that the effective coefficients are
not functions of the average velocity, which would result in a misleading macroscale
model given in equation (3.20). Unfortunately, the dependence of the coefficients on
the macroscopic forcing and the initial condition is not trivial and, as a consequence,
an explicit functionality of the seepage velocity with them is not easily achievable, in
general. Under non-inertial conditions, the dependence of the macroscale velocity on
the macroscopic forcing is linear, albeit the dependence on the initial flow is still not
trivial. For steady, creeping flow, the well-known linear dependence of the velocity on the
macroscopic forcing is recovered in the form of Darcy’s law.

The model reported in equation (3.20) generalizes to inertial flow the result reported by
Allaire (1992) for the creeping regime, which was also studied by Lions (1981) and later by
Mikelić (1994). When restricted to this particular type of flow, the macroscale momentum
equation (3.20) matches that reported in the two latter references only when the initial
flow is zero. The discrepancy observed when v0 ̸= 0 lies in the fact that, as mentioned
above (section 3.1), a particular form of the initial condition was considered by Lions
(1981) and Mikelić (1994) for the problem in the periodic unit cell. This special form of the
boundary condition was however not retained by Allaire (1992) nor in the present work.
In the particular case of creeping flow and v0 = 0, envisaged by Mei & Vernescu (2010),
agreement is also found with the result of this reference. In Mikelić (1994), both creeping
and inertial flows were considered; unfortunately, no local closure problem was derived
for the inertial case. In the work by Allaire (1992), A identifies with ∂Kt

∂t and a with α,
Kt being the dynamic permeability equivalent to Ht under non-inertial flow conditions.
It must be emphasized that A should not be called “permeability” as it is dimensionally
incorrect. This terminology is also improperly used in the works by Mikelić (1994) and
Mei & Vernescu (2010). Without inertia and when v0 = 0, the average model derived
above also corresponds to the one presented by Auriault et al. (1985), Sheng & Zhou
(1988) or Zhou & Sheng (1989) (see also (Sahimi 2011)) and considered by Johnson et al.
(1987) that was obtained in the Fourier space.

Regarding the ancillary closure problems related to the macroscopic models mentioned
above, closure problems I and II, under creeping flow conditions, coincide with those re-
ported by Allaire (1992). However, under these conditions, closure problem I does not
correspond to the ancillary problems reported by Mikelić (1994) and by Mei & Vernescu
(2010). The closure problems in these two references lack of compatibility between the
initial and boundary conditions, thus leading to a non-regular solution as admitted by
Mikelić (1994). This discrepancy is only technical and can be solved by an appropri-
ate change of variables in the Laplace domain, leading to a modification of the ini-
tial condition, compatible with the interfacial boundary condition. Consistently, in the
creeping regime, the Laplace-transformed version of closure problem I is also identi-
cal to that given by Sheng & Zhou (1988), Zhou & Sheng (1989), Mikelić (1994) and
Mei & Vernescu (2010) for their corresponding so-called “permeability”.

It shall be noticed that in a paper by Lions & Masmoudi (2005), an attempt to use the
homogenization method to upscale the unsteady Navier-Stokes equations was presented.
Unfortunately, the authors only succeeded to use the two-scale convergence method for
the case of perfect flow (i.e., the unsteady Euler equation) and attributed their failure to
upscale the unsteady incompressible Navier-Stokes equations to the existence of boundary
layers. In fact, in their study no upscaled model or closure problems were provided. The
drawback arising from boundary layers was also mentioned by Masmoudi (1998) and was
later circumvented by the same author for the case of compressible flow (see Masmoudi
(2002)). Nevertheless, the development in this later reference yields a semi-stationary
macroscopic model. The difficulty encountered by these authors arises from the fact that
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14 D. Lasseux, F. J. Valdés-Parada, F. Bellet

the solution is sought in a weak sense. It is not present in the approach followed in the
current analysis.

Further considering the very particular case of the creeping regime for which the initial
flow condition is such that v0 obeys a Stokes model, it can be proved that the macroscopic
model derived above can be formulated in such a way that closure problem I is the only
one that needs to be solved. The proof is provided in Appendix A.

Before illustrating the solution of closure problems I and II with some numerical
results, it is of interest to analyse the symmetry and positiveness properties of Ht and
this is the object of the next section.

3.3. Symmetry properties and positiveness of Ht

The symmetry analysis of Ht is carried out following the approach developed in Lasseux & Valdés-Parada
(2017) and the reader is referred to this article for details of the derivations, in partic-
ular section II A therein. It must be noticed that no special assumption is needed on
the pore-structure within the periodic unit cell representative of the material on which
closure problem I is to be solved.

The analysis starts by redirecting the attention to equation (3.14b), which is considered

at any value of 0 " τ " t for a given value of t. Pre-multiplication by
∂DT

∂t

∣
∣
∣
∣
∣
t−τ

, together

with a subsequent time-integration from τ = 0 to τ = t and the application of the
superficial averaging operator leads to

ρ

µ

∂

∂t
⟨MT ∗ ·M⟩+

ρ

µ
⟨MT ∗ ·v ·∇M⟩ =

− ⟨MT ∗ ·∇m⟩+ ⟨MT ∗ ·∇2
M⟩+

dHT
t

dt
, t > 0 (3.23)

where, for simplicity in notation, M = ∂D/∂t and m = ∂d/∂t. Notice that M = 0 at
t = 0, in accordance with equation (3.16b), given the initial condition for D.

The first term on the left hand side of equation (3.23) is clearly symmetric. As shown
in Lasseux & Valdés-Parada (2017), the first term on the right hand side is zero us-
ing the solenoidal character of M, the no-slip boundary condition, periodicity and the

averaging theorem. On the same basis, it can also be proved that
〈

M
T ∗ ·∇2M

〉

=

−
〈

(∇M)T3 ∗ : ∇M

〉

where the superscript T3 stands for the transpose that permutes

the first and third indices of a third-order tensor and : is the double dot product in the
sense of the nested convention. This last term can be shown to be symmetric. Finally,
the second term on the left hand side of equation (3.23) is skew-symmetric. The proof
of this can be carried out on the basis of equations (12) and (13) in section II.A in the
work by Lasseux & Valdés-Parada (2017), when extended to the case where a convolution
product is involved.

From the above, the time rate of change of the dynamic apparent permeability tensor
can hence be expressed as follows
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Macroscopic model for unsteady flow in porous media 15

∂Ht

∂t
=

ρ

µ

∂

∂t

〈

∂DT

∂t
∗ ·
∂D

∂t

〉

+

〈
(

∇
∂D

∂t

)T3

∗ :

(

∇
∂D

∂t

)
〉

︸ ︷︷ ︸

symmetric part

−
ρ

µ

〈

∂DT

∂t
∗ ·

(

∇ ·

(

v
∂D

∂t

))
〉

︸ ︷︷ ︸

skew−symmetric part

, t > 0 (3.24)

which provides the decomposition of Ht into its irreducible parts because the operation
of time integration does not alter the symmetry properties of a tensor. It should be
noticed that the skew-symmetric part is only due to the existence of inertial transport,
thus extending the result given in section II.A of the work by Lasseux & Valdés-Parada
(2017) to unsteady conditions. As a corollary, it can be concluded that in the creeping
regime, Kt is a symmetric tensor at all times (and therefore the intrinsic permeability is
also a symmetric tensor).

At this point, the focus should be laid upon the positiveness property of Ht and, for
convenience, the analysis is carried out in the Laplace domain. A starting point of the
derivation is the following identity, which holds for any constant but arbitrary vector λ

λ · Ht · λ = λ · H
T

t · λ (3.25)

where overlined variables denote the Laplace transform of their temporal counterparts.
This implies that

λ ·
(

Ht + H
T

t

)

· λ = 2λ · Ht · λ (3.26)

Applying the Laplace transform to equation (3.24), adding the result to its transpose
and pre- and post- multiplying the ensuing expression by λ while making use of equation
(3.26), yields

λ · Ht · λ =
ρ

µ
s2⟨λ · D

T
· D · λ⟩+ s⟨λ ·

(

∇D
)T3

: ∇D · λ⟩ (3.27)

Here s denotes the symbolic Laplace variable. The first term on the right-hand side of
this expression can be written as

⟨λ · D
T
· D · λ⟩ = ⟨

(

D · λ
)

·
(

D · λ
)

⟩ = ⟨
(

D · λ
)2
⟩ (3.28)

which is a positive definite quantity. Turning the attention to the second average term
on the right-hand side of equation (3.27) and making use of the Gibbs and Einstein
notations, one can write

⟨λ ·
(

∇D
)T3

: ∇D · λ⟩ = ⟨λk
(

∇D
)T3

kij

(

∇D
)

jil
λl⟩

= ⟨λk
(

∇D
)

jik

(

∇D
)

jil
λl⟩

=

〈
(
(

∇D
)

jik
λk
)2
〉

(3.29)

which proves that this term is also definite positive. Since s is positive, it can be concluded
that Ht is a positive definite tensor. A corollary of the above is that Kt is a symmetric
definite positive tensor that hence admits an inverse. However, the proof provided here
does not allow to conclude that the same applies to Ht.
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16 D. Lasseux, F. J. Valdés-Parada, F. Bellet

3.4. Closure problem solution

From the above derivations, it follows that closure problems I and II can be solved using
standard unsteady Navier-Stokes solvers. The mathematical structure of these problems
indicates that closure variable D is a time-increasing field because the initial condition is
homogeneous and the source term in the momentum-like equation is a positive constant.
Consequently, the effective coefficient Ht should be expected to exhibit similar dynamics.
On the contrary, in Problem II, the only source is the initial condition and therefore both
the m0 field and coefficient α can be expected to be time-decaying.

Before proceeding to the validation of the average model, it is convenient to direct the
attention to the solution of the local closure problems I and II so that the dynamics of
the effective coefficients can be examined. To this end, it is worth expressing the closure
problems and the effective coefficients in the following dimensionless form:
Problem I∗

∇∗ · D∗ = 0, in Vβ, t∗ > 0 (3.30a)

∂D∗

∂t∗
+Rev∗ ·∇∗

D
∗ = −∇∗d∗ +∇∗2

D
∗ + I, in Vβ, t∗ > 0 (3.30b)

D
∗ = 0, at Aβσ, t∗ > 0 (3.30c)

D
∗ = 0, when t∗ = 0 (3.30d)

⟨d∗⟩β = 0, t∗ > 0 (3.30e)

D
∗(r∗ + l∗i ) = D

∗(r∗); d∗(r∗ + l∗i ) = d∗(r∗), t∗ > 0, i = 1, 2, 3
(3.30f )

where the dimensionless version of the dynamic apparent permeability tensor is obtained
from

H
∗

t = ⟨D∗⟩ (3.31)

Problem II∗

∇∗ ·m∗

0 = 0, in Vβ, t∗ > 0 (3.32a)

∂m∗

0

∂t∗
+Rev∗ ·∇∗m∗

0 = −∇n∗

0 +∇∗2m∗

0, in Vβ, t∗ > 0 (3.32b)

m∗

0 = 0, at Aβσ, t∗ > 0 (3.32c)

m∗

0 = v∗

0, when t∗ = 0 (3.32d)

⟨n∗

0⟩
β = 0, t∗ > 0 (3.32e)

m∗

0(r
∗ + l∗i ) = m∗

0(r
∗); n∗

0(r
∗ + l∗i ) = n0(r

∗), t∗ > 0, i = 1, 2, 3
(3.32f )

The solution of this problem can be used to obtain

α
∗ = ⟨m∗

0⟩ (3.33)

The above problems are written in terms of the following definitions:

t∗ =
µt

ρℓ2
; x∗ =

x

ℓ
; v∗ =

v

vref
; D

∗ =
D

ℓ2
; d∗ =

d

ℓ
; H

∗

t =
Ht

ℓ2

m∗

0 =
m0

µvref
; n∗

0 =
n0ℓ

µvref
; α

∗ =
α

vref
; Re =

ρvref ℓ

µ

(3.34)

where ℓ is the size of the geometrical periodic unit cell (see figure 2). As expected, the
closure problems are dependent on v∗. Consequently, the values of the effective coefficients
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Figure 3. Dynamics of the xx component of the apparent permeability tensor (a-c) and of
the x-component of vector α (d) for the flow problem described in section 4.1. The predictions
result from solving the closure problems I and II in the unit cell depicted in figure 2 taking: a)
ε = 0.4 , b) ε = 0.6 . In c) results are presented after normalization with the steady value of the
apparent permeability and in d) results are normalized with the initial value of αx.

are sensitive to the different flow conditions considered in the pore-scale model. Here
and in the rest of this work, it is assumed that the macroscopic driving force is in the
horizontal x-axis direction. In the following section, several case studies are considered for
validation with DNS, of which, the predictions of the effective coefficients corresponding
only to Case I (see section 4.1) are shown here for the purpose of illustration. All the
simulations presented in this work were performed using the commercial finite element
software Comsol Multiphysics 5.2. The direct MUMPS solver included in the program
was used and standard (spatial and temporal) meshing convergence analyses were carried
out in order to ensure that results are independent of these numerical degrees of freedom.
In accordance with the case study of section 4.1, the dimensionless macroscopic pressure
gradient experiences a step change at t∗ = 0 from 0.1 to 1.0 as expressed in equation
(4.5), while Re, ranging from 103 up to 106, is maintained the same before and after the
change of the macroscopic pressure gradient.

In figure 3, predictions of the dimensionless xx-component of Ht (i.e., H∗

txx) and of the
x-component of α (i.e., αx), resulting from the closure problem solution in the unit cell
depicted in figure 2, are reported for two porosity values (ε = 0.4 and 0.6 ). Values of the
Reynolds number were kept smaller than the critical one characteristic of the first Hopf
bifurcation which, for the structure under consideration, is identified to be ∼ 106 for ε =
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18 D. Lasseux, F. J. Valdés-Parada, F. Bellet

0.4 and ∼ 105 for ε = 0.6 (see figure 10 in Agnaou et al. 2016). Consequently, the solution
remains time-independent after steady-state is reached. Results on H∗

txx, shown in figures
3a) and b), indicate that the influence of inertial transport is not only experienced at
early times (i.e., t∗ < 10−4), but during intermediate times (i.e., t∗ > 10−3) and until
steady state is reached (i.e., Htxx → Hxx). By comparing the dynamics of the apparent
permeability shown in these two graphs, it is clear that porosity plays quite a significant
role since the time at which Htxx reaches Hxx, for ε = 0.6 , is significantly larger than
the one for ε = 0.4 . In this last case, it is worth noticing that the curves of Htxx remain
almost unchanged over the whole range of time for Re " 104, whereas in figure 3b) the
curves for Re = 103 and Re = 104 can be clearly differentiated. These observations are
consistent with those reported by Lasseux et al. (2011) under steady conditions.

The shape of the curves shown in figures 3a) and b) suggests a subsequent normaliza-
tion by the steady state value, Hxx, of Htxx, so that the dependence on the Reynolds
number is no longer present. This is indeed the case as reported in figure 3c), which fol-
lows from the ideas proposed by Sheng & Zhou (1988). The normalized dynamic apparent
permeability may then be represented by a linear combination of exponential linear func-
tions of times. The same type of normalization can be applied to α∗

x, but in this case
with respect to the initial value since it is the maximum one. Results are presented in
figure 3d) showing that this normalization yields a master curve for the dynamics of α for
Reynolds numbers as high as 106. The dynamics of α exhibits a temporal dependence,
which can be represented by a Boltzmann-type function. This contrasts with the purely
exponential decay suggested by Mikelić (1994) for periodic structures.

The master curves for the effective coefficients are distinct for different porosities, and
for the simple geometry considered here, it appears that the steady state is reached faster
as the solid phase occupies a larger fraction of the unit cell, which was also the case for
Htxx. These results evidence that the effective coefficients are bound functions of time
and are sensitive to the topology of the unit cell and to the flow conditions, in general.

4. Results

At this point of the analysis, it is pertinent to compare predictions resulting from the
upscaled model with those from solving the pore-scale model, i.e., from direct numerical
simulations (DNS). This comparison is required to validate the macroscale model. To
this end, consider as a solution domain of the pore-scale model, an array of n inline
unit cells of side length ℓ, each containing a square obstacle to represent the solid phase
as sketched in figure 4. For the sake of simplicity and without any loss of generality,
body forces are disregarded for the rest of the analysis, so that the pore-scale momentum
transport equation can be expressed in a dimensionless form as

∂v∗

∂t∗
+Rev∗ ·∇∗v∗ = −∇∗p∗ +∇∗2v∗, in Vβ , t > 0 (4.1)

where p∗ = pℓ/(µvref ). In order for the pressure gradient to be unitary at the scale
of the unit cell, the reference velocity was chosen to be given by vref = ℓ2∥∇⟨p⟩βs ∥/µ,
∥∇⟨p⟩βs ∥ being the maximum value of the pressure gradient over the entire time range
of observation of the flow process. In this way, the following boundary conditions can be
applied at the edges of the macroscopic domain

at x∗ = 0, p∗ = nf(t∗), ∀y∗, t∗ > 0 (4.2)

at x∗ = n, p∗ = 0, ∀y∗, t∗ > 0 (4.3)
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Figure 4. Solution domain for the direct numerical simulations consisting of an array of n
inline square unit cells of length ℓ.

with f(t∗) being a known function of time that may be applicable to a single unit cell.
In addition, periodic conditions at the horizontal boundaries are applied, i.e.

v∗(x∗, 0) = v∗(x∗, 1), ∀x∗, t∗ > 0 (4.4)

The dimensionless problem was solved for values of t∗ ranging from 10−11 up to 10 and,
in the rest of this section, results are presented only for a porosity value of 0.4. Similar
predictions were obtained for other porosity values. In order to determine the number
of unit cells to be considered in the solution domain, so that the results are collected in
VMh for given flow conditions, a criterion was chosen such that the value of the intrinsic
average of the x-component of v∗ located at the (n + 1)/2 unit cell (with n being an
odd number) does not vary by more than 10−5% when n is increased by 2. A value of
n = 21 was found appropriate to satisfy this criterion and was hence used as the size of
the macroscopic domain in the remainder of the present analysis.

Simulations of the upscaled model were performed in the following manner. Firstly, the
initial and dimensionless velocity field (say, v∗

0) was determined in a single unit cell from
the solution of the steady version of the pore-scale model for a given initial macroscopic
pressure gradient (say ∇∗⟨p∗0⟩

β) and Reynolds number Re. Secondly, the unsteady pore-
scale model was solved subject to a desired unsteady macroscopic pressure gradient,
keeping Re the same. The information from the solution of these two problems was then
used to predict the fields of the closure variables D and m0, for the prescribed value of
Re, from which the effective-medium coefficients, Ht and α, were computed. Once these
coefficients are available at all times, they were substituted into the closed upscaled model
in order to predict the dynamics of the macroscopic velocity.

Results are organized in case studies as follows: i) A step change of the pressure gra-
dient from the initial condition to its steady value; ii) A smooth time-decaying flow that
leaves the system at rest at steady state; iii) A single pressure gradient pulse and iv) An
oscillatory flow.

For completeness of the comparison of the different approaches, it is also pertinent
to compare the DNS results with the predictions arising from the heuristic model given
in equation (3.22). Notice that this model does not require knowledge of the dynamics
of the apparent permeability tensor as it only involves its steady value. For all the case
studies, the value of H∗

xx in the heuristic model was computed with the value of Re
of interest and the unitary dimensionless pressure gradient along the horizontal x-axis
(Lasseux et al. 2011).

4.1. Case study I: Step change of the pressure gradient

The first two case studies deal with the dynamics from one steady state to another, which
is a physical situation that can be of interest in control engineering or in measurements of
the dynamic apparent permeability, to cite just few examples. The goal is to examine the
dynamics of the macroscopic velocity and the role played by the initial flow condition.
To this end, let the first case study deal with a step change of the pressure gradient. In
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Figure 5. Dynamics of the x-component of the macroscale velocity vector, normalized by
its steady-state value ⟨v∗x⟩

β
ss, resulting from the step change on the pressure gradient given in

equation (4.5). In a) predictions correspond to direct numerical simulations and from the volume
averaging method with and without inclusion of the initial flow. In b) a comparison is shown
between predictions from the volume averaging method and the heuristic model. Simulations
correspond to a porosity of 0.4 and Re = 106.

this way, consider the flow at t∗ " 0 to be steady resulting from a dimensionless pressure
gradient value of 0.1. Then suddenly, at t∗ > 0, let this gradient become unitary, i.e.,

−
∂⟨p∗⟩β

∂x∗
=

{

0.1, t∗ " 0
1.0, t∗ > 0

(4.5)

In figure 5a), the response of the system to this forcing is presented in terms of the
predicted evolutions of the macroscale velocity obtained from DNS, together with those
from the volume averaging method (VAM). Simulations correspond to Re = 106 and
they match those for Re = 103 since results are normalized by the final steady-state
value of the velocity (i.e., ⟨v∗x⟩

β
ss). This is consistent with the observations made for

Htxx presented in the previous section. Clearly, the agreement between DNS and VAM
is excellent at all times.

Notice that the steady-state regime is reached at t∗ > 0.03 . In order to have an idea of
the time span over which the initial condition is playing a relevant role in the macroscale
model, predictions are presented for the case in which v0 = 0 (i.e., ∇∗⟨p∗0⟩

β = 0). Under
these conditions, closure problem II is completely homogeneous and its solution is zero
for all x (i.e., α = 0). In this case, it is noticed that the predictions only match those
from DNS after t∗ > 0.01, thus illustrating that the initial condition has a significant
effect during almost the entire time range in which ⟨v∗x⟩

β is time-dependent. Finally,
in figure 5b), the dynamics of the average velocity resulting from VAM are compared
with those obtained from the heuristic model. The latter clearly overpredicts the velocity
dynamics in a time range that roughly spans through three orders of magnitude. As
expected, both approaches match at times close to the initial condition and at steady
state. This is consistent with the fact that both the heuristic and upscaled models depart
from the same initial condition and both converge towards the classical Darcy-like model
at sufficiently large time.

4.2. Case study II: Time-decaying pressure gradient

As a second case study, consider another change of steady state with two major differences
from the previous one: first, let the maximum flow be settled at t∗ " 0 and second, let
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Figure 6. a) Dynamics of the decaying macroscopic pressure gradient given in equation (4.6)
taking t

∗

m = 8×10−4 and ω
∗ = 1000. b) Dynamics of the x-component of the macroscale velocity

vector, normalized by its initial value ⟨v∗0,x⟩
β, resulting from the time-decaying macroscopic

pressure gradient. Predictions result from performing direct numerical simulations, and from the
solution of the macroscale model obtained by the volume averaging method and the heuristic
model. Simulations correspond to a porosity of 0.4 and Re = 106.

the macroscopic pressure gradient decay smoothly according to the following expression:

−
∂⟨p∗⟩β

∂x∗
=

⎧

⎨

⎩

1−
t∗ sin(ω∗t∗)

t∗m sinω∗t∗m
, 0 " t∗ " t∗m

0, t∗ > t∗m

(4.6)

with t∗m and ω∗ representing the dimensionless maximum time at which the pressure
gradient is non-zero and a given non-dimensional frequency, respectively. The value of
t∗m was chosen to be smaller than the dimensionless time at which the initial flow was
observed to be insensitive in the previous case and was fixed to 8 × 10−4. In order
to avoid oscillations, a value of 1000 was chosen for ω∗, yielding the smooth decaying
dynamics of the macroscopic pressure gradient shown in figure 6a). This flow condition
may correspond to physical situations in which the pumping device is slowly turned off.
Furthermore, for this particular flow condition, H∗

txx → K∗

xx at steady state. This is to be
expected because both acceleration and convective inertial effects are no longer present
at late times.

In figure 6b), the comparison of the predictions of ⟨v∗x⟩
β resulting from DNS with those

from the upscaled model derived in this work and from the heuristic model for the flow
conditions described above is presented. As in the previous case, results are represented
after normalization with respect to the maximum value of the velocity, which, in this
case corresponds to the initial condition. As expected, there is a delay between the time
at which the pressure gradient is extinguished and the time at which the average velocity
vanishes. In the particular situation examined in figure 6b), this delay is about one order
of magnitude in t∗. Simulations reported in this figure correspond to a Reynolds number
value of 106 and a similar behaviour was obtained for smaller values of Re.

Once again, predictions from the volume averaging method are in excellent agreement
with those from DNS for all values of t∗, while those from the heuristic model only match
DNS results in the extreme values of t∗. Contrary to the previous case, the heuristic model
underpredicts the velocity dynamics and this occurs over a time range of roughly three
orders of magnitude. Notice that, during the early stage of the process, the values of t∗

for which the heuristic model reproduces DNS roughly correspond to those for which
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Figure 7. Dynamics of the x-component of the macroscale velocity as a response to a macro-
scopic pressure gradient pulse given by equation (4.7). Results from direct numerical simulations,
and from the solution of the macroscale model obtained by the volume averaging method and
the heuristic model correspond to a porosity of 0.4 and a) Re = 103, b) Re = 106.

the macroscopic pressure gradient is not zero. As a final remark for this case study, it is
worth mentioning that the maximum relative error of the predictions from the heuristic
model with respect to DNS is about 60%, which is highly contrasting with the one for
the predictions of the average model derived here that is below 0.1 %.

4.3. Case study III: Pressure gradient pulse

In the two previous cases, the initial flow has been shown to play quite a significant role
for the accuracy of the predictions of the macroscale velocity. The remaining case studies
deal with situations for which the fluid was initially at rest in the porous medium, while
changes of the macroscopic pressure gradient are operated at t∗ > 0.

In the previous case study, a time delay for the final equilibrium to be reached after
the pressure gradient is reduced to zero was highlighted. In the particular case under
concern, the interest is to investigate the response to abrupt changes of the macroscopic
pressure gradient. Therefore, consider the following dynamics of the macroscopic pressure
gradient

−
∂⟨p∗⟩β

∂x∗
=

⎧

⎨

⎩

0, t∗ " 0
1, 0 < t∗ < 10−2

0, t∗ ! 10−2
(4.7)

In practice, this corresponds to a pressure gradient given as a finite pulse in the porous
medium, which could be of interest, from an experimental point of view, for potential
measurements of the dynamic apparent permeability. In figure 7 predictions of the dy-
namics of the dimensionless macroscale velocity are presented for the two values of the
Reynolds number, Re = 103 (figure 7a)) and Re = 106 (figure 7b)). Notice that the
velocity amplitude exhibits a slight decrease as the Reynolds number is increased. In
both situations, agreement between DNS and the average model is excellent, whereas the
heuristic model overpredicts the velocity for t∗ < 10−2 and underpredicts it for t > 10−2,
the largest differences being observed during the first time range. This is consistent with
the behaviour observed in the two previous case studies. Indeed, the time period to reach
steady state is significantly underpredicted by the heuristic model, compared to DNS or
VAM. Finally, it was verified that the results reported in figure 7a) match those obtained
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Figure 8. Dynamics of the x-component of the macroscale velocity vector, resulting from a
response to an oscillatory change in the macroscopic pressure gradient according to equation
(4.8). Predictions result from performing direct numerical simulations, from the solution of the
macroscale model obtained by the volume averaging method and from the heuristic model.
Simulations correspond to a porosity of 0.4 and a) Re = 103, b) Re = 106.

under creeping flow conditions. This is consistent with the fact that, for ε = 0.4 , H∗

txx is
not significantly affected by the Reynolds number value up to Re = 104.

4.4. Case study IV: Oscillatory pressure gradient

As a final case study, consider the situation in which the fluid saturating the porous
medium was initially at rest and then, at t∗ > 0, it is subjected to a macroscopic pressure
gradient that obeys the following expression,

−
∂⟨p∗⟩β

∂x∗
= 0.5 [1− cos(ω∗t∗)] (4.8)

in which w∗ = 1000 as in case study II. This situation is also interesting because it
corresponds to flow in a porous medium induced by, for example, a peristaltic pump or
even a ram pump if the experimental conditions allow a permanent oscillatory pressure
gradient.

The resulting predictions of the macroscale velocity are reported in figure 8 following a
similar format as the one used in the previous case study. It is observed that the velocity
does not exhibit a purely oscillatory dynamics up until t∗ ≈0.015 for the two values of
Re considered here (namely Re = 103 and 106). In the permanent, but time-dependent
regime for ⟨v∗x⟩

β (i.e., for t∗ > 0.015), the heuristic model is not likely to succeed even
at late times, since the model is never reduced to a Darcy-like form. This claim is con-
firmed by the results shown in figure 8. Although the phase is quite well reproduced, the
amplitude of the average velocity is significantly overpredicted by the heuristic model.
Although results are not presented here for the sake of brevity, it is observed that, for
ω∗ < 1000, predictions from this model exhibit a much better performance and repro-
duce the results from DNS in the permanent regime. This brings to the conclusion that
the heuristic model can not be considered as a reliable one except in a specific range
of frequencies that are likely to depend on the structure of the porous medium and the
frequency spectrum. Conversely, the volume averaged model is in excellent agreement
with DNS at all frequencies.

As a matter of overview of the study cases envisaged in this section, it is worth men-
tioning that the volume averaged model reproduces the results from DNS whatever the
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nature of the flow and initial conditions under consideration. This validates the model de-
veloped in this work. In these stiff cases, the heuristic model presented poor performance,
in general, leading to the conclusion that it is not appropriate.

5. Conclusions

Unsteady flow in porous media is of wide interest for many applications and has been
the subject of active work over the past century. However, the available models describ-
ing such flows still leave much to be desired as they are either rather heuristic or remain
incomplete, in particular regarding the consideration of inertial effects and, to a less ex-
tent, the flow initial condition. This motivated the work developed in this article that is
dedicated to a formal derivation and analysis of an upscaled model that includes these
features for single-phase unsteady flow in rigid and homogeneous periodic porous media.
To this end, the pore-scale flow model was upscaled using a short-cut version of the
volume averaging method. In this version, the macroscopic forcing was assumed to be
spatially-invariant in periodic structures. The resulting model expresses the macroscale
velocity as a function of two terms: the first one contains the time rate of change of the
convolution between a dynamic apparent permeability tensor and the dynamic macro-
scopic pressure gradient. The second term accounts for the time-decaying influence of the
initial velocity. The convolution product holds a memory effect of the flow history. The
unsteady upscaled model is clearly in contradiction with the heuristic model that consists
of an ad hoc correction to Darcy’s law by simply including an acceleration term of the
average velocity. Moreover, it generalizes a previously reported model that is only ap-
plicable under creeping flow conditions (Lions 1981; Auriault et al. 1985; Sheng & Zhou
1988; Zhou & Sheng 1989; Allaire 1992; Mei & Vernescu 2010).

Associated to the macroscale model, ancillary closure problems were derived that allow
the determination of the dynamics of the effective coefficients. The dynamic apparent
permeability tensor, Ht, was shown to be non-symmetric in general. The irreducible
decomposition of Ht was achieved, showing that the skew-symmetric part is inherent to
inertial effects. This further leads to the conclusion that the dynamic permeability in the
creeping regime, Kt, is a symmetric tensor. Positiveness was proved for Ht in the Laplace
domain, proving that Kt is a symmetric definite positive tensor although the same is not
true for Ht.

From the numerical solution of the closure problems, the effective coefficients were
predicted in a particular flow situation in simple representations of the porous medium
geometry and were found to be functions of time and porosity. After proper normalization,
the dependence of the coefficients upon the Reynolds number was collapsed into master
curves that were only sensitive to variations in the porosity for the given structure.
Although beyond the scope of the present work, further investigation about the extents
of this normalization are certainly of interest, as a natural extension to previous works
carried out in the creeping regime.

Through a set of stiff flow and initial test conditions, the model was validated by
comparison with direct numerical simulations. In all cases, the agreement between the
two approaches was excellent, thus justifying the average model. Conversely, the heuristic
model was shown to poorly perform predictions of the macroscale velocity.

As a final point of discussion, it is worth mentioning that the requirement of availability
of the velocity fields to solve the closure problems, while not mandatory, does not hinder
the value of the macroscale model. The only requirements for the predictions of the
effective coefficients are the macroscopic forcing and the initial flow field. In fact, beyond
the fundamental interest in this formal model, its relevance lies in the potential use for
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further upscaling as well as for interpretation of experiments including inertial effects and
the influence of the initial condition. Results from this work should serve as a motivation
for more theoretical and experimental analyses of unsteady transport phenomena in
porous media and many other unsteady processes in hierarchical systems.
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Appendix A.

This appendix is dedicated to a reformulation of the macroscopic momentum equation
in the particular situation of creeping flow when the initial condition, v0, obeys a Stokes
model. It is proved that closure problem I is the only problem that needs to be solved.

Since in the case under consideration here, the initial flow and the unsteady flow
starting at t = 0, characterized by their velocity and pressure fields (v0, p0) and (v,
p), respectively, obey the Stokes model, a velocity and pressure fields u= v − v0 and
P = p − p0 can be defined satisfying the following unsteady Stokes problem within a
periodic unit cell

∇ · u = 0, in Vβ , t > 0 (A 1a)

ρ
∂u

∂t
= −∇P̃ + µ∇2u−∇⟨P ⟩β + ρ (b − b0), in Vβ, t > 0 (A 1b)

u = 0, at Aβσ, t ! 0 (A 1c)

u = 0, when t = 0, in Vβ (A 1d)

⟨P̃ ⟩β = 0, t > 0 (A 1e)

u(r + li) = u(r); P̃ (r + li) = P̃ (r), t > 0, i = 1, 2, 3 (A 1f )

where P̃ = p̃− p̃0 and b0 = b (t = 0).
Since the initial condition for the problem for uand P is zero, the associated macro-

scopic momentum equation writes (see equation (3.21))

⟨u⟩ = −
1

µ

∂Kt

∂t
∗ ·
(

∇⟨P ⟩β − ρ (b − b0)
)

, t > 0 (A 2)

where Kt is the dynamic permeability in the absence of inertia. In addition, at the
macroscale, the initial steady flow obeys a Darcy-like equation, i.e.

⟨v0⟩ = −
K

µ
·
(

∇⟨p0⟩
β − ρb0

)

, t = 0 (A 3)

where K is the intrinsic permeability of the medium corresponding to Kt at sufficiently
large times. When uand P are replaced by their expressions in terms of v, v0, p and p0
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in equation (A 2), the unsteady macroscopic form of the momentum equation in the case
under study is given by

⟨v⟩ = −
1

µ

∂Kt

∂t
∗ ·
(

∇⟨p⟩β − ρb
)

−
1

µ
(K − Kt) ·

(

∇⟨p0⟩
β − ρb0

)

, t > 0 (A 4)

or, equivalently

⟨v⟩ = −
1

µ

∂Kt

∂t
∗ ·
(

∇⟨p⟩β − ρb
)

+
(

I − Kt · K
−1) · ⟨v0⟩, t > 0 (A 5)

This clearly shows that, in this particular case, the only closure problem that needs to
be solved is Problem I, yielding Kt (and K at sufficiently long time).
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