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New effective pressure and existence of global strong solution

for compressible Navier-Stokes equations with general

viscosity coefficient in one dimension

Cosmin Burtea ∗, Boris Haspot †‡

Abstract

In this paper we prove the existence of global strong solution for the Navier-Stokes
equations with general degenerate viscosity coefficients. The cornerstone of the proof
is the introduction of a new effective pressure which allows to obtain an Oleinik-type
estimate for the so called effective velocity. In our proof we make use of additional
regularizing effects on the velocity which requires to extend the technics developed
by Hoff for the constant viscosity case.

1 Introduction

We consider the compressible Navier Stokes system in one dimension with x ∈ R:
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2)− ∂x(µ(ρ)∂xu) + ∂xP (ρ) = 0,

(ρ, u)t=0 = (ρ0, u0).

(1.1)

Here u = u(t, x) ∈ R stands for the velocity field, ρ = ρ(t, x) ∈ R+ is the density,
P (ρ) = ργ is the pressure. We denote by µ(ρ) the viscosity coefficient of the fluid and
(ρ0, u0) are the initial data. In the sequel we shall only consider viscosity of the form:

µ(ρ) = ρα (1.2)

with α > 0. This choice is motivated by physical considerations. Indeed it is justified
by the derivation of the Navier-Stokes equations from the Boltzmann equation through
the Chapman-Enskog expansion to the second order (see [2]), the viscosity coefficient
is then a function of the temperature. If we consider the case of isentropic fluids, this
dependence is expressed by a dependence on the density function (we refer in particular
to [15]). We mention that the case µ(ρ) = ρ is related to the so called viscous shallow
water system. This system with friction has been derived by Gerbeau and Perthame
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in [6] from the Navier-Stokes system with a free moving boundary in the shallow water
regime at the first order. This derivation relies on the hydrostatic approximation where
the authors follow the role of viscosity and friction on the bottom.
We are now going to rewrite the system (1.1) following the new formulation proposed in
[11] (see also [9, 8, 7]), indeed setting:

v = u+
µ(ρ)

ρ2
∂xρ, (1.3)

called the effective velocity, we can rewrite the system (1.1) as follows:{
∂tρ+ ∂x(ρu) = 0,

ρ∂tv + ρu∂xv + ∂xP (ρ) = 0.
(1.4)

The existence of global weak solution has been obtained by Jiu and Xin in [17]
for viscosity coefficients verifying (1.2). In passing we point out that a large amount of
literature is essentially dedicated to the study of the compressible Navier-Stokes equations
with constant viscosity coefficients. In particular the existence of global strong solution
with large initial data for initial density far away from the vacuum has been proved for
the first time by Kanel [18] (see also [19, 13] ). In [16] the authors proved that vacuum
states do not arise provided that the initial density is positive almost everywhere. We
would like also to mention the results of Hoff in [14] who proved the existence of global
weak solution for constant viscosity coefficients with initial density admitting shocks (we
refer also to [25, 26, 21]). The author exhibited regularizing effects on the velocity via
the use of tricky estimates on the convective derivative:

u̇ = ∂tu+ u∂xu,

we will generalize these techniques in the present paper to the case of general viscosity
coefficients. In [10], the second author proved also the existence of global weak solution for
general viscosity coefficients with initial density admitting shocks and with initial velocity
belonging to the set of finite measures. In opposite to [14], the initial data satisfy the
BD entropy but not the classical energy, it allows in particular to show some regularizing
effects on the density inasmuch as the density becomes instantaneously continuous. It is
due to the regularity of the effective velocity v which express the coupling between the
velocity and the density.

The problem of existence of global strong solution for system (1.1) with large initial
data and with general viscosity coefficients verifying (1.2) is not yet completely solved.
Indeed when α > 1 it requires conditions of sign on the so called effective flux (see
[13, 21]). This quantity represents the force that the fluids exerts on itself and a priori
has no reason to be signed. In the following we are going to present the current state
of art concerning the existence of global strong solution for system (1.1) with viscosity
coefficients verifying (1.2).

It has been first proved by Mellet and Vasseur (see [22]) in the case 0 < α < 1
2 .

The main argument of their proof consists in using the Bresch-Dejardins entropy (see
[1]) in order to estimate the L∞ norm of 1

ρ and using the parabolicity of the momentum
equation of (1.1). It is important at this level to point out that the Bresch-Dejardins
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entropy gives almost for free the control of ‖1ρ‖L∞t,x when α < 1
2 .

In [7], the second author has proved similar results for the case 1
2 < α ≤ 1 where he

exploited the fact that the effective velocity v satisfies a damped transport equation. It
enables to obtain L∞ estimates for v and using maximum principle to get L∞ control on
1
ρ .
More recently Constantin et al in [3] have extended the previous results. More precisely,
in the range α ∈

(
1
2 , 1
]

under the condition γ ≥ 2α, the authors obtain global existence
of strong solutions for initial data belonging to H3. They prove that the same result also
holds true in the case α > 1 with γ belonging to [α, α+ 1] provided that the initial data
satisfy:

∂xu0 ≤ ργ−α0 . (1.5)

We point out that the condition (1.5) is equivalent to consider a negative effective flux
(see for example [13, 21]) at initial time. The main idea of their proof consists in proving
via a maximum principle that the effective flux remains negative for all time. This is
sufficient to control the L∞ norm of 1

ρ .
In the present paper, our goal is double inasmuch as we wish both to show the

existence of global strong solution for the case α > 1
2 without any sign restriction on

the initial data and with minimal assumptions in terms of regularity. In [3], Constantin
et al proved a blow-up criterion for α > 1

2 which is relied to estimating the L∞t,x norm

of 1
ρ . In order to apply this blow-up criterion, we introduce a new effective pressure

y = ∂xv
ρ +F2(ρ) with ρF ′2(ρ) = F1(ρ)

ρ and F1(ρ) = P ′(ρ)ρ
µ(ρ) . We observe then that y satisfies

the following equation:

∂ty + u∂xy + F1(ρ)y − F1(ρ)F2(ρ) + F ′1(ρ)
ρ

µ(ρ)
(v − u)2 = 0. (1.6)

This last equation enables us to prove that if y0 ≤ C with C ∈ R then y remains bounded
on the right all along the time which implies in particular that:

∂xv(t, x) ≤ C1(t) ∀(t, x) ∈ R+ × R, (1.7)

with C1 a continuous increasing function. Using maximum principle for the mass equa-
tion of (1.4) allows us to prove that 1

ρ is bounded all along the time. In order to show
the uniqueness of the solutions, we extend Hoff’s techniques to the case of general vis-
cosity coefficients which enables us to prove that ∂xu belongs to L1

loc(L
∞(R)). Passing

in Lagrangian formulation (see the Appendix and the references therein), we get the
uniqueness of the solutions. Finally, we would like to mention that the estimate (1.7) is
reminiscent of the so-called Oleinik estimate (see [24, 4]) for scalar conservation law with
a flux strictly convex or concave. If we consider the following equation with f regular:

∂tu+ ∂xf(u) = 0, u(0, ·) = u0 ∈ L∞(R),

the Kruzhkov theorem (see [20]) asserts that there exists a unique entropy solution. In
addition if f is genuinely non linear, Oleinik has proved the following estimate in the
sense of measures for C > 0 and for any (t, x) ∈ R+ × R:

∂xu(t, x) ≤ C

t
. (1.8)
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This estimate gives regularizing effects on u since instantaneously u(t, ·) with t > 0 is
in BVloc(R). In our case, we have no regularizing effects on v. A possible explanation
is the fact that v satisfies a damped transport equation which is in some sense linearly
degenerate.

2 Main results

We are now in position to state our main theorem.

Theorem 2.1 Let α > 1
2 , γ ≥ max(1, α), (ρ0,

1
ρ0

) ∈ (L∞(R))2, (ρ0− 1, u0) ∈ (L2(R2))2.

In addition we assume that v0 ∈ L2(R) and that there exists C ∈ R such that for any
x > y we have:

v0(x)− v0(y)

x− y
≤ C (2.9)

Then there exists a unique global strong solution (ρ, u) for the Navier-Stokes system (1.1)
with the following properties. For any given T > 0, L > 0 there exist a positive constant
C(T ), a positive constant C(T, L) depending respectively on T , on T , L and on ‖ρ0−1‖L2,
‖(ρ0, 1

ρ0
)‖L∞, ‖u0‖L2, ‖v0‖L2 such that, if σ(t) = min(1; t), then:

C(T )−1 ≤ ρ(T, ·) ≤ C(T ) a.e, (2.10)

sup
0<t≤T

(
‖ρ(t, ·)− 1‖L2 + ‖u(t, ·)‖L2 + ‖∂xρ(t, ·)‖L2 + σ(t)

1
2 ‖∂xu(t, ·)‖L2

+ σ(t)
1
2 (‖u̇(t, ·)‖L2 + ‖∂x(ρα∂xu(t, ·)− P (ρ) + P (1))‖L2

)
≤ C(T ),

(2.11)

∫ T

0
[‖∂xu(t, ·)‖2L2 + ‖∂xρ(t, ·)‖2L2 + σ(t)‖u̇(t, ·)‖2L2 + σ(t)‖∂xu̇(t, ·)‖2L2 ]dt ≤ C(T ),

(2.12)∫ T

0
σ

1
2 (τ) ‖∂xu (τ)‖2L∞ dτ ≤ C (T ) . (2.13)

sup
0<t≤T

σ(t)
1
2 ‖∂xu(t, ·)‖L∞ ≤ C (T ) (2.14)

‖v‖BV ([0,T ]×[−L,L]) ≤ C(T, L). (2.15)

Furthermore for any x > y and t ≥ 0, we have almost everywhere:

v(t, x)− v(t, y)

x− y
≤ C1(t), (2.16)

with C1 a continuous increasing function.

Remark 1 It is important to point out that our theorem requires that ∂xρ0 belongs to
L2(R). Indeed since ∂xϕ(ρ0) = v0 − u0 with v0 ∈ L2(R) and u0 ∈ L2(R), it implies that
∂xϕ(ρ0) ∈ L2(R). since 1

ρ0
is in L∞(R), we deduce that ∂xρ0 is in L2(R).

Furthermore since ϕ(ρ0) − 1 is also in L2(R) using that 1
ρ0

and ρ0 are in L∞(R), we

deduce that ϕ(ρ0)− 1 is in H1(R). The initial density ρ0 is then necessary a continuous
function which prevents us from considering shock-type initial data.
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Remark 2 We would like to mention that any solution (ρ, u) of system (1.1) in the
sense of distributions which verifies the regularity assumptions of Theorem 2.1 is also a
strong solution i.e. (ρ, u) satisfy the system (1.1) almost everywhere on R+ ×R. Setting
w1(t, x) = ρα∂xu(t, x)−P (ρ(t, x))+P (1) the effective flux, we get from (2.10) and (2.11)
that for any t > 0:{

σ(t)
1
2 ‖∂xw1(t, ·)‖L2 ≤ C(t)

σ(t)
1
2 ‖∂xu(t, ·)‖L2 + ‖P (ρ)(t, ·)− P (1)‖L2 ≤ C(t),

for C a continuous increasing function. This implies that w1 belongs to L1
loc(R+, H1(R)).

Using now the fact that (P (ρ) − P (1)) belongs to L∞loc(H
1(R)), we deduce that ρα∂xu

is in L1
loc(H

1(R)). Using (2.10), the fact that ( 1
ρα − 1) belongs to L∞loc(H

1(R)) we get

using product law in Sobolev spaces that ∂xu is in L1
loc(H

1(R)). In particular ∂xxu is in
L1
loc(L

2(R)). In other words it is easy to observe that each term of (1.1) is in L1
loc(R+×R)

which ensures that (ρ, u) satisfies (1.1) almost everywhere.

Remark 3 Let us point out that compared with [3], we deal with the range γ ≥ max(α, 1)
whereas in [3] the authors treat the case α ≤ γ ≤ α + 1, α > 1 provided that ∂xu0 ≤
ργ−α0 . In a certain sense the method that we developed in our proof unifies the different
situations, γ > α + 1 and α ≤ γ < α + 1. Furthermore we do not require any condition
of sign on the initial data.

Remark 4 The condition (2.9) is a condition of Oleinik-type which implies that v0 is
in BVloc(R). Indeed we recall that for any x ∈ R we have |x| = (2x)+ − x with (x)+ =
max(0, x). It yields then that for any interval [a, b] such that v0(a) and v0(b) are finite
and any increasing subdivision (xn)n=1,··· ,N of the interval [a, b] with N ∈ N∗ , we have
using (2.9) and taking x0 = a, xN+1 = b if x1 > a and xN < b:

N−1∑
i=1

|v0(xi+1)− v0(xi)| ≤
N∑
i=0

|v0(xi+1)− v0(xi)|

≤ 2
N∑
i=0

(v0(xi+1)− v0(xi))+ + v0(a)− v0(b)

≤ 2C

N∑
i=0

(xi+1 − xi) + v0(a)− v0(b)

≤ 2C(b− a) + v0(a)− v0(b)

In particular this shows that v0 is necessary in L∞loc(R).
Furthermore (2.16) implies that the Oleinik estimate (2.9) is preserved all along the time.
In addition since x → v(t, x) − C1(t)x is non-increasing, we deduce that v(t, ·) has left
and right-hand limits at each points for almost t ≥ 0.

Remark 5 Our theorem does not require high regularity assumption on the initial veloc-
ity. Indeed, we assume only that u0 and v0 are respectively in L2(R) and L2(R)∩BVloc(R).
This is however sufficient in order to ensure uniqueness.
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Remark 6 We can observe that in the case 1
2 < α ≤ 1, our assumption on γ is optimal

(from an hyperbolic point of view) since we need only γ ≥ 1. This extends the results of
[3, 7].

Remark 7 We can observe that (2.13) and (2.14) give a L1
loc(L

∞(R)) control on ∂xu.
In particular, this enables us to define the flow associated to the velocity u (we refer for
more details to the Appendix).

We would like to emphasize that the condition (2.9) is automatically satisfied provided
that ∂xv0 ∈ L∞. A necessary condition for this later condition to hold is to take initial

data

(
1

ρ0
− 1, ρ0 − 1, u0

)
in the following Sobolev spaces (Hs (R))2 × Hs−1 (R) with

s1 >
5
2 , . As a by-product of Theorem 2.1 and the Appendix, we establish the following

result.

Theorem 2.2 Consider α ≥ 1
2 , γ ≥ max (1, α) and(

1

ρ0
− 1, ρ0 − 1, u0

)
∈ (Hs (R))2 ×Hs−1 (R)

with s > 5
2 . Then, the compressible Navier-Stokes system (1.1) admits an unique solution,

we have
(ρ− 1, u) ∈ C(R+, H

s (R)×Hs−1 (R)).

In the section 3, we prove the Theorem 2.1. An appendix is devoted to the definition
and basic properties of the Lagrangian framework, we give also a sketch of the proof of
the Theorem 3.3 below.

3 Proof of the Theorem 2.1

A first ingredient is the following blow-up criterion

Theorem 3.3 Assume that α > 1
2 and γ ≥ max(α− 1

2 , 1) and let s ≥ 3 and (ρ0−1, u0) ∈
Hs(R). Then there exists T ∗ > 0 such that (ρ, u) is a strong solution on (0, T ∗) with:

(ρ− 1) ∈ C(0, T,Hs(R)), u ∈ C(0, T,Hs(R)) ∩ L2(0, T,Hs+1(R)), ∀T ∈ (0, T ∗),

and for all t ∈ (0, T ∗):

‖1

ρ
(t, ·)‖L∞ ≤ C(t),

where C(t) < +∞ if t ∈ (0, T ∗). In addition, if:

sup
t∈(0,T ∗)

‖1

ρ
(t, ·)‖L∞ ≤ C < +∞,

then the solution can be continued beyond (0, T ∗).
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The above result says that the only way a regular solution might blow-up is if the
L∞-norm of 1/ρ blows-up. Theorem 3.3 is essentially an adaptation to the whole space
of the blow-up criterion proved in Constantin et al (see Theorem 1.1. from [3]) in the
case of the torus. We refer the reader to the Appendix for a sketch of the proof.

The objective of the rest of this section and section 3.1 is to show how to obtain a
new bound for the L∞-norm of 1/ρ by analysing a new quantity that we call effective
pressure. Consider a pair (ρ0, u0) verifying the hypothesis stated in Theorem 2.1 and let
us also consider the following sequence:

ρn0 − 1 = jn ∗ (ρ0 − 1) and vn0 = jn ∗ v0,

with jn a regularizing kernel, jn(y) = nj(ny) with 0 ≤ j ≤ 1,
∫
R j(y)dy = 1, j ∈ C∞(R)

and suppj ⊂ [−2, 2]. We deduce that (ρn0 − 1, vn0 ) belong to all Sobolev spaces Hs(R)
with s ≥ 5/2 and that:

0 < c ≤ ρn0 ≤M < +∞. (3.17)

Also, we consider
un0 = vn0 − ∂xϕ(ρn0 ),

by composition theorem we know that ϕ(ρn0 ) − ϕ(1) belongs to Hk(R) for any k ≥ 0.
Then we obtain that un0 ∈ Hk(R) for k ≥ 3. Finally we have for x > y and using (2.9):

vn0 (x)− vn0 (y)

x− y
=

∫
R

(
v0(x− z)− v0(y − z)

x− y
)jn(z)dz ≤ C.

In particular we deduce that for any x ∈ R, we have:

∂xv
n
0 (x) ≤ C. (3.18)

Using the Theorem (3.3), we deduce that there exists a strong solution (ρn, un) on (0, T ∗n)
with n ∈ N. We are going to prove that T ∗n = +∞ and uniform estimates on (ρn, un)n∈N
on the time interval R+. The goal now is to apply the blow-up criterion of the Theorem
3.3. Let us prove that for any t ∈ (0, T ∗n):

‖ 1

ρn
(t, ·)‖L∞ ≤ C,

for any n ∈ N. Let us recall that there exists C > 0 such that for any t > 0 we have:∫
R

[ρn(t, x)|un|2(t, x) + Π(ρn(t, x))−Π(1)]dx+

∫ t

0

∫
R
µ(ρn(s, x))(∂xun(s, x))2dsdx ≤ C,

(3.19)
and:∫

R
[ρn(t, x)|vn|2(t, x) + Π(ρn(t, x))−Π(1)]dx+

∫ t

0

∫
R

µ(ρn)P ′(ρn)

ρn
|∂xρn(s, x)|2dsdx ≤ C,

(3.20)
This is due to the fact that it exists C1 > 0 such that:

‖vn0 ‖L2(R) ≤ C1, ‖ρn0 − 1‖L2(R) ≤ C1 and ‖∂xρn0‖L2(R) ≤ C1.
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Combining (3.19) and (3.20), we deduce that for C > 0 large enough we have for any
t ∈ (0, T ∗n):

‖ρn(t, ·)− 1‖Lγ2 (R) ≤ C, ‖
√
ρn∂xϕ(ρn)‖ ≤ C. (3.21)

We refer to [21] for the definition of Orlicz spaces. Since γ > α+ 1, using (3.21) and the
Lemma 3.7 from ([17]) we get for C > 0 large enough and independent on n:

‖ρn‖L∞([0,T ∗n ],L
∞) ≤ C. (3.22)

3.1 New effective pressure yn and uniform estimates for 1
ρn

We recall now that the effective velocity vn verifies the momentum equation of the system
(1.4), namely:

∂tvn + un∂xvn + ∂xF (ρn) = 0,

with:

∂xF (ρn) =
P ′(ρn)ρn
µ(ρn)

(vn − un).

Let us set now wn = ∂xvn, we observe that wn satisfies the following equation:

∂twn + un∂xwn + ∂xunwn +
P ′(ρn)ρn
µ(ρn)

wn −
P ′(ρn)ρn
µ(ρn)

∂xun + ∂x(
P ′(ρn)ρn
µ(ρn)

)(vn − un) = 0.

If we set F1(ρ) = P ′(ρ)ρ
µ(ρ) , we have:

∂twn + un∂xwn + ∂xunwn + F1(ρn)wn − F1(ρn)∂xun + F ′1(ρn)
ρ2n

µ(ρn)
(vn − un)2 = 0.

Let us multiply the previous equation by 1
ρn

, we get then:

∂t(
wn
ρn

) + un∂x(
wn
ρn

) + F1(ρn)
wn
ρn
− F1(ρn)

ρn
∂xun + F ′1(ρn)

ρn
µ(ρn)

(vn − un)2 = 0.

We set now yn = wn
ρn

+ F2(ρn) with ρnF
′
2(ρn) = F1(ρn)

ρn
, we obtain then:

∂tyn + un∂xyn + F1(ρn)yn − F1(ρn)F2(ρn) + F ′1(ρn)
ρn

µ(ρn)
(vn − un)2 = 0. (3.23)

We recall now that P (ρ) = ργn, µ(ρn) = ραn and we get:
F2(ρn) =

γ

γ − α− 1
ργ−α−1n if γ − α− 1 6= 0

F2(ρn) = γ ln ρn if γ = α+ 1

F1(ρn) = γργ−αn .

(3.24)

Now since yn is continuous on R+ × R (indeed we recall that the solution (ρn, un) is
regular) and limx→±∞ yn(t, x) = F2(1), we deduce that yn(t, ·) has a maximum for every
t ≥ 0 and thus the function yMn defined as follows:

ynM (t) = max
x∈R

yn(t, x).
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makes sense. Furthermore yMn is Lipschitz continuous on any interval [0, T ] with T ∈
(0, T ∗n). Indeed from the triangular inequality we have for (t1, t2) ∈ (0, T ∗n):

|ynM (t1)− ynM (t1)| ≤ max
x∈R
|yn(t1, x)− y,(t2, x)| ≤ ‖∂syn‖L∞([t1,t2],L∞)|t1 − t2|.

According to Rademacher theorem, yMn is differentiable almost everywhere on [0, T ∗n).
Furthermore there exists for each t ∈ [0, T ∗n) a point xnt such that:

ynM (t) = y(t, xnt ).

We are going to verify now that for almost all t ∈ (0, T ∗n) we have (ynM )′(t) = ∂tyn(t, xnt ).
Indeed we have:

(ynM )′(t) = lim
h→0+

ynM (t+ h)− ynM (t)

h
= lim

h→0+

yn(t+ h, xnt+h)− yn(t, xnt )

h

≥ lim
h→0+

yn(t+ h, xnt )− yn(t, xnt )

h
= ∂tyn(t, xnt ).

Similarly, we have:

(ynM )′(t) = lim
h→0+

ynM (t)− ynM (t− h)

h
= lim

h→0+

yn(t, xnt )− yn(t− h, xnt−h)

h

≤ lim
h→0+

yn(t, xnt )− yn(t− h, xnt )

h
= ∂tyn(t, xnt ).

We deduce from (3.23) using the fact that ∂xyn(t, xnt ) = 0 since yn(t, ·) reaches its maxi-
mum in xnt and that for all t ∈ (0, T ∗n) we have:

∂ty
n
M (t) + F1(ρn)(t, xnt )ynM (t) = F1(ρn)F2(ρn)(t, xnt )− F ′1(ρn)

ρn
µ(ρn)

(vn − un)2(t, xnt ).

(3.25)
Basic computations give now:

F1(ρ)F2(ρ) =
γ2

γ − α− 1
ρ2γ−2α−1 if γ 6= α+ 1

F1(ρ)F2(ρ) = γ2 ln ρργ−α if γ = α+ 1

F ′1(ρ)ρ

µ(ρ)
= γ(γ − α)ργ−2α

F1(ρ) = γργ−α.

(3.26)

We recall that we have γ ≥ α such that using (3.25) and (3.26) we get that for γ 6= α+1:

∂ty
n
M (t) + F1(ρn)(t, xnt )ynM (t) ≤ max(0,

γ2

γ − α− 1
)‖ρn(t, ·)‖2γ−2α−1L∞ . (3.27)

From (3.26) and (3.27), we get that for any t ∈ [0, T ∗n) one has with Cγ = max(0, γ2

γ−α−1):

∂t(y
n
M (t)eγ

∫ t
0 ρ

γ−α
n (s,xns )ds) ≤ Cγ‖ρn(t, ·)‖2γ−2α−1L∞ eγ

∫ t
0 ρ

γ−α
n (s,xns )ds. (3.28)
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It yields for any t ∈ (0, T ∗n):

ynM (t) ≤ e−γ
∫ t
0 ρ

γ−α
n (s,xns )dsynM (0)

+ Cγ

∫ t

0
‖ρn(t, ·)‖2γ−2α−1L∞ e−γ

∫ t
s ρ

γ−α
n (s′,xns )ds

′
ds.

(3.29)

From (3.18) and (3.17), we deduce that for any n ∈ N we have for any x ∈ R and
γ 6= α+ 1:

yn(0, x) ≤ max(0, C)

c
+

γ

γ − α− 1
Mγ−α−1 = C1. (3.30)

We obtain now from (3.29), (3.30) and since ρn is positive:

ynM (t) ≤ C1 + Cγ

∫ t

0
‖ρn(t, ·)‖2γ−2α−1L∞ ds. (3.31)

Combining (3.22) and (3.31), we deduce that for any t ∈ (0, T ∗n) we have:

ynM (t) ≤ C(t), (3.32)

with C a continuous function on R+ when γ 6= α + 1. From (3.32), it yields for any
t ∈ (0, T ∗n) and x ∈ R when γ 6= α+ 1:

∂xvn(t, x)

ρn(t, x)
≤ C(t) +

γ

α+ 1− γ
ργ−α−1n (t, x), (3.33)

with C a continuous function on R+. Next we recall that we have:

∂t(
1

ρn
) + un∂x(

1

ρn
)− 1

ρn
∂xun = 0.

We can rewrite the equation as follows:

∂t(
1

ρn
) + un∂x(

1

ρn
)− 1

ρn
∂xvn −

µ(ρn)

ρn
∂xx(

1

ρn
)− 1

ρn
∂xµ(ρn)∂x(

1

ρn
) = 0.

Using again a maximum principle and following the same arguments as previously, we
set now:

zn(t) = sup
x∈R

1

ρn
(t, x) =

1

ρn
(t, xnt ).

We have then:

∂tzn(t) =
µ(ρn)

ρn
∂xx(

1

ρn
)(t, xnt ) +

1

ρn
∂xvn(t, xnt ).

From (3.33) and since ∂xx( 1
ρn

)(t, xnt ) ≤ 0 (indeed xnt is a point where 1
ρn

reaches its
maximum) we deduce that:

∂tzn(t) ≤ C(t) +
γ

α+ 1− γ
ργ−α−1n (t, xnt )

≤ C(t) +
γ

α+ 1− γ
zn(t)α+1−γ .

(3.34)
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Using Gronwall lemma, it implies that there exists a continuous function C2 on R+ such
that for any t ∈ (0, T ∗n) we have:

zn(t) ≤ C2(t).

This implies that for any t ∈ (0, T ∗n) we get:

‖ 1

ρn
(t, ·)‖L∞ ≤ C2(t). (3.35)

Combining the blow-up criterion in Theorem 3.3 and (3.35), we obtain that T ∗n = +∞
and for any t > 0:

‖ 1

ρn
(t, ·)‖L∞ ≤ C2(t), (3.36)

with C2 a continuous function on R+. From (3.33), (3.22) and (3.36), we get again for
any t ∈ (0, T ∗n) and x ∈ R when γ 6= α+ 1:

∂xvn(t, x) ≤ C1(t), (3.37)

with C1 a continuous increasing function. We can easily prove similar results for γ = α+1.

3.2 Estimates à la Hoff

In the sequel for simplifying the notation we drop the index n. Introducing the convective
derivative

u̇ = ∂tu+ u∂xu,

we rewrite the momentum equation as

ρu̇− ∂x (ραux) + ∂xρ
γ = 0.

Let us observe that:

−
∫
R
∂x (ρα∂xu) ∂tu =

∫
R
ρα∂xu∂

2
xtu =

1

2

∫
R
ρα∂t

(
(∂xu)2

)
=

1

2

d

dt

∫
R
ρα (∂xu)2 − 1

2

∫
R
∂tρ

α(∂xu)2. (3.38)

Next, we see that:

−
∫
R
∂x (ρα∂xu)u∂xu = −

∫
R
u∂xρ

α(∂xu)2 −
∫
R
ραu∂2xxu∂xu

= −
∫
R
u∂xρ

α(∂xu)2 +
1

2

∫
R
∂x (uρα) (∂xu)2

= −
∫
R
u∂xρ

α(∂xu)2 +
1

2

∫
R
ρα(∂xu)3 +

1

2

∫
R
u∂xρ

α(∂xu)2

= −1

2

∫
R
u∂xρ

α(∂xu)2 +
1

2

∫
R
ρα(∂xu)3.

Thus, we gather that:

−
∫
R
∂x (ρα∂xu) u̇ =

1

2

d

dt

∫
R
ρα (∂xu)2 − 1

2

∫
R
∂tρ

α(∂xu)2 − 1

2

∫
R
u∂xρ

α(∂xu)2 +
1

2

∫
R
ρα(∂xu)3

11



=
1

2

d

dt

∫
R
ρα (∂xu)2 +

1 + α

2

∫
R
ρα(∂xu)3.

Moreover, we see that:∫
R
∂xρ

γ (∂tu+ u∂xu) = −
∫
R
ργ∂txu+

∫
R
u∂xρ

γ∂xu

= − d

dt

∫
R
ργ∂xu+

∫
R
∂tρ

γ∂xu+

∫
R
u∂xρ

γ∂xu

= − d

dt

∫
R
ργ∂xu− γ

∫
R
ργ(∂xu)2.

Multiplying the momentum equation with u̇ yields:∫
R
ρu̇2+

d

dt

{
1

2

∫
R
ρα (∂xu)2 −

∫
R
ργ∂xu

}
= −1 + α

2

∫
R
ρα(∂xu)3+γ

∫
R
ργ(∂xu)2. (3.39)

Let us multiply the previous estimate by σ (t) = min(1, t) and integrate in time on [0, t]
with t > 0, we have then:

σ (t)

2

∫
R
ρα (t) (∂xu)2 (t) +

∫ t

0

∫
R
σρu̇2

= σ (t)

∫
R

(ργ − 1) ∂xu+

∫ min{1,t}

0

∫
R

[
1

2
ρα (∂xu)2 − (ργ − 1) ∂xu

]
− 1 + α

2

∫ t

0

∫
R
σρα(∂xu)3 + γ

∫ t

0

∫
R
σργ(∂xu)2.

Let us denote by:

A (ρ, u) (t) =
σ (t)

2

∫
R
ρα (t) (∂xu)2 (t) +

∫ t

0

∫
R
σρu̇2.

Let us observe that using (3.19), (3.22) and (3.36) we have:

σ (t)

∫
R

(ργ − 1) ∂xu ≤
√
σ(t)

∥∥∥∥ργ − 1

ρ
α
2

∥∥∥∥
L∞t L

2

(∫
R
σ (t) ρα (t) (∂xu)2 (t)

) 1
2

≤ C (t)

∥∥∥∥ργ − 1

ρ
α
2

∥∥∥∥2
L∞t L

2

+
1

4

∫
R
σ (t) ρα (t) (∂xu)2 (t)

≤ C1 (t) +
1

4

∫
R
σ (t) ρα (t) (∂xu)2 (t) ,

(3.40)

with C and C1 continuous on R+. Next, we see that owing to the estimate (3.19), (3.22)
and (3.36), we have that:∫ min{1,t}

0

∫
R

[
1

2
ρα (∂xu)2 − (ργ − 1) ∂xu

]
+ γ

∫ t

0

∫
R
σργ(∂xu)2 ≤ C2 (t) , (3.41)
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with C2 a continuous function on R+. Combining (3.39), (3.40) and (3.41) , we thus get
for all t ≥ 0:

A (ρ, u) (t) ≤ C (t) +
1

4

∫
R
σ (t) ρα (t) (∂xu)2 (t)− 1 + α

2

∫ t

0

∫
R
σρα(∂xu)3

≤ C3 (t) +
1

2
A (ρ, u) (t)− 1 + α

2

∫ t

0

∫
R
σρα(∂xu)3

with C3 a continuous fonction on R+. Consequently it yields:

A (ρ, u) (t) ≤ C (t) + (1 + α)

∫ t

0

∫
R
σρα(∂xu)3

which also implies that (C can be choseen to be increasing in t):

sup
τ∈[0,t]

A (ρ, u) (τ) ≤ C (t) + (1 + α)

∫ t

0

∫
R
σρα(∂xu)3 (3.42)

Let us observe that for all ε > 0 we have using Gagliardo-Nirenberg inequality (3.19) and
(3.22):∫ t

0
σ

1
2 (τ) ‖(ρα∂xu− ργ) (τ)‖2L∞ ≤ 2

∫ t

0
σ

1
2 (τ) ‖(ρα∂xu− (ργ − 1)) (τ)‖2L∞ + 2t

≤ 2

∫ t

0
σ

1
2 (τ) ‖(ρα∂xu− (ργ − 1)) (τ)‖L2 ‖∂x (ρα∂xu− ργ) (τ)‖L2 + 2t

≤ Cε
∫ t

0
‖(ρα∂xu− (ργ − 1)) (τ)‖2L2 + ε

∫ t

0
σ (τ) ‖∂x (ρα∂xu− ργ) (τ)‖2L2 + 2t

≤ Cε
∫ t

0
‖(ρα∂xu− (ργ − 1)) (τ)‖2L2 + ε

∫ t

0
σ (τ) ‖ρu̇ (τ)‖2L2 + 2t

≤ C (t, ε) + ε‖ρ‖
1
2

L∞([0,t],L∞)A (ρ, u) (t) (3.43)

≤ C (t, ε) + εC0A (ρ, u) (t) , (3.44)

with C a continuous function on R+. We are going now to estimate the last term of
(3.42) and using (3.19), (3.22), (3.36) and (3.44) with ε = 1/(2 (1 + α)C0) we obtain
that:∫ t

0

∫
R
σρα(∂xu)3 =

∫ t

0

∫
R
σ(∂xu)2(ρα∂xu− ργ) +

∫ t

0

∫
R
σργ(∂xu)2

≤
∫ t

0

(
σ

1
4 ‖(ρα∂xu− ργ) (τ)‖L∞ σ

3
4

∫
R

(∂xu)2 (τ)

)
dτ +

∫ t

0

∫
R
σργ(∂xu)2

≤ C (t) +

∫ t

0
σ

1
2 (τ) ‖(ρα∂xu− ργ) (τ)‖2L∞ +

∫ t

0
σ

3
2 (τ)

(∫
R

(∂xu)2 (τ) dx

)2

≤ C (t) +
1

2 (1 + α)
A (ρ, u) (t) +

∫ t

0

∥∥∥∥ 1

ρ (τ)

∥∥∥∥2α
L∞

σ
3
2 (τ) (

∫
R
ρα(∂xu)2 (τ) dx)2

≤ C (t) +
1

2 (1 + α)
A (ρ, u) (t) + C1 (t)

∫ t

0
σ (τ)

∫
R
ρα(∂xu)2 (τ) dx

∫
R

(ρα∂xu)2 (τ) dx
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≤ C (t) +
1

2 (1 + α)
A (ρ, u) (t) + 2C1 (t)

∫ t

0
A (ρ, u) (τ)

∫
R

(ρα∂xu)2 (τ) dτ, (3.45)

with C and C1 continuous increasing functions. Finally, putting together (3.42) and
(3.45) we get that

sup
τ∈[0,t]

A (ρ, u) (τ) ≤ C2 (t) + C2 (t)

∫ t

0
A (ρ, u) (τ)

∫
R

(ρα∂xu)2 (τ) dτ,

with C2 an increasing continuous function. Using Gronwall’s lemma and (3.19) leads to

sup
τ∈[0,t]

A (ρ, u) (τ) ≤ C (t) , (3.46)

with C an increasing continuous function. The control over A (ρ, u) and (3.44) yields∫ t

0
σ

1
2 (τ) ‖(ρα∂xu− ργ) (τ)‖2L∞ dτ ≤ C (t) ,

and consequently we get using in addition (3.22):∫ t

0
σ

1
2 (τ) ‖∂xu (τ)‖2L∞ dτ ≤ C (t) . (3.47)

The last inequality also provides an estimate in L1
t (L∞) of ∂xu for any t > 0 using

Cauchy-Schwarz inequality:∫ t

0
‖∂xu (τ)‖L∞ dτ ≤

(∫ t

0
σ−

1
2 (τ) dτ

) 1
2
(∫ t

0
σ

1
2 (τ) ‖∂xu (τ)‖2L∞

) 1
2

≤ C (t) .

Next, we aim at obtaining estimate for the L2-norm of ∂xu̇. This will be useful in order
to recover regularity properties of u. The idea is to apply the operator ∂t + u∂x to the
velocity’s equation:

(∂t + u∂x) (ρu̇)− (∂t + u∂x)∂x (ραux) + (∂tP (ρ) + u∂xP (ρ)) = 0

and to test it with min{1, t}u̇. We begin by observing that∫
R

(ρu̇)t u̇ =

∫
R
ρtu̇

2 +
1

2

∫
R
ρ
du̇2

dt
=

1

2

d

dt

∫
R
ρu̇2 +

1

2

∫
R
ρtu̇

2.

We remark that:∫
R
u∂x (ρu̇) u̇ = −

∫
R
ρu̇∂x (uu̇) = −

∫
R
∂xuρu̇

2 +
1

2

∫
R

(ρu)x u̇
2.

Summing the above two relations yields:∫
R

(∂t + u∂x) (ρu̇)u̇ =
1

2

d

dt

∫
R
ρu̇2 −

∫
R
∂xuρu̇

2. (3.48)
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Next, we take a look at the second term:

−
∫
R

(∂t + u∂x)∂x (ρα∂xu) u̇ =

∫
R
∂tρ

α∂xu∂xu̇+

∫
R
ρα∂xut∂xu̇+

∫
R
∂x(ρα∂xu)∂x(uu̇)

(3.49)

Let us treat separately the last term appearing in the above inequality :∫
R
∂x(ρα∂xu)∂x(uu̇)

=

∫
R
∂xρ

α(∂xu)2u̇+

∫
R
u∂xρ

α∂xu∂xu̇+

∫
R
ρα∂2xxu∂xuu̇+

∫
R
ραu∂2xxu∂xu̇

=

∫
R
∂xρ

α(∂xu)2u̇+

∫
R
u∂xρ

α∂xu∂xu̇−
1

2

∫
R

(∂xu)2∂x(ραu̇) +

∫
R
ρα∂x(u∂xu)∂xu̇−

∫
R

(∂xu)2 ρα∂xu̇

=
1

2

∫
R
∂xρ

α(∂xu)2u̇+

∫
R
u∂xρ

α∂xu∂xu̇−
3

2

∫
R

(∂xu)2ρα∂xu̇+

∫
R
ρα∂x(u∂xu)∂xu̇

(3.50)

Combining the two identities (3.49) and (3.50) we get that

−
∫
R

(∂t + u∂x)∂x (ρα∂xu) u̇ =

∫
R
∂tρ

α∂xu∂xu̇+

∫
R
u∂xρ

α∂xu∂xu̇

+

∫
R
ρα∂xut∂xu̇+

∫
R
ρα∂x(u∂xu)∂xu̇−

3

2

∫
R

(∂xu)2ρα∂xu̇+
1

2

∫
R
∂xρ

α(∂xu)2u̇

= −α
∫
R
ρα(∂xu)2∂xu̇+

∫
R
ρα(∂xu̇)2 − 3

2

∫
R

(∂xu)2ρα∂xu̇+
1

2

∫
R
∂xρ

α(∂xu)2u̇

=

∫
R
ρα(∂xu̇)2 −

(
α+

3

2

)∫
R
ρα(∂xu)2∂xu̇+

1

2

∫
R
∂xρ

α(∂xu)2u̇. (3.51)

Remark 8 The last term of the above identity, 1
2

∫
R ∂xρ

α(∂xu)2u̇ will be apear with sign
minus in the next identity

Let us observe that∫
R

(∂xρ
γ
t + u∂2xxρ

γ)u̇ = −
∫
R
ργt ∂xu̇+

∫
R
u∂2xxρ

γ u̇

=

∫
R
u∂xρ

γ∂xu̇+ γ

∫
R
ργ∂xu∂xu̇+

∫
R
u∂2xxρ

γ u̇

= −
∫
R
∂xu∂xρ

γ u̇+ γ

∫
R
ργ∂xu∂xu̇

=

∫
R
∂xuρu̇

2 −
∫
R
∂xu∂x (ρα∂xu) u̇+ γ

∫
R
ργ∂xu∂xu̇,

=

∫
R
∂xuρu̇

2 +

∫
R
ρα∂xu∂x (u̇∂xu) + γ

∫
R
ργ∂xu∂xu̇,

=

∫
R
∂xuρu̇

2 +

∫
R
ρα(∂xu)2∂xu̇+

∫
R
u̇ρα∂xu∂

2
xxu+ γ

∫
R
ργ∂xu∂xu̇,
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=

∫
R
∂xuρu̇

2 +

∫
R
ρα(∂xu)2∂xu̇−

1

2

∫
R
∂x(u̇ρα)(∂xu)2 + γ

∫
R
ργ∂xu∂xu̇,

=

∫
R
∂xuρu̇

2 +
1

2

∫
R
ρα(∂xu)2∂xu̇−

1

2

∫
R
u̇∂xρ

α(∂xu)2 + γ

∫
R
ργ∂xu∂xu̇, (3.52)

where we have used the equation of the velocity to replace

−∂xργ = ρu̇− ∂x(ρα∂xu).

We sum up the relations (3.48), (3.51) and (3.52) in order to obtain that:

1

2

d

dt

∫
R
ρu̇2 +

∫
R
ρα(∂xu̇)2 = (α+ 1)

∫
R
ρα(∂xu)2∂xu̇− γ

∫
R
ργ∂xu∂xu̇.

Multiplying with σ (t) and integrating in time on [0, t] with t > 0 leads to:

B (ρ, u) (t) =
1

2

∫
R
σ (t) ρu̇2 (t) +

∫ t

0

∫
R
σ (t) ρα(∂xu̇)2

=

∫ min(1,t)

0

∫
R
ρu̇2 + (α+ 1)

∫ t

0

∫
R
σρα(∂xu)2∂xu̇− γ

∫ t

0

∫
R
σργ∂xu∂xu̇.

(3.53)

Obviously using (3.46) we have that,∫ min(1,t)

0

∫
R
ρu̇2 ≤ A (ρ, u) (1) ≤ C. (3.54)

for all t > 0. Next, we infer using (3.22) that:

γ

∫ t

0

∫
R
σργ∂xu∂xu̇ ≤ γ

∥∥ργ−α∥∥
L∞t L

∞

(∫ t

0

∫
R
ρα(∂xu)2

) 1
2
(∫ t

0

∫
R
σ2ρα(∂xu̇)2

) 1
2

≤ C (t) +
1

4
B (ρ, u) (t) , (3.55)

with C a continuous increasing function. Finally, using again (3.46), (3.19) and (3.36),
we get:

(α+ 1)

∫ t

0

∫
R
σρα(∂xu)2∂xu̇ ≤

1

4

∫ t

0

∫
R
σρα(∂xu̇)2 + (α+ 1)2

∫ t

0

∫
R
σρα(∂xu)4

≤ 1

4
B (ρ, u) (t) + (α+ 1)2

∥∥∥∥1

ρ

∥∥∥∥2α
L∞t (L∞)

∫ t

0

∫
R
σρ3α(∂xu)4

≤ 1

4
B (ρ, u) (t) + C (t)

∫ t

0
σ ‖ρα∂xu‖2L∞

∫
R
ρα(∂xu)2

≤ 1

4
B (ρ, u) (t) + C (t) sup

τ∈[0,t]
σ (τ) ‖(ρα∂xu) (τ)‖2L∞ .

Let us observe that for all t > 0 we have using Gagliardo-Nirenberg inequality, (3.22)
and (3.36):

σ (t) ‖ρα∂xu (t)‖2L∞ ≤ 2σ ‖(ρα∂xu− (ργ − 1)) (t)‖2L∞ + 2 ‖(ργ − 1) (t)‖2L∞
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≤ 2σ ‖(ρα∂xu− (ργ − 1)) (t)‖L2 ‖∂x (ρα∂xu− (ργ − 1)) (t)‖L2 + C (t)

≤ 2σ (‖ρα∂xu‖L2 + C (t) ‖ρ− 1‖L2) ‖ρu̇‖L2 + C (t)

≤ C (t)
(
σ

1
2 ‖ρα∂xu‖L2 + C (t)

)
σ

1
2

∥∥∥ρ 1
2 u̇
∥∥∥
L2

+ C (t)

≤ C (t)
(
A

1
2 (ρ, u) (t) + C (t)

)
B

1
2 (ρ, u) (t) + C (t) . (3.56)

Thus, we get from (3.46) and Young inequality:

(α+ 1)

∫ t

0

∫
R
σρα(∂xu)2∂xu̇ ≤

1

4
B (ρ, u) (t) + C (t)

(
A

1
2 (ρ, u) (t) + C (t)

)
B

1
2 (ρ, u) (t) + C (t)

≤ C (t) +
1

2
B (ρ, u) (t) . (3.57)

Gathering (3.54), (3.55) and (3.57) yields the fact that B is also bounded:

B (ρ, u) (t) ≤ C (t) , (3.58)

with C a continuous increasing function. The control over
∥∥∥1
ρ

∥∥∥
L∞

, A (ρ, u) and B (ρ, u)

gives us, via the estimate (3.56) the following

σ (t)
1
2 ‖∂xu(t)‖L∞ ≤ C (t) , (3.59)

for any t ≥ 0.

3.3 Uniform BV-estimates for the effective velocities vn

Owing to the estimate (3.36) and (3.19) we recover the following estimates:

‖∂xun‖L2
t (L

2) ≤
∥∥∥∥ 1

ρn

∥∥∥∥α2
L∞t (L∞)

≤ C(t), ‖√ρnun‖L2
t (L

2) ≤ C1 (t) ,

where C, C1 are increasing continuous functions. From Sobolev embedding, we get that
for any t > 0, there exists C (t) such that

‖un‖L1
t (L
∞) ≤ C (t) . (3.60)

Let us introduce the flow of un i.e.

Xn (t, x) = x+

∫ t

0
un (τ,Xn (τ, x)) dτ. (3.61)

We immediately get that:

− |x| − C (t) ≤
∣∣X±1n (t, x)

∣∣ ≤ |x|+ C (t) ,

which implies that for any L > 0 the segment[
X−1n (t,−L) , X−1n (t, L)

]
≤ [−L− C (t) , L+ C (t)] .
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This information is usefull in order to show that we can propagate the L∞loc norm of vn.
Indeed, let us recall that:

∂tvn + un∂xvn +
P ′ (ρn) ρ2n
µ (ρn)

µ (ρn)

ρ2n
∂xρn = 0,

rewrites as

∂tvn + un∂xvn +
P ′ (ρn) ρ2n
µ (ρn)

(vn − un) = 0. (3.62)

Passing into Lagrangian coordinates (see Appendix) i.e.

(ṽn, ũn, ρ̃n) (t, x) = (vn, un, ρn) (t,Xn (t, x)) ,

we see that (3.62) rewrites as:

∂tṽn +
P ′ (ρ̃n) ρ̃n

2

µ (ρ̃n)
ṽn =

P ′ (ρ̃n) ρ̃n
2

µ (ρ̃n)
ũn. (3.63)

The last relation implies using (3.22) and (3.36):

|ṽn (t, x) | ≤
∣∣∣∣v0n (x) exp

(
−
∫ t

0

P ′ (ρ̃n (τ, x)) ρ̃2n(τ, x)

µ (ρ̃n (τ, x))
dτ

)∣∣∣∣
+

∣∣∣∣∣
∫ t

0
exp

(
−
∫ t

s

P ′
(
ρ̃n (τ, x) ρ̃2n(τ, x)

)
µ (ρ̃n (τ, x))

dτ

)
P ′ (ρ̃n (s, x)) ρ̃2n(s, x)

µ (ρ̃n (s, x))
ũn (s, x) ds

∣∣∣∣∣
≤ C (t)

(
|v0n (x) |+

∫ t

0
‖un (s)‖L∞ ds

)
.

≤ C (t) (1 + |v0n (x) |) ,

and consequently for any t > 0, x ∈ R:

|vn (t, x) | ≤ C (t)
(
1 + |v0n

(
X−1n (t, x)

)
|
)
.

Thus, we see that:

‖vn (t)‖L∞([−L,L]) ≤ C (t)
(

1 + ‖v0n‖L∞([−L−C(t),L+C(t)])

)
. (3.64)

In addition (vn0 )n∈N is uniformly bounded in L∞loc(R). Indeed since v0 is in L∞loc(R) (see
the Remark 4), we have for any x ∈ [−L,L] and any n ∈ N:

|vn0 (x)| ≤
∫ 1

−1
j(y)v0(x−

y

n
)dy ≤ ‖v0‖L∞([−L−1,L+1]). (3.65)

This piece of information along with the estimate:

∂xvn (t, x) ≤ C (t)

ensures that vn is uniformly bounded in L∞([0, T ];BVloc(R)). Ideed, the function

wn (t, x) = vn (t, x)− C (t)x

18



being nonincreasing, it holds using (3.64) that:

TV[−L,L]wn(t, ·) = vn (t,−L)−vn (t, L)+2C (t)L ≤ C (t)
(
L+ ‖v0n‖L∞([−L−C(t),L+C(t)])

)
.

Owing to the fact that
vn = wn (t, x) + C (t)x

we get that:

TV[−L,L]vn(t, ·) ≤ C (t)
(
L+ ‖v0n‖L∞([−L−C(t),L+C(t)])

)
. (3.66)

From (3.64), (3.65), (3.66), we get :

‖vn (t)‖BV ([−L,L]) ≤ C (T, L) . (3.67)

Owing to (3.22), (3.36), (3.60), (3.64) and (3.63) we get that:

‖∂tṽn‖L1([0,T ]×[−L,L]) ≤ C (T, L) . (3.68)

Next, fix φ ∈ Cb ([0, T ]× [−L,L]) with:

‖φ‖L∞([0,T ]×[−L,L]) ≤ 1

and let us write that:∫ T

0

∫ L

−L
φ (t, x) ∂tvn (t, x) dxdt

=

∫ T

0

(∫ Xn(t,L)

Xn(t,−L)
φ̃ (t, x) ∂̃tvn (t, x)

ρ̃n (t, x)

ρ0n(x)
dx

)
dt

=

∫ T

0

(∫ Xn(t,L)

Xn(t,−L)
φ̃ (t, x) ∂tṽn (t, x)

ρ̃n (t, x)

ρ0n(x)
dx

)
dt

−
∫ T

0

(∫ Xn(t,L)

Xn(t,−L)
φ̃ (t, x) ũn (t, x) ∂̃xvn ((t, x))

ρ̃n (t, x)

ρ0n(x)
dx

)
dt

=

∫ T

0

(∫ Xn(t,L)

Xn(t,−L)
φ̃ (t, x) ∂tṽn (t, x)

ρ̃n (t, x)

ρ0n(x)
dx

)
dt−

∫ T

0

∫ L

−L
φ (t, x)un (t, x) ∂xvn ((t, x)) dxdt.

Owing to (3.22), (3.36), (3.60), (3.67) and (3.68) and using the fact that φun belongs to
L1([0, T ], C0(R)), we conclude that∣∣∣∣∫ T

0

∫ L

−L
φ (t, x) ∂tvn (t, x) dxdt

∣∣∣∣ ≤ C (T, L) . (3.69)

Combining (3.69) and (3.66) gives us for any T > 0, L > 0:

‖vn‖BV ([0,T ]×[−L,L]) ≤ C (T, L) . (3.70)

19



3.4 Compactness

We recall the previous estimates that we have obtained, for every T > 0 we have for C
a continuous increasing function independent on n and any n ∈ N:

C(T )−1 ≤ ρn(T, ·) ≤ C(T ), (3.71)

sup
0<t≤T

(
‖ρn(t, ·)− 1‖L2 + ‖un(t, ·)‖L2 + ‖∂xρn(t, ·)‖L2 + σ(t)

1
2 ‖∂xun(t, ·)‖L2

+ σ(t)
1
2 (‖u̇n(t, ·)‖L2 + ‖∂x(ραn∂xun(t, ·)− P (ρn) + P (1))‖L2

)
≤ C(T ),

(3.72)

∫ T

0
[‖∂xun(t, ·)‖2L2 + ‖∂xρn(t, ·)‖2L2 + σ(t)‖u̇n(t, ·)‖2L2 + σ(t)‖∂xu̇n(t, ·)‖2L2 ]dt ≤ C(T ),

(3.73)∫ T

0
σ

1
2 (τ) ‖∂xun (τ)‖2L∞ dτ ≤ C (T ) . (3.74)

sup
0<t≤T

σ(t)
1
2 ‖∂xun(t, ·)‖L∞ ≤ C (T ) . (3.75)

Using classical arguments (see [17, 23]), we prove that up to a subsequence, (ρn, un)n∈N
converges in the sense of distributions to (ρ, u), a global weak solution of (1.1). Further-
more the limit functions ρ, u inherit all the bounds (3.71), (3.72), (3.73), (3.74), (2.15)
and (3.75) via Fatou type-lemmas for the weak topology.
We wish now to prove (2.16), to do this we are going to prove that up to a subsequence
(vn)n∈N converges almost everywhere to v on R+×R. This is a direct consequence of the
estimate (3.70), indeed since (vn)n∈N is uniformly bounded in BVloc((0, T )× R) for any
T > 0, we deduce that up to a subsequence (vn)n∈N converges to v in L1

loc((0, T )×R). In
particular up to a subsequence (vn)n∈N converges almost everywhere to v in (0,+∞)×R.
Using now (3.37) and the fact that vn converges almost everywhere to v on R+ × R
implies (2.16) since for all x > y and t > 0 we have:

vn(t, x)− vn(t, y)

x− y
=

1

x− y

∫ x

y
∂zvn(t, z)dz ≤ C(t),

with C a continuous function on R+. It concludes the proof of (2.16).

3.5 Uniqueness

Consider two solutions (ρi, ui) ( i ∈ 1, 2) verifying the estimates (2.10)-(2.14) and gener-
ated by the same initial data:

∂tρi + ∂x (ρiui) = 0,
∂t (ρiui) + ∂x

(
ρiu

2
i

)
− ∂x(µ(ρi)∂xui) + ∂xpi = 0,(

ρi|t=0, ui|t=0

)
= (ρ0, u0) .

(3.76)

We define now the flows generated by ui

Xi(t, x) = x+

∫ t

0
ui (τ,X (τ, x)) dτ
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and denoting with tildes the functions

ṽi (t, x) = vi (t,Xi (t, x))

for v ∈ {ρ, u}. We get that (according to the results from the Appendix):

∂t

(
∂Xi

∂x
ρ̃i

)
= 0,

ρ0∂tũi − ∂x
(
ρ̃iµ(ρ̃i)

ρ0
∂xũi

)
+ ∂xP (ρ̃i) = 0,

Xi(t, x) = x+

∫ t

0
ũi (τ, x) dτ.

(3.77)

for i = 1, 2. Setting δũ = ũ1 − ũ2, by difference we have that:

ρ0∂tδũ− ∂
(
ρ̃1µ(ρ̃1)

ρ0
∂xδũ

)
= ∂xG1 + ∂xG2, (3.78)

where 
G1 = P

(
ρ0

1 +
∫ t
0 ∂x[ũ2]

)
− P

(
ρ0

1 +
∫ t
0 ∂x[ũ1]

)
,

G2 =

(
ρ̃1µ(ρ̃1)

ρ0
− ρ̃2µ(ρ̃2)

ρ0

)
∂xũ2.

We multiply (3.78) by δũ, integrate it over R and by obvious manipulation we get for
t > 0:

1

2

∫
R
ρ0(x)(δũ)2(t, x)dx+

1

2
inf

s∈]0,t],x

ρ̃1 (s, x)µ(ρ̃1 (s, x))

ρ0 (x)

∫ t

0

∫
R

(∂x(δũ(s, x)))2 ds dx

≤ C(t)[

∫ t

0

∫
R

(G1)
2 +

∫ t

0

∫
R

(G2)
2],

(3.79)
with C a continuous increasing function. In the following we will estimate G1 and G2.
First, we we get using (4.94) for t > 0 and x ∈ R:

δρ̃ (t, x) = δρ1 − δρ2 =
ρ0 (x)

1 +
∫ t
0 ∂xũ1

− ρ0 (x)

1 +
∫ t
0 ∂xũ2

=
−ρ0 (x)

∫ t
0 ∂xδũ (τ, x) dτ

∂xX1(t, x)∂xX2(t, x)

|δρ̃ (t, x) | ≤
√
tC (t)

(∫ t

0
|∂xδũ (τ, x)|2 dτ

) 1
2

(3.80)

and consequently using (4.92) we get:

G1 (t, x) ≤ sup
s∈[1/C(T ),C(T )]

P ′ (s)
ρ0 (x)

∣∣∣∫ t0 ∂xδũ (τ, x) dτ
∣∣∣

|∂xX1(t, x)∂xX2(t, x)|
≤
√
tC (t)

(∫ t

0
|∂xδũ (τ, x)|2 dτ

) 1
2

,

with C a continuous increasing function. It implies that∫ t

0

∫
R

(G1)
2 (s, x) ds dx ≤ t

3
2C (t)

∫ t

0

∫
R

(∂xδũ)2(s, x)dsdx. (3.81)
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Let us turn our attention towards G2. We first write that for any (t, x) ∈ R+ × R, we
have:

G2(t, x) =

(
ρ̃1µ(ρ̃1)

ρ0
− ρ̃2µ(ρ̃2)

ρ0

)
∂xũ2(t, x)

=
1

ρ0(x)
(µ)′ (θt,xρ̃1(t, x) + (1− θt,x) ρ̃2(t, x)) δρ̃(t, x)∂xũ2(t, x).

Thus, we get using (2.10), (3.80) that for t > 0:

|G2 (t, x)|2 ≤ C (t)
(
t |∂xũ2 (t, x)|2

)(∫ t

0
|∂xδũ (τ, x)|2 dτ

)
≤ C (t)

((
σ

1
2 (t)1[0,1] (t) + t1[1,∞) (t)

)
‖∂xũ2(t)‖L∞

)2(∫ t

0
|∂xδũ (τ, x)|2 dτ

)
such that by integration and using (2.14), (4.93) and (2.10) we have:∫

R
|G2 (t, x) dx|2 ≤ C (t)

∫ t

0

∫
R

[∂x(δũ(s, x))|2dx ds. (3.82)

Putting together the inequalities (3.79), (3.81), (3.82) and integrating in time, we get
that for t > 0:

1

2

∫
R
ρ0(x)(δũ)2(t, x)dx+

1

2
inf

s∈]0,t],x

ρ̃1 (s, x)µ(ρ̃1 (s, x))

ρ0 (x)

∫ t

0

∫
R

(∂x(δũ(s, x)))2 ds dx

≤ tC1(t)

∫ t

0

∫
R

[∂x(δũ(s, x))|2dx ds,

(3.83)
with C1 a continuous increasing function. Taking T0 > 0 small enough, we have using a
bootstrap argument for any t ∈ [0, T0]:

1

2

∫ 1

0
ρ0(δũ)2 +

1

4
inf
t,x

ρ̃1 (t, x)µ(ρ̃1 (t, x))

ρ0 (x)

∫ t

0

∫ 1

0
(∂x(δũ))2 ≤ 0 ∀t ∈ [0, T0] .

Thus, we get a local uniqueness property. Reiterating this process gives us the uniqueness
of the two solutions on their whole domain of definition.

4 Appendix

In this appendix, we gather a few useful facts regarding the 1D Navier-Stokes equations
in Lagrangian coordinates. The results belong to the mathematical folklore and can be
found in, by now classical papers devoted to the 1D Navier-Stokes system, see [19], [25],
[26]. The Lagrangian framework offers an elegant method of obtaining apriori estimates
(for example on the L∞ norm of ρ) either uniqueness of solutions (see the relatively recent
paper [5]).
Let us first derive the Lagrangian formulation of the Navier-Stokes system. We will
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supose that we are give (ρ, u) ∈ L∞ ([0,∞)× R)× L∞
(
L2(R)

)
∩ L2

(
Ḣ (R)

)
a solution

of the Navier-Stokes system
ρt + ∂x (ρu) = 0,
∂t (ρu) + ∂x

(
ρu2
)
− ∂x (µ (ρ) ∂xu) + ∂xP (ρ) = 0,(

ρ|t=0, u|t=0

)
= (ρ0, u0) .

(4.84)

First, we recall the definition of the flow of u.

Proposition 4.1 Consider T > 0 and u ∈ L2 ((0, T );L∞ (R)) with ∂xu ∈ L1 ((0, T );L∞ (R)).
Then, for any x ∈ R there exists a unique solution X (·, x) : [0,∞)→ R of X (t, x) = x+

∫ t

0
u (t,X (t, x)) ,

X (0, x) = x.
(4.85)

Moreover X (t, x) verifies the following properties:

• X ∈ BVloc ([0, T ]× R) for any T > 0. In addition, for all t ≥ 0 and for almost all
x ∈ R

∂xX (t, x) = exp

(∫ t

0
∂xu (τ,X (τ, x)) dτ

)
• For each t > 0, X (t, ·) is a homeorphism from R to R.

• We have that ∂tX, ∂tX ∈ L2
t (L
∞
x ) and ∂xX, ∂xX

−1 ∈ L∞t (L∞x )

Notation 1 For any function v : [0,∞) × R→ R, we denote by ṽ the function defined
as:

ṽ (t, x) := v (t,X (t, x))

We note that

X (t, x) = x+

∫ t

0
u (τ,X(τ, x)) = x+

∫ t

0
ũ (τ, x) dτ.

and thus
∂X

∂x
(t, x) = 1 +

∫ t

0
∂xũ (τ, x) dτ.

Owing to

∂xṽ (t, x) = ∂̃xv (t, x)
∂X

∂x
(t, x) (4.86)

we obtain that

∂̃xv (t, x) =
∂X

∂x
(t, x)−1 ∂xṽ (t, x) =

1

1 +
∫ t
0 ∂xũ (τ, x) dτ

∂xṽ (t, x) . (4.87)

Let us investigate the first equation of (4.84). For any ψ ∈ D ((0, T )× R) we have
that : ∫ T

0

∫
R
ρψt + ρu∂xψ = 0.
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Owing to the fact that ρ, ρu ∈ L2
T

(
L2
loc

)
the set of test functions can be enlarged to

ψ ∈ C0 ((0, T )× R) (continious functions vanishing at the boundary) with ψt, ∂xψ ∈
L2
T

(
L2
loc

)
. In view of the regularity properties of X (t, x) it follows that for any ψ ∈

D ((0, T )× R), ψ ◦ X−1 can be used as a test function. Using this along with the fact
that X (t, x) is a homeomorphism for all t, we write that

0 =

∫ T

0

∫
R
ρ(∂tψ ◦X−1) + ρu∂x(ψ ◦X−1)dxdt

=

∫ T

0

∫
R
ρ̃
(

˜∂t(ψ ◦X−1) + ũ ˜∂x(ψ ◦X−1)
)
∂xX (t, x) dxdt

=

∫ T

0

∫
R
ρ̃∂xX∂tψ

witch translates into
d

dt

(
∂X

∂x
ρ̃

)
= 0. (4.88)

Prooceding in a symilar manner, we get that the velocity’s equation rewrites as

ρ0 (x) ∂tũ− ∂x

((
∂X

∂x

)−1
µ(ρ̃) ∂xũ

)
+ ∂xP (ρ̃) = 0. (4.89)

Putting together equations, (4.88) and (4.89) we deduce that the system (4.84) can be
writen in lagrangian coordinates as:

d

dt

(
∂X

∂x
ρ̃

)
= 0,

ρ0 (x) ∂tũ− ∂x

((
∂X

∂x

)−1
µ(ρ̃) ∂x ũ

)
+ ∂xP (ρ̃) = 0,

X (t, x) = x+

∫ t

0
ũ (τ, x) dτ,

(4.90)

or, equivalently 

d

dt

(
∂X

∂x
ρ̃

)
= 0,

ρ0 (x) ∂tũ− ∂x
(
ρ̃µ(ρ̃)

ρ0
∂x ũ

)
+ ∂xP (ρ̃) = 0,

X (t, x) = x+

∫ t

0
ũ (τ, x) dτ,

(4.91)

Let us close this appendix observing that if we dispose of an inequality of the following
type (it is the case in our case, see (2.10)):

C(t)−1 ≤ ρ̃(t, x) ≤ C (t) (4.92)

then one may obtain from (4.91) that

C(t)−1 inf ρ0 ≤
∂X

∂x
(t, x) ≤ C (t) sup ρ0, (4.93)

along with
C(t)

inf ρ0
≥
(
∂X

∂x
(t, x)

)−1
=
ρ̃(t, x)

ρ0(x)
≥ C(t)−1

sup ρ0
. (4.94)
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Sketch of the proof of the Theorem 3.3

In this section, we are just giving a sketch of the proof of the blow-up criterion. The
part concerning the existence of strong solution in finite time is classical. We begin by
observing that the Navier-Stokes system can be writen under the following form:{

∂tu+ 2u∂xu− ∂x
(
ρα−1∂xu

)
= v∂xu− γργ−α (v − u) ,

∂tv + u∂xv = −γργ−α+1 (v − u)
(4.95)

Let us recall a classical product law in Sobolev spaces along with the Kato-Ponce comu-
tator estimate

Lemma 1 (Kato-Ponce) The following estimates holds true for s > 0 with FΛsf(ξ) =
|ξ|sFf(ξ) for f a temperated distribution:

‖Λs (fg)‖L2 ≤ ‖f‖L∞ ‖Λsg‖L2 + ‖g‖L∞ ‖Λsf‖L2 (4.96)

‖Λs (f∂xg)− fΛs∂xg‖L2 ≤ C (‖∂xf‖L∞ ‖Λsg‖L2 + ‖Λsf‖L2 ‖∂xg‖L∞) (4.97)

In the sequel we wish to describe how to preserve all along the time the Hs norm of u
and ρ− 1 for s > 3

2 .
We rewrite the system (4.95) as

∂tΛsu+ 2u∂xΛsu− ∂x
(
ρα−1∂xΛsu

)
= Λs (v∂xu)− γΛs (ργ−α (v − u))

+2 [Λs, u] ∂xu+ ∂x
([
ρα−1,Λs

]
∂xu

)
,

∂tΛsv + u∂xΛsv = −γΛs
(
ργ−α+1 (v − u)

)
+ [Λs, u] ∂xv

(4.98)

Multiply the first equation with Λsu and integrate over R, we get that:

1

2

d

dt

∫
R
|Λsu|2 +

∫
R
ρα−1 |∂xΛsu|2 =

∫
R
∂xu |Λsu|2 +

∫
R

Λs (v∂xu) Λsu

− γ
∫
R

Λs
(
ργ−α (v − u)

)
Λsu+

∫
R

2 [Λs, u] ∂xuΛsu+

∫
R
∂x
([
ρα−1,Λs

]
∂xu

)
Λsu.

(4.99)
Multipliyng the second equation of (4.98) with Λsv we obtain that:

1

2

d

dt

∫
R
|Λsv|2 =

1

2

∫
R
∂xu |Λsv|2 − γ

∫
R

Λs
(
ργ−α+1 (v − u)

)
Λsv +

∫
R

[Λs, u] ∂xvΛsv.

(4.100)
If we add up (4.99) and (4.100), it yields that

1

2

d

dt

∫
R

{
|Λsu|2 + |Λsv|2

}
+

∫
R
ρα−1 |∂xΛsu|2

=

∫
R
∂xu |Λsu|2 +

∫
R

Λs (v∂xu) Λsu− γ
∫
R

Λs
(
ργ−α (v − u)

)
Λsu

+

∫
R

2 [Λs, u] ∂xuΛsu+

∫
R
∂x
([
ρα−1,Λs

]
∂xu

)
Λsu

1

2

∫
R
∂xu |Λsv|2 − γ

∫
R

Λs
(
ργ−α+1 (v − u)

)
Λsv +

∫
R

[Λs, u] ∂xvΛsv (4.101)
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In the following lines, we analyse the different terms appearing in the left hand side of
(4.101). The first two terms are treated in the following manner using Lemma 1:∫

R
∂xu |Λsu|2 +

∫
R

Λs (v∂xu) Λsu

. ‖∂xu‖L∞ ‖Λsu‖
2
L2 + ‖∂xu‖L∞ ‖Λsv‖L2 ‖Λsu‖L2 + ‖v‖L∞ ‖∂xΛsu‖L2 ‖Λsu‖L2

. ‖∂xu‖L∞ ‖Λsu‖
2
L2 + ‖∂xu‖L∞ ‖Λsv‖L2 ‖Λsu‖L2 + ‖v‖L∞

∥∥ρ1−α∥∥ 1
2

L∞

∥∥ρα−1∂xΛsu
∥∥
L2 ‖Λsu‖L2

≤ C ‖∂xu‖L∞ ‖Λsu‖
2
L2 + C ‖∂xu‖L∞ ‖Λsv‖L2 ‖Λsu‖L2 + C ‖v‖2L∞

∥∥ρ1−α∥∥
L∞
‖Λsu‖2L2

+
1

8

∥∥∥ρα−1
2 ∂xΛsu

∥∥∥2
L2
.

(4.102)
The third term can be treated as follows:∫

R
Λs
(
ργ−α (v − u)

)
Λsu .

( ∥∥ργ−α∥∥
L∞

(‖Λsv‖L2 + ‖Λsu‖L2) ‖Λsu‖L2

+ ‖(v − u)‖L∞
∥∥Λs

(
ργ−α − 1

)∥∥
L2

)
‖Λsu‖L2 .

(4.103)

We have for the fourth term using Lemma 1:∫
R

2 [Λs, u] ∂xuΛsu . ‖∂xu‖L∞ ‖Λsu‖
2
L2 (4.104)

The fifth term :∫
R
∂x
([
ρα−1,Λs

]
∂xu

)
Λsu

≤ C
∥∥[ρα−1,Λs] ∂xu∥∥L2 ‖∂xΛsu‖L2

≤ C
∥∥ρα−1∥∥

L∞

(∥∥∂xρα−1∥∥L∞ ‖Λsu‖L2 + ‖∂xu‖L∞
∥∥Λs

(
ρα−1 − 1

)∥∥
L2

)2
+

1

8

∥∥∥ρα−1
2 ∂xΛsu

∥∥∥2
L2

≤ C
∥∥ρα−1∥∥

L∞

(
‖v − u‖L∞ ‖Λsu‖L2 + ‖∂xu‖L∞

∥∥Λs
(
ρα−1 − 1

)∥∥
L2

)2
+

1

8

∥∥∥ρα−1
2 ∂xΛsu

∥∥∥2
L2
.

(4.105)
We skip the sixth term. Seventh term :∫

R
Λs
(
ργ−α+1 (v − u)

)
Λsv . ‖Λsv‖L2 ‖Λsu‖L2 + ‖Λsv‖2L2

+
(∥∥ργ−α+1 − 1

∥∥
L∞
‖Λs (v − u)‖L2 + ‖v − u‖L∞ (

∥∥Λs
(
ργ−α+1 − 1

)∥∥
L2)
)
‖Λsv‖L2

(4.106)
Last term :∫

R
[Λs, u] ∂xvΛsv . (‖∂xu‖L∞ ‖Λsv‖L2 + ‖∂xv‖L∞ ‖Λsu‖L2) ‖Λsv‖Lé (4.107)

Let us observe that in the estimates (4.103) (4.105) and (4.106) we have to treat the
Hs-norm of ργ−α,ρα−1 and ργ−α+1 respectively. This is the objective of the following
lines. For each β, we may write that

∂tρ
β + u∂xρ

β = −βρβ∂xu.
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and consequently

∂tΛs

(
ρβ − 1

)
+ u∂xΛs

(
ρβ − 1

)
= −βΛs

(
ρβ∂xu

)
+ [Λs, u] ∂x

(
ρβ − 1

)
.

We get that

1

2

d

dt

∫
R

∣∣∣Λs (ρβ − 1
)∣∣∣2 ≤ (

1

2
+ β) ‖∂xu‖L∞

∥∥∥Λs

(
ρβ − 1

)∥∥∥2
L2

+β

(
‖∂xu‖L∞

∥∥∥Λs

(
ρβ − 1

)∥∥∥2
L2

+
∥∥∥(ρβ − 1

)∥∥∥
L∞
‖Λs∂xu‖L2

)∥∥∥Λs

(
ρβ − 1

)∥∥∥
L2

+
(
‖∂xu‖L∞

∥∥∥Λs

(
ρβ − 1

)∥∥∥
L2

+
∥∥∥∂xρβ∥∥∥

L∞
‖Λsu‖L2

)∥∥∥Λs

(
ρβ − 1

)∥∥∥
L2

≤ Cε
(
‖∂xu‖L∞ +

∥∥ρ1−α∥∥2
L∞

∥∥∥(ρβ − 1
)∥∥∥2

L∞
+ ‖v − u‖2L∞

)∥∥∥Λs

(
ρβ − 1

)∥∥∥2
L2

+ ‖Λsu‖2L2 + ε
∥∥∥ρα−1

2 ∂xΛsu
∥∥∥2
L2

(4.108)

Thus putting togheter the estimates (4.102),(4.103),(4.104),(4.105),(4.106),(4.107) and
(4.108) for β = α− 1, γ − α, γ − α+ 1 we get that∫

R

{
|Λsu|2 + |Λsv|2 +

∣∣Λs (ρα−1 − 1
)∣∣2 +

∣∣Λs (ργ−α − 1
)∣∣2 +

∣∣Λs (ργ−α+1 − 1
)∣∣2} (t, x)dx

+

∫ t

0

∫
R
ρα−1 |∂xΛsu|2 (s, x)dsdx

≤ C (u0, ρ0) exp

(∫ t

0

(
1 +

∥∥∥∥(ρ, 1

ρ

)∥∥∥∥
L∞

)δ (
1 + ‖(u, v, ∂xu, ∂xv)‖2L∞

))
(4.109)

with δ depending on α and γ. We mention also that C (u0, ρ0) depends on ‖u0‖Hs ,
‖ρ0 − 1‖Hs , ‖ρ0‖L∞ and ‖ 1

ρ0
‖L∞ . Next, let us analyse in more detail the equation of v :

∂tv + u∂xv = −γργ−α+1 (v − u)

We get that

‖v‖L∞t (L∞x ) ≤ ‖v0‖L∞x +
∥∥ργ−α+1

∥∥
L∞t (L∞x )

∫ t

0
‖u(s, ·)‖L∞ ds.

Moreover, writing the equation of ∂xv we see that

(∂xv)t + u∂x (∂xv) +
(
∂xu+ γργ−α

)
∂xv = γργ−α∂xu− γ (γ − α) ργ−2α+2 (v − u)2

From which we deduce that

‖∂xv‖L∞t (L∞x ) . ‖∂xv0‖L∞x + ψ

(1 +

∥∥∥∥(ρ, 1

ρ

)∥∥∥∥
L∞t (L∞)

)δ1 (
1 +

∫ t

0
‖(u, ∂xu)‖L∞

)
with ψ (r) = r exp r and δ1 depending on γ and α. Moreover, the Bresch-Desjardins
entropy allows a uniform control on ‖ρ‖L∞t (L∞x ). Let us denote by:

Ã (ρ, u) (t) =

∫
R
ρα (t) (∂xu)2 (t) +

∫ t

0

∫
R
ρu̇2.
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Using the same techniques as in the section on the Hoff estimates, we may show that

Ã (ρ, u) (t) ≤ C0 exp

t(1 +

∥∥∥∥1

ρ

∥∥∥∥
L∞t (L∞)

)δ2
which, in turn, ensures a control on ‖∂xu‖L2

t (L
∞) provided that we control ‖1ρ‖L∞t (L∞).

To summarize:

• The Bresch-Desjardins entropy provides control on ‖ρ‖L∞t (L∞x ) for any t > 0,

• ‖(v, ∂xv)‖L∞t (L∞) is controlled by ‖(u, ∂xu)‖L1(L∞) and
∥∥∥(ρ, 1ρ)∥∥∥L∞t (L∞)

,

• The Hoff-type estimates ensure that ‖∂xu‖L2
t (L
∞
x ) is controlled by

∥∥∥(ρ, 1ρ)∥∥∥L∞t (L∞)

• Using the basic energy estimate we obtain that ‖u‖L2
t (L
∞
x ) is controlled by

∥∥∥(ρ, 1ρ)∥∥∥L∞t (L∞)
.

Taking into account the estimate (4.109) we get that for any T > 0 and any s > 3
2 the

Hs-Sobolev norm of (u, v, ρ− 1) is uniformly controlled by
∥∥∥1
ρ

∥∥∥
L∞t (L∞)

.
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