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New effective pressure and existence of global strong solution for compressible Navier-Stokes equations with general viscosity coefficient in one dimension

In this paper we prove the existence of global strong solution for the Navier-Stokes equations with general degenerate viscosity coefficients. The cornerstone of the proof is the introduction of a new effective pressure which allows to obtain an Oleinik-type estimate for the so called effective velocity. In our proof we make use of additional regularizing effects on the velocity which requires to extend the technics developed by Hoff for the constant viscosity case.

Introduction

We consider the compressible Navier Stokes system in one dimension with x ∈ R:

     ∂ t ρ + ∂ x (ρu) = 0,
∂ t (ρu) + ∂ x (ρu 2 ) -∂ x (µ(ρ)∂ x u) + ∂ x P (ρ) = 0, (ρ, u) t=0 = (ρ 0 , u 0 ). (1.1) Here u = u(t, x) ∈ R stands for the velocity field, ρ = ρ(t, x) ∈ R + is the density, P (ρ) = ρ γ is the pressure. We denote by µ(ρ) the viscosity coefficient of the fluid and (ρ 0 , u 0 ) are the initial data. In the sequel we shall only consider viscosity of the form:

µ(ρ) = ρ α (1.2)
with α > 0. This choice is motivated by physical considerations. Indeed it is justified by the derivation of the Navier-Stokes equations from the Boltzmann equation through the Chapman-Enskog expansion to the second order (see [START_REF] Chapman | The mathematical theory of non-uniform gases. An account of the kinetic theory of viscosity, thermal conduction and diffusion in gases[END_REF]), the viscosity coefficient is then a function of the temperature. If we consider the case of isentropic fluids, this dependence is expressed by a dependence on the density function (we refer in particular to [START_REF] Hoff | The Failure of Continuous Dependence on Initial Data for the Navier-Stokes Equations of Compressible Flow[END_REF]). We mention that the case µ(ρ) = ρ is related to the so called viscous shallow water system. This system with friction has been derived by Gerbeau and Perthame in [START_REF] Gerbeau | Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation[END_REF] from the Navier-Stokes system with a free moving boundary in the shallow water regime at the first order. This derivation relies on the hydrostatic approximation where the authors follow the role of viscosity and friction on the bottom.

We are now going to rewrite the system (1.1) following the new formulation proposed in [START_REF] Haspot | New formulation of the compressible Navier-Stokes equations and parabolicity of the density[END_REF] (see also [START_REF] Haspot | From the highly compressible Navier-Stokes equations to fast diffusion and porous media equations, existence of global weak solution for the quasi-solutions[END_REF][START_REF] Haspot | Hyperbolic Problems: Theory, Numerics[END_REF][START_REF] Haspot | Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D[END_REF]), indeed setting:

v = u + µ(ρ) ρ 2 ∂ x ρ, (1.3) 
called the effective velocity, we can rewrite the system (1.1) as follows:

∂ t ρ + ∂ x (ρu) = 0, ρ∂ t v + ρu∂ x v + ∂ x P (ρ) = 0. (1.4)
The existence of global weak solution has been obtained by Jiu and Xin in [START_REF] Jiu | The Cauchy problem for 1D compressible flows with densitydependent viscosity coefficients[END_REF] for viscosity coefficients verifying (1.2). In passing we point out that a large amount of literature is essentially dedicated to the study of the compressible Navier-Stokes equations with constant viscosity coefficients. In particular the existence of global strong solution with large initial data for initial density far away from the vacuum has been proved for the first time by Kanel [START_REF] Ya | On a model system of equations of one-dimensional gas motion[END_REF] (see also [START_REF] Kazhikhov | Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas[END_REF][START_REF] Hoff | Global existence for 1D compressible, isentropic Navier-Stokes equations with large initial data[END_REF] ). In [START_REF] Hoff | Non-formation of vacuum states for compressible Navier-Stokes equations[END_REF] the authors proved that vacuum states do not arise provided that the initial density is positive almost everywhere. We would like also to mention the results of Hoff in [START_REF] Hoff | Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states[END_REF] who proved the existence of global weak solution for constant viscosity coefficients with initial density admitting shocks (we refer also to [START_REF] Serre | Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible[END_REF][START_REF] Serre | Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur[END_REF][START_REF] Lions | Mathematical topics in fluid mechanics[END_REF]). The author exhibited regularizing effects on the velocity via the use of tricky estimates on the convective derivative: u = ∂ t u + u∂ x u, we will generalize these techniques in the present paper to the case of general viscosity coefficients. In [START_REF] Haspot | Vortex solutions for the compressible Navier-Stokes equations with general viscosity coefficients in 1D: regularizing effects or not on the density[END_REF], the second author proved also the existence of global weak solution for general viscosity coefficients with initial density admitting shocks and with initial velocity belonging to the set of finite measures. In opposite to [START_REF] Hoff | Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states[END_REF], the initial data satisfy the BD entropy but not the classical energy, it allows in particular to show some regularizing effects on the density inasmuch as the density becomes instantaneously continuous. It is due to the regularity of the effective velocity v which express the coupling between the velocity and the density.

The problem of existence of global strong solution for system (1.1) with large initial data and with general viscosity coefficients verifying (1.2) is not yet completely solved. Indeed when α > 1 it requires conditions of sign on the so called effective flux (see [START_REF] Hoff | Global existence for 1D compressible, isentropic Navier-Stokes equations with large initial data[END_REF][START_REF] Lions | Mathematical topics in fluid mechanics[END_REF]). This quantity represents the force that the fluids exerts on itself and a priori has no reason to be signed. In the following we are going to present the current state of art concerning the existence of global strong solution for system (1.1) with viscosity coefficients verifying (1.2).

It has been first proved by Mellet and Vasseur (see [START_REF] Mellet | On the barotropic compressible Navier-Stokes equations[END_REF]) in the case 0 < α < 1 2 . The main argument of their proof consists in using the Bresch-Dejardins entropy (see [START_REF] Bresch | Existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids[END_REF]) in order to estimate the L ∞ norm of 1 ρ and using the parabolicity of the momentum equation of (1.1). It is important at this level to point out that the Bresch-Dejardins entropy gives almost for free the control of 1 ρ L ∞ t,x when α < 1 2 . In [START_REF] Haspot | Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D[END_REF], the second author has proved similar results for the case 1 2 < α ≤ 1 where he exploited the fact that the effective velocity v satisfies a damped transport equation. It enables to obtain L ∞ estimates for v and using maximum principle to get L ∞ control on 1 ρ . More recently Constantin et al in [START_REF] Constantin | Compressible fluids and active potentials[END_REF] have extended the previous results. More precisely, in the range α ∈ 1 2 , 1 under the condition γ ≥ 2α, the authors obtain global existence of strong solutions for initial data belonging to H 3 . They prove that the same result also holds true in the case α > 1 with γ belonging to [α, α + 1] provided that the initial data satisfy:

∂ x u 0 ≤ ρ γ-α 0 . (1.5)
We point out that the condition (1.5) is equivalent to consider a negative effective flux (see for example [START_REF] Hoff | Global existence for 1D compressible, isentropic Navier-Stokes equations with large initial data[END_REF][START_REF] Lions | Mathematical topics in fluid mechanics[END_REF]) at initial time. The main idea of their proof consists in proving via a maximum principle that the effective flux remains negative for all time. This is sufficient to control the L ∞ norm of 1 ρ . In the present paper, our goal is double inasmuch as we wish both to show the existence of global strong solution for the case α > 1 2 without any sign restriction on the initial data and with minimal assumptions in terms of regularity. In [START_REF] Constantin | Compressible fluids and active potentials[END_REF], Constantin et al proved a blow-up criterion for α > 1 2 which is relied to estimating the L ∞ t,x norm of 1 ρ . In order to apply this blow-up criterion, we introduce a new effective pressure

y = ∂xv ρ + F 2 (ρ) with ρF 2 (ρ) = F 1 (ρ) ρ and F 1 (ρ) = P (ρ)ρ µ(ρ)
. We observe then that y satisfies the following equation:

∂ t y + u∂ x y + F 1 (ρ)y -F 1 (ρ)F 2 (ρ) + F 1 (ρ) ρ µ(ρ) (v -u) 2 = 0. (1.6) 
This last equation enables us to prove that if y 0 ≤ C with C ∈ R then y remains bounded on the right all along the time which implies in particular that:

∂ x v(t, x) ≤ C 1 (t) ∀(t, x) ∈ R + × R, (1.7) 
with C 1 a continuous increasing function. Using maximum principle for the mass equation of (1.4) allows us to prove that 1 ρ is bounded all along the time. In order to show the uniqueness of the solutions, we extend Hoff's techniques to the case of general viscosity coefficients which enables us to prove that ∂ x u belongs to L 1 loc (L ∞ (R)). Passing in Lagrangian formulation (see the Appendix and the references therein), we get the uniqueness of the solutions. Finally, we would like to mention that the estimate (1.7) is reminiscent of the so-called Oleinik estimate (see [START_REF] Oleinik | On the uniqueness of the generalized solution of the Cauchy problem for a non-linear system of equations occurring in mechanics[END_REF][START_REF] Dafermos | Hyperbolic Conservation Laws in Continuum Physics[END_REF]) for scalar conservation law with a flux strictly convex or concave. If we consider the following equation with f regular:

∂ t u + ∂ x f (u) = 0, u(0, •) = u 0 ∈ L ∞ (R),
the Kruzhkov theorem (see [START_REF] Kruzhkov | First-order quasilinear equations with several space variables[END_REF]) asserts that there exists a unique entropy solution. In addition if f is genuinely non linear, Oleinik has proved the following estimate in the sense of measures for C > 0 and for any (t, x) ∈ R + × R:

∂ x u(t, x) ≤ C t . (1.8)
This estimate gives regularizing effects on u since instantaneously u(t, •) with t > 0 is in BV loc (R). In our case, we have no regularizing effects on v. A possible explanation is the fact that v satisfies a damped transport equation which is in some sense linearly degenerate.

Main results

We are now in position to state our main theorem. 2 . In addition we assume that v 0 ∈ L 2 (R) and that there exists C ∈ R such that for any x > y we have:

Theorem 2.1 Let α > 1 2 , γ ≥ max(1, α), (ρ 0 , 1 ρ 0 ) ∈ (L ∞ (R)) 2 , (ρ 0 -1, u 0 ) ∈ (L 2 (R 2 ))
v 0 (x) -v 0 (y) x -y ≤ C (2.9)
Then there exists a unique global strong solution (ρ, u) for the Navier-Stokes system (1.1) with the following properties. For any given T > 0, L > 0 there exist a positive constant C(T ), a positive constant C(T, L) depending respectively on T , on T , L and on

ρ 0 -1 L 2 , (ρ 0 , 1 ρ 0 ) L ∞ , u 0 L 2 , v 0 L 2 such that, if σ(t) = min(1; t), then: C(T ) -1 ≤ ρ(T, •) ≤ C(T ) a.e, (2.10) 
sup 0<t≤T ρ(t, •) -1 L 2 + u(t, •) L 2 + ∂ x ρ(t, •) L 2 + σ(t) 1 2 ∂ x u(t, •) L 2 + σ(t) 1 2 ( u(t, •) L 2 + ∂ x (ρ α ∂ x u(t, •) -P (ρ) + P (1)) L 2 ≤ C(T ), (2.11) 
T 0 [ ∂ x u(t, •) 2 L 2 + ∂ x ρ(t, •) 2 L 2 + σ(t) u(t, •) 2 L 2 + σ(t) ∂ x u(t, •) 2 L 2 ]dt ≤ C(T ), (2.12 
)

T 0 σ 1 2 (τ ) ∂ x u (τ ) 2 L ∞ dτ ≤ C (T ) . (2.13) sup 0<t≤T σ(t) 1 2 ∂ x u(t, •) L ∞ ≤ C (T ) (2.14) v BV ([0,T ]×[-L,L]) ≤ C(T, L). (2.15) 
Furthermore for any x > y and t ≥ 0, we have almost everywhere:

v(t, x) -v(t, y) x -y ≤ C 1 (t), (2.16) 
with C 1 a continuous increasing function.

Remark 1 It is important to point out that our theorem requires that ∂ x ρ 0 belongs to

L 2 (R). Indeed since ∂ x ϕ(ρ 0 ) = v 0 -u 0 with v 0 ∈ L 2 (R) and u 0 ∈ L 2 (R), it implies that ∂ x ϕ(ρ 0 ) ∈ L 2 (R). since 1 ρ 0 is in L ∞ (R), we deduce that ∂ x ρ 0 is in L 2 (R). Furthermore since ϕ(ρ 0 ) -1 is also in L 2 (R) using that 1 ρ 0 and ρ 0 are in L ∞ (R), we deduce that ϕ(ρ 0 ) -1 is in H 1 (R).
The initial density ρ 0 is then necessary a continuous function which prevents us from considering shock-type initial data.

Remark 2 We would like to mention that any solution (ρ, u) of system (1.1) in the sense of distributions which verifies the regularity assumptions of Theorem 2.1 is also a strong solution i.e. (ρ, u) satisfy the system (1.1) almost everywhere on R + × R. Setting w 1 (t, x) = ρ α ∂ x u(t, x) -P (ρ(t, x)) + P (1) the effective flux, we get from (2.10) and (2.11) that for any t > 0:

σ(t) 1 2 ∂ x w 1 (t, •) L 2 ≤ C(t) σ(t) 1 2 ∂ x u(t, •) L 2 + P (ρ)(t, •) -P (1) L 2 ≤ C(t),
for C a continuous increasing function. This implies that w 1 belongs to L 1 loc (R + , H 1 (R)). Using now the fact that (P (ρ

) -P (1)) belongs to L ∞ loc (H 1 (R)), we deduce that ρ α ∂ x u is in L 1 loc (H 1 (R))
. Using (2.10), the fact that

( 1 ρ α -1) belongs to L ∞ loc (H 1 (R)) we get using product law in Sobolev spaces that ∂ x u is in L 1 loc (H 1 (R)). In particular ∂ xx u is in L 1 loc (L 2 (R)).
In other words it is easy to observe that each term of (1.1) is in L 1 loc (R + ×R) which ensures that (ρ, u) satisfies (1.1) almost everywhere.

Remark 3 Let us point out that compared with [START_REF] Constantin | Compressible fluids and active potentials[END_REF], we deal with the range γ ≥ max(α, 1) whereas in [START_REF] Constantin | Compressible fluids and active potentials[END_REF] the authors treat the case α ≤ γ ≤ α + 1, α > 1 provided that ∂ x u 0 ≤ ρ γ-α 0 . In a certain sense the method that we developed in our proof unifies the different situations, γ > α + 1 and α ≤ γ < α + 1. Furthermore we do not require any condition of sign on the initial data.

Remark 4

The condition (2.9) is a condition of Oleinik-type which implies that v 0 is in BV loc (R). Indeed we recall that for any x ∈ R we have |x| = (2x) + -x with (x) + = max(0, x). It yields then that for any interval [a, b] such that v 0 (a) and v 0 (b) are finite and any increasing subdivision (x n ) n=1,••• ,N of the interval [a, b] with N ∈ N * , we have using (2.9) and taking x 0 = a, x N +1 = b if x 1 > a and x N < b:

N -1 i=1 |v 0 (x i+1 ) -v 0 (x i )| ≤ N i=0 |v 0 (x i+1 ) -v 0 (x i )| ≤ 2 N i=0 (v 0 (x i+1 ) -v 0 (x i )) + + v 0 (a) -v 0 (b) ≤ 2C N i=0 (x i+1 -x i ) + v 0 (a) -v 0 (b) ≤ 2C(b -a) + v 0 (a) -v 0 (b)
In particular this shows that v 0 is necessary in L ∞ loc (R). Furthermore (2.16) implies that the Oleinik estimate (2.9) is preserved all along the time. In addition since x → v(t, x) -C 1 (t)x is non-increasing, we deduce that v(t, •) has left and right-hand limits at each points for almost t ≥ 0.

Remark 5 Our theorem does not require high regularity assumption on the initial velocity. Indeed, we assume only that u 0 and v 0 are respectively in L 2 (R) and L 2 (R)∩BV loc (R). This is however sufficient in order to ensure uniqueness.

Remark 6

We can observe that in the case 1 2 < α ≤ 1, our assumption on γ is optimal (from an hyperbolic point of view) since we need only γ ≥ 1. This extends the results of [START_REF] Constantin | Compressible fluids and active potentials[END_REF][START_REF] Haspot | Existence of global strong solution for the compressible Navier-Stokes equations with degenerate viscosity coefficients in 1D[END_REF].

Remark 7

We can observe that (2.13) and (2.14) give a L 1 loc (L ∞ (R)) control on ∂ x u. In particular, this enables us to define the flow associated to the velocity u (we refer for more details to the Appendix).

We would like to emphasize that the condition (2.9) is automatically satisfied provided that ∂ x v 0 ∈ L ∞ . A necessary condition for this later condition to hold is to take initial

data 1 ρ 0 -1, ρ 0 -1, u 0 in the following Sobolev spaces (H s (R)) 2 × H s-1 (R) with s 1 > 5 2
, . As a by-product of Theorem 2.1 and the Appendix, we establish the following result.

Theorem 2.2 Consider α ≥ 1 2 , γ ≥ max (1, α) and 
1 ρ 0 -1, ρ 0 -1, u 0 ∈ (H s (R)) 2 × H s-1 (R)
with s > 5 2 . Then, the compressible Navier-Stokes system (1.1) admits an unique solution, we have

(ρ -1, u) ∈ C(R + , H s (R) × H s-1 (R)).
In the section 3, we prove the Theorem 2.1. An appendix is devoted to the definition and basic properties of the Lagrangian framework, we give also a sketch of the proof of the Theorem 3.3 below.

Proof of the Theorem 2.1

A first ingredient is the following blow-up criterion Theorem 3.3 Assume that α > 1 2 and γ ≥ max(α-1 2 , 1) and let s ≥ 3 and (ρ 0 -1, u 0 ) ∈ H s (R). Then there exists T * > 0 such that (ρ, u) is a strong solution on (0, T * ) with:

(ρ -1) ∈ C(0, T, H s (R)), u ∈ C(0, T, H s (R)) ∩ L 2 (0, T, H s+1 (R)), ∀T ∈ (0, T * ),
and for all t ∈ (0, T * ):

1 ρ (t, •) L ∞ ≤ C(t),
where C(t) < +∞ if t ∈ (0, T * ). In addition, if:

sup t∈(0,T * ) 1 ρ (t, •) L ∞ ≤ C < +∞,
then the solution can be continued beyond (0, T * ).

The above result says that the only way a regular solution might blow-up is if the L ∞ -norm of 1/ρ blows-up. Theorem 3.3 is essentially an adaptation to the whole space of the blow-up criterion proved in Constantin et al (see Theorem 1.1. from [START_REF] Constantin | Compressible fluids and active potentials[END_REF]) in the case of the torus. We refer the reader to the Appendix for a sketch of the proof.

The objective of the rest of this section and section 3.1 is to show how to obtain a new bound for the L ∞ -norm of 1/ρ by analysing a new quantity that we call effective pressure. Consider a pair (ρ 0 , u 0 ) verifying the hypothesis stated in Theorem 2.1 and let us also consider the following sequence:

ρ n 0 -1 = j n * (ρ 0 -1) and v n 0 = j n * v 0 , with j n a regularizing kernel, j n (y) = nj(ny) with 0 ≤ j ≤ 1, R j(y)dy = 1, j ∈ C ∞ (R) and suppj ⊂ [-2, 2]. We deduce that (ρ n 0 -1, v n 0 ) belong to all Sobolev spaces H s (R) with s ≥ 5/2 and that: 0 < c ≤ ρ n 0 ≤ M < +∞. (3.17)
Also, we consider

u n 0 = v n 0 -∂ x ϕ(ρ n 0 )
, by composition theorem we know that ϕ(ρ n 0 ) -ϕ(1) belongs to H k (R) for any k ≥ 0. Then we obtain that u n 0 ∈ H k (R) for k ≥ 3. Finally we have for x > y and using (2.9):

v n 0 (x) -v n 0 (y) x -y = R ( v 0 (x -z) -v 0 (y -z) x -y )j n (z)dz ≤ C.
In particular we deduce that for any x ∈ R, we have:

∂ x v n 0 (x) ≤ C. (3.18) 
Using the Theorem (3.3), we deduce that there exists a strong solution (ρ n , u n ) on (0, T * n ) with n ∈ N. We are going to prove that T * n = +∞ and uniform estimates on (ρ n , u n ) n∈N on the time interval R + . The goal now is to apply the blow-up criterion of the Theorem 3.3. Let us prove that for any t ∈ (0, T * n ):

1 ρ n (t, •) L ∞ ≤ C,
for any n ∈ N. Let us recall that there exists C > 0 such that for any t > 0 we have:

R [ρ n (t, x)|u n | 2 (t, x) + Π(ρ n (t, x)) -Π(1)]dx + t 0 R µ(ρ n (s, x))(∂ x u n (s, x)) 2 dsdx ≤ C, (3.19 
) and:

R [ρ n (t, x)|v n | 2 (t, x) + Π(ρ n (t, x)) -Π(1)]dx + t 0 R µ(ρ n )P (ρ n ) ρ n |∂ x ρ n (s, x)| 2 dsdx ≤ C, (3.20 
) This is due to the fact that it exists C 1 > 0 such that:

v n 0 L 2 (R) ≤ C 1 , ρ n 0 -1 L 2 (R) ≤ C 1 and ∂ x ρ n 0 L 2 (R) ≤ C 1 .
Combining (3.19) and (3.20), we deduce that for C > 0 large enough we have for any t ∈ (0, T * n ):

ρ n (t, •) -1 L γ 2 (R) ≤ C, √ ρ n ∂ x ϕ(ρ n ) ≤ C. (3.21)
We refer to [START_REF] Lions | Mathematical topics in fluid mechanics[END_REF] for the definition of Orlicz spaces. Since γ > α + 1, using (3.21) and the Lemma 3.7 from ( [START_REF] Jiu | The Cauchy problem for 1D compressible flows with densitydependent viscosity coefficients[END_REF]) we get for C > 0 large enough and independent on n:

ρ n L ∞ ([0,T * n ],L ∞ ) ≤ C. (3.22)
3.1 New effective pressure y n and uniform estimates for 1 ρn

We recall now that the effective velocity v n verifies the momentum equation of the system (1.4), namely:

∂ t v n + u n ∂ x v n + ∂ x F (ρ n ) = 0,
with:

∂ x F (ρ n ) = P (ρ n )ρ n µ(ρ n ) (v n -u n ).
Let us set now w n = ∂ x v n , we observe that w n satisfies the following equation:

∂ t w n + u n ∂ x w n + ∂ x u n w n + P (ρ n )ρ n µ(ρ n ) w n - P (ρ n )ρ n µ(ρ n ) ∂ x u n + ∂ x ( P (ρ n )ρ n µ(ρ n ) )(v n -u n ) = 0.
If we set F 1 (ρ) = P (ρ)ρ µ(ρ) , we have:

∂ t w n + u n ∂ x w n + ∂ x u n w n + F 1 (ρ n )w n -F 1 (ρ n )∂ x u n + F 1 (ρ n ) ρ 2 n µ(ρ n ) (v n -u n ) 2 = 0.
Let us multiply the previous equation by 1 ρn , we get then:

∂ t ( w n ρ n ) + u n ∂ x ( w n ρ n ) + F 1 (ρ n ) w n ρ n - F 1 (ρ n ) ρ n ∂ x u n + F 1 (ρ n ) ρ n µ(ρ n ) (v n -u n ) 2 = 0.
We set now

y n = wn ρn + F 2 (ρ n ) with ρ n F 2 (ρ n ) = F 1 (ρn)
ρn , we obtain then:

∂ t y n + u n ∂ x y n + F 1 (ρ n )y n -F 1 (ρ n )F 2 (ρ n ) + F 1 (ρ n ) ρ n µ(ρ n ) (v n -u n ) 2 = 0. ( 3.23) 
We recall now that P (ρ) = ρ γ n , µ(ρ n ) = ρ α n and we get:

       F 2 (ρ n ) = γ γ -α -1 ρ γ-α-1 n if γ -α -1 = 0 F 2 (ρ n ) = γ ln ρ n if γ = α + 1 F 1 (ρ n ) = γρ γ-α n . (3.24)
Now since y n is continuous on R + × R (indeed we recall that the solution (ρ n , u n ) is regular) and lim x→±∞ y n (t, x) = F 2 (1), we deduce that y n (t, •) has a maximum for every t ≥ 0 and thus the function y M n defined as follows:

y n M (t) = max x∈R y n (t, x).
makes sense. Furthermore y M n is Lipschitz continuous on any interval [0, T ] with T ∈ (0, T * n ). Indeed from the triangular inequality we have for (t 1 , t 2 ) ∈ (0, T * n ):

|y n M (t 1 ) -y n M (t 1 )| ≤ max x∈R |y n (t 1 , x) -y , (t 2 , x)| ≤ ∂ s y n L ∞ ([t 1 ,t 2 ],L ∞ ) |t 1 -t 2 |.
According to Rademacher theorem, y M n is differentiable almost everywhere on [0, T * n ). Furthermore there exists for each t ∈ [0, T * n ) a point x n t such that:

y n M (t) = y(t, x n t ).
We are going to verify now that for almost all t ∈ (0, T * n ) we have (y n M ) (t) = ∂ t y n (t, x n t ). Indeed we have:

(y n M ) (t) = lim h→0 + y n M (t + h) -y n M (t) h = lim h→0 + y n (t + h, x n t+h ) -y n (t, x n t ) h ≥ lim h→0 + y n (t + h, x n t ) -y n (t, x n t ) h = ∂ t y n (t, x n t ).
Similarly, we have:

(y n M ) (t) = lim h→0 + y n M (t) -y n M (t -h) h = lim h→0 + y n (t, x n t ) -y n (t -h, x n t-h ) h ≤ lim h→0 + y n (t, x n t ) -y n (t -h, x n t ) h = ∂ t y n (t, x n t ).
We deduce from (3.23) using the fact that ∂ x y n (t, x n t ) = 0 since y n (t, •) reaches its maximum in x n t and that for all t ∈ (0, T * n ) we have:

∂ t y n M (t) + F 1 (ρ n )(t, x n t )y n M (t) = F 1 (ρ n )F 2 (ρ n )(t, x n t ) -F 1 (ρ n ) ρ n µ(ρ n ) (v n -u n ) 2 (t, x n t ).
(3.25) Basic computations give now:

                 F 1 (ρ)F 2 (ρ) = γ 2 γ -α -1 ρ 2γ-2α-1 if γ = α + 1 F 1 (ρ)F 2 (ρ) = γ 2 ln ρρ γ-α if γ = α + 1 F 1 (ρ)ρ µ(ρ) = γ(γ -α)ρ γ-2α F 1 (ρ) = γρ γ-α . (3.26) 
We recall that we have γ ≥ α such that using (3.25) and (3.26) we get that for γ = α + 1:

∂ t y n M (t) + F 1 (ρ n )(t, x n t )y n M (t) ≤ max(0, γ 2 γ -α -1 ) ρ n (t, •) 2γ-2α-1 L ∞ . (3.27)
From (3.26) and (3.27), we get that for any t ∈ [0, T * n ) one has with C γ = max(0, γ 2 γ-α-1 ):

∂ t (y n M (t)e γ t 0 ρ γ-α n (s,x n s )ds ) ≤ C γ ρ n (t, •) 2γ-2α-1 L ∞ e γ t 0 ρ γ-α n (s,x n s )ds . (3.28)
It yields for any t ∈ (0, T * n ):

y n M (t) ≤ e -γ t 0 ρ γ-α n (s,x n s )ds y n M (0) + C γ t 0 ρ n (t, •) 2γ-2α-1 L ∞ e -γ t s ρ γ-α n (s ,x n s )ds ds.
(3.29) From (3.18) and (3.17), we deduce that for any n ∈ N we have for any x ∈ R and γ = α + 1:

y n (0, x) ≤ max(0, C) c + γ γ -α -1 M γ-α-1 = C 1 . (3.30)
We obtain now from (3.29), (3.30) and since ρ n is positive:

y n M (t) ≤ C 1 + C γ t 0 ρ n (t, •) 2γ-2α-1 L ∞ ds. (3.31)
Combining (3.22) and (3.31), we deduce that for any t ∈ (0, T * n ) we have:

y n M (t) ≤ C(t), (3.32) 
with C a continuous function on R + when γ = α + 1. From (3.32), it yields for any t ∈ (0, T * n ) and x ∈ R when γ = α + 1:

∂ x v n (t, x) ρ n (t, x) ≤ C(t) + γ α + 1 -γ ρ γ-α-1 n (t, x), (3.33) 
with C a continuous function on R + . Next we recall that we have:

∂ t ( 1 ρ n ) + u n ∂ x ( 1 ρ n ) - 1 ρ n ∂ x u n = 0.
We can rewrite the equation as follows:

∂ t ( 1 ρ n ) + u n ∂ x ( 1 ρ n ) - 1 ρ n ∂ x v n - µ(ρ n ) ρ n ∂ xx ( 1 ρ n ) - 1 ρ n ∂ x µ(ρ n )∂ x ( 1 ρ n ) = 0.
Using again a maximum principle and following the same arguments as previously, we set now:

z n (t) = sup x∈R 1 ρ n (t, x) = 1 ρ n (t, x n t ).
We have then:

∂ t z n (t) = µ(ρ n ) ρ n ∂ xx ( 1 ρ n )(t, x n t ) + 1 ρ n ∂ x v n (t, x n t ).
From (3.33) and since ∂ xx ( 1 ρn )(t, x n t ) ≤ 0 (indeed x n t is a point where 1 ρn reaches its maximum) we deduce that:

∂ t z n (t) ≤ C(t) + γ α + 1 -γ ρ γ-α-1 n (t, x n t ) ≤ C(t) + γ α + 1 -γ z n (t) α+1-γ .
(3.34)

Using Gronwall lemma, it implies that there exists a continuous function C 2 on R + such that for any t ∈ (0, T * n ) we have:

z n (t) ≤ C 2 (t).
This implies that for any t ∈ (0, T * n ) we get:

1 ρ n (t, •) L ∞ ≤ C 2 (t). (3.35)
Combining the blow-up criterion in Theorem 3.3 and (3.35), we obtain that T * n = +∞ and for any t > 0:

1

ρ n (t, •) L ∞ ≤ C 2 (t), (3.36) 
with C 2 a continuous function on R + . From (3.33), (3.22) and (3.36), we get again for any t ∈ (0, T * n ) and x ∈ R when γ = α + 1:

∂ x v n (t, x) ≤ C 1 (t), (3.37) 
with C 1 a continuous increasing function. We can easily prove similar results for γ = α+1.

Estimates à la Hoff

In the sequel for simplifying the notation we drop the index n. Introducing the convective derivative u = ∂ t u + u∂ x u, we rewrite the momentum equation as

ρ u -∂ x (ρ α u x ) + ∂ x ρ γ = 0.
Let us observe that:

- R ∂ x (ρ α ∂ x u) ∂ t u = R ρ α ∂ x u∂ 2 xt u = 1 2 R ρ α ∂ t (∂ x u) 2 = 1 2 d dt R ρ α (∂ x u) 2 - 1 2 R ∂ t ρ α (∂ x u) 2 . (3.38)
Next, we see that:

- R ∂ x (ρ α ∂ x u) u∂ x u = - R u∂ x ρ α (∂ x u) 2 - R ρ α u∂ 2 xx u∂ x u = - R u∂ x ρ α (∂ x u) 2 + 1 2 R ∂ x (uρ α ) (∂ x u) 2 = - R u∂ x ρ α (∂ x u) 2 + 1 2 R ρ α (∂ x u) 3 + 1 2 R u∂ x ρ α (∂ x u) 2 = - 1 2 R u∂ x ρ α (∂ x u) 2 + 1 2 R ρ α (∂ x u) 3 .
Thus, we gather that:

- R ∂ x (ρ α ∂ x u) u = 1 2 d dt R ρ α (∂ x u) 2 - 1 2 R ∂ t ρ α (∂ x u) 2 - 1 2 R u∂ x ρ α (∂ x u) 2 + 1 2 R ρ α (∂ x u) 3 = 1 2 d dt R ρ α (∂ x u) 2 + 1 + α 2 R ρ α (∂ x u) 3 .
Moreover, we see that:

R ∂ x ρ γ (∂ t u + u∂ x u) = - R ρ γ ∂ tx u + R u∂ x ρ γ ∂ x u = - d dt R ρ γ ∂ x u + R ∂ t ρ γ ∂ x u + R u∂ x ρ γ ∂ x u = - d dt R ρ γ ∂ x u -γ R ρ γ (∂ x u) 2 .
Multiplying the momentum equation with u yields:

R ρ u2 + d dt 1 2 R ρ α (∂ x u) 2 - R ρ γ ∂ x u = - 1 + α 2 R ρ α (∂ x u) 3 +γ R ρ γ (∂ x u) 2 . (3.39)
Let us multiply the previous estimate by σ (t) = min(1, t) and integrate in time on [0, t] with t > 0, we have then:

σ (t) 2 R ρ α (t) (∂ x u) 2 (t) + t 0 R σρ u2 = σ (t) R (ρ γ -1) ∂ x u + min{1,t} 0 R 1 2 ρ α (∂ x u) 2 -(ρ γ -1) ∂ x u - 1 + α 2 t 0 R σρ α (∂ x u) 3 + γ t 0 R σρ γ (∂ x u) 2 .
Let us denote by:

A (ρ, u) (t) = σ (t) 2 R ρ α (t) (∂ x u) 2 (t) + t 0 R σρ u2 .
Let us observe that using (3.19), (3.22) and (3.36) we have: 

σ (t) R (ρ γ -1) ∂ x u ≤ σ(t) ρ γ -1 ρ α 2 L ∞ t L 2 R σ (t) ρ α (t) (∂ x u) 2 (t) 1 2 ≤ C (t) ρ γ -1 ρ α 2 2 L ∞ t L 2 + 1 4 R σ (t) ρ α (t) (∂ x u) 2 (t) ≤ C 1 (t) + 1 4 R σ (t) ρ α (t) (∂ x u) 2 (t) , (3.40 
min{1,t} 0 R 1 2 ρ α (∂ x u) 2 -(ρ γ -1) ∂ x u + γ t 0 R σρ γ (∂ x u) 2 ≤ C 2 (t) , (3.41) 
with C 2 a continuous function on R + . Combining (3.39), (3.40) and (3.41) , we thus get for all t ≥ 0:

A (ρ, u) (t) ≤ C (t) + 1 4 R σ (t) ρ α (t) (∂ x u) 2 (t) - 1 + α 2 t 0 R σρ α (∂ x u) 3 ≤ C 3 (t) + 1 2 A (ρ, u) (t) - 1 + α 2 t 0 R σρ α (∂ x u) 3
with C 3 a continuous fonction on R + . Consequently it yields:

A (ρ, u) (t) ≤ C (t) + (1 + α) t 0 R σρ α (∂ x u) 3
which also implies that (C can be choseen to be increasing in t):

sup τ ∈[0,t] A (ρ, u) (τ ) ≤ C (t) + (1 + α) t 0 R σρ α (∂ x u) 3 (3.42)
Let us observe that for all ε > 0 we have using Gagliardo-Nirenberg inequality (3.19) and (3.22):

t 0 σ 1 2 (τ ) (ρ α ∂ x u -ρ γ ) (τ ) 2 L ∞ ≤ 2 t 0 σ 1 2 (τ ) (ρ α ∂ x u -(ρ γ -1)) (τ ) 2 L ∞ + 2t ≤ 2 t 0 σ 1 2 (τ ) (ρ α ∂ x u -(ρ γ -1)) (τ ) L 2 ∂ x (ρ α ∂ x u -ρ γ ) (τ ) L 2 + 2t ≤ C ε t 0 (ρ α ∂ x u -(ρ γ -1)) (τ ) 2 L 2 + ε t 0 σ (τ ) ∂ x (ρ α ∂ x u -ρ γ ) (τ ) 2 L 2 + 2t ≤ C ε t 0 (ρ α ∂ x u -(ρ γ -1)) (τ ) 2 L 2 + ε t 0 σ (τ ) ρ u (τ ) 2 L 2 + 2t ≤ C (t, ε) + ε ρ 1 2 L ∞ ([0,t],L ∞ ) A (ρ, u) (t) (3.43) ≤ C (t, ε) + εC 0 A (ρ, u) (t) , (3.44) 
with C a continuous function on R + . We are going now to estimate the last term of (3.42) and using (3.19), (3.22), (3.36) and (3.44) with ε = 1/(2 (1 + α) C 0 ) we obtain that: 

t 0 R σρ α (∂ x u) 3 = t 0 R σ(∂ x u) 2 (ρ α ∂ x u -ρ γ ) + t 0 R σρ γ (∂ x u) 2 ≤ t 0 σ 1 4 (ρ α ∂ x u -ρ γ ) (τ ) L ∞ σ 3 4 R (∂ x u) 2 (τ ) dτ + t 0 R σρ γ (∂ x u) 2 ≤ C (t) + t 0 σ 1 2 (τ ) (ρ α ∂ x u -ρ γ ) (τ ) 2 L ∞ + t 0 σ 3 2 (τ ) R (∂ x u) 2 (τ ) dx 2 ≤ C (t) + 1 2 (1 + α) A (ρ, u) (t) + t 0 1 ρ (τ ) 2α L ∞ σ 3 2 (τ ) ( R ρ α (∂ x u) 2 (τ ) dx) 2 ≤ C (t) + 1 2 (1 + α) A (ρ, u) (t) + C 1 (t) t 0 σ (τ ) R ρ α (∂ x u) 2 (τ ) dx R (ρ α ∂ x u) 2 (τ ) dx ≤ C (t) + 1 2 (1 + α) A (ρ, u) (t) + 2C 1 (t) t 0 A (ρ, u) (τ ) R (ρ α ∂ x u) 2 (τ )
A (ρ, u) (τ ) ≤ C 2 (t) + C 2 (t) t 0 A (ρ, u) (τ ) R (ρ α ∂ x u) 2 (τ )
A (ρ, u) (τ ) ≤ C (t) , (3.46) 
with C an increasing continuous function. The control over A (ρ, u) and (3.44) yields

t 0 σ 1 2 (τ ) (ρ α ∂ x u -ρ γ ) (τ ) 2 L ∞ dτ ≤ C (t) ,
and consequently we get using in addition (3.22):

t 0 σ 1 2 (τ ) ∂ x u (τ ) 2 L ∞ dτ ≤ C (t) . (3.47)
The last inequality also provides an estimate in L 1 t (L ∞ ) of ∂ x u for any t > 0 using Cauchy-Schwarz inequality:

t 0 ∂ x u (τ ) L ∞ dτ ≤ t 0 σ -1 2 (τ ) dτ 1 2 t 0 σ 1 2 (τ ) ∂ x u (τ ) 2 L ∞ 1 2 ≤ C (t) .
Next, we aim at obtaining estimate for the L 2 -norm of ∂ x u. This will be useful in order to recover regularity properties of u. The idea is to apply the operator ∂ t + u∂ x to the velocity's equation:

(∂ t + u∂ x ) (ρ u) -(∂ t + u∂ x )∂ x (ρ α u x ) + (∂ t P (ρ) + u∂ x P (ρ)) = 0
and to test it with min{1, t} u. We begin by observing that

R (ρ u) t u = R ρ t u2 + 1 2 R ρ d u2 dt = 1 2 d dt R ρ u2 + 1 2 R ρ t u2 .
We remark that:

R u∂ x (ρ u) u = - R ρ u∂ x (u u) = - R ∂ x uρ u2 + 1 2 R (ρu) x u2 .
Summing the above two relations yields:

R (∂ t + u∂ x ) (ρ u) u = 1 2 d dt R ρ u2 - R ∂ x uρ u2 . (3.48)
Next, we take a look at the second term:

-

R (∂ t + u∂ x )∂ x (ρ α ∂ x u) u = R ∂ t ρ α ∂ x u∂ x u + R ρ α ∂ x u t ∂ x u + R ∂ x (ρ α ∂ x u)∂ x (u u) (3.49)
Let us treat separately the last term appearing in the above inequality :

R ∂ x (ρ α ∂ x u)∂ x (u u) = R ∂ x ρ α (∂ x u) 2 u + R u∂ x ρ α ∂ x u∂ x u + R ρ α ∂ 2 xx u∂ x u u + R ρ α u∂ 2 xx u∂ x u = R ∂ x ρ α (∂ x u) 2 u + R u∂ x ρ α ∂ x u∂ x u - 1 2 R (∂ x u) 2 ∂ x (ρ α u) + R ρ α ∂ x (u∂ x u)∂ x u - R (∂ x u) 2 ρ α ∂ x u = 1 2 R ∂ x ρ α (∂ x u) 2 u + R u∂ x ρ α ∂ x u∂ x u - 3 2 R (∂ x u) 2 ρ α ∂ x u + R ρ α ∂ x (u∂ x u)∂ x u (3.50)
Combining the two identities (3.49) and (3.50) we get that

- R (∂ t + u∂ x )∂ x (ρ α ∂ x u) u = R ∂ t ρ α ∂ x u∂ x u + R u∂ x ρ α ∂ x u∂ x u + R ρ α ∂ x u t ∂ x u + R ρ α ∂ x (u∂ x u)∂ x u - 3 2 R (∂ x u) 2 ρ α ∂ x u + 1 2 R ∂ x ρ α (∂ x u) 2 u = -α R ρ α (∂ x u) 2 ∂ x u + R ρ α (∂ x u) 2 - 3 2 R (∂ x u) 2 ρ α ∂ x u + 1 2 R ∂ x ρ α (∂ x u) 2 u = R ρ α (∂ x u) 2 -α + 3 2 R ρ α (∂ x u) 2 ∂ x u + 1 2 R ∂ x ρ α (∂ x u) 2 u. (3.51) Remark 8
The last term of the above identity, 1 2 R ∂ x ρ α (∂ x u) 2 u will be apear with sign minus in the next identity

Let us observe that R (∂ x ρ γ t + u∂ 2 xx ρ γ ) u = - R ρ γ t ∂ x u + R u∂ 2 xx ρ γ u = R u∂ x ρ γ ∂ x u + γ R ρ γ ∂ x u∂ x u + R u∂ 2 xx ρ γ u = - R ∂ x u∂ x ρ γ u + γ R ρ γ ∂ x u∂ x u = R ∂ x uρ u2 - R ∂ x u∂ x (ρ α ∂ x u) u + γ R ρ γ ∂ x u∂ x u, = R ∂ x uρ u2 + R ρ α ∂ x u∂ x ( u∂ x u) + γ R ρ γ ∂ x u∂ x u, = R ∂ x uρ u2 + R ρ α (∂ x u) 2 ∂ x u + R uρ α ∂ x u∂ 2 xx u + γ R ρ γ ∂ x u∂ x u, = R ∂ x uρ u2 + R ρ α (∂ x u) 2 ∂ x u - 1 2 R ∂ x ( uρ α )(∂ x u) 2 + γ R ρ γ ∂ x u∂ x u, = R ∂ x uρ u2 + 1 2 R ρ α (∂ x u) 2 ∂ x u - 1 2 R u∂ x ρ α (∂ x u) 2 + γ R ρ γ ∂ x u∂ x u, (3.52)
where we have used the equation of the velocity to replace

-∂ x ρ γ = ρ u -∂ x (ρ α ∂ x u).
We sum up the relations (3.48), (3.51) and (3.52) in order to obtain that:

1 2 d dt R ρ u2 + R ρ α (∂ x u) 2 = (α + 1) R ρ α (∂ x u) 2 ∂ x u -γ R ρ γ ∂ x u∂ x u.
Multiplying with σ (t) and integrating in time on [0, t] with t > 0 leads to:

B (ρ, u) (t) = 1 2 R σ (t) ρ u2 (t) + t 0 R σ (t) ρ α (∂ x u) 2 = min(1,t) 0 R ρ u2 + (α + 1) t 0 R σρ α (∂ x u) 2 ∂ x u -γ t 0 R σρ γ ∂ x u∂ x u.
(3.53)

Obviously using (3.46) we have that,

min(1,t) 0 R ρ u2 ≤ A (ρ, u) (1) ≤ C. (3.54)
for all t > 0. Next, we infer using (3.22) that:

γ t 0 R σρ γ ∂ x u∂ x u ≤ γ ρ γ-α L ∞ t L ∞ t 0 R ρ α (∂ x u) 2 1 2 t 0 R σ 2 ρ α (∂ x u) 2 1 2 ≤ C (t) + 1 4 B (ρ, u) (t) , (3.55) 
with C a continuous increasing function. Finally, using again (3.46), (3.19) and (3.36), we get:

(α + 1) t 0 R σρ α (∂ x u) 2 ∂ x u ≤ 1 4 t 0 R σρ α (∂ x u) 2 + (α + 1) 2 t 0 R σρ α (∂ x u) 4 ≤ 1 4 B (ρ, u) (t) + (α + 1) 2 1 ρ 2α L ∞ t (L ∞ ) t 0 R σρ 3α (∂ x u) 4 ≤ 1 4 B (ρ, u) (t) + C (t) t 0 σ ρ α ∂ x u 2 L ∞ R ρ α (∂ x u) 2 ≤ 1 4 B (ρ, u) (t) + C (t) sup τ ∈[0,t] σ (τ ) (ρ α ∂ x u) (τ ) 2 L ∞ .
Let us observe that for all t > 0 we have using Gagliardo-Nirenberg inequality, (3.22) and (3.36):

σ (t) ρ α ∂ x u (t) 2 L ∞ ≤ 2σ (ρ α ∂ x u -(ρ γ -1)) (t) 2 L ∞ + 2 (ρ γ -1) (t) 2 L ∞ ≤ 2σ (ρ α ∂ x u -(ρ γ -1)) (t) L 2 ∂ x (ρ α ∂ x u -(ρ γ -1)) (t) L 2 + C (t) ≤ 2σ ( ρ α ∂ x u L 2 + C (t) ρ -1 L 2 ) ρ u L 2 + C (t) ≤ C (t) σ 1 2 ρ α ∂ x u L 2 + C (t) σ 1 2 ρ 1 2 u L 2 + C (t) ≤ C (t) A 1 2 (ρ, u) (t) + C (t) B 1 2 (ρ, u) (t) + C (t) .
(3.56) Thus, we get from (3.46) and Young inequality: 

(α + 1) t 0 R σρ α (∂ x u) 2 ∂ x u ≤ 1 4 B (ρ, u) (t) + C (t) A 1 2 (ρ, u) (t) + C (t) B 1 2 (ρ, u) (t) + C (t) ≤ C (t) + 1 2 B (ρ, u) (t) . ( 3 
σ (t) 1 2 ∂ x u(t) L ∞ ≤ C (t) , (3.59) 
for any t ≥ 0.

Uniform BV-estimates for the effective velocities v n

Owing to the estimate (3.36) and (3.19) we recover the following estimates:

∂ x u n L 2 t (L 2 ) ≤ 1 ρ n α 2 L ∞ t (L ∞ ) ≤ C(t), √ ρ n u n L 2 t (L 2 ) ≤ C 1 (t) ,
where C, C 1 are increasing continuous functions. From Sobolev embedding, we get that for any t > 0, there exists C (t) such that

u n L 1 t (L ∞ ) ≤ C (t) . (3.60)
Let us introduce the flow of u n i.e.

X n (t, x) = x + t 0 u n (τ, X n (τ, x)) dτ. (3.61)
We immediately get that:

-|x| -C (t) ≤ X ±1 n (t, x) ≤ |x| + C (t) ,
which implies that for any L > 0 the segment

X -1 n (t, -L) , X -1 n (t, L) ≤ [-L -C (t) , L + C (t)] .
being nonincreasing, it holds using (3.64) that:

T V [-L,L] w n (t, •) = v n (t, -L)-v n (t, L)+2C (t) L ≤ C (t) L + v 0n L ∞ ([-L-C(t),L+C(t)]) .
Owing to the fact that

v n = w n (t, x) + C (t) x
we get that:

T V [-L,L] v n (t, •) ≤ C (t) L + v 0n L ∞ ([-L-C(t),L+C(t)]) . (3.66) 
From (3.64), (3.65), (3.66), we get :

v n (t) BV ([-L,L]) ≤ C (T, L) . (3.67) 
Owing to (3.22), (3.36), (3.60), (3.64) and (3.63) we get that:

∂ t v n L 1 ([0,T ]×[-L,L]) ≤ C (T, L) . (3.68) Next, fix φ ∈ C b ([0, T ] × [-L, L]) with: φ L ∞ ([0,T ]×[-L,L]) ≤ 1
and let us write that:

T 0 L -L φ (t, x) ∂ t v n (t, x) dxdt = T 0 Xn(t,L) Xn(t,-L) φ (t, x) ∂ t v n (t, x) ρ n (t, x) ρ 0n(x) dx dt = T 0 Xn(t,L) Xn(t,-L) φ (t, x) ∂ t v n (t, x) ρ n (t, x) ρ 0n(x) dx dt - T 0 Xn(t,L) Xn(t,-L) φ (t, x) u n (t, x) ∂ x v n ((t, x)) ρ n (t, x) ρ 0n(x) dx dt = T 0 Xn(t,L) Xn(t,-L) φ (t, x) ∂ t v n (t, x) ρ n (t, x) ρ 0n(x) dx dt - T 0 L -L φ (t, x) u n (t, x) ∂ x v n ((t, x)) dxdt.
Owing to (3.22), (3.36), (3.60), (3.67) and (3.68) and using the fact that φu n belongs to

L 1 ([0, T ], C 0 (R)), we conclude that T 0 L -L φ (t, x) ∂ t v n (t, x) dxdt ≤ C (T, L) . (3.69) 
Combining (3.69) and (3.66) gives us for any T > 0, L > 0:

v n BV ([0,T ]×[-L,L]) ≤ C (T, L) .
(3.70)

Compactness

We recall the previous estimates that we have obtained, for every T > 0 we have for C a continuous increasing function independent on n and any n ∈ N:

C(T ) -1 ≤ ρ n (T, •) ≤ C(T ), (3.71) 
sup 0<t≤T ρ n (t, •) -1 L 2 + u n (t, •) L 2 + ∂ x ρ n (t, •) L 2 + σ(t) 1 2 ∂ x u n (t, •) L 2 + σ(t) 1 2 ( un (t, •) L 2 + ∂ x (ρ α n ∂ x u n (t, •) -P (ρ n ) + P (1)) L 2 ≤ C(T ), (3.72) 
T 0 [ ∂ x u n (t, •) 2 L 2 + ∂ x ρ n (t, •) 2 L 2 + σ(t) un (t, •) 2 L 2 + σ(t) ∂ x un (t, •) 2 L 2 ]dt ≤ C(T ), (3.73) 
T 0 σ 1 2 (τ ) ∂ x u n (τ ) 2 L ∞ dτ ≤ C (T ) . (3.74) sup 0<t≤T σ(t) 1 2 ∂ x u n (t, •) L ∞ ≤ C (T ) . (3.75) 
Using classical arguments (see [START_REF] Jiu | The Cauchy problem for 1D compressible flows with densitydependent viscosity coefficients[END_REF][START_REF] Mellet | Existence and Uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations[END_REF]), we prove that up to a subsequence, (ρ n , u n ) n∈N converges in the sense of distributions to (ρ, u), a global weak solution of (1.1). Furthermore the limit functions ρ, u inherit all the bounds (3.71), (3.72), (3.73), (3.74), (2.15) and (3.75) via Fatou type-lemmas for the weak topology.

We wish now to prove (2.16), to do this we are going to prove that up to a subsequence (v n ) n∈N converges almost everywhere to v on R + × R. This is a direct consequence of the estimate (3.70), indeed since (v n ) n∈N is uniformly bounded in BV loc ((0, T ) × R) for any T > 0, we deduce that up to a subsequence (v n ) n∈N converges to v in L 1 loc ((0, T ) × R). In particular up to a subsequence (v n ) n∈N converges almost everywhere to v in (0, +∞) × R. Using now (3.37) and the fact that v n converges almost everywhere to v on R + × R implies (2.16) since for all x > y and t > 0 we have:

v n (t, x) -v n (t, y) x -y = 1 x -y x y ∂ z v n (t, z)dz ≤ C(t),
with C a continuous function on R + . It concludes the proof of (2.16).

Uniqueness

Consider two solutions (ρ i , u i ) ( i ∈ 1, 2) verifying the estimates (2.10)-(2.14) and generated by the same initial data:

   ∂ t ρ i + ∂ x (ρ i u i ) = 0, ∂ t (ρ i u i ) + ∂ x ρ i u 2 i -∂ x (µ(ρ i )∂ x u i ) + ∂ x p i = 0, ρ i|t=0 , u i|t=0 = (ρ 0 , u 0 ) . (3.76)
We define now the flows generated by u i

X i (t, x) = x + t 0 u i (τ, X (τ, x)) dτ
and denoting with tildes the functions

v i (t, x) = v i (t, X i (t, x))
for v ∈ {ρ, u}. We get that (according to the results from the Appendix):

               ∂ t ∂X i ∂x ρ i = 0, ρ 0 ∂ t u i -∂ x ρ i µ( ρ i ) ρ 0 ∂ x u i + ∂ x P ( ρ i ) = 0, X i (t, x) = x + t 0 u i (τ, x) dτ.
(3.77)

for i = 1, 2. Setting δ u = u 1 -u 2
, by difference we have that:

ρ 0 ∂ t δ u -∂ ρ 1 µ( ρ 1 ) ρ 0 ∂ x δ u = ∂ x G 1 + ∂ x G 2 , (3.78) 
where

         G 1 = P ρ 0 1 + t 0 ∂ x [ u 2 ] -P ρ 0 1 + t 0 ∂ x [ u 1 ] , G 2 = ρ 1 µ( ρ 1 ) ρ 0 - ρ 2 µ( ρ 2 ) ρ 0 ∂ x u 2 .
We multiply (3.78) by δ u, integrate it over R and by obvious manipulation we get for t > 0:

1 2 R ρ 0 (x)(δ u) 2 (t, x)dx + 1 2 inf s∈]0,t],x ρ 1 (s, x) µ( ρ 1 (s, x)) ρ 0 (x) t 0 R (∂ x (δ u(s, x))) 2 ds dx ≤ C(t)[ t 0 R (G 1 ) 2 + t 0 R (G 2 ) 2 ],
(3.79) with C a continuous increasing function. In the following we will estimate G 1 and G 2 . First, we we get using (4.94) for t > 0 and x ∈ R:

δ ρ (t, x) = δρ 1 -δρ 2 = ρ 0 (x) 1 + t 0 ∂ x u 1 - ρ 0 (x) 1 + t 0 ∂ x u 2 = -ρ 0 (x) t 0 ∂ x δ u (τ, x) dτ ∂ x X 1 (t, x)∂ x X 2 (t, x) |δ ρ (t, x) | ≤ √ tC (t) t 0 |∂ x δ u (τ, x)| 2 dτ 1 2
(3.80) and consequently using (4.92) we get:

G 1 (t, x) ≤ sup s∈[1/C(T ),C(T )] P (s) ρ 0 (x) t 0 ∂ x δ u (τ, x) dτ |∂ x X 1 (t, x)∂ x X 2 (t, x)| ≤ √ tC (t) t 0 |∂ x δ u (τ, x)| 2 dτ 1 2
, with C a continuous increasing function. It implies that

t 0 R (G 1 ) 2 (s, x) ds dx ≤ t 3 2 C (t) t 0 R (∂ x δ u) 2 (s, x)dsdx. (3.81)
Let us turn our attention towards G 2 . We first write that for any (t, x) ∈ R + × R, we have:

G 2 (t, x) = ρ 1 µ( ρ 1 ) ρ 0 - ρ 2 µ( ρ 2 ) ρ 0 ∂ x u 2 (t, x) = 1 ρ 0 (x) (µ) (θ t,x ρ 1 (t, x) + (1 -θ t,x ) ρ 2 (t, x)) δ ρ(t, x)∂ x u 2 (t, x).
Thus, we get using (2.10), (3.80) that for t > 0:

|G 2 (t, x)| 2 ≤ C (t) t |∂ x u 2 (t, x)| 2 t 0 |∂ x δ u (τ, x)| 2 dτ ≤ C (t) σ 1 2 (t) 1 [0,1] (t) + t1 [1,∞) (t) ∂ x u 2 (t) L ∞ 2 t 0 |∂ x δ u (τ, x)| 2 dτ
such that by integration and using (2. 

1 2 R ρ 0 (x)(δ u) 2 (t, x)dx + 1 2 inf s∈]0,t],x ρ 1 (s, x) µ( ρ 1 (s, x)) ρ 0 (x) t 0 R (∂ x (δ u(s, x))) 2 ds dx ≤ tC 1 (t) t 0 R [∂ x (δ u(s, x))| 2 dx ds, (3.83 
) with C 1 a continuous increasing function. Taking T 0 > 0 small enough, we have using a bootstrap argument for any t ∈ [0, T 0 ]:

1 2 1 0 ρ 0 (δ u) 2 + 1 4 inf t,x ρ 1 (t, x) µ( ρ 1 (t, x)) ρ 0 (x) t 0 1 0 (∂ x (δ u)) 2 ≤ 0 ∀t ∈ [0, T 0 ] .
Thus, we get a local uniqueness property. Reiterating this process gives us the uniqueness of the two solutions on their whole domain of definition.

Appendix

In this appendix, we gather a few useful facts regarding the 1D Navier-Stokes equations in Lagrangian coordinates. The results belong to the mathematical folklore and can be found in, by now classical papers devoted to the 1D Navier-Stokes system, see [START_REF] Kazhikhov | Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas[END_REF], [START_REF] Serre | Solutions faibles globales des équations de Navier-Stokes pour un fluide compressible[END_REF], [START_REF] Serre | Sur l'équation monodimensionnelle d'un fluide visqueux, compressible et conducteur de chaleur[END_REF]. The Lagrangian framework offers an elegant method of obtaining apriori estimates (for example on the L ∞ norm of ρ) either uniqueness of solutions (see the relatively recent paper [START_REF] Danchin | A Lagrangian approach for the compressible Navier-Stokes equations[END_REF]).

Let us first derive the Lagrangian formulation of the Navier-Stokes system. We will supose that we are give (ρ, u)

∈ L ∞ ([0, ∞) × R) × L ∞ L 2 (R) ∩ L 2 Ḣ (R) a solution of the Navier-Stokes system    ρ t + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x ρu 2 -∂ x (µ (ρ) ∂ x u) + ∂ x P (ρ) = 0, ρ |t=0 , u |t=0 = (ρ 0 , u 0 ) . (4.84)
First, we recall the definition of the flow of u.

Proposition 4.1 Consider T > 0 and u ∈ L 2 ((0, T );

L ∞ (R)) with ∂ x u ∈ L 1 ((0, T ); L ∞ (R)).
Then, for any x ∈ R there exists a unique solution

X (•, x) : [0, ∞) → R of    X (t, x) = x + t 0 u (t, X (t, x)) , X (0, x) = x.
(4.85)

Moreover X (t, x) verifies the following properties:

• X ∈ BV loc ([0, T ] × R) for any T > 0. In addition, for all t ≥ 0 and for almost all

x ∈ R ∂ x X (t, x) = exp t 0 ∂ x u (τ, X (τ, x)) dτ • For each t > 0, X (t, •) is a homeorphism from R to R. • We have that ∂ t X, ∂ t X ∈ L 2 t (L ∞ x ) and ∂ x X, ∂ x X -1 ∈ L ∞ t (L ∞ x )
Notation 1 For any function v : [0, ∞) × R → R, we denote by v the function defined as: v (t, x) := v (t, X (t, x))

We note that

X (t, x) = x + t 0 u (τ, X(τ, x)) = x + t 0 u (τ, x) dτ. and thus ∂X ∂x (t, x) = 1 + t 0 ∂ x u (τ, x) dτ.
Owing to

∂ x v (t, x) = ∂ x v (t, x) ∂X ∂x (t, x) (4.86) 
we obtain that

∂ x v (t, x) = ∂X ∂x (t, x) -1 ∂ x v (t, x) = 1 1 + t 0 ∂ x u (τ, x) dτ ∂ x v (t, x) . ( 4 

.87)

Let us investigate the first equation of (4.84). For any ψ ∈ D ((0, T ) × R) we have that :

T 0 R ρψ t + ρu∂ x ψ = 0.
Owing to the fact that ρ, ρu ∈ L 2 T L 2 loc the set of test functions can be enlarged to ψ ∈ C 0 ((0, T ) × R) (continious functions vanishing at the boundary) with ψ t , ∂ x ψ ∈ L 2 T L 2 loc . In view of the regularity properties of X (t, x) it follows that for any ψ ∈ D ((0, T ) × R), ψ • X -1 can be used as a test function. Using this along with the fact that X (t, x) is a homeomorphism for all t, we write that

0 = T 0 R ρ(∂ t ψ • X -1 ) + ρu∂ x (ψ • X -1 )dxdt = T 0 R ρ ∂ t (ψ • X -1 ) + u ∂ x (ψ • X -1 ) ∂ x X (t, x) dxdt = T 0 R ρ∂ x X∂ t ψ witch translates into d dt ∂X ∂x ρ = 0. (4.88)
Prooceding in a symilar manner, we get that the velocity's equation rewrites as

ρ 0 (x) ∂ t u -∂ x ∂X ∂x -1 µ( ρ) ∂ x u + ∂ x P ( ρ) = 0. (4.89)
Putting together equations, (4.88) and (4.89) we deduce that the system (4.84) can be writen in lagrangian coordinates as:

                 d dt ∂X ∂x ρ = 0, ρ 0 (x) ∂ t u -∂ x ∂X ∂x -1 µ( ρ) ∂ x u + ∂ x P ( ρ) = 0, X (t, x) = x + t 0 u (τ, x) dτ, (4.90) 
or, equivalently

               d dt ∂X ∂x ρ = 0, ρ 0 (x) ∂ t u -∂ x ρµ( ρ) ρ 0 ∂ x u + ∂ x P ( ρ) = 0, X (t, x) = x + t 0 u (τ, x) dτ, (4.91) 
Let us close this appendix observing that if we dispose of an inequality of the following type (it is the case in our case, see (2.10)):

C(t) -1 ≤ ρ(t, x) ≤ C (t) (4.92)
then one may obtain from (4.91) that

C(t) -1 inf ρ 0 ≤ ∂X ∂x (t, x) ≤ C (t) sup ρ 0 , (4.93) along with C(t) inf ρ 0 ≥ ∂X ∂x (t, x) -1 = ρ(t, x) ρ 0 (x) ≥ C(t) -1 sup ρ 0 . (4.94)
Sketch of the proof of the Theorem 3.3

In this section, we are just giving a sketch of the proof of the blow-up criterion. The part concerning the existence of strong solution in finite time is classical. We begin by observing that the Navier-Stokes system can be writen under the following form:

∂ t u + 2u∂ x u -∂ x ρ α-1 ∂ x u = v∂ x u -γρ γ-α (v -u) , ∂ t v + u∂ x v = -γρ γ-α+1 (v -u) (4.95)
Let us recall a classical product law in Sobolev spaces along with the Kato-Ponce comutator estimate

Lemma 1 (Kato-Ponce) The following estimates holds true for s > 0 with FΛ s f (ξ) = |ξ| s Ff (ξ) for f a temperated distribution:

Λ s (f g) L 2 ≤ f L ∞ Λ s g L 2 + g L ∞ Λ s f L 2 (4.96) Λ s (f ∂ x g) -f Λ s ∂ x g L 2 ≤ C ( ∂ x f L ∞ Λ s g L 2 + Λ s f L 2 ∂ x g L ∞ ) (4.97)
In the sequel we wish to describe how to preserve all along the time the H s norm of u and ρ -1 for s > 3 2 . We rewrite the system (4.95) as

   ∂ t Λ s u + 2u∂ x Λ s u -∂ x ρ α-1 ∂ x Λ s u = Λ s (v∂ x u) -γΛ s (ρ γ-α (v -u)) +2 [Λ s , u] ∂ x u + ∂ x ρ α-1 , Λ s ∂ x u , ∂ t Λ s v + u∂ x Λ s v = -γΛ s ρ γ-α+1 (v -u) + [Λ s , u] ∂ x v (4.98)
Multiply the first equation with Λ s u and integrate over R, we get that:

1 2 d dt R |Λ s u| 2 + R ρ α-1 |∂ x Λ s u| 2 = R ∂ x u |Λ s u| 2 + R Λ s (v∂ x u) Λ s u -γ R Λ s ρ γ-α (v -u) Λ s u + R 2 [Λ s , u] ∂ x uΛ s u + R ∂ x ρ α-1 , Λ s ∂ x u Λ s u.
(4.99) Multipliyng the second equation of (4.98) with Λ s v we obtain that: 

1 2 d dt R |Λ s v| 2 = 1 2 R ∂ x u |Λ s v| 2 -γ R Λ s ρ γ-α+1 (v -u) Λ s v + R [Λ s , u] ∂ x vΛ s v.
d dt R |Λ s u| 2 + |Λ s v| 2 + R ρ α-1 |∂ x Λ s u| 2 = R ∂ x u |Λ s u| 2 + R Λ s (v∂ x u) Λ s u -γ R Λ s ρ γ-α (v -u) Λ s u + R 2 [Λ s , u] ∂ x uΛ s u + R ∂ x ρ α-1 , Λ s ∂ x u Λ s u 1 2 R ∂ x u |Λ s v| 2 -γ R Λ s ρ γ-α+1 (v -u) Λ s v + R [Λ s , u] ∂ x vΛ s v (4.101)
In the following lines, we analyse the different terms appearing in the left hand side of (4.101). The first two terms are treated in the following manner using Lemma 1:

R ∂ x u |Λ s u| 2 + R Λ s (v∂ x u) Λ s u ∂ x u L ∞ Λ s u 2 L 2 + ∂ x u L ∞ Λ s v L 2 Λ s u L 2 + v L ∞ ∂ x Λ s u L 2 Λ s u L 2 ∂ x u L ∞ Λ s u 2 L 2 + ∂ x u L ∞ Λ s v L 2 Λ s u L 2 + v L ∞ ρ 1-α 1 2 L ∞ ρ α-1 ∂ x Λ s u L 2 Λ s u L 2 ≤ C ∂ x u L ∞ Λ s u 2 L 2 + C ∂ x u L ∞ Λ s v L 2 Λ s u L 2 + C v 2 L ∞ ρ 1-α L ∞ Λ s u 2 L 2 + 1 8 ρ α-1 2 ∂ x Λ s u 2 L 2 .
(4.102) The third term can be treated as follows:

R Λ s ρ γ-α (v -u) Λ s u ρ γ-α L ∞ ( Λ s v L 2 + Λ s u L 2 ) Λ s u L 2 + (v -u) L ∞ Λ s ρ γ-α -1 L 2 Λ s u L 2 .
(4.103)

We have for the fourth term using Lemma 1:

R

2 [Λ s , u] ∂ x uΛ s u ∂ x u L ∞ Λ s u 2 L 2 (4.104)
The fifth term :

R ∂ x ρ α-1 , Λ s ∂ x u Λ s u ≤ C ρ α-1 , Λ s ∂ x u L 2 ∂ x Λ s u L 2 ≤ C ρ α-1 L ∞ ∂ x ρ α-1 L ∞ Λ s u L 2 + ∂ x u L ∞ Λ s ρ α-1 -1 L 2 2 + 1 8 ρ α-1 2 ∂ x Λ s u 2 L 2 ≤ C ρ α-1 L ∞ v -u L ∞ Λ s u L 2 + ∂ x u L ∞ Λ s ρ α-1 -1 L 2 2 + 1 8 ρ α-1 2 ∂ x Λ s u 2 L 2 . (4.105)
We skip the sixth term. Seventh term :

R Λ s ρ γ-α+1 (v -u) Λ s v Λ s v L 2 Λ s u L 2 + Λ s v 2 L 2 + ρ γ-α+1 -1 L ∞ Λ s (v -u) L 2 + v -u L ∞ ( Λ s ρ γ-α+1 -1 L 2 ) Λ s v L 2 (4.106) Last term : R [Λ s , u] ∂ x vΛ s v ( ∂ x u L ∞ Λ s v L 2 + ∂ x v L ∞ Λ s u L 2 ) Λ s v L é (4.107)
Let us observe that in the estimates (4.103) (4.105) and (4.106) we have to treat the H s -norm of ρ γ-α ,ρ α-1 and ρ γ-α+1 respectively. This is the objective of the following lines. For each β, we may write that

∂ t ρ β + u∂ x ρ β = -βρ β ∂ x u.
and consequently

∂ t Λ s ρ β -1 + u∂ x Λ s ρ β -1 = -βΛ s ρ β ∂ x u + [Λ s , u] ∂ x ρ β -1 .
We get that 1 2 

d dt R Λ s ρ β -1 2 ≤ ( 1 2 + β) ∂ x u L ∞ Λ s ρ β -1 2 L 2 +β ∂ x u L ∞ Λ s ρ β -1 2 L 2 + ρ β -1 L ∞ Λ s ∂ x u L 2 Λ s ρ β -1 L 2 + ∂ x u L ∞ Λ s ρ β -1 L 2 + ∂ x ρ β L ∞ Λ s u L 2 Λ s ρ β -1 L 2 ≤ C ε ∂ x u L ∞ + ρ 1-α 2 L ∞ ρ β -1 2 L ∞ + v -u 2 L ∞ Λ s ρ β -1 2 L 2 + Λ s u 2 L 2 + ε ρ α-1 2 ∂ x Λ
+ t 0 R ρ α-1 |∂ x Λ s u| 2 (s, x)dsdx ≤ C (u 0 , ρ 0 ) exp t 0 1 + ρ, 1 ρ L ∞ δ 1 + (u, v, ∂ x u, ∂ x v) 2
L ∞ (4.109) with δ depending on α and γ. We mention also that C (u 0 , ρ 0 ) depends on u 0 H s , ρ 0 -1 H s , ρ 0 L ∞ and 1 ρ 0 L ∞ . Next, let us analyse in more detail the equation of v :

∂ t v + u∂ x v = -γρ γ-α+1 (v -u)
We get that

v L ∞ t (L ∞ x ) ≤ v 0 L ∞ x + ρ γ-α+1 L ∞ t (L ∞ x ) t 0 u(s, •) L ∞ ds.
Moreover, writing the equation of ∂ x v we see that

(∂ x v) t + u∂ x (∂ x v) + ∂ x u + γρ γ-α ∂ x v = γρ γ-α ∂ x u -γ (γ -α) ρ γ-2α+2 (v -u) 2
From which we deduce that

∂ x v L ∞ t (L ∞ x ) ∂ x v 0 L ∞ x + ψ   1 + ρ, 1 ρ L ∞ t (L ∞ ) δ 1 1 + t 0 (u, ∂ x u) L ∞  
with ψ (r) = r exp r and δ 1 depending on γ and α. Moreover, the Bresch-Desjardins entropy allows a uniform control on ρ L ∞ t (L ∞

x ) . Let us denote by:

A (ρ, u) (t) = R ρ α (t) (∂ x u) 2 (t) + t 0 R ρ u2 .
Using the same techniques as in the section on the Hoff estimates, we may show that

A (ρ, u) (t) ≤ C 0 exp   t 1 + 1 ρ L ∞ t (L ∞ ) δ 2  
which, in turn, ensures a control on ∂ x u L 2 t (L ∞ ) provided that we control 1 ρ L ∞ t (L ∞ ) . To summarize:

• The Bresch-Desjardins entropy provides control on ρ L ∞ t (L ∞ x ) for any t > 0,

• (v, ∂ x v) L ∞ t (L ∞ ) is controlled by (u, ∂ x u) L 1 (L ∞ ) and ρ, 1 ρ L ∞ t (L ∞ )
,

• The Hoff-type estimates ensure that

∂ x u L 2 t (L ∞ x ) is controlled by ρ, 1 ρ L ∞ t (L ∞ )
• Using the basic energy estimate we obtain that u L 2

t (L ∞ x ) is controlled by ρ, 1 ρ L ∞ t (L ∞ )
.

Taking into account the estimate (4.109) we get that for any T > 0 and any s > 3 2 the H s -Sobolev norm of (u, v, ρ -1) is uniformly controlled by

1 ρ L ∞ t (L ∞ )
.

( 4 .

 4 100) If we add up (4.99) and (4.100), it yields that 1 2

  ) with C and C 1 continuous on R + . Next, we see that owing to the estimate (3.19),(3.22) and (3.36), we have that:

  Thus putting togheter the estimates (4.102),(4.103),(4.104),(4.105),(4.106),(4.107) and (4.108) for β= α -1, γ -α, γ -α + 1 we get that R |Λ s u| 2 + |Λ s v| 2 + Λ s ρ α-1 -1 2 + Λ s ρ γ-α -1 2 + Λ s ρ γ-α+1 -1
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s u 2 (t, x)dx
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This information is usefull in order to show that we can propagate the L ∞ loc norm of v n . Indeed, let us recall that:

rewrites as

Passing into Lagrangian coordinates (see Appendix) i.e.

we see that (3.62) rewrites as:

The last relation implies using (3.22) and (3.36):

and consequently for any t > 0, x ∈ R:

Thus, we see that:

In addition (v n 0 ) n∈N is uniformly bounded in L ∞ loc (R). Indeed since v 0 is in L ∞ loc (R) (see the Remark 4), we have for any x ∈ [-L, L] and any n ∈ N:

This piece of information along with the estimate:

ensures that v n is uniformly bounded in L ∞ ([0, T ]; BV loc (R)). Ideed, the function