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The retina: a fascinating object
of study for a physicist

Bruno Cessac

Abstract I briefly present joint research where ideas and methods from the-
oretical physics can be applied to better understand the behaviour of the
retina in normal, developmental and pharmacologically controlled condi-
tions.

1 Introduction

Our visual system has astonishing capacities, from the rapid extraction of
the main features of a visual scene, to higher level tasks like reading or face
recognition. Our vision starts from the retina. This tiny membrane, only a
few hundred microns thick, covering 75% of the internal ocular globe per-
forms fundamental yet complex tasks. Although its primary function is to
convert the photons from the outer world into sequences of action poten-
tials (spike trains), encoding the visual scene, and conveying them to the
visual cortex where they will be "decoded", the retina is not a mere cam-
era. In recent years, researchers have indeed discovered that the retina "is
smarter than scientists believed" [1].

In this paper, I would like to share with the reader the fascination of
the retina for a physicist, working for years in the field of dynamical sys-
tems theory and statistical physics applied to "complex systems", especially
neuronal models. Working with biologists and retinal specialists, I have dis-
covered a beautiful object of studies both from the applied and theoretical
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physics point of view. The retinal machinery (neurons, synapses, ion trans-
port, light conversion from photoreceptors, etc.) is governed by physics. Yet
the extrapolation of physical methods from theoretical physics (mean-field
methods, transport equations, Gibbs distributions, etc.) raises several inter-
esting questions that I have been confronted with during my research, and
which I want to briefly present in this paper.

2 The retina structure

Throughout this paper, I will use "computer-oriented" language to deal with
the retina: information, circuits, code, decode, computation, etc. This is a
contemporary view, largely influenced by our computer-based society. Al-
though this analogy is useful - it eases explanations and provides fruitful
paradigms — it has its limitations, which are stressed throughout this paper.

The retina, much like the rest of our body, especially the brain, has an
evident problem: it can’t tolerate large variations in temperature. Especially,
the Joule effect has to be strongly limited. As a consequence, neurons, which
are cells producing electric currents, do not use electrons, instead they use
ion transfer (sodium, potassium, calcium, chloride, etc.). The currents pro-
duced this way are small (of order 1 — 100 pA), as well as voltage variations
(~ 100 mV), thus with an electric power of order pW. Even if there are many
neurons of different types in the retina (of order 108, including photorecep-
tors), the total heat production is quite small compared to a computer that
would perform the same tasks. However, ions are quite slow, and the corol-
lary is that the retina has to use massive parallel computations to perform
complex tasks in a short time. This computation is achieved via neurons, but
also by synapses: the synaptic organization of the retina plays a central role
in its abilities (e.g., http://webvision.med.utah.edu/book/part—
i-foundations/simple—-anatomy-of-the-retina/).

The retina converts photons into variations of electric potential (photo-
transduction) via photoreceptor cells: rods (about 130 million) ensure eye-
sight in poor illumination; cones (about 7 million) ensure central vision and
colour perception. Phototransduction is a very efficient mechanism as a sin-
gle photon can produce a visual effect. This is due to a complex cascade of
molecular mechanisms with a huge multiplicative effect. At the other side of
the retina one finds retinal ganglion cells (RGCs), the final stage of retina en-
coding, as these are the cells that emit action potentials (spikes) via their ax-
ons (which constitute the optic nerve) to the visual cortex via the thalamus.
There are about 1.2 to 1.5 million RGCs in the human retina. On average,
each RGC receives inputs from about 100 rods and cones. These numbers
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vary greatly among individuals and as a function of retinal location. In be-
tween, one finds 3 cells types: horizontal, bipolar and amacrine cells. Unlike
most neurons, these cells communicate via graded potentials, rather than ac-
tion potentials. Horizontal cells are laterally interconnecting neurons, help-
ing integrate and regulate the input from multiple photoreceptors. Bipolar
cells transmit the signals from the photoreceptors or the horizontal cells, and
pass them on to the ganglion cells directly or indirectly (via amacrine cells).

The retina has therefore both a feed-forward structure (from photorecep-
tors to ganglion cells) and a lateral structure (due to horizontal and amacrine
cells). This generates different types of neural circuits, which enable the
RGCs to efficiently process local visual information such as dim light, small
responses to single photon absorption, segregating moving objects, filtering
the movement of body, head, or eye, motion extrapolation, detection of ap-
proaching motion, surprise at the missing element in the sequence. Many of
these computations match the evident challenge of animals: to detect mov-
ing objects and locate them correctly; to struggle with a constantly moving
image sensor; and to predict the future and adapt to changing conditions [1].
Thus, the thalamus and visual cortex receive not a computer-like pixel rep-
resentation of the image, but a set of features processed via nonlinear mech-
anisms that researchers try to identify [1].

The optic nerve is therefore like an optical fiber with several millions of
channels - the axon of each RGC - conveying a local spatio-temporal infor-
mation encoded by sequences of spikes, decoded by the brain. However,
in contrast to computers, the code has variability and, nevertheless, robust-
ness. First, several presentations of the same visual stimulus do not trigger
the same sequence of spikes although some statistical regularity is observed
(typically, a given RGC type fires more intensively when a specific stimu-
lus is presented). Second, there is not a unique coding strategy. RGCs con-
vey part of the information independently from each other through their
firing rates, or timing of spikes. But they share information because the spa-
tial regions that they scan have overlaps (a photoreceptor contributes the
activity of several RGCs) inducing stimuli-induced correlations in their re-
sponse. In addition, the lateral connections from horizontal and amacrine
cells induce indirect interactions between RGCs. Therefore, RGCs presum-
ably also encode information at a population level. This "population coding"
presents several advantages: redundancy, reduction of uncertainty, simulta-
neous coding of different stimulus attributes, fast response, etc. It is however
a contemporary challenge to understand it.
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3 Population coding and statistical physics

Current acquisition technologies (Multi-Electrodes Array, MEA) allow us to
simultaneously record several thousands of RGCs in response to a visual
scene, providing a contemporary challenge: to try and decipher the visual
scene from the RGC spikes and thereby infer coding strategies of the visual
system. Part of this information can be recovered by assuming that cells en-
code information independently. This allows one to design "decoders" based
on firing rate, spike latency, rank order, etc. Yet, the decoders built this way
have many fitting parameters and their efficiency may vary with the visual
stimulus. In addition, it has been shown [2] that a part of the information is
carried by the (weak) correlations between RGCs suggesting that population
coding takes place.

For a modeller, it seems clear that a population of connected neurons sub-
mitted to an external stimulus will produce a correlated response at the pop-
ulation level. We have made a mathematical analysis of this aspect in [3,4],
using Integrate and Fire models. We have shown that the population statis-
tics are described by a variable length Markov chain where transition proba-
bilities can be explicitly written: they depend on neuron connectivity, on the
stimulus and on spike history in a similar fashion as the so-called General-
ized Linear Models [5].

Such Markov chains are closely related to what physicists call "Gibbs dis-
tributions"”, initially introduced by Boltzmann and Gibbs to establish a link
between microscopic dynamics of particles and thermodynamics. Gibbs dis-
tributions are probabilities of exponential form where the term in the expo-
nential is, in physics, proportional to the energy; the form of the energy is
constrained by the forces involved in the problem and defines a statistical
model or an "ensemble". More generally, in the correspondence with Markov
chain, the term in the exponential has not the interpretation of a physical en-
ergy, but we will call it "energy"” as well, for simplicity. When dynamics are
time-translation invariant ("stationarity"), Gibbs distributions are obtained
by maximizing the statistical entropy under the constraint that the average
of the observables defining the energy is fixed (Maximum Entropy Principle,
MEDP), but their definition via the equivalence with variable length Markov
chains allows for non-stationary situations.

Using Gibbs distributions to analyze retina data and population coding
has shown great success within the last decade. In particular, several im-
portant results have been obtained by using the MEP for an energy hav-
ing the form of an Ising model, i.e., taking into account instantaneous pair-
wise interactions between neurons [2]. Extensions to more general energy
forms have been considered too (triplet interactions [6], time delayed inter-
actions [7]). In particular, we have developed efficient algorithms and soft-
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ware, PRANAS, [8] allowing us to fit the parameters of a Gibbs distribution
(whose energy form is given) from MEA data.

This "Gibbs" approach is appealing for a physicist. It would allow us to
apply the powerful techniques and concepts from statistical physics to the
analysis of the neural code. In addition, showing a canonical form of energy
fitting well with retina data could be a step towards the "thermodynamics"
of the retina: to explain the dynamics of a large population of RGCs by com-
bining a few canonical observables. However, this approach raises several
deep questions.

e Which energy form? In contrast to statistical physics/thermodynamics,
the energy form for the retina cannot be inferred from first principles, so
researchers are reduced to guess the form. Unfortunately, a mathemati-
cal analysis based on the mapping between Markov chains describing the
neuronal dynamics and Gibbs distribution shows that the corresponding
energy generically has a plethora of highly redundant observables [4].
We have proposed a method to eliminate these redundant terms from
data analysis using information geometry, and we have shown experi-
mentally that the degree of redundancy depends on the visual stimulus
correlations [9].

¢ Non stationarity. Most Gibbs approaches, based on MEP, use the assump-
tion of stationarity. To the contrary, the retina mainly responds to changes
in a visual scene, i.e., transient, non-stationary stimuli. The MEP does not
extend to this case. We have developed an approach, based on linear re-
sponse theory, where a time-dependent stimulus is viewed as a perturba-
tion of a stationary state (spontaneous activity) that can be characterized
from data using MEP. In this case, the response to the stimulus can be
written in terms of correlations of the stationary case (this an extension of
the fluctuation-dissipation theorem of physics) [10].

e Decoding. Assume we are able to characterize the population statistics of
RGC with a Gibbs distribution, how can we use it to decode the visual
stimulus? Although some promising approaches have been proposed,
this question seems far from being solved.

4 Retinal waves, retinal development and non linear
dynamics

Immediately after birth the visual system of vertebrates is not yet effective.
A complex, transient sequence of dynamical processes takes place starting a
few days before birth, progressively enabling "the eyes to see" and stopping
when vision is functional. A large part of this processing is due to waves of
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electric activity ("retinal waves") spreading through the retina with a char-
acteristic periodicity. This macroscopic phenomenon (i.e., occurring at the
scale of the whole retina) originates from microscopic processes starting at
the molecular level (ionic channels), inducing bursts of activity in specific
cells, and spreading through the retina by virtue of cell connectivity. Reti-
nal waves are classified into 3 consecutive stages, each having a specific
role in visual system development. The transition between stages results
from genetically programmed morphological changes. However, a part of
this spatio-temporal activity and its transformation during development can
be explained by generic mechanisms in nonlinear dynamics, as we describe
here, focusing on stage II. This section is a summary of D. Karvouniari’s the-
sis [11,12], work conducted in collaboration with Institut de la Vision and
InPhyNi (L. Gil).

Stage II retinal waves are due to spontaneous and periodic bursts of ac-
tivity of specific retinal cells, the starburst amacrine cells (SACs), coupled by
the excitatory neurotransmitter, acetylcholine (Ach). When a SAC is active
(bursting) it releases acetylcholine; this can trigger the activation of post-
synaptic cells. The membrane potential V of SAC i can be modeled as:

dV;

Car

= Iion(vi/') +ISAHP(Vi/Ri) + IAch(Vi/Aj)r 1)
where C is the membrane capacitance. The term I, (V, ®) represents the sum
of ionic currents involved in SACs bursting (mainly calcium and potassium),
and depending on additional dynamical variables represented, for simplic-
ity by the symbol e (see [11] for details); I;arp(Vi, R;) is a slow hyperpolar-
ization potassium current, depending on a refractory variable R; controlled
by a cascade of kinetic processes; finally, I4.,(V, A;) is the sum of excitatory
acetylcholine currents due to active pre-synaptic cells j connected to i.

A bifurcation analysis of the model (1) shows that SACs can switch, by
a saddle-node bifurcation, from a rest state to fast oscillations in the order
of milliseconds (bursting). This arises when the current Iio; = Liagp + Lach
crosses from below a threshold value Iy, depending on biophysical param-
eters (conductances, reversal potentials, etc.). Reciprocally, when the cell is
bursting, it can go back to a rest state, by a homoclinic bifurcation, if I
crosses from above a threshold value If, . In general, Iy, < Iy but they dif-
fer by a few pA, so, for simplicity, we identify them from now. Thus, in short:

. < 0,SAC is at rest,
i Tior = Lsarp + Lach, { > 0,SAC is active. 2)

The transition from rest to active is due to excitation from pre-synaptic ac-
tive cells, via the excitatory current I 4., (V, A j). The transition from active to
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rest is due to the slow hyperpolarization current I; opyp(V;, R;) (having a neg-
ative sign). Indeed, when the cell is active, a complex mechanism involving
calcium takes place, I;app(V;, R;) becomes more and more negative, lead-
ing the cell, after a few seconds and via a bifurcation, to a hyperpolarized
rest state where it can not be excited for a long period (in the order of one
minute), independently of the excitatory current I4., provided by the other
cells.

Thus, wave propagation is due to a transition from rest to active state of
SACs transmitted via Ach interactions. Waves are stopped by hyperpolar-
ized regions corresponding to cells that have burst in a former wave. There-
fore, each wave has to propagate into a landscape, imprinted by previous
waves, with refractory regions and excitable regions. This landscape evolves
slowly in time, on time scales that are longer than the SAC refractory period.
This generates a spatial anisotropy where some cells are more active ("lead-
ers") and some others more refractory. In this way, the mere dynamics gener-
ate a huge spatio-temporal variability, even if the cells are initially identical.
This (biologically observed) variability is purely dynamical and does need
to add extra mechanisms to be explained.

A non-linear wave propagation equation can be obtained, upon several
approximations, considering SACs are located on a d-dimensional regular
lattice, with spacing a, and nearest-neighbours interactions. The Ach con-
ductance, I, considered now as a field in a d-dimensional continuum, obeys:

3—1;:—yl"—l—ZdQH[F—FC(R)]—i—azQAH[F—FC(R)], 3)
where i is the Ach degradation rate, () the Ach production rate; A is the
Laplacian operator; H is the Heaviside function, mimicking the threshold
effect (2), and T.(R) is the critical threshold, derived from the bifurcation
condition (2) in a refractory landscape characterized by the variable (field)
R and depending upon the network history. This is a singular equation be-
cause one applies a Laplacian to a Heaviside function. It is however possible
to smooth the Heaviside function to eliminate this singularity. This equa-
tion can be solved for simple refractory landscapes, but the general situation
where R is a random landscape imprinted by waves history, is still under in-
vestigation.

The process of wave generation and propagation bares some similarity
to forest fires introduced in the context of Self-Organized Criticality (SOC).
SOC systems have the ability to self-organize into a state where character-
istic events (avalanches) have power law distributions. This has lead some
researchers to hypothesize that the retinal wave distribution (size or dura-
tion) could follow a power law [13]. Experimental evidence is not convinc-
ing though and would deserve a more elaborate analysis. Interestingly, eq.
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(3) corresponds to a continuum limit of a SOC model (a sandpile) if the term
—ul' +2dQH [T —T.(R)]| = 0. This is very specific and non-generic situa-
tion. As a consequence, in our model, wave distributions are exponentials,
except at a specific curve in the parameter space, given by this specific re-
lation and related to the bifurcation condition (2); there the distribution is
a power law. This suggests that SACs do not organize in a critical state un-
less some additional mechanism is added (like homeostasy), driving them
towards the critical curve.

This model provides an example where one can construct the path from
the molecular scale to the neuronal scale, to the macroscopic scale. The math-
ematical analysis allows us to explain bursting of SACs and wave propa-
gation with simple mechanisms in nonlinear dynamics. In addition, it al-
lows us to explicitly compute several important quantities, such as the wave
speed.

But the main interest is the closeness to experiments. The model not only
reproduces experimental facts, it also leads us to experimental predictions,
some of which are on the way to be experimentally confirmed (see [11,12] on
the role of kV3 channels on bursting of SACs during stage II). In particular,
we are able to characterize how retinal wave structure is evolving during
development when synaptic connections are modified. Likewise, the model
is accurate enough to explain pharmacological manipulations (e.g., channels
or synaptic terminal blocking).

5 Conclusion and perspectives

In this paper, I have given examples of research where concepts and meth-
ods from theoretical physics are used to understand retinal dynamics and
how it encodes information. I would like now to briefly present further on-
going developments.

Amacrine cells and motion processing. When an object moves across the
visual field our visual system is able to interpolate its trajectory and to fil-
ter much spurious information: eye-head-body movements, motion of the
background. In particular, anticipation is absolutely essential to compensate
the time lag of 30 — 100 ms between the reception of photons in the retina
and the response of the visual cortex. Part of the anticipation process starts
in the retina and is explained by the non-linear response (gain control mech-
anism) of bipolar and ganglion cells [14]. This does not take into account
the lateral connectivity of amacrine cells, which play an important role in
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motion processing (differential motion, approaching motion, etc.). We want
to understand the possible role of amacrine cells lateral connectivity in the
retina in processing complex motion. In particular, we are seeking a specific
transient signature in RGC correlations, in response to a moving object. We
believe that the correlated response could provide more efficient process-
ing of the object motion, especially trajectory anticipation and interpolation.
We want to validate this hypothesis at the modelling level (PhD thesis of
Selma Souihel) and experimental level, in collaboration with the Institut de
la Vision and Institut des Neurosciences de la Timone, in the context of the
Trajectory ANR.

Effect of pharmacologically switching a population of RGCs. At present,
over 30 RGC sub-types have been identified, typically on the basis of com-
mon anatomical features or basic functions (e.g., sensitivity to motion, orien-
tation, motion direction etc.). In collaboration with the University of New-
castle, in the context of E. Kartsaki’s thesis, we want to investigate how
different groups of RGCs contribute to the encoding of visual scenes. The
project uses a pharmacogenetics approach (combined with MEA physiology,
anatomy, computational modelling and behaviour) to reversibly silence sub-
groups of RGCs sharing gene expression through specific drugs (DREADD)
activation. Removing an entire functional RGC group from the population
response will shed light on the role these same cells play in population en-
coding of complex visual scenes and identify which information is lost, lo-
cally and globally.
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