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H I G H L I G H T S

• The french mechanism for Demand Response in spot markets is presented.

• Water demand uncertainties are modeled.

• A chance constrained problem for Demand Response optimization has been formulated.

• Demand Response commitment is best respected when uncertainties are considered.

• Water systems are more profitable for Demand Response with uncertainty consideration.
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A B S T R A C T

The development of smart grids represents a major breakthrough in the management of electric power and
drinking water systems. On the one hand, smart grids have contributed to the development of energy efficiency
and demand side management mechanisms such as Demand Response, making it possible to reduce peak load
and adapt elastic demand to fluctuation generation. On the other hand, smart water networks and sophisticated
Supervisory Control and Data Acquisition systems in the water industry have allowed one to optimize, control
and monitor the water flow throughout its entire process. Being a highly energy intensive industry and having an
electrical flexibility by the presence of storage elements such as tanks, drinking water systems have the ability to
address energy efficiency mechanisms such as Demand Response. In this paper, the French demand response
mechanism in spot power markets is presented. Then, a chance constrained problem is formulated to integrate
water systems flexibility to power system operation, under water demand uncertainties. Numerical results are
discussed based on a real water system in France, demonstrating the relevance of the approach in terms of
financial benefits and risk management.

1. Introduction

Energy transition has introduced a series of new rules and con-
straints for the management of power systems. On the supply side,
several countries around the world are experiencing a progressive in-
tegration of renewable energies in their energy mix. At the same time
and on the demand side, the world is experiencing a rapid increase in
electricity consumption [1], mainly due to the development of new
usages of electricity (heat pumps, electric vehicles, etc.). Given the
limited storage capacity of electricity, balancing in real time the power
system is a very difficult task. In fact, physical equilibrium between
load and generation has traditionally been managed by transmission

system operators through a flexible portfolio of different generation
units. However, with the massive integration of intermittent genera-
tion, the power network becomes more and more exposed to in-
stabilities, reducing the flexibility of this portfolio and leading to an
increase of peak load phenomenon.

In France, electricity consumption is highly driven by weather
conditions, especially in winter because of the preponderance of elec-
tric heating in households. During cold winters, a decrease of 1° Celsius
in temperature implies an increase of 2300MW in electricity demand
[2]: this is the thermo-sensibility phenomenon. For instance, in the si-
tuation illustrated in Fig. 1, a peak of consumption of 102 GW occurred
on the 8th February 2012 at 7:00 pm, which alerted the French
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Transmission System Operator RTE (Réseau Transport d’électricité) and
showed the need to develop efficient methods for the active manage-
ment of demand.

Demand response (DR), defined as the change in the power con-
sumption of an electric utility customer in response to a given signal,
has been part of the flexible portfolio of transmission system operators
since a long time. It participates in balancing the power system at peak
moments in the same way peak generation units does, and is becoming
more and more interesting and attractive with the development of
smart grid technologies [3].

Industrial processes are believed to be the best candidates for DR,
especially the ones that have storage units. They can adapt their energy
consumption to the needs of the electric grid, in return of a re-
muneration that compensates them for the economic cost of their load
shedding [4,5]. Since the industrial sector comprises 42% of the world’s
electricity consumption [6], addressing industrial load control is critical
and remains a major challenge for both authorities and industrials: the
French industry consumes around 21% of the total annual electricity
produced in France [7] and the German industry around 50% [8]. In a
context of deregulation of energy markets and rising energy costs, op-
timizing these costs becomes a major challenge for manufacturers. DR
can prove to be a win-win approach for both the power system and the
industrial sector [9].

This paper deals with the particular case of a highly energy-in-
tensive industrial sector: the drinking water industry. We present the
opportunities and constraints for drinking water systems (DWSs) to
participate in efficient DR mechanisms in France. We evaluate the
economic benefits for water utilities of optimizing pump scheduling and
DR trading operations under Time of Use (ToU) power procurement
contracts. Uncertainties about water demand are taken into account in
the mathematical model, making it possible to propose power reduc-
tions in the spot market while ensuring satisfaction of water demand
under a wide range of scenarios.

The paper is organized as follows. DWSs and their electric flexibility
are first introduced in Section 2, and DR mechanisms in France are
discussed in Section 3. The optimization problem for scheduling DR in
the day-ahead market for DWSs is then formulated in Section 4. In
Section 5, we present simulation results based on a real drinking water
system in France. Finally, some conclusions and future research direc-
tions are discussed in Section 6.

2. Drinking water systems and electric flexibility

DWSs are designed to produce, transport and distribute water from
sources to consumption areas. A drinking water supply system typically
includes:

• Water sources;

• Water treatment and production plants;

• Storage facilities such as tanks and reservoirs;

• Connection elements such as pipes and valves;

• Pumping stations including fixed and variable-speed pumps.

A drinking water cycle generally begins with the collection of water
from sources to be processed in treatment and production plants. After
its production, water is stored in reservoirs. Pumping stations then
pump water to tanks that serve to distribute the water under gravity
(without any pumping operation) to final consumption areas (Fig. 2).

Nowadays, the water industry is facing major changes in its business
environment. Efforts to preserve water resources involve developing
more efficient ways to improve the efficiency of water networks by
reducing water leakages. Furthermore, providing a good quality of
water to all consumers is one of the major concerns of public autho-
rities. A key factor to address successfully these challenges will be to
reduce costs by improving the efficiency of capital investment and
operations [10]. In this context, energy-efficient water supply opera-
tions could contribute to the reduction of investment, maintenance and
operating costs for the management of drinking water networks.

Water distribution systems can account for up to 5% of a city’s total
electricity consumption [11], and more than two thirds of this con-
sumption is used by electric pumps [12]. The optimization of energy
costs is, therefore, among the main concerns of water utilities in a
context of deregulation of energy markets and high price volatility.
Energy optimization can be achieved by four complementary means:

• Strategic power procurement contract optimization: among all the
market offers, choosing the most suited ones given the constraints
and the mode of operation of the water network.

• Load shifting optimization: optimization of the pump scheduling in
order to benefit from the most advantageous (cheapest) time rates
and reduce energy consumption during peak times.

• Pump efficiency optimization: operating pumps near their best ef-
ficiency point (BEP).

• Optimization of pump maintenance operations (preventive main-
tenance).

In a DWS, pump schedules can be determined using several math-
ematical optimization models, which will be discussed in Section 4.
Storage units such as tanks and reservoirs provide some flexibility that
can be exploited for securing water supply and optimizing the pump
scheduling. Indeed, pump operators store water without immediate
need in tanks and reservoirs during off-peak hours (cheapest electricity
price periods), in order to have a reserve of water ensuring a level of
autonomy to supply consumers with water during peak hours, or in
anticipation of unexpected unavailability of pumps. We can thus as-
similate water reservoirs to electric batteries, as they implicitly allow
for electricity storage. Fig. 3 illustrates this situation. Pumping water to
fill a reservoir at off-peak hours makes it possible to store a quantity v of
water during a period dt and its equivalent in energy

Fig. 1. Load curves before and during the cold spell: impact of temperature
(source: RTE). Fig. 2. Example of a simple drinking water system.



storage = ∗E P dstored pump t, where Ppump is the electric power of the
pump. This energy conserved in the form of water can be used later to
supply end-users with water during periods of stress on the power
system, without resorting to using the energy of pumps.

In addition, some pumps can be of variable speed, which gives them
the ability to adapt their flow rate, pressure and thus their energy
consumption to the needs.

This flexibility (storage facilities and variable-speed pumps) can be
used to give another dimension to the pump-scheduling problem, be-
cause of its ability to address energy efficiency mechanisms such as DR.
With the development of smart grids and sophisticated Supervisory
Control and Data Acquisition (SCADA) systems in the water industry,
water utilities now have the ability to optimize, control and monitor the
water flow throughout its entire process. The optimal use of water
equipment and available energy market data could allow water systems
to interact in real time with energy markets and participate in punctual
balances of the electric grid, in return of remunerations. However, this
process can be hampered by financial remunerations that are often not
attractive enough to encourage the development of DR in the industrial
sector [13]. A major challenge is to find strategies that are economically
viable for water utilities, as well as ecologically and operationally
beneficial to the power system. In this context, our objective is to find
an optimal operating schedule of pumps allowing us to:

• Minimize electricity costs due to pumping operations;

• Maximize the revenues earned from trading DR via appropriate
mechanisms;

• Help the Transmission System Operators to manage imbalances in
the electric grid and to reduce peak electricity demands.

Some previous important related studies on drinking water systems
in demand side management have discussed the opportunities for water
systems to reduce peak electricity demand [14–16], while others deal
with some energy efficiency operations in DWS [10,17]. In the United
Kingdom, Menke et al. [18–20] considered the design of the local DR
markets, particularly frequency response and reserve power mechan-
isms operated by the British transmission system operator National
Grid. They proposed a mathematical model making it possible to op-
timize participation of DWSs in these mechanisms, proving both eco-
nomic and ecological benefits [18]. The relevance of using variable
speed pumps to improve DR participation has also been demonstrated
[20]. Simulations were done using a benchmark water network and
numerical results were discussed for a range of pump usage rates and a
range of overall rewards for the provision of DR using historical sta-
tistics provided by National Grid. Integration of energy flexibility for
water systems in power system operation has also been evaluated by
some authors [21,22]. The new contributions presented in our article
compared to previous work are the following:

• The DR market considered in our study is the French day-ahead
wholesale market, which allows a direct participation of DR as a
resource. This is a new DR mechanism in France and the only one to

regulate DR on spot markets in Europe. Our study proposes to model
its constraints.

• Water demand uncertainties are considered in the modeling of the
problem in order to propose power reductions on the spot market
covering potential real-time water demand forecasting errors.

• A chance constrained problem for the pump scheduling problem
with DR consideration and uncertain water demands has been for-
mulated. Then, an original heuristic has been developed to solve the
problem.

• A real water system in France with real operational constraints has
been used for simulations.

• The importance of considering uncertainties in the day-ahead de-
cision-making problem has been demonstrated. For this purpose,
numerical results are discussed from a financial aspect, an opera-
tional aspect relating to the management of the water system, and a
risk management aspect.

The next section presents the different DR markets in France, and
discusses the particular market considered for our study.

3. Demand Response in the French markets

The general context of DR in the French energy markets will first be
discussed in Section 3.1. The specific mechanism considered in this
paper will then be described in Section 3.2.

3.1. General context

In all liberalized electricity markets, peak generation units face
problems of economic viability. As a consequence of regulatory po-
licies, energy markets do not remunerate these generation units well in
comparison with their investment, operation and maintenance costs.
Maintaining operation of some fossil fuel power plants is thus un-
profitable. To face this problem called “the missing money issue in
energy-only markets” [23,24], several countries started integrating DR
in their local markets, as well as some other capacity payment me-
chanisms, in order to secure the electric power system at peak times and
improve its reliability. On the other hand, advancements in smart grid
technologies have made it possible to apply several strategies to opti-
mize DR in energy markets. We then see the emergence of new actors in
electricity markets called “DR operators”, or “DR aggregators”. These
operators offer the possibility to aggregate DR potential and constraints
of many customers, and propose the total DR capacity on markets [25].
Furthermore, the implementation of smart technologies like advanced
metering infrastructures, the progressive change in market rules by
regulatory agencies and the removal of barriers for DR participation in
electricity markets encourage an active involvement of demand-side
management around the world and capture its potential benefits in
electricity markets [25,26].

Some countries around the world like USA, Spain, Finland and
Norway offer dynamic energy pricing in retail markets [27]. This type
of pricing is based on spot prices (D-1 markets) and reflects the supply-
demand equilibrium of the market. There exists a large literature on
dynamic pricing concluding that it improves competitiveness at retail
level and promotes the development of DR and energy efficiency me-
chanisms [28–31]. In France, only ToU power procurement contracts
with peak/off-peak hours pricing options are proposed in retail mar-
kets. However, this country remains among the most developed in the
field of demand-side management (see Fig. 4) thanks to the active in-
volvement of the transmission and distribution system operators RTE
and ENEDIS, the French regulatory commission CRE, suppliers and DR
operators [32,33]. This active involvement is motivated by the thermo-
sensitive nature of the French electricity consumption, by the high
nuclear dependence, and by the increasing desire of public authorities
to reduce gradually the nuclear rate.

The DR mechanisms available in France can be divided into two
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Fig. 3. Reservoirs and electricity storage.



different categories: those with engagement of availability (capacity)
and those without any engagement of availability (energy). Energy
mechanisms make it possible to sell the energy not consumed by a
consumer, either in the day-ahead spot market or in real time (balan-
cing market) to RTE. These mechanisms contribute to manage punctual
imbalances on the power grid and to reduce peak power load. In con-
trast, capacity mechanisms were designed to provide a commitment of
availability for RTE over a fixed period (one year in general for rapid
reserves, call for tenders and capacity obligation mechanism), enabling
it to improve power system’s reliability and manage different un-
certainties and constraints: network congestion, generator failure, an-
ticipation of peak demand, etc.

In this paper, the participation of water systems in the spot power
market is considered under the “Notification d’Echange de Blocs
d’Effacement” (NEBEF) mechanism. This mechanism has been chosen
for two reasons:

• It is a recent mechanism in France and, to the best of our knowledge,
no study has tried to formulate its constraints and optimize its
participation;

• It does not require any commitment over a medium time horizon
since the decision of participation is only made one day ahead.

The principle and the constraints of the mechanism will first be
described. The mathematical model allowing us to optimize the parti-
cipation of DWSs will then be discussed.

3.2. The NEBEF mechanism

The NEBEF mechanism is applicable since April 2014 in France. It
makes it possible to sell energy curtailment of an energy consumer,
called a DR block, in the day-ahead spot power market via a Demand
Side Management Operator (DSMO). The DSMO is composed of the DR
aggregator and the consumer himself. The DR block is sold at the
market price, which corresponds to the intersection of the market’s
supply and demand curves. The DSMO must then compensate finan-
cially the supplier of the site with energy curtailment for the energy
injected into the network and valued by the DSMO on the market [34].
The amount of compensation is regulated in order to avoid any prior
agreement of the supplier, and depends on the season, time, and type of
day (working or non-working). This compensation is compulsory so
that it does not impact wholesale and retail market conditions. The final
incentive for the DSMO is the difference, when positive, between the

spot price and compensation (see Fig. 5).
For example, for a DR power of 200 KW, the process could be

summarized as follows:

• The DSMO sells on day D-1 the DR power 200 KW on the spot
market, without prior agreement from the supplier of the site with
energy curtailment (the energy supplier of the consumer partici-
pating in the DR program). The DSMO is paid at the spot market
price for the power 200 KW.

• Then, the DSMO pays the supplier to compensate for the power
(200 KW) they have injected into the power network. This price is
regulated.

• The final incentive for the DSMO is the difference between the spot
price and compensation, multiplied by the power 200 KW and the
duration of the event.

• Finally, benefits are shared between the DR aggregator and the
consumer.

In Europe, France is the only country that allows DR to participate
directly to D-1 (spot) markets as a resource [35]. However, the same
kind of discussions has taken place before in the USA: Should DR be
paid market price? With what impact on suppliers? In response to these
questions, the Federal Energy Regulatory Commission (FERC) issued
Order 745 in March 2011, declaring that DR must be paid market price
for energy when such resources have the capability to balance supply
and demand as an alternative to a generating resource and when their
dispatch is cost-effective [36]. The main difference between the two
mechanisms is that the American one does not oblige DSMOs to fi-
nancially compensate the suppliers.

Offers through the NEBEF mechanism were intensive at the end of
2016, due to high wholesale market prices as a consequence of high
nuclear plant unavailability and low temperatures. The total volume
traded was 4 GWh in the month of November [33].

For the NEBEF mechanism, the time-step considered is 30 min. Each
DR bid on the spot market must constitute at least 100 kW of power
reduction. In addition, DR bids cannot exceed a maximum of two hours
per block [37]. The duration between two DR bids must not be less than
the maximum duration of the two bids [37].

In order to quantify the real load curtailed by the DR operator
during a DR event, RTE compares two curves [37]:

• Reference curve: the minimum between the mean electric load just
before (past reference) and just after (post reference) the DR event,
over a period of time equal to that of the DR event.

• DR curve: mean electric load during the DR event.

The load curtailed is equal to the difference between the reference
curve and the DR curve (Fig. 6). This method of estimation is called the
corrected double-reference method, because it takes into account the load
before and after DR events.

Fig. 4. Map of explicit Demand Response development in Europe today (source:
Smart Energy Demand Coalition 2017).

Fig. 5. NEBEF process.



4. Mathematical model

This section presents the mathematical model used to optimize
participation of DWSs in the NEBEF mechanism. The optimal pump
scheduling problem without DR consideration will first be discussed in
Section 4.1, and the model of the pump scheduling problem with DR
participation will then be presented in Section 4.2.

4.1. Optimal pump scheduling problem

Optimal pump scheduling problem has been addressed in the lit-
erature for a very long time. It is a NP-Hard problem [38] and it has
been addressed via different modeling schemes and optimization
methods [39]. It has been shown to reduce the energy cost of DWS up to
20%, either by optimizing load shifting according to different energy
prices or by improving operational pump efficiency [40]. Due to the
presence of binary variables and nonlinear hydraulic constraints, which
make calculations more difficult, only automatized control programs
have the computational capacity to determine a least-cost schedule in
real-time [41]. This problem has given rise to advanced research on
optimization algorithms (see [42,43,40]). The mathematical ap-
proaches are either heuristic or exact, in which case they ensure global
optimality but can often only be used for small instances due to high
computational complexity. The optimization problem for scheduling
DWS pumps can be, in general, formulated as follows [18]:

Minimize Pumping Costs
Subject to:

• Physical constraints of reservoirs and pipes

• Hydraulic constraints of pumps and pipes

• Mass balance at network nodes

• Operational constraints of the network

• Regulatory constraints of the network

Physical constraints correspond to storage minimum and maximum
operational filling level of tanks and reservoirs, as well as maximum
flow rate that can pass through a pipe. They can be written as linear
equations on the state variables. Operational constraints correspond to
specific operating modes of each water system: they include water
quality, priority of use of equipment, continuous functioning of pro-
duction plants [38], etc. In general, they can all be modeled by linear
constraints.

Regulatory constraints generally refer to conditions of use of water
resources imposed by public authorities.

Mass balance constraints, neglecting compressibility effects and
using steady-state approximations of hydraulic conditions, are

equivalent to volume balance constraints. They impose the equality
between the sum of the incoming flows and the sum of the outflows at
each network node. Note that water demands at nodes are part of the
mass balance constraints.

Finally, hydraulic constraints correspond to the fundamental equa-
tions for pipes, called the head-loss or potential flow-coupling equations
[41]. Due to the non-linearity of the constraints generated by these
quadratic equations, prior linearization by piecewise affine functions or
the use of a hydraulic simulator like EPANET is required [44]. For our
study, we used a hydraulic simulator to evaluate the hydraulic co-
herence of the obtained solutions. The forecasted water demand profile
in demand nodes was injected into the hydraulic model of the system
using EPANET, allowing us to estimate the head losses in pipes as well
as the flow rate of the pumps. These hydraulic simulation results were
used to update the flow rates of pumps.

Since all these types of constraints and considerations are often
encountered in the literature [18,38,39], we will refer to them as the
DWS classical constraints.

4.2. Pump scheduling problem with Demand Response

We propose to model the optimal participation of a DWS in the DR
NEBEF mechanism. We assume that the water utility acts on the market
as a DR operator and seeks to maximize its own profits. We schedule
both the biddings of the water utility on the spot market and the op-
eration of pumps one day ahead in order to maximize the total profit-
ability. This day-ahead scheduling problem is advantageous in terms of
available computational time compared to the real-time pump sche-
duling where optimal schedules should be found in few minutes.

4.2.1. Problem formulation
We model DR in the objective cost function of the DWS as follows:

Minimize Electric Costs - DR Benefits
Subject to:

• DWS classical constraints.

• NEBEF constraints.

Electric Costs are related to power supply contract that links the
water utility to the energy supplier. They are fixed contracts over a time
horizon with two prices per season (peak hours and off-peak hours). DR
benefits correspond the financial profits related to DR power transac-
tions on the spot market, which vary daily and depend on the market
situation.

The time-steps are discretized to one-hour interval periods in order
to speed up computational times. We consider that we can take a po-
sition in the spot market at each period t. Each market position is a pair
(go/no go, Power), where “no go” corresponds to no bid on period t and
“go” to a bid with the corresponding power “Power” and paid at market
price. We consider deterministic scenarios for the modeling of market
prices in our objective cost function. Under this assumption, each DR
bid corresponds to an accepted bid and is paid market price (price
uncertainties are neglected by considering deterministic scenarios). In
other words, we assume that market prices are well anticipated by the
water utility and that the main issue is to decide whether or not to bid
on the market. For this purpose, historical French market scenarios for
2016 are considered, available on the website of the electricity ex-
change EPEX SPOT [45].

However, planning one day ahead (day D-1) the amount of elec-
tricity consumption to be reduced (in day D) during peak times re-
presents a challenge for water utilities due to the uncertainties about
water demands over the network. It requires well-formulated operating
schedules for pumps and risk-management to ensure that the water
level in tanks remains in the operational range at minimum cost. In
addition, a minimum of financial viability is required to water utilities
in order to participate in DR schemes. Indeed, the water utility could be

Fig. 6. Illustration of reference periods.



considered as an electricity producer aiming to sell an amount of its
electricity on the spot market in day D-1. However, its clients demand
for day D is uncertain and therefore must be taken into account in its
decision making.

For the modeling of water demand uncertainties, it is assumed that
one has a set Ω containing a history of N water demand realizations

= ⋯ = ⋯d t T{ , 1 }t
i

i N1 for the system.
The following notations are then used for the model:

• x xi t, i,t : state of the pump i at period t (1, 0)
• Ci t, : power cost when pump i is ON at period t (linked to power
supply contracts).

• Pi t, : power activated by pump i at period t.
• yt : binary variable indicating the position taken on the spot market
at period t (go/no go).

• P :max maximal contractual power of the DWS.
• Pt

DR: electric power (DR block) put on sale (bid) on the spot market
at period t (in kW).

• Pmin
DR : minimum DR bid allowed for NEBEF (in kW)

• rt : market spot price at period t (in €/kWh).

• ρt: compensation price at period t (in €/kWh)

• s :i t, level of reservoir i at period t

• s :i
min minimum level of security for reservoir i

• s :i
max maximum level of security for reservoir i

• d :i t
for
, forecasted demand of reservoir i at period t

We write the objective function as follows (Obj):

∑ ∗ − ∗ ∗ −C x P y r ρ Objminimize ( )( )
i t i t i t t

DR
t t t

x ,y ,P , , ,
i,t t t

DR

The decision variables arex P,i t t
DR

, and yt. The objective function
aims at making, for each step time t, a trade-off between electric con-
sumption by activating the pumps, and energy curtailment by selling
the energy not consumed on the spot market. Naturally, if the model
does not find any economic interest in bidding on the spot market, the
vector = ⋯y t T{ , 1 . }t should be equal to zero and the problem gets back
to the classical pump scheduling problem.

The operation of the water system would then be scheduled based
on power costs Ci t, for pumping operations, and the difference between
spot price and compensation for DR energy selling on the market.

We introduce the following new variables for a better modeling and
understanding of the constraints:

= ∗ − +α y y(1 )t t t 1 (1)

DR bid at period t but not at period t+ 1.

= ∗ − −β y y(1 )t t t 1 (2)

DR bid at period t but not at period t− 1.

= ∗ +e y yt t t 1 (3)

DR bid at period t and t+ 1 (two consecutive periods

These variables are introduced because that past and post reference
periods depend on the bid duration. The constraints of the NEBEF
mechanism as described in Section 3.2 are modeled as follows:

∀ = ⋯ ≤ ≤t T P P P1 , min
DR

t
DR

max (4)

∀ = ⋯ − + + ≤+ +t T y y y1 2, 2t t t1 2 (5)

∀ = ⋯ − − ≤ ∗ −+t T P P P e1 1, | | (1 )t
DR

t
DR

max t1 (6)

∑ ∑− ≤ ∗ −+ +( )P x P x P e(1 )
i i t i t i i t i t max t, , , 1 , 1 (7)

∑ ∑∀ = ⋯ ≥ + ∗− − ( )t T P x P x P β2 ,
i i t i t i i t i t t

DR
t, 1 , 1 , , (8)

∑ ∑∀ ≤ − ≥ + ∗+ + ( )t T P x P x P α1,
i i t i t i i t i t t

DR
t, 1 , 1 , , (9)

∀ = ⋯t T2

∑ ∑− ≤ ∗ −− − − −( )P x P x P e| | (1 )
i i t i t i i t i t max t, 2 , 2 , 1 , 1 (10)

∀ = ⋯ −t T0 3,

∑ ∑− ≤ ∗ −+ + + +( )P x P x P e| | (1
i i t i t i i t i t max t, 2 , 2 , 3 , 3 (11)

Eq. (4) represents the minimum power reduction in kW allowed for
the NEBEF mechanism while Eq. (5) represents the two hours maximum
duration of a DR bid. Eqs. (6) and (7) reflect the fact that the DR bids
containing two consecutive periods (two hours for the block =e 1t ) must
be uniform: they should have the same amount of energy curtailment.
Eq. (8) models the end of the past reference period and Eq. (9) models
the beginning of the post reference period. Finally, Eqs. (10) and (11)
model the duration of reference periods in the case of a 2-hour DR bid
( =e 1)t .

A first formulation of the problem is the minimization of the ob-
jective function Obj( ), under the DWS classical constraints and con-
straints (4–11), verified for any water demand realization in Ω:

∑ ∗ − ∗ ∗ −C x P y r ρminimize ( )
x y P i t i t i t t

DR
t t t

, , , , ,
i t t t

DR,

Subject to: P( )0

• DWS classical constraints ∀ ∈d Ω.

• Constraints (4–11) ∀ ∈d Ω

Formulation P( 0) is very robust. Indeed, robustness comes from the
fact that the constraints must be verified for all water demand sce-
narios, which strongly limits the flexibility and the DR potential of the
system. To overcome this problem, a tolerance value ∈p [0, 1] is set
and the problem is replaced by a probabilistic problem, noted (P1), in
which we impose the respect of all constraints with a probability p
(over a proportion p of the historic scenarios)

∑ ∗ − ∗ ∗ −C x P y r ρminimize ( )
x y P i t i t i t t

DR
t t t

, , , , ,
i t t t

DR,

Subject to: P( )1

• P (DWS classical constraints ∀ ∈ ≥d Ω) p
• P (Constraints (4–11) ∀ ∈ ≥d Ω) p.

Problem P( )1 consists on minimizing the objective function (Obj)
with all constraints satisfied for at least p N[ . ] water demand scenarios.
Since demand areas are considered as network nodes, Problem (P1) can
be considered as a chance-constrained problem (CCP) on mass balance
violation on demand nodes: tanks and reservoirs must be able to re-
spond to at least p N[ . ] water demand scenarios.

4.2.2. Problem simplification
As mentioned in the previous section, Problem (P )1 belongs to the

family of CCP, in which constraints must be satisfied at a certain con-
fidence level p [46]. Generally, there are two methods to solve a CCP:
by transforming the CCP into a deterministic model [47,48], or by
stochastic simulation [49].

Let A be the set of subsets of Ω of cardinal at least equal to p N[ . ],

= ⊂ ≥A I card I p N{ Ω, ( ) [ . ]}

and J I( ) the function defined as

∑= ∗ − ∗ ∗ −J I C x P y r ρ( ) minimum ( )
i t i t i t t

DR
t t t, , ,

Subject to: P( )I

• DWS classical constraints ∀ ∈d I.



• Constraints (4–11) ∀ ∈d I.

P( )I is the optimization problem whose constraints must be verified
for all water demand realizations in set I . Minimizing function J I( )p , for
Ip belonging to set A, amounts to finding a set of water demand sce-
narios of cardinal at least p N[ . ], respecting all the constraints and
minimizing the objective function (Obj). Problem (P )1 is then equivalent
to:

⟺
⊂

P J I( ) min ( )
I A

1

This equivalence allows the transformation of the chance-con-
strained problem into a robust linear programming problem [50,51].

4.2.3. Problem resolution
Problem P( )1 is solved in two stages:

1. Selection of the set of demand scenarios ⊂I Ap ;
2. Resolution of problem P( ).Ip

4.2.3.1. Demand scenarios selection. Naturally, to solve Problem P( )1 , it
would be necessary to solve the subproblems P( )I for each subset ⊂I A,
and then to retain the set Ip minimizing the function J I( )p . However,
since the set A is very large, the selection of the scenarios Ip will be
performed using a heuristic. A minimal function J I( ) is correlated to a
narrow set of uncertain demands I . Indeed, if the difference between
the minimum and the maximum demands in the set I is large, the
optimization problem P( )I becomes over-constrained which will have a
significant impact on the economic cost. The proposed heuristic is such
that the chosen set of scenarios Ip has a minimal surface between their
maximum and minimum envelopes. In other terms, this amounts to
calculating a minimum area band containing at least p N[ . ] scenarios.

The area of the demand curves was approximated by a Riemann
sum using the rectangle method. The following optimization model
(P )minArea is proposed, which from N water demand scenarios, returns
p N[ . ] scenarios such that the area between its maximum and minimum
envelopes is minimal.

∑ −
=

y zmin ( )
y z a t t t
, , 1

24

Subject to: (P )minArea

• ∀ = ⋯ ≥ ∀t Ty d a i1 .t t
i

i

• ∀ = ⋯ ≤ + − ∗ ∀t Tz d a a d i1 . (1 ) ¯t t
i

i i Ω

• ∑ == a p N[ . ]i
N

i1

• ∈ ∀ = ⋯a i N{0, 1} 1i

In the above equations, ai is the binary variable indicating if a
scenario i is selected or not, yt the upper bound on all demand scenarios
at time t and zt the lower bound on all demand scenarios at time t. The
resolution of (P )minArea determines the set Ip and problem (PIp) can then
be addressed.

4.2.3.2. Resolution of problem PI p. Let us denote by di t p
min
, , and di t p

max
, , ,

respectively, the minimum and maximum water demand values over
the set of scenarios Ip at time t for demand zone i. Satisfying all the
constraints (DWS classical constraints and constraints (4–11)) for all
scenarios in Ip is equivalent to meeting the constraints for the two
extreme values of demand (minimum and maximum) for each period t.
In order to ensure this, maximum and minimum safety levels of each
reservoir should be corrected by the difference between extreme
demands (di t p

min
, , and di t p

max
, , ) and forecasted demand di t

for
, as follows (12):

+ − ≤ ≤ + −+s d d s s d di
min

i t p
max

i t
for

i t i
max

i t p
min

i t
for

, , , , 1 , , , (12)

Eq. (12) then allows the management of tanks between their two
corrected security levels as shown in Fig. 7. These new security levels
are variable over time depending on the difference between forecasted

and extreme water demands. The final optimization problem resulting
in participation of DWS in the NEBEF mechanism while anticipating
uncertainties with a degree of robustness ∈p [0, 1] can be written as a
combination of the objective function Obj( ), constraints (4–12) and DWS
classical constraints as follows P( )Ip :

∑ ∗ − ∗ ∗ −C x P y r ρminimize ( )
x y P i t i t i t t

DR
t t t

, , , , ,
i t t t

DR,

Subject to: P( )Ip

• DWS classical constraints

• Constraints (4–12).

However, problem P( )Ip cannot be solved by linear programming
due to nonlinearities in constraints (9) and (10) and in the second term
of the objective function. To solve this problem, the following linear-
ization approach (proposition 1) is used:

Proposition 1. The two following formulations are equivalent:

⎧
⎨⎩

= ∗
∈ ≤ ≤

⎧

⎨
⎪

⎩
⎪

≤ ∗
≤

≥ − ∗ −
≥

z x y
x and y U y

z U y x
z y

z y U y x
z

{0, 1} 0 (

( )

( ) (1 )
0

The proof of Proposition 1 is directly obtained by distinguishing the
cases× =0 and× =1:

• For× =0, z is equal to 0 in the left formulation and z is also equal to 0
in the right formulation ( ≤z 0 and ≥z 0);

• For× =1, z is equal to y in the left formulation, and z is also equal to y
in the right formulation ( ≤z y and ≥ − ∗ − =z y U y y( ) (1 1) ).

Finally, problem P0 with maximum robustness has been replaced by
problem P1 with a degree of robustness ∈p [0, 1]. The latter problem,
difficult to solve by conventional optimization methods, has been
solved in two steps through a heuristic.

5. Results and discussion

In this section, we examine three aspects from DR via the NEBEF
mechanism for DWSs:

1. Water demand profiles and uncertainties management using a
benchmark water network.

2. Optimal day-ahead water system management with DR considera-
tion, according to market price scenarios;

3. The relevance of taking into account uncertainties in the real-time
operational management of the water system.

5.1. Price scenarios and Benchmark network

For price scenarios, data from autumn and winter 2016 during
working days were considered for two main reasons:

Fig. 7. Corrected security levels for uncertainties management.



• There is more stress on the power grid so there is a need for DR due
to peak electricity demands as a consequence of the massive use of
electric heating in households.

• These months correspond to off-peak periods for water demand
(peak periods occur during summer), and then a greater potential of
electrical flexibility.

For simulations, data prices for the year 2016 were used [45]. The
price paid to the supplier of the site participating in the NEBEF me-
chanism, called compensation, is established by RTE [37] after ap-
proval of the French energy regulatory commission. The price was 56.1
€/MWh at peak hours (06:00–20:00.) and 41 €/MWh at off-peak hours
(00:00–06:00 and 20:00–00:00) for winter and autumn 2016. Spot
prices are available in the Epex Spot website [45].

As shown in Fig. 8, spot prices have two daily peaks: in the morning
between 07:00 and 09:00 and in the afternoon between 18:00 and
20:00. We note that French spot prices experienced particular spikes in
November 2016 (07/11, 08/11, 09/11, 14/11 and 15/11 of the year
2016) as a consequence of a large cold wave coupled with a historically
low nuclear availability [52]. In winter, spot prices are usually higher
than compensation prices, which shows the interest of load shedding.
Therefore, DR via NEBEF mechanism is encouraged to replace the high-
cost high-emissions peak generation units.

To evaluate and discuss numerical results of simulations, a real
drinking water system in France was used as benchmark (see Fig. 9).
The system has about 1300 km of network and contains 15 storage
units, 11 pumping stations and one water production plant. Given the
different operational constraints of the water network, the maximum
contractual power of the system is 4000 kW and the minimum power is
300 kW (minimum power is due the compulsory continuous operation
of production plant). The system includes two variable-speed pumping
stations and two storage units with large storage capacity (more than
three times the daily water demand of the corresponding consumption
area), which brings flexibility to the system. It is recalled that a variable
speed pump operates on a continuous range from a threshold qthr . Pump
operators carry out a daily management of the water network starting
at 06:00 with almost full tanks (> 85% of their maximum storage ca-
pacity). Finally, system operators wish to participate in a one maximum
DR event per day, which would be that of the evening peak (18:00 to
20:00) since it is the period in which spot prices are the highest.

Electricity tariffs used for the water system include supply and de-
livery (transport and distribution) energy costs. These are long-term
energy supply contracts between the water utility and energy suppliers.
These are tariffs with uniform prices during peak hours (06:00 to 20:00)
and off-peak hours (20:00 to 06:00).

To model the energy consumption of pumps, their energy-efficiency
curves were used. Finally, vectorCi t, is the product of electricity tariffs
by pump energy consumption.

5.2. Water demand profiles and uncertainty consideration

The average water demand of the system in winter is about
50,000m3/day with some time profile variations depending on the
demand area. The water demand profile is similar to that of electricity
demand. Indeed, two particular peak periods are observed per day, and
are the morning peak (08:00 to 10:00) and the evening peak (20:00 to
22:00). The studied system contains only residential demand areas. The
water demand history includes only working days of the months of
October, November and December since it corresponds to high elec-
tricity demand periods when the power system needs DR.

Parameters influencing water demand include weather, type of day
and geographic area. Indeed, the water demand profile may be very
different from one region to another (residential, agricultural, in-
dustrial, etc.), even with the same weather conditions. The non-working
days demand profile is generally shifted one to two hours compared to
that of working days.

Figs. 10 and 11 display 32 historical realizations of water demand

Fig. 8. Some spot price scenarios used for simulations [45].

Fig. 9. Benchmark network: pumping stations are shown in red, blue lines
correspond to pipes, green elements to production plants, grey elements to
storage units and yellow/brown elements to demand zones.

Fig. 10. Hourly water demand profiles for demand area 1.



for two domestic demand areas belonging to the studied system in
winter 2016. The displayed scenarios correspond to working days.
Demand area 1 has greater historical variability as compared to zone 2,
making the demand forecasting more complicated. Demand area 2 has
very stable demand profiles, with the exception of few extreme sce-
narios.

Figs. 13 and 12 show the minimum and maximum profiles used for
uncertainties management for probability values of =p 0.7 and =p 0.9.
The blue and red curves were constructed after solving the problem
(P )minArea , selecting the scenarios on which the band is calculated. On
the other hand, forecasted demand curve was calculated by taking an
arithmetic mean over the historical demand scenarios. We note that the
maximum demand curve remained almost unchanged from the case
with =p 0.7 to the one with =p 0.9, while the minimum curve has
moved down. The interval between these two extreme demands is then
the uncertain demand set: it would be managed by tanks and reservoirs
through the modification of their security levels as explained before
(Eq. (12)).

5.3. Optimal day-ahead water system management

In this section, optimal day-ahead water system management with
DR participation is evaluated. For this purpose, problem (PIp) has been
solved for different observed spot price scenarios for winter 2016. For
each resolution, the obtained schedule was injected into the EPANET
hydraulic simulator to confirm that the flows, pressures and head losses
are consistent with our initial estimations.

Three probability values for water demand uncertainties were

considered: =p 0 (without uncertainties), =p 0.7 and =p 0.9. These
values were chosen because bids strategies are constant for <p 0.7
given system’s flexibility. DR bids, allowed only for the evening peak
18:00 to 20:00 (imposed by water system operators), are denoted by
Pp

DR. Simulations were performed using the CPLEX optimization solver
[53]. Numerical results include optimal DR power bids on the spot
market as well as tank and reservoir filling strategies allowing to
maximize the economic utility of the system while respecting various
constraints and anticipating water demand uncertainties with the cor-
responding probability p.

The function of evolution of optimal DR power bids is obviously
growing with market price (Fig. 14). The function is concave and the
slope is decreasing with the price, which is due to the decrease of the
water system’s flexibility. The optimal DR power is:

• Very sensitive for prices between 0 and 100 €/MWh since the water
system still has enough flexibility to react to the price signal. DR
bids strategies for =p 0 and =p 0.7 are the same because the
available flexibility is sufficient to deal with water demand un-
certainties without changing the bid strategy. However, bids stra-
tegies for =p 0.9 are lower.

• Minimally sensitive for prices between 100 and 400 €/MWh since
the water system has only reduced available flexibility. DR bids
strategies for different probability values are different which is ex-
plained by the reduced available flexibility to deal with water de-
mand uncertainties.

• Constant for prices > 400 €/MWh since the water system used its
maximum DR power capacity. In this case each DR bid strategy is
constant.

Fig. 11. Hourly water demand profiles for demand area 2.

Fig. 12. Extreme water demands with p=0.7 for demand area 1.

Fig. 13. Extreme water demands with p= 0.9 for demand area 1.

Fig. 14. Optimal DR bids with uncertainties consideration.



As shown in Figs. 15 and 16, pumping operations are minimized for
the water system during peak hours to meet demand at minimum cost
while tank levels gradually decrease. However, a higher activity of
pumps is observed at off-peak hours (20:00 to 06:00) to take advantage
of cheapest electricity tariffs and to fill tanks to their target levels at
06:00.

A pump participates in a DR program if it has been activated during
reference periods (past and post reference periods) and turned-off
during the DR period. For fixed-speed pumps, a pump is either parti-
cipating or not in the DR program, depending on the flexibility of the
tank it supplies. Fig. 17 shows that the second fixed-speed pump of the
pumping station had been stopped during the reference periods with
uncertainties consideration, which is a consequence of a lack of flex-
ibility of the tank it supplies. However, variable-speed pumps improve
DR potential by adapting the pumping flow to the flexibility of the
downstream tank. As shown in Fig. 18, the pumping-flow of the vari-
able speed pump had been adapted to the modified reservoir safety

levels for each probability value p, without stopping it completely.
Without uncertainties consideration, the flexibility of the water

system is maximal since the tank storage level is entirely used to opti-
mize system’s operation while anticipating DR events (full line in
Figs. 15 and 16). However, the consideration of uncertainties tightens
tanks safety levels, limiting the flexibility of the of the upstream
pumping station and then the potential of DR. It is noted that water
system flexibility naturally decreases with the probability value p. The
tank of Fig. 15 (Tank 1 serving around 5000 persons) has a larger ef-
fective volume (difference between maximum and minimum safety le-
vels) than the one of Fig. 16 (Tank 2 serving around 3800 persons),
resulting in a greater flexibility.

5.4. Optimal real-time water system management

In this section, we study the real-time management of the water
system for different water demand realizations. The DR power, which
was sold on the spot market in day D-1, must be reduced in day D (real-
time) according to the market transaction (time, duration and power).
Otherwise, financial penalties, known as imbalance prices, would be
applied by RTE to balance the power grid [37].

Because of unexpected water consumption in real time, the water
utility may not be able to reduce power for DR as expected in the day-
ahead transaction. In order to highlight the relevance of taking into
account water demand uncertainties in the day-ahead market decision
making, the real-time management of the water system was studied for
two types of spot market decisions: without taking into account un-
certainties (p= 0), and with uncertainties consideration (p > 0). The
values =p 0, =p 0.7 and =p 0.9 were used in the simulations. By DR
energy-deficient volume, we mean the amount of energy that the water
utility could not reduce in real-time for the DR event according to the
day-ahead market transaction.

The following approach was adopted:

• Random generation of 100 water demand scenarios;

• For each water demand scenario generated, resolution of real-time
water system optimization problem, with an imposed constraint of
respecting the DR power Pp

DR sold in day D-1 (three resolutions
= =p p0 0.7 and =p 0.9 for each scenario).

• For each resolution, calculation, if any, of DR energy-deficient vo-
lume and overall cost (pumping cost – DR benefits+DR financial
penalties if any DR energy failure);

• Out of the 100 random water demand scenarios generated, calcu-
lation of the average overall cost, the percentage of respect of the DR
power Pp

DR and the average DR energy-deficient volume in kWh.

The random generation of 100 water demand scenarios was done
according to the following procedure, with steps 3, 4 and 5 repeated
100 times:

1. Calculation of daily water demand by summing the hourly water

Fig. 15. Tank level variation with different probability values.

Fig. 16. Tank level variation with different probability values.

Fig. 17. Fixed speed pumps for DR provision.

Fig. 18. Variable speed pumps and impact on DR potential.



demand for each historical scenario.
2. Calculation of the normalized water demand profile for each his-

torical scenario, by dividing the hourly demand profile by its daily
water demand.

3. Generation of a random number α between the maximum and the
minimum daily water demand of the historical scenarios.

4. Generation of a random normalized water demand profile di t
rand
, .

5. Multiplication of di t
rand
, by α.

Each random demand scenario was then an input to the real-time
water system optimization problem, which was solved each time for the
values =p 0, =p 0.7 and =p 0.9. The DR power Pp

DR was an input to
each problem.

We denote byTpast the past reference period 16:00 to 18:00,Tpost the
post reference period 20:00 to 22:00, TDR the DR period 18:00 to 20:00
and V def the DR energy-deficient volume, penalized by a coefficient Cdef .
The real-time optimization problem could be written as follows
P( )RealTime :

∑ ∗ + ∗C x V Cminimize
x V i t i t i t

def def
, , , ,

i t def,

Subject to: P( )RealTime

• DWS classical constraints

• ∀ ∈ ∀ ∈t T T t T{ , },past post DR
1 2 :

∑ ∑≥ + −P x P P x V
i i t i t p

DR
i i t i t

def
, , , ,1 1 2 2

In this real-time optimization problem, the objective is to minimize
pumping costs as well as balancing costs if any DR energy failure.
Variable decisions are the state of pumps xi t, and the energy-deficient
volume V def . Constraints are similar to the classical DWS ones, with an
additional constraint imposing the reduction of the DR power Pp

DRand
allowing a defective volume V def if the DR constraint could not be re-
spected. Numerical resolutions were performed using the CPLEX opti-
mization solver.

Fig. 19 and Table 1 represent, respectively, the cost distribution and
main average numerical results resulting from the optimization ap-
proach. Balancing prices were taken from the balancing price history
available on RTE website [54]. The following observations can be made
from Fig. 19 and Table 1:

• The percent of respect of the DR power with the desired probability
is guaranteed: 85% of water demand realizations allowing to respect
the DR power for =p 0.7, 100% for =p 0.9 with only 49% for

=p 0.
• In the case where the DR power could not be reduced, the DR en-
ergy-deficient volume is lower in the case of =p 0.7, thanks to a

lower DR power commitment.

• The average economic benefit is higher in the case of =p 0.7. This is
due to financial balancing penalties, which makes the real-time
management with uncertainty consideration more interesting eco-
nomically. Indeed, the very low average DR energy failure 27 kWh
does not penalize much the system for =p 0.7. However, the case

=p 0.9 costs a little more than the one with =p 0.7, but less than
the case without uncertainties consideration. This is due to a lower
DR remuneration in the market, but is associated with the highest
rate of DR power constraint satisfaction.

Results presented in this subsection highlighted the relevance of
considering uncertainties on water demands in the pump scheduling
problem with DR consideration. Economic as well as operational per-
formances were found to be better on average considering 100 water
demand scenarios randomly generated. In the example studied, the
management without uncertainties consideration implied a non-respect
of the DR power constraint 51% of the time. There is not only an
economic impact because of a higher economic cost, but also an impact
about confidence of the transmission system operator RTE in future
market transactions.

In this case study, the average economic cost is very close for all
situations. However, operational risks (DR power commitment, DR
energy-deficient volume) are much better managed when uncertainties
are considered.

5.5. Discussion and future work

For the day-ahead scheduling problem, DR power bids are in-
creasing with market price and decreasing with the probability of un-
certainties handling p. For low spot prices, DR power decisions are very
close (equal for low probability values) for different probability values
because of the significant available flexibility of the system. For high
spot prices, the DR power bids are higher and thus the system flexibility
decreases, which implies that the DR power bid decreases with prob-
ability of uncertainties consideration. Variable-speed pumps make it
possible to optimize DR power decisions on the market by adapting the
pumping rate flow to the flexibility of the downstream tank.

In the second part of the study, the relevance of uncertainty con-
sideration in the real-time management of the system has been de-
monstrated. Indeed, the expected cost for the day-ahead scheduling
problem is increasing with probability (optimal expected cost is with

=p 0 due to a maximal flexibility). However, the random generation of
100 water demand scenarios and the real-time optimization showed
that the water system is more profitable when uncertainties are con-
sidered in the day-ahead scheduling problem. Indeed, uncertainties
consideration allows us to guarantee the respect of DR power reduction
with the desired probability p. In addition, the average economic cost is
more interesting compared to the case =p 0. This is because of a
minimal failure in DR energy reduction and consequently, very few
additional balancing costs.

For real operational applications, the proposed mathematical model
should be coupled to a SCADA such as Topkapi data connector [55].
This coupling makes it possible to centralize water system management,
by sending the obtained schedule from the optimization solver to

Fig. 19. Cost distribution over 100 random water demand scenarios for p= 0
and p=0.7.

Table 1
Average results from the real-time optimization over 100 random water de-
mand scenarios.

Situation Average
economic cost €

Standard
deviation

% DR power
respect

Average failed
DR energy

p=0 2,278 € 81 € 49% 136 kWh
p=0.7 2,255 € 69 € 85% 27 kWh
P=0.9 2,271 € 72 € 100% 0 kWh



different water system equipment, and recovering the state of tanks and
the availability of pumps to update the mathematical model [56].

The choice of the probability level for water demands risk man-
agement should be made by water system operators according to their
risk aversion. A strategy of maximum security (p=0.9) would cost
more than a strategy where we have a lower but still acceptable level of
security (p= 0.7). An interesting continuation of this research work
would be to find the optimal level of robustness p to fix for water uti-
lities. In other words, how much would the water utility be willing to
pay for a 1% increase of real-time DR power constraint satisfaction?

Finally, we plan as future work to include the management of
multiple water systems through a centralized mathematical model. The
approach will be to aggregate the flexibility of several independent
water systems in order to propose large quantities of power reductions
in energy markets.

6. Conclusion

In this article, we discussed the potential of Demand Response
mechanisms in the drinking water industry, considered as a huge
electricity consumer. Among the obstacles hindering the development
of Demand Response in industry are economic viability and operational
risks management. The mathematical model proposed in this article
makes it possible to manage the two aspects simultaneously. Indeed, the
formulation of the objective function allows us to maximize the eco-
nomic profitability of the system. On the other hand, uncertainties on
water demands were taken into account to secure the operation of the
water system in real-time regarding water demand hazards. Numerical
results obtained on a benchmark water system show the relevance of
the model regarding water demands risk management and economic
performances.
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