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On a moment problem with holonomic functions

Many reconstruction algorithms from moments of algebraic data were developed in optimization, analysis or statistics. Lasserre and Putinar proposed an exact reconstruction algorithm for the algebraic support of the Lebesgue measure, or of measures with density equal to the exponential of a known polynomial. Their approach relies on linear recurrences for the moments, obtained using Stokes theorem.

In this article, we extend this study to measures with holonomic densities and support with real algebraic boundary. In the framework of holonomic distributions (i.e. they satisfy a holonomic system of linear partial or ordinary differential equations with polynomial coefficients), an alternate method to creative telescoping is proposed for computing linear recurrences for the moments. When the coefficients of a polynomial vanishing on the support boundary are given as parameters, the obtained recurrences have the advantage of staying linear with respect to them.

This property allows for an efficient reconstruction method. Given a finite number of numerically computed moments for a measure with holonomic density, and assuming a real algebraic boundary for the support, we propose an algorithm for solving the inverse problem of obtaining both the coefficients of a polynomial vanishing on the boundary and those of the polynomials involved in the holonomic operators which annihilate the density.
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Introduction

Notations. Let n be a positive integer for the ambient space R n , whose canonical basis is denoted by (e 1 , . . . , e n ). Let K[x] be the ring of polynomials in the variables x = (x 1 , . . . , x n ) over a real finite computable extension of Q, and let K[x] d be the vector space of polynomials of total degree at most d. For every d, let N n d := {α ∈ N n : |α| d}, where |α| = i α i . In a multivariate setting, we denote

x β = x β 1 1 . . . x βn n and ∂ α x = ∂ α 1 x 1 . . . ∂ αn
xn for α, β ∈ N n . The derivative ∂p ∂x i is denoted

p x i .
The indicator function of a set G, is denoted by 1 G .

The structure of moments of algebraic data is a central question in various reconstruction algorithms, appearing as part of a broad field of inverse problems [START_REF] Karlin | Tchebycheff systems: With applications in analysis and statistics[END_REF]. We refer to [START_REF] Lasserre | Algebraic-exponential data recovery from moments[END_REF] and references therein for various shape reconstruction from their moments of polyhedra [START_REF] Gravin | The inverse moment problem for convex polytopes[END_REF][START_REF] Golub | A stable numerical method for inverting shape from moments[END_REF], planar quadrature domains [START_REF] Ebenfelt | Quadrature domains and their applications[END_REF], sublevel sets of homogeneous polynomials [START_REF] Lasserre | Recovering an homogeneous polynomial from moments of its level set[END_REF], together with more applied studies of computerized tomography [START_REF] Natterer | The mathematics of computerized tomography[END_REF].

In this article, we focus on the structure of moments of holonomic distributions, together with associated inverse problems. It can be seen as a computer algebra-based extension of [START_REF] Lasserre | Algebraic-exponential data recovery from moments[END_REF], where the approach was mainly based on techniques recently developed in polynomial optimization [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF], which are at the interface between real algebraic geometry, moment problems and polynomial optimization. More precisely, our setting is the following.

Setting: Let G ⊂ R n be a bounded open set of Euclidean space, whose boundary ∂G is algebraic (∂G is contained in the real zero set of finitely many polynomials), and let µ f = f 1 G dx be a measure supported on G, with a so-called holonomic weight f against Lebesgue volume measure dx on R n . This means that it satisfies a holonomic system of linear partial or ordinary differential equations with polynomial coefficients (as a generalized function if needed, see Def. 3). Consider also the power moments of µ f :

m α = G x α dµ f (x), α ∈ N n . (1)
For instance, the weight f (x) = exp(p(x)), with p ∈ R[x] d is holonomic i.e., it satisfies:

∂f ∂x i - ∂p ∂x i f = 0, i = 0, . . . , n. (2) 
In [START_REF] Lasserre | Algebraic-exponential data recovery from moments[END_REF], the following property is proved, for such an exponential-polynomial weight: knowing a priori the coefficients of p, its degree s and the degree d of the variety containing ∂G, a threshold N is identified (which depends only on d and s), such that the moments m α up to degree N (i.e. α ∈ N n N ) determine in a constructive and robust manner the coefficients of a polynomial vanishing on ∂G.

A natural question is whether this result can be generalized, as mentioned in [START_REF] Lasserre | Algebraic-exponential data recovery from moments[END_REF]: the analogy to the well understood moment rigidity of the Gaussian distribution is striking, although the constructive aspects of this finite determinateness remain too theoretical in general. Motivated by this remark, in this article we revisit and extend this study to related problems, by exploiting holonomicity. In this framework, a first generalization of [START_REF] Lasserre | Algebraic-exponential data recovery from moments[END_REF] is to recover the coefficients of both g and p in the exponential-polynomial case: More general, the inverse problem for holonomic weights is:

Problem 2 (General Inverse Problem). Let a measure µ f = f 1 G dx, sup-
ported on a compact semi-algebraic set G, with holonomic f . Given a finite number of moments m α , |α| N , recover a polynomial g ∈ R[x] vanishing on the algebraic boundary of G and the coefficients of a holonomic system satisfied by f . Finally, we note the closely related direct problem:

Problem 3 (General Direct Problem). Let a measure µ f = f 1 G dx, supported
on a compact semi-algebraic set, with given holonomic f . Find a holonomic system of recurrences for the sequence of moments (m α ).

Contributions: We address the above problems in the framework of holonomic distributions, employing well-known algorithmic properties of noncommutative polynomial representation of linear differential operators (see Section 2), as well as a generalized Stokes formula [START_REF] Lasserre | Algebraic-exponential data recovery from moments[END_REF]. Firstly, this allows us to solve Problem 1 in Section 4.1: we prove that this reconstruction problem boils down to solving a linear system of 3d + s -1 equations, involving moments up to degree |α| 4d + 2(s -1).

Secondly, as a by-product, an alternate method to creative telescoping is proposed for computing linear recurrences for the moments in Section 3. The advantage is that when the coefficients of g are given as parameters, the obtained recurrences stay linear with respect to them. However, there is no guarantee that this method provides a holonomic ideal. We could only prove that it solves Problem 3 (i.e. it provides a holonomic ideal) in the restricted case of exponential-polynomial density and g nonsingular in C n .

Finally, Problem 2 is solved in Section 4.2: we prove that a holonomic system for f can be found by solving a finite system of linear equations, but their number cannot be a priori bounded. Once the density is known, the support is reconstructed as solution of a similar linear system, but in this case we provide an explicit uniform bound on the number of required moments.

Related works

Moment problem: Concerning the moment problem, let µ be a Borel measure on R n with all its moments finite. When µ is atomic with finitely many atoms (i.e., when µ = d k=1 γ k δ ξ k , where δ ξ k is the Dirac measure, for some (ξ k ) ⊂ R n and some positive weight (γ k )), a first classical problem is to retrieve the atoms and the weights of µ from some finite truncation of its moment vector (m α ) α∈R n . In [START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF] a thorough overview of algebraic methods for this problem is given. An important idea consists in computing a sparse polynomial-exponential representation of a multivariate series from its truncated Taylor series, whose coefficients correspond to moments. For instance, for pairwise distinct ξ 1 , . . . , ξ d , the moment generating series is:

σ δ ξ (y) = m α y α α! = d k=1 γ k exp(ξ k y).
Such generating functions are also the solutions of systems of partial differential equations with constant coefficients. Hence, the sparse representation of the polynomial-exponential (also known as Prony method) is related to the inverse system of the isolated points of the characteristic variety of this system. Methods to obtain such representation are given in [START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF]. Also, flat extension criteria, like for instance [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF]Theorem 3.7], provide purely algebraic methods to reconstruct both the number of atoms, their values and weights function of the rank of the moment matrix. All in all, moments of atomic measures satisfy multi-index linear recurrences with constant coefficients [START_REF] Mourrain | Polynomial-exponential decomposition from moments[END_REF], which provide another incentive to consider the more general holonomic case. In this sense, these recurrences can be computed by creative telescoping. Creative telescoping: These methods perform integration of functions (with free parameters), in the framework of non-commutative polynomial representation of linear differential operators (see [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF][START_REF] Bostan | Generalized hermite reduction, creative telescoping and definite integration of d-finite functions[END_REF] and references therein). In particular, the direct Problem 3 can be solved for instance by the algorithms of Oaku [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF]. Based on the D-module theory (see also [START_REF] Galligo | Some algorithmic questions on ideals of differential operators[END_REF][START_REF] Takayama | An algorithm of constructing the integral of a module -an infinite dimensional analog of gröbner basis[END_REF]), one computes a holonomic system for the definite integral of a holonomic function with parameters over a domain defined by polynomial inequalities. In the algorithms, holonomic distributions are involved, so, a subtle distinction has to be made between the ideal of operators with polynomial coefficients, which correspond to holonomicity, and those with rational coefficients which correspond to so-called D-finiteness. We will come back to this in Section 2.

Also, the Lagrange Identity [START_REF] Ince | Ordinary Differential Equations[END_REF] (see also eq. ( 12) and Prop. 2), related to integration by parts, will play an important role in our approach. In the one variable case, for a linear differential operator with polynomial coefficients, L = c r ∂ r x + . . . + c 0 , its adjoint is defined as L * = (-1) r ∂ r x c r + . . . + c 0 and the following holds:

ϕL(f ) -L * (ϕ)f = ∂ x (L L (f, ϕ)), (3) 
for any function ϕ and f , with an explicit L L .

Inverse problem in the univariate case: In [START_REF] Batenkov | Moment inversion problem for piecewise D-finite functions[END_REF], the inverse Problem 2 is solved in the univariate case, for piecewise D-finite densities. Specifically,

µ f = d-1 i=1 1 [ξ i ,ξ i+1 ] f i dx, for a set of d unknown points, a = ξ 1 < . . . < ξ d = b,
with [a, b] ⊂ R, and unknown smooth D-finite functions f i . An important observation [1, Thm 2.12] is that the associated distribution

d-1 i=1 1 [ξ i ,ξ i+1 ] f i is
annihilated by some holonomic operator L = g(x) r L, where g(x)

= d i=1 (x-ξ i )
and the operator L of order r satisfies Lf i = 0.

Remark 1. As noted in [START_REF] Batenkov | Moment inversion problem for piecewise D-finite functions[END_REF], for general holonomic operators L with r > 1, the number N of required moments, in order to correctly recover the parameters, might depend also on specific coefficients of L. An example is the nth Legendre polynomial, whose first n moments (taken over [-1, 1]) vanish, while

L n = ∂ x ((1 -x 2 )∂ x ) + n(n + 1)
, hence the reconstruction of µ f depends also on the parameter n, which enters the definition of L n . On the contrary, for exponential-polynomial case, we show that N depends only on the degrees of the polynomials involved.

As discussed above, in the univariate case, the above problems are well tackled in literature, so this article deals with the multivariate case. However, to illustrate the basic ideas, we give two elementary univariate examples of our approach, omitting the technical proofs.

Introductory examples

Example 1 (Direct problem for erf-like function). We are interested in computing a recurrence for the moments m i = 1 -1

x i e -x 2 dx. The idea is to include 1 [-1,1] in the integral, and consider the distribution u corresponding to 1 [-1,1] (x)e -x 2 . Although not differentiable as a function, u satisfies (see Sec. 2.2 for details):

(1

-x 2 )(∂ x + 2x)u = 0.
Integrating for the test function x i , using (3) and noticing that its right hand side vanishes after integration, one has:

1 -1 e -x 2 (∂ x + 2x) * ((1 -x 2 )x i ) = 0,
which directly provides the recurrence

im i-1 -(i + 4)m i+1 + 2m i+3 = 0.
The extension of this method to the multivariate case is given in Sec. 3.

Example 2 (Univariate support and density reconstruction). Consider the problem of reconstructing the parameters ξ 1 , ξ 2 and p 2 , p 1 , p 0 such that, the first N moments {m i , 0 i N } are known:

m i = ξ 2 ξ 1 x i e p 2 x 2 +p 1 x+p 0 dx. (4) 
Like in the previous example, u = 1 [ξ 1 ,ξ 2 ] e p 2 x 2 +p 1 x+p 0 satisfies:

(x -ξ 1 )(x -ξ 2 )(∂ x -2p 2 x -p 1 )u = 0.
Denote by L := g(x)∂ x + h(x) the operator to be reconstructed such that

Lf = 0, with g(x) = x 2 + g 1 x + g 0 and h(x) = 3 i=0 h i x i .

Integrating and using

Lagrange identity, one has:

∞ -∞ g(x)∂ x -h(x))(x i ) udx = 0. (5) 
This gives for each i 0:

im i+1 + ig 1 m i + ig 0 m i-1 -h 3 m i+3 -h 2 m i+2 -h 1 m i+1 -h 0 m i = 0. (6)
Hence, the coefficients of g and h are solution of the above infinite linear system. If g is recovered, p (except for p 0 coefficient) could also be recovered from the division h/g. Finally the constant coefficient p 0 could also be recovered from the equation (4), with i = 0.

The main question is whether a truncated system (6), which considers only moments up to degree N , can provide the correct solution for g and h. We will address this in Section 4. Specifically, in Thm. 1 we prove a sufficient bound for the case of an n-variable exponential-polynomial density, together with Algorithm 2 which reconstructs the coefficients. It needs in our case the first N = 10 moments.

Holonomicity and distributions

For completeness, we start by providing a short reminder on D-finiteness versus holonomicity. Unlike more classical settings like analytic functions, the distinction between these two very related notions is essential when considering distributions. We refer to [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF][START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF] for a more comprehensive presentation.

Differential operators and holonomicity

Consider the following rings of linear partial differential operators:

(i) The ring of differential operators with polynomial coefficients (the n-th

Weyl algebra) D n := K[x 1 , . . . , x n ] ∂ x 1 , . . . , ∂ xn , generated by {x 1 , . . . , x n , ∂ x 1 , . . . , ∂ xn }
and quotiented by the relations:

∂ x i x j = x i ∂ x i + 1, i = j, x j ∂ x i , i = j, x i x j = x j x i , ∂ x i ∂ x j = ∂ x j ∂ x i .
We have that {x

β ∂ α x , α, β ∈ N n } is a basis of D n as a K-vector space. If L = α,β c α,β x β ∂ α
x , its order is the largest value of |α| such that there exists β with c α,β = 0.

(ii) The ring of differential operators with rational fraction coefficients (Ore Algebra) D * n := K(x 1 , . . . , x n ) ∂ 1 , . . . , ∂ n , where the commutation rules of D n are extended by

∂ x i q(x) = q(x)∂ x i + ∂q(x) ∂x i , q(x) ∈ K(x 1 , . . . , x n ).
Differential operators in D n naturally act on smooth functions via

∂ x i f = f x i := ∂f ∂x i . The annihilator Ann(f ) is a left ideal of D n : Ann(f ) := {L ∈ D n | Lf = 0}.
One can also see Ann(f ) as a left ideal of D * n , and the quotient D * n /Ann(f )

as a C(x 1 , . . . , x n )-vector space. A smooth function f is called D-finite if D * n /Ann(f ) has finite dimension.
Equivalently, its iterated derivatives {∂ α x f, α ∈ N n } form a finite-dimensional vector space over rational fractions.

In other cases, when f is a "generalized function", for instance a distribution, Ann(f ) can only be seen as a left ideal of D n and D n /Ann(f ) as a C-vector space. For example, the univariate Dirac distribution, defined by δ, f = f (0), is annihilated (as a distribution) by x, since xδ, f = δ, xf = 0. However, a left ideal of D * 1 containing x is necessarily D * 1 , but 1 annihilating δ would imply δ = 0. In that setting, the relevant notion is holonomicity. The well-known notion of Gröbner bases was generalized to this noncommutative setting (see for example [START_REF] Galligo | Some algorithmic questions on ideals of differential operators[END_REF][START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF] and references therein). This is the building block of efficient closure operations for D-finite [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF][START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF] or holonomic [START_REF] Galligo | Some algorithmic questions on ideals of differential operators[END_REF][START_REF] Takayama | An algorithm of constructing the integral of a module -an infinite dimensional analog of gröbner basis[END_REF][START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF] objects, thus allowing for their algorithmic treatment.

Definition 1. Let I be a left ideal of D n . For L ∈ D n , let [L] I denote the class of L in the quotient D n /I. For s 0, define D n I s = Span K [x β ∂ α x ] I , |α| + |β| s .
Similarly, R n := K[α 1 , . . . , α n ] S α 1 , . . . , S αn is the set of difference operators with polynomial coefficients in α, acting on sequences u = (u(γ 1 , . . . , γ n )) γ∈N n via

(α i u)(γ 1 , . . . , γ n ) = γ i u(γ 1 , . . . , γ n ), and 
(S α i u)(γ 1 , . . . , γ n ) = u(γ 1 , . . . , γ i + 1, . . . , γ n ), γ ∈ N n . The annihilator Ann(u) = {R ∈ R n | R u = 0}
is the set of recurrence relations satisfied by u, which is holonomic when its generating series is holonomic [START_REF] Chyzak | The ABC of Creative Telescoping: Algorithms, Bounds, Complexity. Memoir of accreditation to supervise research (HDR)[END_REF].

Holonomic distributions

Introduced by Schwartz [START_REF] Schwartz | Théorie des distributions[END_REF], distributions generalize functions and measures. A minimal introduction to this topic is provided below.

Definition 2 (Test functions and distributions). Let E = C ∞ (R n ) be the set of smooth functions over R n , equipped with the compact-open topology:

ϕ k → ϕ in E if ∂ α x ϕ k converges uniformly to ∂ α x ϕ over every compact set, for each α ∈ N n .
Its topological dual E is the set of compactly supported distributions (or simply distributions in this article) i.e. linear forms T : E → R such that:

• There exists a minimal compact set K ⊆ R n (the support of T ) such that T, ϕ = 0 whenever ϕ vanishes over K.

• T, ϕ k → 0 whenever ϕ k → 0 in E. E has a canonical D n -module structure: L T, ϕ := T, L * ϕ , L ∈ D n , T ∈ E , ϕ ∈ E, (7) 
where the adjoint operator L * is defined by

x * i = x i , ∂ * x i = -∂ x i , and (L 1 L 2 ) * = L * 2 L * 1 .
Definition 3 (Holonomic distribution). A distribution T ∈ E is holonomic if its annihilator is a holonomic ideal of D n :

Ann(T ) := {L ∈ D n | L T = 0 as a distribution} .
A measure supported on a set G, with density f ∈ E, is represented by

the distribution f 1 G , with f 1 G , ϕ = G ϕ(x)f (x)dx.
We make the following assumption on G ⊆ R n :

Assumption 1. G is a compact n-dimensional semi-algebraic set. In particular, the following holds:

(1) G is an n-dimensional compact manifold such that its boundary can be decomposed as ∂G = Z ∪ Z , with Z a finite union of (n -1)-dimensional manifolds and Z a negligible set w.r.t the (n -1)-dimensional Hausdorff measure.

(2) the ideal of polynomials vanishing over ∂G is radical and principal i.e., generated by a single square-free polynomial g. In particular, the family {g, g x 1 , . . . , g xn } is coprime, implying that the set of singular points {x | g(x) = 0 and ∇g(x) = 0} is negligible in ∂G.

Moments of a distribution

Definition 4 (Moments of a compactly supported distribution). The moments of a distribution T ∈ E are:

m α (T ) := T, x α , α ∈ N n . (8) Note that if T = f 1 G with G compact and f ∈ E, then m α (f 1 G ) coincides
with the moments defined in eq. [START_REF] Batenkov | Moment inversion problem for piecewise D-finite functions[END_REF].

A convenient way to deal with moments of a distribution is the Fourier transform (also called characteristic function).

Definition 5. The Fourier transform of a distribution T ∈ E is the analytic function F {T } of z = (z 1 , . . . , z n ) ∈ R n defined by:

F {T }(z) = α∈N n m α (T ) (-i z) α α! = T, e -i x•z , z ∈ R n . Proposition 1. Let T ∈ E and L = β q β (x)∂ β x ∈ D n .
(i) The Fourier transform of L T is related to that of T by

F {L T } = L F F {T }, with 
L F = L x i → i ∂ z i ∂ x i → i z i = β q β (i ∂ z )(i z) β . ( 9 
)
(ii) The moments of L T are related to those of T by

(m α (L T )) = L M (m α (T )), with 
L M = L x i → S α i ∂ x i → -α i S -1 α i = β (-1) |β| q β (S α ) n i=1 α i S -1 α i β i , (10) 
Proof. Similar to [15, Sec. 5.1.] (see A.1 for completeness).

Proposition 2. Let T ∈ E . An operator L ∈ D n satisfies T, L * x α = 0, for all α ∈ N n , (11) 
if and only if L ∈ Ann(T ).

Proof. By the injectivity of the Fourier transform on compactly supported distributions [START_REF] Schwartz | Théorie des distributions[END_REF].

Direct problem for moments

As mentioned in the introduction, the direct Problem 3 can be solved using an algorithm presented in [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF]. However, one may ask whether the simple roadmap of Example 1 can be generalized to the multivariate case and provide a more efficient method. For that, firstly, Lagrange identity in the multivariate setting is needed:

Lemma 1 (Lagrange identity). For f, g ∈ E and L ∈ D n of order r, there exists a vector field L L (f, g) : R n → R n , called bilinear concomitant, depending on L and linear in f and g, such that:

(Lf )g -f (L * g) = ∇ • L L (f, g). ( 12 
)
Each component of L L (f, g) can be written

L L,i (f, g) = |α|+|β| r-1 c L,i,α,β (x)(∂ α x f )(∂ β x g), i ∈ [1 . . n]. ( 13 
)
with coefficients c L,i,α,β (x) ∈ K[x] depending on L.
Secondly, the action of differential operators on compactly supported distributions of the form f 1 G is provided:

Proposition 3. Let G as in Assumption 1, f ∈ E and L ∈ D n .
Then the distribution L(f 1 G ) admits the following expression:

L(f 1 G ), ϕ = G ϕ(Lf )dx - ∂G L L (f, ϕ) • n dS, (14) 
where n and dS respectively denote the normal vector and the (n -1)dimensional Hausdorff measure on ∂G.

Proof. Integrating Lagrange's identity [START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF] with g = ϕ and using the divergence theorem, we have:

G ϕ(Lf )dx - G (L * ϕ)f dx = ∂G L L (f, ϕ) • n dS. (15) 
Following [START_REF] Lasserre | Algebraic-exponential data recovery from moments[END_REF], the divergence theorem is a consequence of Stokes' theorem when ∂G is smooth, or of a generalization by Whitney [START_REF] Whitney | Geometric integration theory[END_REF]Theorem 14A] when G satisfies Assumption 1.(1).

Finally, the following proposition provides differential equations for measures supported on semi-algebraic sets. Proof. Using Prop. 3, one needs to prove that G g r ϕ(Lf )dx and ∂G L L (f, g r ϕ)• n dS are zero. The first one is trivial since L ∈ Ann(f ). For the second, L L (f, g r ϕ) involves derivatives ∂ α x (g r ϕ) with |α| < r (Lemma 1), so it vanishes over ∂G.

Hence, Proposition 4 gives an easy way to construct operators in Ann(f 1 G ) from operators in Ann(f ). Indeed, given a Gröbner basis {L 1 , . . . , L k } of Ann(f ), and g ∈ R[x] vanishing over ∂G, each operator g r i L i (with r i the order of L i ) annihilates f 1 G as a distribution. Therefore, each operator R i := (g r i L i ) M gives a valid recurrence for the sequence of moments (m α ).

However, from the fact that f is holonomic one can not directly guarantee that the ideal generated by {g r 1 L 1 , . . . , g r k L k } is holonomic. Similarly, we are not able to prove (or refute) that {R 1 , . . . , R k } is holonomic in general. Nevertheless, one can apply a Gröbner basis algorithm to it, which will possibly terminate and return such a basis. This heuristic is proposed in Algorithm 1. We prove that this algorithm terminates, in the particular case Algorithm 1 RecurrencesMoments(n, g, {L 1 , . . . , L k } ) Input: Gröbner basis {L 1 , . . . , L k } for Ann(f ), g. Output: Gröbner basis for Ann(m α ).

1: R i ← (g r i L i ) M , as in [START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF], with r i the order of L i , for i ∈ [1 . . k] 2: return GröbnerBasis({R 1 , . . . , R k },R n ) of an exponential-polynomial density (including the Lebesgue measure), and a smooth boundary, extending [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF]Prop. 4]. Proposition 5. Let f (x) = e p(x) with p ∈ R[x] s , and g ∈ R[x] d vanishing over ∂G. Suppose moreover that g is nonsingular in C n , that is, there exists no x ∈ C n such that g(x) = 0 and ∇g(x) = 0.

(i) The operators

L i = g(∂ x i -p x i ), i ∈ [1 . . n],
are generators of an holonomic ideal I contained in Ann(f 1 G ).

(ii) The operators

L F i (i ∈ [1 . . n]) span a holonomic ideal I F contained in Ann(F {f 1 G }).
Proof. For (i), first note that the operators L i also generate

L ij := (∂ x j -p x j )L i -(∂ x i -p x i )L j = g x j (∂ x i -p x i ) -g x i (∂ x j -p x j ), 1 i < j n. (16) 
Holonomicity is proved via the characteristic variety, as for instance in [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF]. For L = |α| r q α (x)∂ α

x of order r, define its principal symbol σ(L)(x, ξ) = |α|=r q α (x)ξ α for (x, ξ) ∈ C 2n . Then for a left ideal I,

Char(I) = {(x, ξ) ∈ C 2n | σ(L)(x, ξ) = 0 ∀L ∈ I \ {0}}
. With these notations, I is holonomic if and only if all the components of Char(I) are of dimension at most n. In our case,

σ(L i )(x, ξ) = g(x)ξ i , and σ(L ij )(x, ξ) = g x j (x)ξ i -g x i (x)ξ j .
Hence, if (x, ξ) ∈ Char(I), then either g(x) = 0, implying ξ = 0, or g(x) = 0.

In the latter case, ∇g(x) = 0 (since g is nonsingular) and hence there exists λ ∈ C s.t. ξ = λ∇g(x). In both cases, the corresponding components of Char(I) have dimension n. For (ii), since the Fourier transform maps x i to i ∂ z i and ∂ x i to i z i , it is clear that I is holonomic if and only if I F is holonomic.

Interesting enough, for the examples we tried for an exponential-polynomial density, Algorithm 1 always terminated, even when the boundary was not smooth (see Example 3). Also, it was faster that "classical" creative telescoping, which firstly constructs a Gröbner basis for f 1 G and then applies Takayama algorithm [START_REF] Oaku | Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities[END_REF]. Further investigation is needed to provide a comparison in this case.

However, having a Gröbner basis is not mandatory for the reconstruction problem addressed in the next section. The recurrences obtained as above turn out to be sufficient and constitute the basic brick of our reconstruction method.

Reconstruction methods

Given some moments m α (f 1 G ) associated to a measure of unknown D-finite density f ∈ E and unknown compact algebraic support G, our goal is to reconstruct a polynomial g vanishing on the boundary ∂G of G and operators L ∈ Ann(f ).

The general approach is the following:

• Take an ansatz L = β∈A q β (x)∂ β x , for a specified finite set A ⊂ N n and polynomials q β (x) with specified degrees d β .

• Let R = L M . Solve a finite-dimensional linear system in the unknown coefficients of the polynomials q β :

(R m(f 1 G )) α = 0, |α| N. ( 17 
)
This requires the knowledge of moments m α (f 1 G ) with |α| N + max β∈A {d β -|β|} (see eq. ( 10)).

• From the solution L of ( 17), extract a polynomial g vanishing on ∂G and an operator L ∈ Ann(f ).

Note that the solution of ( 17) corresponds to a truncation of the infinite system [START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF], since f 1 G , L * x α = 0, for |α| N . Hence one is interested in obtaining bounds N on N , such that any solution of ( 17) is also solution of [START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF]. Such an a priori uniform bound depending only on A and d β does not exist in general, cf. Remark 1.

Another issue is that L may not be factorized as g(x) r L with g vanishing on ∂G and Lf = 0. See for instance the operator in [START_REF] Natterer | The mathematics of computerized tomography[END_REF].

In Section 4.1, we solve both issues when f is exponential-polynomial and give the associated algorithm. Then, in Section 4.2, we address the general holonomic case in two steps: firstly, for recovering the density, we prove that N is finite, but no a priori bound for it is known; secondly, once the density is known, a stronger result is proved for the support reconstruction, since an explicit uniform bound on the number of required moments is given.

In the algorithms proposed below, "exact computations" are assumed, that is, both the polynomial coefficients and the given moments m α lie in a computable finite extension of Q. The practical case of approximately known numerical moments is briefly analyzed in Section 5. 

Exponential-polynomial densities

L i = ∂ x i -p x i for i ∈ [1 . . n].
Algorithm 2 follows the general approach above, with ansatz 

L i = h 0 ∂ x i -h i (i ∈ [1 . . n])
Find L i ∈ Ann(f 1 G ) 1: h 0 ← |γ| d h 0γ x γ and h i ← |γ| d+s-1 h iγ x γ for i ∈ [1 . . n], with symbolic coefficients h iγ 2: L i ← h 0 ∂ x i -h i for i ∈ [1 .
. n] 3: Find a nontrivial solution {h iγ } of the linear system: Moreover, if g 0 over G, N can be only 2d + s -1, requiring moments up to degree 3d + 2(s -1).

(L M i m) α = 0, i ∈ [1 . . n], |α| N Reconstruct g and p 4: g ← h 0 and pi ← h i /g for i ∈ [1 . . n] 5: p ← n i=1 x i 0 pi (0, . . . , 0, t i , x i+1 , . . . , x n )dt i 6: return (g, p) Theorem 1. Let f (x) = exp(p(x)) with deg p = s,
Remark 2. This method cannot reconstruct the constant coefficient of p, which is the scaling factor of the density. In case of a probability measure over R n , this coefficient is uniquely recovered by imposing R n exp(p(x))dx = 1.

Otherwise, one can compute p(0) = log(m 0 / G exp(p(x))dx), for example.

Proof. First, {h 0 ← g, h i ← gp x i , i ∈ [1 .
. n]} is a solution of the linear system in line 3. Hence, one can always get a solution with h 0 = 0. Then

L i (f 1 G ), ϕ = 0 for all i ∈ [1 . . n] and ϕ ∈ K[x] N . Using Proposition 3, this expands to: G (h 0 p x i -h i )ϕf dx + ∂G h 0 ϕf e i • n dS = 0. (18) 
With ϕ = (h 0 p x i -h i )g 2 of degree at most d + (s -1) + 2d N , the second integral is zero since g vanishes over ∂G. Hence the first integral is zero too. Therefore, its integrand (h 0 p x i -h i ) 2 g 2 is zero almost everywhere over G. Since G has nonempty interior and f > 0, g = 0, this necessarily implies

h i = h 0 p x i for all i ∈ [1 . . n].
Now, the first integral in [START_REF] Schwartz | Théorie des distributions[END_REF] being always zero for all polynomial ϕ with deg ϕ N , so is the second. Noticing that e i • n = g x i / ∇g when ∇g = 0, and by taking ϕ = h 0 g x i of degree at most 2d -1 N , we have

∂G (h 0 p x i ) 2 f ∇g dS = 0. (19) 
By summing this equality for i ∈ [1 .

. n], we get that h 0 ∇g vanishes over ∂G. Since by Assumption 1.( 2), {x ∈ ∂G | ∇g(x) = 0} is negligible in ∂G, we have that h 0 (of degree at most d) vanishes over ∂G, whence h 0 = λg since g is square-free. Finally, p = p -p(0) is reconstructed from p x i = pi in line 5.

For the case where g 0 over ∂G, the first step of the proof still holds with ϕ = (h 0 p x i -h i )g, of degree 2d + s -1, in (18).

Holonomic densities

For higher order holonomic operators, the proof of Thm. 1 cannot be generalized: the key argument for deducing a uniform bound N was to write in [START_REF] Schwartz | Théorie des distributions[END_REF]

, G ϕ(L f )dx as G hϕf dx, with h ∈ K[x].
Instead, we proceed in two steps. Firstly in Section 4.2.1, a holonomic system for f is reconstructed, but it requires a finite number N of linear equations, which cannot be a priori bounded. Secondly, the support is reconstructed Section 4.2.2.

Reconstructing the density

Algorithm 3 produces a holonomic ideal I ⊆ Ann(f ) spanned by a rectangular system {L 1 , . . . , L n }, that is

L i ∈ Ann(f )∩K[x] ∂ x i only involves derivatives w.r.t x i . For that, it is sufficient to find operators annihilating f 1 G . Proposition 6. Let f analytic over G satisfying Assumption 1. Then Ann(f 1 G ) ⊆ Ann(f ). Proof. Let L ∈ Ann(f 1 G ) of order r. Prop. 3 with ϕ = g 2r (L f ) gives: G g 2r (L f ) 2 dx = 0.
This implies that the analytic function g r (L f ) vanishes over G of nonempty interior, hence is 0. Since g = 0, L f = 0.

Theorem 2 guarantees that Algorithm 3 always returns an L ∈ Ann(f ) for N large enough.

Algorithm 3 ReconstructDensity(n, i, r, s, N, (m α ) |α| N +s )

Input: n 2, i ∈ [1 .
. n], order r, maximum degree s, moments m α for |α| N +s.

Output: L = r j=0 qj (x)∂ j

x j with deg(q j ) s.

Find L ∈ Ann(f 1 G ) ∩ K[x] ∂ x i 1: h j ← |γ| s h jγ x γ for j ∈ [0 . . r] with symbolic coefficients h jγ 2: L ← r j=0 h j (x)∂ j x i
3: Find a nontrivial solution {h jγ } of the linear system:

(L M m) α = 0, |α| N Extract minimal L ∈ Ann(f ) ∩ K[x] ∂ x i 4:
← GCD(h 0 , . . . , h r ) and qj ← h j / for j ∈ [1 .

. n].

5: return L = r j=0 qj (x)∂ j x j Theorem 2. Let i ∈ [1 . . n], f analytic, G, g ∈ K[x] d satisfying Assump- tion 1, and L = r j=0 q j (x)∂ j x i ∈ Ann(f ) ∩ K[x] ∂ x i of
minimal order r, with q r of minimal degree. Then, Algorithm ReconstructDensity(n, i, r, s, N, (m α ))

returns L = λL with λ ∈ K * for s dr + max{deg(q j )} and N large enough.

Proof. The linear system line 3 always has g r L as solution, by Proposition 4.

Now let K N denote the kernel of this system, that is

L ∈ K N iff L (f 1 G ), x α
for all |α| N . The infinite inclusion chain of finite-dimensional linear subspaces • • • ⊆ K N ⊆ K N +1 ⊆ . . . is necessarily stationary. So for N large enough, L ∈ K N implies L (f 1 G ), x α = 0 for all α and hence L ∈ Ann(f 1 G ) by Proposition 2. Finally, L ∈ Ann(f ) by Proposition 6

The coefficients {q 0 , . . . , qr } of the returned operator L = qj ∂ j x i form a coprime family (line 4). This is also true for {q 0 , . . . , q r } by minimality of deg(q r ). By minimality of r, we have qr L -q r L = 0, that is qr q j = q r qj for all j. Since K[x] has the unique factorization property, there exists λ ∈ K s.t. qr = λq r , yielding L = λL.

Reconstructing the support

From now on, we assume that a rectangular system {L 1 , . . . , L n } for the density f is known, and that L i have same order r. 1 Let:

L i = r j=0 q i,j (x)∂ j x i ∈ Ann(f ) ∩ K[x] ∂ x i , i ∈ [1 . . n].
The next assumption is crucial for support reconstruction. Roughly speaking, the differential system must not be singular over the Zariski closure of ∂G, except for a zero-measure set.

Assumption 2. The pair {g, q i,r } is coprime for each i ∈ [1 . . n].

Thm. 3 proves that Algorithm 4 is correct.

Algorithm 4 ReconstructSupport(n, d, r, {L i } n i=1 , N, (m α ))
Input: n 2, degree d, order r, rectangular system {L 1 , . . . , L n } of order r, moments m α for |α| N + dr + max ij {deg(q i,j ) -j}.

Output: polynomial g(x) ∈ K[x] d vanishing over ∂G. In particular, this proves that when the density is known, the support can be reconstructed using moments up to degree (3r -1)d + (d -1)b + s + max ij {deg(q i,j ) -j}.

Proof. First h = g r satisfies the linear system line 2 since g r L i ∈ Ann(f 1 G ) by Prop. 4. Let h be any nontrivial solution, then hL

i (f 1 G ), ϕ = 0 for all i ∈ [1 . . n] and ϕ ∈ K[x] N . Using Prop. 3 combined with L i f = 0, we get ∂G L L i (f, hϕ) • n dS = 0, i ∈ [1 . . n], ϕ ∈ K[x] N .
Since L i involves derivatives only in x i , we have L L i (f, hϕ) = L L i ,i (f, hϕ)e i , with the Lagrange bilinear concomitant [START_REF] Ince | Ordinary Differential Equations[END_REF]:

L L i ,i (f, hϕ) = f q i,1 hϕ -∂ x i (q i,2 hϕ) + • • • + (-1) r-1 ∂ r-1 x i (q i,r hϕ) +∂ x i (f ) q i,2 hϕ -∂ x i (q i,3 hϕ) + • • • + (-1) r-2 ∂ r-2 x i (q i,r hϕ) + . . . +∂ r-1 x i (f ) q i,r hϕ. (20) 
We prove h = λg r for some λ ∈ K * by induction for k from 0 to r, showing

h = g k h k with h k ∈ R[x] (r-k)d . Of course this is true for k = 0 with h 0 = h. Now suppose that h = g k h k for some k < r. Then let ϕ = q i,r h k g r-1-k g b x i ∈ K[x] (2r-2k-1)d+(d-1)b+s ⊆ K[x] N ,
Since hϕ is a multiple of g r-1 , all the terms in ( 20) are multiples of g (hence they vanish over ∂G), except for the derivative of order r -1, which we can write as ∂ r-1 x i (q i,r hϕ) = (r -1)!g r-1+b

x i

q 2 i,r h 2 k + (x)g(x), (x) ∈ K[x]. Therefore, integrating L L i ,i (f, hϕ) e i • n dS over ∂G gives ∂G g r+b 2 x i q i,r h k 2 f ∇g dS = 0,
implying that the squared polynomial in the integrand vanishes over ∂G, hence is a multiple of g. But g and q i,r are coprime by Assumption 2, so that g divides h k g x i , for all i ∈ [1 .

. n]. Finally, since {g, g x 1 , . . . , g xn } is a coprime family, g divides h k , giving h k = gh k+1 . Now that h = λg r , GCD(h, h x 1 , . . . , h xn ) = g r-1 (again since {g, g x 1 , . . . , g xn } is coprime), so g = λg.

Examples and Conclusion

We now exemplify our methods in the two dimensional case, with respect to Lebesgue and restricted Gaussian measures 2 . The implementation uses OreAlgebra and OreGroebnerBasis routines from the HolonomicFunctions library [START_REF] Koutschan | Advanced applications of the holonomic systems approach[END_REF]. The exactly computed moments m ij (obtained from the recurrences given by Algorithm 1 together with closed-form initial conditions, when possible) are truncated to mij , s.t. -log 10 m i,j -mij m ij = ε i.e., ε represents the number of correct digits of mij .

In a second time, Algorithm 2 solves the inverse problem given the approximate mij . For numerically solving the resulting overdetermined systems of linear equations, we employ a Least Mean Squares method of Mathematica.

Example 3 (Algebraic Support, Lebesgue measure). Consider the moments m ij = G x i y j dxdy, with respect to the Lebesgue measure, with G depicted with the checkered pattern in Figure 1.

(i) Direct problem:

Given g = (x 2 + y 2 -1)(x 2 + y 2 -9)(x 2 + (y - 2) 2 -1)((x -2) 2 + y 2 -1)
, which vanishes on ∂G, and Ann{1} = {∂ x , ∂ y }, Algorithm 1 returns a Gröbner basis with 9 generators and with 36 monomials under the staircase: (ii) Inverse problem: Suppose now given a finite number of numerically computed moments mij the Lebesgue measure with unknown support G. The goal is to reconstruct g = i+j 8

{S k i S l j , k, l ∈ N, k + l 7}.
g ij x i y j which vanishes on ∂G. The results of Algorithm 2 called with parameters (2, 8, 0, 22, ( mij ) |i+j| 29 ) are depicted in Figure 1: the reconstructed boundary cannot be distinguished from the exact at the drawing scale, when the moments mij are given with more than 4 correct digits. When 2 ε 4, the actual geometric boundary of G, can still be very well reconstructed, although the algebraic boundary is degraded. (ii) Inverse problem: Suppose now given a finite number of numerically computed moments mij , with unknown support G and unknown Gaussian weight. The goal is to reconstruct g = i+j 4

g ij x i y j which vanishes on ∂G, as well as p = i+j 2 p ij x i y j . Algorithm 2 called with parameters (2, 4, 2, 14, ( mij ) |i+j| 18 ) provides the reconstructed g, as depicted in Figure 2(b): the reconstructed boundary cannot be distinguished from the exact at the drawing scale, when ε > 8. When 4 ε 8, the actual geometric boundary of G, can still be very well reconstructed. Concerning the Gaussian weight, the situation is similar, cf. Figure 2

(c).

The examples above are purely academic and even if the proposed method is very robust in these cases, further investigation is needed for the efficient numerical implementation of the provided algorithms, in practical higherdimensional applications.

On the theoretical side, this article provides further insight on the question raised in [START_REF] Lasserre | Algebraic-exponential data recovery from moments[END_REF] regarding the finite determinateness of a measure. To sum up, provided Assumption 1 and 2 hold, for a measure with compact algebraic support G, with g ∈ R[x] d vanishing on ∂G and known holonomic density f , the moments up to degree N (which only depends on d and the order of a rectangular differential system which annihilates f ) determine in a constructive and robust manner the coefficients of g. Thus, this determines in turn all the other moments. When both the density and the support are unknown, a uniform bound N does not exist in general. We provided in this article the solution for the special case of unknown exponential-polynomial density.

Problem 1 (

 1 Exp-Poly Inverse Problem). Let a measure µ f = f 1 G dx, supported on a compact semi-algebraic set G, whose algebraic boundary is included in the zero set of a polynomial g ∈ R[x] d . Let f = exp(p), with p ∈ R[x] s . Given s, d, and a finite number of moments m α , |α| N , recover the coefficients of both g and p.

  Then there exists a polynomial b(s) ∈ K[s] such that dim K (D n /I) s = b(s) for s large enough. The degree of b(s) is called the Bernstein dimension of D n /I. The left ideal I is called holonomic if the Bernstein dimension of D n /I is equal to n.

Proposition 4 .

 4 Let G and g as in Assumption 1, f ∈ E, L ∈ Ann(f ) of order r. Then g r L ∈ Ann(f 1 G ).

  Let f (x) = exp(p(x)) with deg p = s, together with G and g as in Assumption 1, deg g = d. Then f is annihilated by

  for unknown polynomials h 0 , . . . , h n where deg h 0 d and deg h i d + s -1 for i ∈ [1 . . n]. Theorem 1 establishes its correctness, with an explicit bound N . Algorithm 2 ReconstructExpPoly(n, d, s, N, (m α ) |α| N +d+s-1 ) Input: n 2, degrees d, s 0, moments m α for |α| N + d + s -1. Output: g, p ∈ K[x] with deg(g) d and deg(p) s.

  and G, g with deg g = d as in Assumption 1. If N N = 3d + s -1, then ReconstructExp-Poly(n, d, s, N, (m α )) returns g = λg with λ ∈ K * , and p = p -p(0). This requires moments up to degree 4d + 2(s -1).

1: h ← |γ| dr h γ x γ with symbolic coefficients h γ 2 :Theorem 3 .

 23 Find a nontrivial solution {h γ } of the linear system:(hL i ) M m α = 0, |α| N, i ∈ [1 . . n] 3: g ← h/ GCD(h, h x 1 , . . . , h xn) 4: return g Let analytic f annihilated by the order r rectangular system {L 1 , . . . , L n }, and G as in Assumption 1 with g ∈ K[x] of degree d. Assume also Assumption 2. Then, for N N := (2r -1)d + (d -1)b + s, with b = r mod 2 and s = max{q i,r }, ReconstructSupport(n, d, r, {L i }, N, (m α )) returns g = λg with λ ∈ K * .

Figure 1 :

 1 Figure 1: (a) G in checkered pattern, together with ∂G in black. For ε > 4: reconstructed and original boundary cannot be distinguished at this scale; in dashedblue, ε = 4, while in red (b) ε = 2.

Example 4 (

 4 Algebraic Support, Gaussian measure). Consider the moments m ij = G x i y j exp(p(x, y))dxdy. In Figure2(a), G is checkered and the level curves of exp(p(x, y)) are in dashed.(i) Direct problem: Given g = (x 2 -9/10) 2 + (x 2 -11/10) 2 -1, which vanishes on ∂G, and f = exp (-x 2 + xy -y 2 /2), with Ann{f } = {∂ x + 2x -1, ∂ y + y -1}, apply Algorithm 1 to compute a Gröbner basis for the sequence of moments m ij . In the same setting as above, a Gröbner basis with 5 generators and with 28 monomials under the staircase is obtained.

Figure 2 :

 2 Figure 2: (a) G in checkered pattern, exact Gaussian level curves in dashed-black, ∂G in blue; (b) When ε > 8: reconstructed and original boundary (in dashed blue) cannot be distinguished at this scale; in red, ε = 6, and in magenta for ε = 4 digits. (c) Reconstructed Gaussian level curves in red when ε = 8; when ε > 8, the level curves of exact and reconstructed coincide at this scale.

Indeed, if L i has order r i < r, then it is replaced by ∂ r-ri xi L i , which has order r and the same leading polynomial coefficient.

The corresponding code will be available at http://homepages.laas.fr/fbrehard/ HolonomicMomentProblem
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Appendix

A.1 Complementary proofs

Proof of Proposition 1. To prove (i), we use

The last equality holds since for any

where the commutation of the limit symbol comes from the fact that f z,h : x → f (x,z+he i )-f (x,z) h converges to f z : x → f (x, z) for the compact-open topology of E. To prove (ii), one just need to notice that L M is obtained from L F using z i → i α i S -1 α i , and ∂ z i → -i S α i .