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Nudging-based observers for
geophysical data assimilation

and joint state-parameters
estimation

Samira Amraoui, Didier Auroux, Jacques Blum,
Blaise Faugeras

Abstract Oceans and the atmosphere are governed by the general equa-
tions of fluid dynamics. Data assimilation consists of estimating the state of
a system by combining, via numerical methods, two different sources of in-
formation: models and observations.
The Back and Forth Nudging (BFN) algorithm is a prototype of a new class
of data assimilation methods. The nudging technique consists in adding a
feedback term in the model equations, measuring the difference between the
observations and the corresponding space states. The BFN algorithm is an
iterative sequence of forward and backward resolutions, all of them being
performed with an additional nudging feedback term in the model equa-
tions.
These nudging-based algorithms can be extended with the aim of correcting
non-observed variables. This particularly concerns model parameter identi-
fication, with the potential of improving the quality and the confidence in
the model state for future data assimilation processes.

1 Introduction

It is well established that the quality of weather and ocean circulation fore-
casts is highly dependent on the quality of the initial conditions. Geophysi-
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cal fluids (air, atmospheric, oceanic, surface or underground water) are gov-
erned by the general equations of fluid dynamics. Geophysical processes are
hence nonlinear because of their fluid component. Such nonlinearities im-
pose a huge sensitivity to the initial conditions, and then an ultimate limit
to deterministic prediction (estimated to be about two weeks for weather
prediction, for example). This limit is still far from being reached, and sub-
stantial gains can still be obtained in the quality of forecasts.

Data assimilation (DA) is precisely the domain at the interface between
observations and models that makes it possible to identify the global struc-
ture of a system from a set of discrete space-time data. DA covers all the
mathematical and numerical techniques in which the observed information
is accumulated into the model state by taking advantage of consistency con-
straints with laws of time evolution and physical properties, and which al-
low us to blend, as optimally as possible, all the sources of information com-
ing from theory, models and other types of data.

There are two main categories of DA techniques [1], variational meth-
ods based on the optimal control theory [2] and statistical methods based
on the theory of optimal statistical estimation (for example, see [3–5] for an
overview of inverse methods, both for oceanography and meteorology).

Here, we study the Back and Forth Nudging (BFN) algorithm, which is
the prototype of a new class of data assimilation methods, although the stan-
dard nudging algorithm has been known for a couple of decades. The nudg-
ing technique consists in adding a feedback term in the model equations,
measuring the difference between the observations and the corresponding
space states. The idea is to apply the standard nudging algorithm to the
backward (in time) nonlinear model in order to stabilize it. The BFN al-
gorithm is an iterative sequence of forward and backward resolutions, all
of them being performed with an additional nudging feedback term in the
model equations. We also present the Diffusive Back and Forth Nudging
(DBFN) algorithm, which is a natural extension of the BFN to some par-
ticular diffusive models, and the P-BFN for parameter estimation (possibly
jointly with state estimation).

2 Back and Forth Nudging

2.1 The nudging algorithm

The standard nudging algorithm consists in adding, to the state equations,
a feedback term, which is proportional to the difference between the obser-
vation and its equivalent quantity computed by the resolution of the state



Observers for data assimilation 27

equations. The model appears then as a weak constraint, and the nudging
term forces the state variables to fit as well as possible to the observations.

Let us consider a very generic model
dX
dt

= F(X,U), 0 < t < T,

X(0) = V.
(1)

We assume that we have an observation Xobs(t) of the state variable X(t).
The nudging algorithm simply gives

dX
dt

= F(X,U) + K(Xobs − HX), 0 < t < T,

X(0) = V,
(2)

where H is the observation operator, allowing us to compare the observa-
tion Xobs with the corresponding quantity of the model solution X, and K is
the nudging matrix. It is quite easy to understand that if K is large enough,
then the state vector transposed into the observation space (through the ob-
servation operator) HX(t) will tend towards the observation vector Xobs(t).
In the linear case (where F and H are linear operators), the forward nudging
method is nothing else than the Luenberger observer [6], a deterministic and
time continuous alternative method to statistical Kalman filtering method
first introduced in 1966. The operator K can be chosen so that the error goes
to zero when time goes to infinity, hence its name of asymptotic observer.

This algorithm was first used in meteorology [7], and has since been used
with success in oceanography [8] and applied to a mesoscale model of the
atmosphere [9]. Many results have also been carried out on the optimal de-
termination of the nudging coefficients K [10–12].

The backward nudging algorithm consists in solving the state equations
of the model backwards in time, starting from the observation of the state of
the system at the final instant. A nudging term, with the opposite sign com-
pared to the standard nudging algorithm, is added to the state equations,
and the final obtained state is in fact the initial state of the system [13, 14].

2.2 The BFN algorithm

The Back and Forth Nudging (BFN) algorithm consists in solving first the
forward (standard) nudging equation, and then the backward nudging equa-
tion. After resolution of this backward equation, one obtains an estimate of
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the initial state of the system. We repeat these forward and backward reso-
lutions with the feedback terms until convergence of the algorithm [14].

The BFN algorithm is then the following:
dXk
dt

= F(Xk,U) + K(Xobs − HXk), 0 < t < T,

Xk(0) = X̃k−1(0),
dX̃k
dt

= F(X̃k,U)− K(Xobs − HX̃k), T < t < 0,

X̃k(T) = Xk(T),

(3)

with X0(0) = V as initial condition. Starting from V, a resolution of the di-
rect model gives X0(T) and hence X̃0(T). Then a resolution of the backward
model provides X̃0(0), which is equal to X1(0), and so on.

This algorithm can be compared to the variational algorithm (4D-VAR,
based on optimal control theory), which also consists in a sequence of for-
ward and backward resolutions. In the BFN algorithm, even for nonlinear
problems, it is useless to linearize the system and the computation of the
backward system is as easy as the direct system, unlike an adjoint equation,
the determination of which can be a playful task. In the case of ill-posed
backward resolution, the extra feedback term in backward equation has the
additional property to stabilize the numerical resolution.

The BFN algorithm has been tested successfully for the system of Lorenz
equations, Burgers equation and a quasi-geostrophic ocean model in [15], for
a shallow-water model in [16] and compared with a variational approach for
all these models. It has been used to assimilate the wind data in a mesoscale
model [17] and for the reconstruction of quantum states in [18].

2.3 DBFN: Diffusive Back and Forth Nudging algorithm

In the framework of oceanographic and meteorological problems, there is
usually no diffusion in the model equations. However, the numerical equa-
tions that are solved contain some diffusion terms in order to both stabilize
the numerical integration (or the numerical scheme is set to be slightly diffu-
sive) and model some subscale turbulence processes. We can then separate
the diffusion term from the rest of the model terms, and assume that the
partial differential equations read:

dX
dt

= F(X) + ν∆X, 0 < t < T, (4)
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where F has no diffusive terms, ν is the diffusion coefficient, and we assume
that the diffusion is a standard second-order Laplacian (note that it could
be a fourth or sixth order derivative in some oceanographic models, but for
clarity, we assume here that it is a Laplacian operator).

We introduce the D-BFN algorithm in this framework, for k ≥ 1:{ dXk
dt

= F(Xk) + ν∆Xk + K(Xobs − H(Xk)), 0 < t < T,

Xk(0) = X̃k−1(0),
dX̃k
dt

= F(X̃k)− ν∆X̃k − K′(Xobs − H(X̃k)), T > t > 0,

X̃k(T) = Xk(T).

(5)

It is straightforward to see that the backward equation can be rewritten,
using t′ = T − t:

dX̃k
dt′

= −F(X̃k) + ν∆X̃k + K′(Xobs − H(X̃k)), 0 < t′ < T,

X̃k(t′ = 0) = Xk(T).
(6)

where X̃k is evaluated at time t′, the backward equation is well-posed,
with an initial condition and the same diffusion operator as in the forward
equation. The diffusion term both takes into account the subscale processes
and stabilizes the numerical backward integrations, and the feedback term
still controls the trajectory with the observations.

The main interest of this new algorithm is that for many geophysical
problems, the non-diffusive part of the model is reversible, and the back-
ward model is then stable. Moreover, the forward and backward equations
are now consistent in the sense that they will be both diffusive in the same
way (as if the numerical schemes were the same in forward and backward
integrations), and only the non-diffusive part of the physical model is solved
backwards. Note that in this case, it is reasonable to set K′ = K.

The DBFN algorithm has been tested successfully for a linear transport
equation in [19] and for the non-linear Burgers equation in [20].

2.4 Theoretical considerations

Data Assimilation is the ensemble of techniques combining the mathemat-
ical information provided by the equations of the model and the physical
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information given by the observations in order to retrieve the state of a flow.
In order to show that both BFN and DBFN algorithms achieve this double
objective, let us give a formal explanation of the way these algorithms pro-
ceed.

If K′ = K and the forward and backward limit trajectory are equal, i.e
X̃∞ = X∞, then taking the sum of the two equations in (3) shows that
the limit trajectory X∞ satisfies the model equation (1) (including possible
model viscosity). Moreover, the difference between the two equations in (3)
shows that the limit trajectory is the solution of the following equation:

K(Xobs − H(X∞)) = 0. (7)

Equation (7) shows that the limit trajectory perfectly fits the observations
(through the observation operator, and the gain matrix). In a similar way, for
the DBFN algorithm, taking the sum of the two equations in (5) shows that
the limit trajectory X∞ satifies the model equations without diffusion:

dX∞

dt
= F(X∞) (8)

while taking the difference between the two same equations shows that X∞
satisfies the Poisson equation:

∆X∞ = −K
ν
(Xobs − H(X∞)) (9)

which represents a smoothing process on the observations for which the

degree of smoothness is given by the ratio
ν

K
[19]. Equation (9) corresponds,

in the case where H is a matrix and K = kHT R−1, to the Euler equation of
the minimization of the following cost function

J(X) = k〈R−1(Xobs − HX), (Xobs − HX)〉+ ν
∫

Ω
‖∇X‖2 (10)

where the first term represents the quadratic difference to the observations
and the second one is a first order Tikhonov regularisation term over the
domain of resolution Ω. The vector X∞, solution of (9), is the point where
the minimum of this cost function is reached. This is a nice increment to the
BFN algorithm, in which the limit trajectory fits the observations, while in
the DBFN algorithm, the limit trajectory is the result of a smoothing process
on the observations (which are often very noisy).
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2.5 P-BFN for parameter estimation

In many physical or biological dynamical systems the state equations con-
tain parameters that are not well known and need to be estimated. The usual
approach to achieve this identification is to include the unknown parame-
ters together with the initial conditions into the set of control variables and
to minimize a cost function measuring the discrepancy between the model
outputs and the observations. The drawback of this approach is that it ne-
cessitates the computation of derivatives with respect to the parameters.

On the other hand, the relative simplicity of the BFN framework is at-
tractive to perform parameter identification. The state equations can be aug-
mented with equations expressing the stationarity of the parameters, the ini-
tial conditions being the parameters values:

dX
dt

= F(X, P), 0 < t < T, X(0) = V,

dP
dt

= 0, 0 < t < T, P(0) = U.
(11)

A Lyapunov functional is then formulated and enables one to obtain
the expression of the nudging term to be added to these parameter equa-
tions [21]. Note that using observations on the state only, it is possible to add
feedback terms (to the observations) on both parameter and state equations.

Finally BFN-like iterations provide, after convergence, an estimate of the
the initial conditions for the state equations and the parameter’s supplemen-
tary equations thus giving an estimate of the unknown parameters.

3 Numerical results

Let us now consider the simple example of a 1D transport equation and
assume that the parameter a(x) of this transport equation is unknown. We
want to estimate both the model state u and parameter a. We add an ad hoc
equation for the time-independent parameter:{

∂tu(t, x) + a(x)∂xu(t, x) = 0, u(0, x) = u0(x),
∂ta(t, x) = 0, a(0, x) = a(x).

Then we apply the BFN algorithm to this coupled system, and we add
feedback terms to both equations, using only observations on the state u:



32 Samira Amraoui, Didier Auroux, Jacques Blum, Blaise Faugeras

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4
c

ref

begin

end

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
u0

ref

begin

end

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

Time

Relative error

c

Fig. 1 Comparisons between the true augmented state (state and parameter) and its esti-
mation by P-BFN algorithm: reconstruction of parameter (left) and state (right). Relative
error of parameter reconstruction (bottom) with regards to P-BFN iterations in a time win-
dow of [0, T] equal to [0,0.2].

{
∂tû(t, x) + â(t, x)∂xû(t, x) = Ku(uobs(t, x)− û(t, x)),
∂t â(t, x) = KaF (uobs(t, x)− û(t, x)),

where F is a feedback function involving spatial differential operators, such
that there exists a Lyapunov function that decreases in time.

Then, we can prove that both u and a can be reconstructed, as it can be
seen in Figure 1.

4 Conclusion

For state estimation, the BFN algorithm is a valuable technique for many
reasons: its ease of implementation (simple combination of model and ob-
servation functions), its robustness and fast convergence, without requiring
any linearization or optimization processes. When it comes to dealing with
large-scale problems, as is already the case in meteorology and oceanogra-
phy, the use of high computational cost methods is barely possible and BFN
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can be a suitable solution. In terms of efficiency, the estimation provided by
the BFN is comparable to other data assimilation methods in all tests con-
ducted.

Its range of application can be extended to parameter estimation. By tak-
ing advantage of model parameter information contained in the state solu-
tion, the P-BFN identifies the model parameter exclusively from state obser-
vations. The numerical tests on the identification of the velocity parameter in
a transport equation confirm that both state and parameter can be estimated
without increasing the computational cost.
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