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Abstract

Machine implementation of mathematical functions often relies on
polynomial approximations. The particularity is that rounding errors
occur both when representing the polynomial coefficients on a finite
number of bits, and when evaluating it in finite precision. Hence, for
finding the best polynomial (for a given fixed degree, norm and in-
terval), one has to consider both types of errors: approximation and
evaluation. While efficient algorithms were already developed for tak-
ing into account the approximation error, the evaluation part is usu-
ally a posteriori handled, in an ad-hoc manner. Here, we formulate
a semi-infinite linear optimization problem whose solution is the best
polynomial with respect to the supremum norm of the sum of both
errors. This problem is then solved with an iterative exchange algo-
rithm, which can be seen as an extension of the well-known Remez
algorithm. A discussion and comparison of the obtained results on
different examples are finally presented.

1 Introduction
Polynomials are often used for approximating functions on computers [1,21].
Their evaluation only requires additions and multiplications, which are effi-
ciently implemented in hardware floating-point (FP) arithmetic units. FP
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operations are specified by the IEEE 754-2008 [17] standard, which requires,
among others, correctly rounded basic arithmetic operations (+,−, ∗, /,√)
for several precision formats, and recommends correctly rounded elementary
functions like exp, sin, cos. Very efficient fixed FP precision implementa-
tions exist [15, 20] for such functions and are collected in mathematical li-
braries (libms), which can be nowadays almost automatically generated and
tuned [12, 18]. Recently, in [19], such code generating techniques were ex-
tended to larger classes of special functions, which are widely used in scientific
and technical applications (like Bessel, Airy, Erf, etc.).

The problem of evaluating a function for the whole FP input range is
firstly reduced to the evaluation of an approximation valid in a rather small
compact domain I. This can be done for instance, by argument reduction
techniques, which are available only for specific elementary functions, and/or
by piecewise polynomial approximations [22]. Then, the implementation task
becomes: given a description of a function f , an input interval I, and a target
accuracy ε > 0, one is requested a source code which provides a function f̃ ,
such that:

∥∥∥(f − f̃)/f
∥∥∥
I
6 ε, where we denote by ‖g‖I := sup

t∈I
|g(t)| the

supremum norm of g on I.
Typically, this is handled in two main steps:

Approximation an approximation polynomial p is searched for, such that
two main requirements are met: its coefficients are representable with a spec-
ified fixed precision format (usually, binary32, binary64, or an unevaluated
sum of such formats) and the approximation error is less than a target εapprox,
whether absolute ‖f − p‖I 6 εapprox or relative ‖(f − p)/f‖I 6 εapprox.

For that, efficient algorithms were developed in [5,6]. In the simpler case

of polynomials p with real coefficients and given degree n, p =
n∑
i=0

ait
i, this

boils down to the so-called minimax problem:

min
ai∈R,
i∈[0..n]

max
t∈I
|f(t)− p(t)|,

(Pminimax)

which can be solved by the Remez algorithm (see [5, 10] and references
therein). This iterative algorithm has quadratic convergence and rather low
complexity, since it involves solving a linear system of size n+2 at each step,
together with numerically computing the extrema of f − p over I.

Evaluation an efficient evaluation scheme for p is searched for; since after
each addition or multiplication, rounding errors occur, one must ensure that
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the computed value p̃ satisfies ‖p− p̃‖I 6 εeval (or ‖(p− p̃)/p‖I 6 εeval) for
a given threshold εeval.

Heuristics presented in [20] extend the precision of the important coeffi-
cients, such that the evaluation error remains below εeval. For instance, Sollya
command implementpoly uses a Horner-based evaluation scheme, which be-
haves rather well when the evaluation interval is sufficiently small and con-
tains zero. Otherwise, consider step i of Horner evaluation ai + tp̃i(t), where
p̃i is the already computed partial polynomial evaluation: when the argu-
ment |t| >> 1, the accumulated evaluation error is much amplified when
multiplying by t. Another heuristic is a ratio test between ai and tp̃i(t), to
check for cancellation issues which appear when both terms have the same
order of magnitude and opposite signs.

Once the coefficients have been chosen, the approximation and the eval-
uation error can a posteriori be certified by several existing algorithms and
tools, like Sollya [11], Gappa [14], Rosa [13] or Real2Float [25].

It is important to note that steps a) and b) are usually independently
considered. An exception occurs for the case of very small precisions or
polynomial degrees, where an exhaustive search on the rounded coefficients
is possible [28].

However, as explicitly mentioned in [6], one would like to take into ac-
count the roundoff error that occurs during polynomial evaluation: getting the
polynomial, with constraints on the size of the coefficients, that minimizes the
total (approximation plus roundoff) error would be extremely useful.

The purpose of this article is to make progress on this open question:

we search for the coefficients of a polynomial p(t) =
n∑
i=0

ait
i, of given degree

n, which minimizes the maximum of the sum of both approximation and
evaluation errors over an input interval I, with respect to f . We consider a
black-box description of f i.e., one disposes of values f(t), up to any required
accuracy [20]. This allows for handling very general functions (elementary,
special, etc.), but also implies that no argument reduction step is usually
possible. For simplicity we state the problem for the absolute error case:1:

min
ai∈R,
i∈[0..n]

max
t∈I

(|f(t)− p(t)|+ |p̃(t)− p(t)|)
(Pgeneral)

In Section 2, we give a linearized bound for the evaluation error |p̃(t) −
p(t)|. Based on [23], the performance of a given arbitrary evaluation scheme
is recursively assessed by bounding the rounding error of each elementary

1The relative error can be similarly handled from a theoretical standpoint (cf. Ap-
pendix .2).
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operation. This leads to the formulation in Section 3 of Problem Pgeneral as
a linear semi-infinite programming (SIP) problem [24,26].

In this context, we show two results: on the theoretical side, based on the
duality theory, we revisit, explain and extend an exchange algorithm [7–9,29],
which solves this problem in Section 4. On the practical side, the solution
of this problem provides a first attempt on simultaneously optimizing over
both errors: we show that in some cases the evaluation error can be improved.
We also show that in some other cases, the minimax polynomial solution of
problem Pminimax is very close to the solution of Pgeneral. Numerical examples
and a discussion are provided in Section 5.

2 Evaluation error
Consider first some basic notation used for error analysis [22]. Firstly, as-
sume radix-2, precision-p, floating-point arithmetic with unbounded expo-
nent range i.e, provided that overflows and underflows do not occur. If t ∈ R,
define RN(t) as t rounded to nearest. This is the default rounding mode in
IEEE-754 arithmetic [17], so that, given two FP numbers a and b, when the
instruction c = a>b appears in a program, what is effectively computed is
c = RN(a>b), for any arithmetic operation > ∈ {+,−,×,÷}. We have

|t− RN(t)|
|t|

6
u

1 + u
< u, (1)

where u = 2−p is called the rounding unit.
Moreover, there exists a real number ε such that

RN(a>b) = (a>b)(1 + ε), |ε| 6 u. (2)

Based on the previous property, the error of any arithmetic expression can
be recursively bounded. Firstly, for specific evaluation schemes, like Horner,
bounds date back to the work of Oliver [23], which is detailed below as an
example. More recently, several works insisted on the automatic algorithmic
approach via operator overloading similar to automatic differentiation [4,27].
Based on this, we propose, for completeness2, Algorithm 2, which automat-
ically computes linearized expressions for the evaluation error (like in (6)),
for any given symbolic expression tree e, provided with symbolic rounding
errors for each tree node. Let us exemplify on the evaluation of the polyno-

2While the general ideas are the same as in [4, 27] and references therein, we could
not find the exact pseudo-code in literature, so we state it in order to provide a complete
algorithmic solution for problem Pgeneral.
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Algorithm 1 Horner(p,t).
1: rn ← an
2: for i = n− 1 downto 0 do
3: ri ← RN

(
RN(ri+1 × t) + ai

)
4: end for
5: return r0

mial p(t) = ant
n + an−1t

n−1 + · · · + a0 using Horner’s rule, assuming that a
Fused Multiply Add (FMA) instruction is not employed. The actual machine
operations are recalled in Algorithm 1. We have:

rn = an, (3a)
rn−1 =

(
trn(1 + ε×n−1) + an−1

)
(1 + ε+n−1), (3b)

where ε×n−1 and ε
+
n−1 model the rounding errors for multiplication and addition

at step n− 1. By induction, one obtains:

rk =
n∑
i=k

(
(1 + ε+i )

i−1∏
j=k

(1 + ε+j )(1 + ε×j )

)
ait

i−k, (4)

where we define ε+n := 0 and
k−1∏
j=k

(1 + ε+j )(1 + ε×j ) := 1. This implies that the

total evaluation error is:

r0 −
n∑
i=0

ait
i =

n∑
i=0

(1 + ε+i )
i−1∏
j=k

(1 + ε+j )(1 + ε×j )− 1

 ait
i. (5)

Here, we consider only a linear approximation θlin of the evaluation error,
function of ε+i and ε×i , in what follows. This gives, for our Horner example:

θ
(Horner)
lin :=

n−1∑
j=0

 n∑
i=j+1

ait
i

 ε×j +

n−1∑
j=0

 n∑
i=j

ait
i

 ε+j . (6)

Moreover, provided bounds are specified for each rounding error, depend-
ing on the precision employed, one obtains upper bounds for the linearized
absolute evaluation error. For instance, if binary64 is used for all the com-
putations in Algorithm 1, with u = 2−53, one has:

∣∣∣θ(Horner)
lin

∣∣∣ 6 2u

n∑′′

j=0

∣∣∣∣∣∣
n∑
i=j

ait
i

∣∣∣∣∣∣ , (7)
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where the double superscript indicates that the first and last terms in the
summation are to be halved.

In order to automate this evaluation error analysis for the general case,
we firstly associate to a "pure" mathematical expression e∗, a given symbolic
evaluation scheme with roundings e, composed of terms RN(e′, u). This
means that e′ is rounded with a relative error bounded by u. This formulation
models both possible rounding errors on an input variable (e′ ∈ V , where V
denotes the set of input variables) and the rounding errors of arithmetic
operations (if e′ = a1>e2). Then, we build an expression ẽ, as in (4), by
recursively replacing terms RN(e′, u) in e, with ẽ′(1 + ε

[u]
e′ ) where |ε[u]

e′ | 6 u.
Several examples are shown in Table 1.

e1 = RN(a+ RN(b× c, u), u) e∗1 = a+ bc

ẽ1 = (a+ bc(1 + ε
[u]
b×c))(1 + ε

[u]
a+RN(b×c,u))

θ
(e1)
lin = bcε

[u]
b×c + (a+ bc)ε

[u]
a+RN(b×c,u)

|θ(e1)
lin | 6 (|bc|+ |a+ bc|)u

. Arithmetic operations in double precision.

e2 = RN(a+ b× c, u) e∗2 = a+ bc

ẽ2 = (a+ bc)(1 + ε
[u]
a+b×c)

θ
(e2)
lin = (a+ bc)ε

[u]
a+b×c

|θ(e2)
lin | 6 |a+ bc|u

. Fused multiply-add (FMA) in double precision.

e3 = RN(RN(a, u′) + b× RN(a, u′), u) e∗3 = a+ ba

ẽ3 = (a(1 + ε
[u′]
a ) + ba(1 + ε

[u′]
a ))(1 + ε

[u]
RN(a,u′)+b×RN(a,u′))

θ
(e3)
lin = (a+ ba)ε

[u′]
a + (a+ ba)ε

[u]
RN(a,u′)+b×RN(a,u′)

|θ(e3)
lin | 6 |a+ ba|(u+ u′)

. Fused multiply-add (FMA) in double precision,
with input a rounded to single precision.

Table 1: Evaluation error examples (u = 2−53, u′ = 2−24).

Finally, automatic linearized evaluation error expressions θlin, such as
in (6), are obtained using Algorithm 2. Specifically, for an arithmetic ex-
pression with roundings e, this algorithm recursively computes an expression

of the form θlin =
k∑
i=1

θlin,iε
[ui]
ei , with symbolic ε[ui]ei (i ∈ [1 . . k]) for each term

RN(ei, ui) in e. The coefficients θlin,i are arithmetic expressions depending
only on the input variables in e. Note that RN(ei, ui) may occur several
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times in e, but the error variable ε[ui]ei is unique since the rounding operation
is deterministic. This allows to bound the (linearized) evaluation error as
in (7).

Proposition 1 (Correctness of Algorithm 2). Let e be an arithmetic expres-

sion with roundings, and θlin =
k∑
i=1

θlin,iε
[ui]
ei the linearized expression for the

evaluation error returned by Algorithm 2. If ui 6 u for all i ∈ [1 . . k], then:

|ẽ− e∗| 6
k∑
i=1

|θlin,i|ui +O
(
u2
)
, as u→ 0.

Usually, for polynomial evaluation schemes, the functions θlin,i are linear
with respect to the coefficients a of p(t), that is uiθlin,i = πi(t)

Ta for some
πi(t) ∈ Rn+1. Hence we obtain a linearized bound of the evaluation error of
the form:

|θlin(a, t)| 6
k∑
i=1

|πi(t)Ta|, a ∈ Rn+1, t ∈ R. (8)

We denote the right-hand side of equation (9) by

θ(a, t) =
k∑
i=1

|πi(t)Ta|, a ∈ Rn+1, t ∈ R. (9)

Example 1 (Bound evaluation error for Horner). In particular, for Horner
evaluation, we have from equation (7):

π1(t)T = (u, ut, . . . , utn−1, utn)

π2(t)T = (0, 2ut, . . . , 2utn−1, 2utn)

. . .

πn(t)T = (0, 0, . . . , 2utn−1, 2utn)

πn+1(t)T = (0, 0, . . . , 0, utn)
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Algorithm 2 LinEvalError(e)
Input: e an arithmetic expression with explicit roundings.
Output: θlin the linearized evaluation error of e.

if e ∈ V then
return 0

else if e = RN(f, u) then
θ′lin ← LinEvalError(f)

return θ′lin + f∗ε
[u]
f

else if e = −f then
θ′lin ← LinEvalError(f)
return −θ′lin

else if e = f + g then
θ′lin ← LinEvalError(f)
θ′′lin ← LinEvalError(g)
return θ′lin + θ′′lin

else if e = f × g then
θ′lin ← LinEvalError(f)
θ′′lin ← LinEvalError(g)
return g∗θ′lin + f∗θ′′lin

end if

3 Semi-Infinite Programming formulation

3.1 Problem (Pgeneral) as a linear SIP

Noting that Problem (Pgeneral) is a piecewise-linear optimization problem and
using the convex evaluation error formula θ(a, t) at point t ∈ [tl, tr] obtained
in Section 2, Problem (Pgeneral) becomes Problem (P ′general) (see [3, Section
4.3.1] for instance), with the compact index set I = [tl, tr] and the monomial
basis π0(t) = (1, . . . , tn)T .

min
(a,a)∈Rn+2

a

s.t. |f(t)− π0(t)Ta|+ θ(a, t)− a 6 0, t ∈ I.
(P ′general)

Problem (P ′general) is a convex Semi-Infinite Programming (SIP) problem
(see [24] which provides a comprehensive overview of SIP) that can be refor-
mulated as a linear SIP problem, at the expense of a different index set Ω
replacing the previous index set I. Here, the set of constraints of (P ′general)
involving absolute values is replaced by as many linear constraints as required
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to represent all possible sign combinations. More precisely, the evaluation

error is as in equation (9), θ(a, t) =
k∑
i=1

|aTπi(t)|, and define:

x = (a,a) ∈ Rn+2, z = (1, 0, . . . , 0) ∈ Rn+2,

α(t, σ0, . . . , σk) = (1, σ0π0
T (t) +

k∑
i=1

σiπi
T (t))T ∈ Rn+2,

S = {−1, 0, 1}k+1, ω = (t, σ0, . . . , σk) ∈ Ω := I ×S.

(10)

Then, Problem (P ′general) is exactly given by the following linear SIP:

min
x∈Rd

zTx

s.t. α(ω)Tx > c(ω), ω ∈ Ω,
(P )

where d = n+2, c(ω) = σ0f(t), Ω is a compact metric space and the function
g(x, ω) = c(ω)−α(ω)Tx 6 0 defining the feasible set is a continuous function
from Rn+2×Ω into R. Note that forS′ = {−1, 1}×{0}k and Ω′ = I×S′ ⊆ Ω,
(Pminimax) is exactly retrieved as shown in the next example.

Example 2. For n = 5, Problem (Pminimax) is:

min
(a,a)∈R7

a

s.t. (1, σ01, σ0t, . . . , σ0t
5)(a, a0, a1, . . . , a5)T > σ0f(t),

σ0 = ∓1, t ∈ I.
(Example 2 (a))

while Problem (P ′general), assuming Horner evaluation is:

min
(a,a)∈R7

a

s.t. (1, σ0 + σ1u, (σ0 + σ1u+ σ22u)t, . . . ,
(σ0 + σ1u+ . . .+ σ5u)t5)(a, a0, a1, . . . , a5)T

> σ0f(t),
σ0 = ∓1, σ1 = ∓1, . . . , σ5 = ∓1, t ∈ I.

(Example 2 (b))

We propose in Section 4 an exchange algorithm which solves Problem
(P ′general) and can be seen as a generalization (in the above framework) of
the classical Remez algorithm, which solves Problem (Pminimax). In order
to prove its correctness, we need some important discretization properties
of linear SIP problems, which are based on conjugate duality theory. Our
presentation closely follows the survey [26].
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3.2 Duality and Discretization for SIP

For a Problem (P ), we denote respectively by val(P ) and Sol(P ), its optimal
value and the set of its optimal solutions.

A discretization (Pm) of (P ) for a set ω = {ω1, . . . , ωm} ⊆ Ω is the
following linear program:

min
x∈Rd

zTx

s.t. α(ωj)
Tx > c(ωj), j = 1, · · ·m.

(Pm)

Since the feasible set of (P ) is included in the feasible set of (Pm), we have
that val(Pm) 6 val(P ). The existence of a discretization (Pm) such that the
equality holds is a particularly appealing feature of some linear SIPs since
the solution of (P ) may be obtained by the solution of (Pm) if we are able to
find the corresponding set ω.

Definition 1. [26] (P ) is said to be reducible if there exists a discretization
(Pm) defined by the subset {ω1, . . . , ωm} ⊆ Ω such that val(Pm) = val(P ).

The characterization of reducible SIP problems relies on the central notion
of duality that rules the interplay between two optimization problems. This
notion has its roots in the interrelations between a normed linear space and
its topological dual. Let us define the continuous mapping h : x 7→ g(x, ·)
from R

d to the Banach space of continuous functions C(Ω), equipped with
the uniform norm ‖h‖Ω = supω∈Ω |h(ω)|, then the topological dual of C(Ω)
is the space C(Ω)∗ of signed Borel measures µ over (Ω,B(Rk+2)) [16, Section
21.5]. For a measure µ ∈ C(Ω)∗, its support is the smallest closed subset Γ
of Ω such that |µ|(Ω \ Γ) = 0. A positive measure µ is denoted by µ � 0.
A classical example of a positive measure with discrete support is the Dirac
measure of support {ωj}:

δωj
(A) =

{
0 if ωj 6∈ A,
1 if ωj ∈ A.

A ⊆ Ω. (11)

Defining the bilinear form pairing C(Ω) and C(Ω)∗ by the duality bracket:

〈h, µ〉 =

∫
Ω

h(ω)dµ(ω), (12)

the dual problem (D) associated to the primal problem (P ) is obtained as:

max
µ�0

∫
Ω

c(ω)dµ(ω)

s.t.
∫

Ω

α(ω)dµ(ω) = z.
(D)
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The weak duality property, that is val(D) 6 val(P ) always holds. Problem
(D) is an LP problem defined in the space of positive measures which is
hard to solve. By restricting the support of µ � 0 to {ω1, . . . , ωm}, that
is µ =

∑m
j=1 yjδωj

with yj > 0, a discretized counterpart (Dm) of (D) is
obtained:

max
yj>0

j∈[1..m]

m∑
j=1

c(ωj)yj

s.t.
m∑
j=1

yjα(ωj) = z,

(Dm)

with val(Dm) 6 val(D). It is important to note that the LP dual of the dis-
cretized problem (Pm) is exactly (Dm) which implies that val(Dm) = val(Pm)
(strong duality holds) provided that none of (Pm) or (Dm) is infeasible.

So far, under these mild assumptions, we have that val(Dm) = val(Pm) 6
val(D) 6 val(P ) and conditions for having only equalities (respectively re-
ducibility and strong duality properties) may be obtained by using conjugate
duality theory as developed in [26, Theorems 2.2, 2.3 and 3.2].

Theorem 1. [26, Thm. 2.2, 2.3, 3.2] Under the assumptions:

A1 Ω is a compact metric space, α : Ω→ Rd and c : Ω→ R are continuous
functions;

A2 val(P ) is finite;

A3 (Slater’s condition): there exists x◦ such that:

α(ω)Tx◦ > c(ω), for all ω ∈ Ω; (13)

A4 There exist ω1, . . . , ωd ∈ Ω with (α(ω1), · · · ,α(ωd)) linearly indepen-
dent such that:

∃ y1, . . . , yd > 0, z =
d∑
j=1

yjα(ωj), (14)

the following statements are true:

(i) Sol(P ) 6= ∅ and bounded;

(ii) Sol(D) 6= ∅ and bounded;

(iii) Problem (P ) is reducible to a Problem (Pm) with m 6 d;
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(iv) val(P ) = val(D) = val(Pm) = val(Dm).

Proposition 2. Assumptions A1-A4 are satisfied for our Problem (P ′general)
and therefore results (i)-(iv) of Theorem 1 apply.

Proof.

A1 By construction, our set Ω is a compact metric space and α and c are
polynomials and therefore continuous on Ω;

A2 val(P ) = +∞ means that the primal problem (P ′general) is not feasible
but x = (max

t∈I
|f(t)|, 0 · · · , 0) is a feasible point for (P ′general), therefore

val(P ) < +∞. In addition, val(P ) > −∞ since a > 0 by construction
and for all feasible points of (P ′general);

A3 It may be easily deduced from the proof of A2 that x◦ = (max
t∈I
|f(t)|+

ς, 0 · · · , 0) is a strictly feasible point for (P ′general) for any ς > 0;

A4 An instance for {ω1, . . . , ωn+2} is provided by Algorithm Init in Sec-
tion 4 (see Lemma 1 in Appendix .1).

The conclusion of this theorem, that is both (P ) and (D) are reducible to
a discretization of size of at most d, allows us to recast the problem of solving
(P ′general) as the problem of finding the right discretization {ω1, . . . , ωd} such
that item (iv) of Theorem 1 applies and to solve the associated (Pm) and/or
(Dm). This goal may be reached by tailoring the general exchange algorithm
for semi-infinite linear programs presented in [7] to our specific case.

This algorithm can be seen as a generalization of the dual simplex al-
gorithm for Problem (D). The main idea consists first in finding at each
iteration `, the solution y(`) of (D

(`)
n+2), with ω(`) = {ωj(`)}n+2

j=1 . Such a so-
lution is a feasible (but not necessarily optimal) point of the dual Prob-
lem (D). Moreover, the objective value zTx(`) of (P

(`)
m ) and (P ) for the

instance x(`) := (a(`),a(`)) is equal to the objective value of (D) for the
instance y(`)3. Hence, either x(`) is a feasible solution of Problem (P ) by
Theorem 1, or it is an infeasible point of Problem (P ). In the latter case,
one of these constraints is replaced by a new one, indexed by ω∗

(`), in an
exchange step in order to increase the objective value of the dual and works
towards primal feasibility.

3The feasible set of (P ) is included in the feasible set of (P
(`)
m ), for all `.
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4 Iterative exchange algorithm
Algorithm Eval&ApproxOptimize computes the degree-n best polyno-
mial approximation with respect to both evaluation and approximation er-
rors, i.e. it solves (P ′general) based on the theoretical developments from
Section 3.2. Before entering the details, we provide an analogy with Remez
algorithm. Roughly speaking, the new algorithm consists of the same main
steps:

• Init provides a good set of initial points.

• At each step, SolvePrimal solves a linear system of equations (built
w.r.t. the current set of points), where the variables are the polynomial
coefficients.

• Then, FindNewIndex finds a new point where the total error is max-
imal.

• Finally, Exchange replaces one point from the current set with this
new point.

• This process repeats until a certain tolerance threshold is reached con-
cerning the total error.

However, when considering both errors, one can not only rely on the
primal problem (coefficients reconstruction), but also needs the dual problem.
This implies:

• Besides classical points, a combination of signs (signatures) is required
at each step.

• Init and Exchange need the solution of the dual problem.

A running example for this algorithm is given in Section 5. We focus now
on its correctness, which is stated in Theorem 2. For this, one needs an
assumption on the dual solution, which always holds in the Remez algorithm.
It is not proven in our setting, but it never failed in practice.

Assumption 1. At each iteration `, the solution y(`) of the dual discretized
Problem (D

(`)
n+2) is an interior point, that is y(`)

j > 0 for all j ∈ [1 . . n+ 2].

Theorem 2. Let f be a continuous function over an interval I = [tl, tr], a
degree n > 0, a linearized evaluation error bound θ and a tolerance parameter

13



τ > 0. Under Assumption 1, Eval&ApproxOptimize(f, n, I, θ, τ) termi-
nates and returns a degree-n polynomial approximation for f with a total
error ε (approximation and evaluation) satisfying:

ε∗ 6 ε 6 (1 + τ)ε∗, (15)

where ε∗ is the total error of the best degree-n polynomial approximation of
f .

Proof. • First, we prove by induction that the following properties hold at
each iteration ` > 0:

(i) {α(ω
(`)
j )}n+2

j=1 is a basis of Rn+2;

(ii) y(`) is the optimal solution of Problem (Dm) for ω(`);

(iii) x(`) is the optimal solution of Problem (Pm) for ω(`);

(iv) ω
(`)
∗ = arg maxω∈Ω

(
c(ω)−α(ω)Tx(`)

)
;

using the correctness Lemmas given in Appendix .1. For ` = 0, Init(n, I) re-
turns ω(0), y(0) satisfying (i) and (ii). Then SolvePrimal(f, n, θ,ω(0)) com-
putes x(0) = (a(0),a(0)) satisfying (iii). Finally, FindNewIndex(f, n, I, θ,a(0))
gives ω(0)

∗ , a(0)
∗ satisfying (iv).

For the inductive step, Exchange(n, θ,ω(`),y(`), ω
(`)
∗ ) computes ω(`+1),

y(`+1) satisfying (i) and (ii), by induction hypothesis on ω(`), y(`), ω(`)
∗ .

Then, SolvePrimal(f, n, θ,ω(`+1)) and FindNewIndex(f, n, I, θ,a(`+1))
compute x(`+1), ω(`+1)

∗ , a(`+1)
∗ satisfying (iii) and (iv).

• Moreover, at each iteration `, we have a(`) 6 ε∗ 6 a
(`)
∗ . Indeed, x(`) is the

optimal solution of the discretized Problem (Pm) for ω(`), whose objective
value a(`) is less or equal to the optimal value ε∗ of Problem (P ). On the other
side, a(`)

∗ is the total error of degree-n polynomial a(`)Tπ0(t) and therefore,
it is greater or equal to the optimal error ε∗. In addition, Lemma 5 in the
Appendix proves a(`) 6 a(`+1).
• Finally, the convergence of this iterative process is proved by [7, Theorem
2.1], relying on Assumption 1. Hence, Algorithm Eval&ApproxOptimize
terminates at some iteration `, with a

(`)
∗ 6 (1 + τ)a(`), yielding the enclo-

sure (15).
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Algorithm 3 Eval&ApproxOptimize(f, n, I, θ, τ)
Input: function f , n > 0, I, θ(a, t) as in (9), τ > 0.
Output: (a,a) solution of Problem (P ) within accuracy τ .

. Initialization
1: (ω(0),y(0))← Init(n, I)
2: (a(0),a(0))← SolvePrimal(f, n, θ,ω(0))
3: (ω∗

(0), a
(0)
∗ )← FindNewIndex(f, n, I, θ,a(0))

4: `← 0
. Iterate while accuracy τ not reached
5: while a(`)

∗ /a
(`) > 1 + τ do

6: (ω(`+1),y(`+1))← Exchange(n, θ,ω(`),y(`), ω
(`)
∗ )

7: (a(`+1),a(`+1))← SolvePrimal(f, n, θ,ω(`+1))
8: (ω∗

(`+1), a
(`+1)
∗ )← FindNewIndex(f, n, I, θ,a(`+1))

9: `← `+ 1
10: end while
11: return (a(`),a(`))

Algorithm 4 InitPoints(n, I)
Input: n > 0, I = [tl, tr].
Output: ω ∈ Ωn+2 and solution y of Problem (Dm).

. Initialize with Chebyshev nodes and Remez constraints
1: for j in [1 . . n+ 2] do
2: tj ← tl+tr

2 + cos
(

(j−1)π
n+1

)
tl−tr

2

3: σj ← ((−1)j , 0, . . . , 0)
4: ωj ← (tj ,σj)
5: end for
. Compute dual solution

6: Solve for y the linear system
n+2∑
j=1

yjα(ωj) = z

7: return (ω,y)
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Algorithm 5 SolvePrimal(f, n, θ,ω)
Input: function f , n > 0, θ the evaluation error, ω ∈ Ωn+2.
Output: (a,a) solution of Problem (Pm) for ω.

1: Solve for (a,a) ∈ Rn+2 the linear system:

α(ωj)
T (a,a) = c(ωj), j ∈ [1 . . n+ 2]

2: return (a,a)

Algorithm 6 FindNewIndex(f, n, I, θ,a)
Input: function f , n > 0, I = [tl, tr], θ the evaluation error as in (9), coefficients

a ∈ Rn+1.
Output: (ω∗, a∗) with ω∗ = (t∗,σ∗) ∈ Ω

. Compute maximal error in absolute value

1: t∗ ← arg max
tl6t6tr

|aTπ0(t)− f(t)|+
k∑
i=1

|aTπi(t)|

2: a∗ ← max
tl6t6tr

|aTπ0(t)− f(t)|+
k∑
i=1

|aTπi(t)|

. Reconstruct signature
3: σ∗0 ← −sign(aTπ0(t∗)− f(t∗))
4: σ∗i ← −sign(aTπi(t∗)), i ∈ [1 . . k]
5: ω∗ ← (t∗,σ∗)
6: return (ω∗, a∗)
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Algorithm 7 Exchange(n, θ,ω,y, ω∗)
Input: n > 0, θ the evaluation error, ω ∈ Ωn+2, dual solution y ∈ Rn+2, new

index ω∗ ∈ Ω.
Output: new set ω′ ∈ Ωn+2 and dual solution y′ ∈ Rn+2.

1: Solve for γ ∈ Rn+2 the linear system:

n+2∑
j=1

γjα(ωj) = α(ω∗)

. Exiting index
2: j0 ← arg min

{
yj
γj

∣∣∣ γj > 0
}

. Update dual solution
3: ỹ∗ ←

yj0
γj0

4: ỹj ← yj − γj ỹ∗, j ∈ [1 . . n+ 2]
5: {(ω′j , y′j)} ← {(ωj , ỹj), j ∈ [1 . . n+ 2]− {j0} ∪ {∗}},
6: return (ω′,y′)

5 Examples and conclusion
To illustrate Algorithm Eval&ApproxOptimize, a tutorial example for
Airy special function is discussed (further comparisons in binary32 case are
given in Appendix .3). Then approximations with binary64 coefficients of
arcsin are presented.
Example 3 (Airy function). Let Ai over I = [−2, 2], approximated by a
polynomial of degree n = 6, evaluated using the Horner scheme with u =
2−12. The terms {π1, . . . ,π7} defining the evaluation error θ are given in
Example 1. We fix a tolerance τ = 0.01.

At iteration 0 (Figure 1), the points t(0)
j are initialized with the Cheby-

shev nodes and the signatures σj (0) define a Remez-like system of linear
equations on the coefficients of the polynomial (Figure 1d). Its solution
x(0) = (a(0),a(0)) defines a polynomial p(0)(t) = a(0)Tπ0(t), whose approxi-
mation error is depicted in Figure 1a. It exhibits quasi-equioscillations in-
dicating that p(0) is rather close to the degree-6 minimax approximation of
Ai over I. However, the total error is more important near −2 and 2 (Fig-
ure 1b), due to the evaluation depicted in green. In particular, the algorithm
detects the maximum error at t(0)

∗ = −2 (in orange). Note that t(0)
1 was

already equal to −2, but ω(0)
1 6= ω

(0)
∗ since the signatures are different. To

perform the exchange, the dual solution is needed (Figure 1c). It is a positive
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combination of Dirac measures supported on the finite set ω(0).

-2 -1 1 2

-0.0006

-0.0004

-0.0002

0.0002

0.0004

0.0006

(a) Approximation error
-2 -1 1 2

0.0005

0.0010

0.0015

(b) Total error

-2 -1 0 1 2

0.05

0.10

0.15

0.20

0.25

0.30

(c) Dual solution

tj σj0 σj1 σj2 σj3 σj4 σj5 σj6 σj7

-2. + ◦ ◦ ◦ ◦ ◦ ◦ ◦
-1.803 - ◦ ◦ ◦ ◦ ◦ ◦ ◦
-1.247 + ◦ ◦ ◦ ◦ ◦ ◦ ◦
-0.445 - ◦ ◦ ◦ ◦ ◦ ◦ ◦
0.445 + ◦ ◦ ◦ ◦ ◦ ◦ ◦
1.247 - ◦ ◦ ◦ ◦ ◦ ◦ ◦
1.802 + ◦ ◦ ◦ ◦ ◦ ◦ ◦
2. - ◦ ◦ ◦ ◦ ◦ ◦ ◦

(d) Points and signatures

Figure 1: Approximation of Ai over [−2, 2]: iteration 0
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(a) Approximation error
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(b) Total error
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(c) Dual solution

tj σj0 σj1 σj2 σj3 σj4 σj5 σj6 σj7

-2. + - - + + + + -
-1.9 - - - + + + + -
-1.448 + - - + + + - -
-0.445 - ◦ ◦ ◦ ◦ ◦ ◦ ◦
0.445 + ◦ ◦ ◦ ◦ ◦ ◦ ◦
1.32 - - + + - - + -
1.832 + - - + - - + -
2. - - - + - - + -

(d) Points and signatures

Figure 2: Approximation of Ai over [−2, 2]: iteration 6
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0.0008
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(b) Total error

-2 -1 0 1 2

0.05

0.10

0.15

0.20
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0.30

(c) Dual solution

tj σj0 σj1 σj2 σj3 σj4 σj5 σj6 σj7

-2. + - - + + + + -
-1.9 - - - + + + + -
-1.332 + - - + + + - -
-0.488 - - - + + + - -
0.484 + - + + - - + -
1.32 - - + + - - + -
1.832 + - - + - - + -
2. - - - + - - + -

(d) Points and signatures

Figure 3: Approximation of Ai over [−2, 2]: iteration 9

Moving forward to iteration 6 (Figure 2), the total error is more balanced,
though still not optimal. Both the signatures and the approximation error
are now completely different from the Remez solution.

Eventually, the algorithm stops at iteration 9 (Figure 3). Indeed, the
maximum total error a(9)

∗ (in orange) is less than 1% higher than the error
a(9) over the discrete set ω(9). Note that the total error reaches its maximum
at n+2 = 8 points. This became possible by unbalancing the approximation
error, namely reducing the amplitude of the oscillations near −2 and 2, at
the cost of higher oscillations in the middle of I.
Example 4 (Arcsine function). Consider f = arcsin, over the interval I =
[0.75; 1]. This example is particularly insightful because f is ill-conditioned
over I, and also because its values are close to 1, so absolute or relative error
treatment is similar. Firstly, assume that argument reduction techniques are
not available (this can be the case for any ill-conditioned function, known
only through sampling via a black-box approach), operations are in binary64
and an approximation polynomial of degree 20 with binary64 coefficients is
searched for.

Figure 4(a) shows the absolute approximation error between arcsin and
the best approximation polynomial pRemez with real coefficients, for which
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maxI |f − pRemez| 6 0.00496. Then, the coefficients of pRemez are directly
rounded to binary64, which results in maxI |f−roundCoeff(pRemez)| ' 0.004961.15·
1010 (cf. Figure 4(b)). This is due to the high magnitude of the coefficients.
To search for better coefficients, one could use the proficient FPMinimax rou-
tine of Sollya [11], which optimizes on the coefficient space of representable
FP numbers. The approximation error in this case is shown in Figure 4(c)
and one has maxI |f −pFPMinimax)| ' 1.58. Finally, in Figure 4(d) we provide
the plot of the total error between f and the obtained Eval&ApproxOpt poly-
nomial (with binary64 coefficients), which provides the best bound in this
case maxI |f−pE&A)| ' 0.0081. One can then actually prove with Gappa [14]
that the Horner scheme evaluation of pE&A has an absolute error less than
0.00035.
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0.75 0.8 0.85 0.9 0.95 1

(a) f − pRemez.
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0.75 0.8 0.85 0.9 0.95 1

(b) f − roundCoeff(pRemez).
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(c) f − pFPMinimax.
0.80 0.85 0.90 0.95 1.00

0.002
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0.006

0.008

(d) Eval&ApproxOpt absolute error.

Figure 4: Error plots for different approximation polynomials of degree 20
for f = arcsin over I = [0.75; 1].

Secondly, suppose that I is re-centered to Ic = [−0.125; 0.125] and the
other parameters remain unchanged. Thus, the function to be approximated
is f = arcsin(x + c), where c is the middle point of I. In this case, it turns
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out that all the methods presented above provide almost the same accuracy.
In Figure 5(a), the plot of the absolute error between f and pRemez is given:
maxIc |f − pRemez| 6 0.00496; at the drawing scale, the plot is the same for
the other errors and one has that maxIc |f − roundCoeff(pRemez)|, maxIc |f −
pFPMinimax)| and maxIc |f − pE&A)| are all very close in magnitude ' 0.00496.
Similarly, one can prove with Gappa that the Horner scheme evaluation has
an absolute error of 7.16227 · 10−11 for every above-mentioned polynomial.
Hence in this case, our algorithm does not improve the error bound. Yet, it
shows (at least numerically) that if only binary64 computations and a Horner
scheme are used, there is no other polynomial which performs better w.r.t.
both evaluation and approximation errors. For completeness, in Figure 5(b)
we show that FPMinimax and Eval&ApproxOpt polynomials are different.
However, this difference is very small and this does not influence the number
of correct bits provided − log2(0.00496) ' 7.65.

Finally, we mention that when other argument reduction techniques exist,
and when the evaluation error is not an issue (very small intervals around
zero), the FPMinimax method still provides better tuned FP coefficients. So
this opens the question for several future extensions. A mixed-integer lin-
ear programming problem could be formulated in the provided optimization
framework. However, a similar exchange procedure in this case is not ob-
vious. Concerning precisions of the coefficients and operations, they can be
variable, as mentioned in Section 2, but a more detailed study is needed to
eventually take into account higher order error terms for the error estimation
formula. The polynomial coefficients stay linear in such a formula, so the al-
gorithm presented can be straightforwardly used in such a case. In addition,
this formula directly allows for the estimation of evaluation errors for other
numerical schemes and eventually polynomial bases [2] for which a practical
study is necessary.
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Figure 5: Error plots for different approximation polynomials of degree 20
for f = arcsin(x+ c) over Ic = [−0.125, 0.125].
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.1 Complementary proofs for the exchange algorithm

This appendix provides auxiliary lemmas for the proof of Theorem 2.

Lemma 1 (Correctness of Init). Init(n, I) computes ω = {ωj}n+2
j=1 ∈ Ωn+2

and y ∈ Rn+2 satisfying:

• {α(ωj)}n+2
j=1 is a basis of Rn+2;

• y is the optimal solution of Problem (Dm) for ω;

• yj > 0 for all j ∈ [1 . . n+ 2].

Note that Algorithm Init essentially initializes the problem with Cheby-
shev nodes for heuristic efficiency and signatures corresponding to the clas-
sical Remez algorithm, without the evaluation error term.

Proof. Let A(ω) denote the (n + 2) square matrix whose columns are the
α(ωj). Since σj = ((−1)j, 0, . . . , 0), we have

A(ω) =



1 . . . . . . 1
−1 . . . . . . (−1)n+2

−t1 . . . . . . (−1)n+2tn+2
... . . . ...
... . . . ...
−tn1 . . . . . . (−1)n+2tnn+2


.

First, we prove the existence of a feasible point y in Problem (Dm) for
ω, that is A(ω)y = z and y > 0. From Farkas’ lemma [26], if such a y
does not exist, then there exists x = (a,a) ∈ Rn+2 s.t. zTx = a < 0 and
A(ω)Tx > 0, that is

a+ (−1)jaTπ0(tj) > 0, j ∈ [1 . . n+ 2].

Since a < 0, this implies that sign(aTπ0(tj)) = (−1)j. But aTπ0(t) is a
polynomial of degree at most n, hence it cannot strictly change signs n + 2
times. Consequently, Problem (Dm) has a feasible point y.

Now, suppose that the columns of A(ω) are not linearly independent, or
that yj = 0 for some j. Both cases imply that there exists J ⊂ [1 . . n +
2] of size n + 1, and ỹ ∈ Rn+1 s.t.

∑
j∈J

ỹjα(ωj) = z. In particular, by

canceling the first component, the family {π0(tj)}j∈J is linearly dependent.
But the Vandermonde determinant of this system cannot vanish since the tj
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are pairwise distinct. Therefore, {α(ωj)}n+2
j=1 is a basis of Rn+2, and yj > 0

for all j.
Finally, since A(ω) is invertible, y is the unique optimal feasible point

of (Dm).

Lemma 2 (Correctness of SolvePrimal). If {α(ωj)}n+2
j=1 is a basis of Rn+2

and Problem (Dm) for ω is feasible, then SolvePrimal(f, n, θ,ω) computes
the optimal solution x = (a,a) of Problem (Pm).

Proof. Algorithm SolvePrimal computes the solution x ∈ Rn+2 ofα(ωj)
Tx =

c(ωj) for j ∈ [1 . . n + 2]. We show that x is the optimal solution of Prob-
lem (Pm) for ω.

Let x̃ be any feasible point in (Pm). Since the dual Problem (Dm) for ω

is feasible, there exists y > 0 s.t. z =
n+2∑
j=1

yjα(ωj). Then

zT x̃ =
n+2∑
j=1

yjα(ωj)
T x̃ >

n+2∑
j=1

yjc(ωj) =
n+2∑
j=1

yjα(ωj)
Tx = zTx,

thereby establishing optimality of x.

Lemma 3 (Correctness of FindNewIndex). Given x = (a,a), Find-
NewIndex(f, n, I, θ,a) computes ω∗ and a∗ corresponding to the most vio-
lated constraint:

ω∗ = arg max
ω∈Ω

(
c(ω)−α(ω)Tx

)
,

a∗ − a = max
ω∈Ω

(
c(ω)−α(ω)Tx

)
.

Proof. We have

max
ω∈Ω

(
c(ω)−α(ω)Tx

)
= max
ω=(t,σ)∈Ω

(
σ0

(
f(t)− aTπ0(t)

)
−

k∑
i=1

σia
Tπi(t)

)
− a

= max
tl6t6tr

(
|aTπ0(t)− f(t)|+

k∑
i=1

|aTπi(t)|

)
− a.

Therefore, by computing t∗ (line 1) and σ∗ (lines 3-4), Algorithm Find-
NewIndex ensures that ω∗ := (t∗,σ∗) is the index of the most violated
constraint, with

c(ω∗)−α(ω∗)
Tx = a∗ − a > 0.
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Lemma 4 (Correctness of Exchange). If {α(ωj)}n+2
j=1 is a basis of Rn+2 and

y the optimal solution of Problem (Dm) for ω, then Exchange(n, θ,ω,y, ω∗)
computes new ω′ ∈ Ωn+2 and y′ ∈ Rn+2 such that:

• ω′ = {ωj}j∈J ∪ {ω∗} for a subset J ⊂ [1 . . n+ 2] of size n+ 1;

• {α(ωj)}n+2
j=1 is a basis of Rn+2;

• y′ is the optimal solution of Problem (Dm) for ω′.

Proof. In order to increase the objective value in the dual Problem (D), a
measure supported on ω ∪ {ω∗} is looked for, requiring nonnegative coeffi-
cients ỹj for j ∈ [1 . . n+ 2] ∪ {∗} s.t.

z =
n+2∑
j=1

ỹjα(ωj) + ỹ∗α(ω∗) =
n+2∑
j=1

(ỹj + γj ỹ∗)α(ωj),

while maximizing ỹ∗. But {α(ωj)}n+2
j=1 being a basis of Rn+2 implies

ỹj + γj ỹ∗ = yj, j ∈ [1 . . n+ 2].

The nonnegativity constraints on the ỹj induces the choice of the exiting
index ωj0 (line 2) and the values of the ỹj (lines 3-4). Note that the first line
of the linear system in line 1 says that the coefficients γj sum to 1. Hence,
at least one of them is strictly positive, so that j0 exists (line 2), though it
is not necessarily unique.

Finally, {α(ωj)}j∈[1..n+2]−{j0}∪{∗} remains a basis of Rn+2 since γj0 6= 0,
that is α(ω∗) is not in the linear subspace spanned by {α(ωj)}j∈[1..n+2]−{j0}.

Lemma 5. The total error a(`) computed over the discrete set ω(`) increases
at each iteration.

Proof. Let ỹ(`)
∗ and γ

(`)
j denote the variables ỹ∗ and γj for j ∈ [1 . . n + 2]

in Exchange(n, θ,ω(`),y(`), ω
(`)
∗ ). By strong duality in linear programming,

a(`) is also the objective value of the optimal solution y(`) in the discretized
dual problem (Dn+2) for ω(`). Hence, by writing

a(`) =
n+2∑
j=1

y
(`)
j c(ω

(`)
j ), and

a(`+1) =
n+2∑
j=1

y
(`+1)
j c(ω

(`+1)
j )

=
n=2∑
j=1

(
y

(`)
j − γ

(`)
j ỹ(`)
∗

)
c(ω

(`)
j ) + ỹ(`)

∗ c(ω
(`)
∗ ),
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we have

a(`+1) − a(`) = ỹ(`)
∗

(
c(ω(`)
∗ )−

n+2∑
j=1

γ
(`)
j c(ω

(`)
j )

)

= ỹ(`)
∗

(
c(ω(`)
∗ )−

n+2∑
j=1

γ
(`)
j α(ω

(`)
j )Tx(`)

)
= ỹ(`)

∗ (c(ω(`)
∗ )−α(ω(`)

∗ )Tx(`)) > 0,

because ỹ(`)
∗ > 0 and the constraint α(ω

(`)
∗ )Tx(`) > c(ω

(`)
∗ ) is violated at the

beginning of iteration `.

.2 Optimizing with the relative error

When considering the relative error in place of the absolute error, Prob-
lem (Pgeneral) is replaced by

min
ai∈R,
i∈[0..n]

max
t∈I

(
|f(t)− p(t)|+ |p̃(t)− p(t)|

|f |

)
(P rel

general)

where f is assumed to be strictly positive over I. This is equivalent to
multiplying the error variable a by f in Problem (P ), yielding the following
new linear SIP formulation

min
x∈Rd

zTx

s.t. α̃(ω)Tx > c(ω), ω ∈ Ω,
(P rel)

with

x = (a,a) ∈ Rn+2, z = (1, 0, . . . , 0) ∈ Rn+2,

α̃(t, σ0, . . . , σk) = (f(t), σ0π0
T (t) +

k∑
i=1

σiπi
T (t))T ∈ Rn+2,

S = {−1, 0, 1}k+1, ω = (t, σ0, . . . , σk) ∈ Ω := I ×S.

(16)

Therefore, replacing α(ω) by α̃(ω) in Eval&ApproxOptimize and its
subroutines provides an algorithm to compute the best degree-n polynomial
w.r.t. both approximation and evaluation errors in relative setting.

.3 Airy function (continued)

The Airy function Ai is a special function frequently used in theoretical
physics. In particular, some applications require to compute Ai(t) for possi-
bly large negative values of t, where the function exhibits a highly oscillatory
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behavior (see Figure 6a). However, contrary to elementary functions, there
exists no simple argument reduction for Ai. Therefore, one polynomial ap-
proximation is needed for each interval of the domain subdivision, and these
intervals cannot be assumed to be small. Hence, controlling the evaluation
error is essential.

We here consider the approximation of the Airy function over I = [−4, 0]
with polynomials evaluated using the Horner scheme with binary32 floating-
point numbers, that is, single precision (u = 2−24). Figure 6b shows the total
error (approximation and evaluation) of the degree-nminimax polynomial (in
blue), in function of n. Specifically, the total error starts to decrease when n
increases, thanks to the improvement of the approximation error. However,
at some point (here n = 9), the total error starts again to increase, due
to the evaluation error of higher degree polynomials. On the contrary, the
evaluation error of polynomials obtained with Eval&ApproxOptimize (in
yellow) continues decreasing to some asymptotic threshold (around 5 · 10−6).
In such a case, reducing the evaluation error by using a higher degree can be
more efficient than increasing the floating-point precision.

-20 -15 -10 -5 5

-0.4

-0.2

0.2

0.4

(a) Airy function Ai
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(b) Total error for Minimax and
Eval&ApproxOptimize polynomials,
in function of degree

Figure 6: Approximation of Ai over [−4, 0]
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