TIME INCONSISTENCY AND DELAYED RETIREMENT DECISION: THE FRENCH PENSION BONUS

Steve Briand

L2 Seminar – June 2018

Laboratoire de Sciences Actuarielle et Financière (SAF) – Université Claude Bernard – Lyon 1

The French pension bonus

Ensure the financial sustainability of public pensions funds in the short and long term because of the increase in life expectancy and the demographic shock.

 \rightarrow Introduction of financial incentives aiming to postpone retirements.

In France, the pension bonus: An agent gets a higher pension if he retires beyond his full retirement age (full benefits + an additional proportional bonus).

> The effectiveness of the pension bonus is relatively limited.

- In France, among new retirees from the private sector employee pension fund in 2015, only 13.70% retired with a bonus (DREES, 2017).

- Women are less responsive than men (Benallah, 2011).

- The global effect of financial incentives is principally led by informed individuals (Chan and Stevens, 2008).

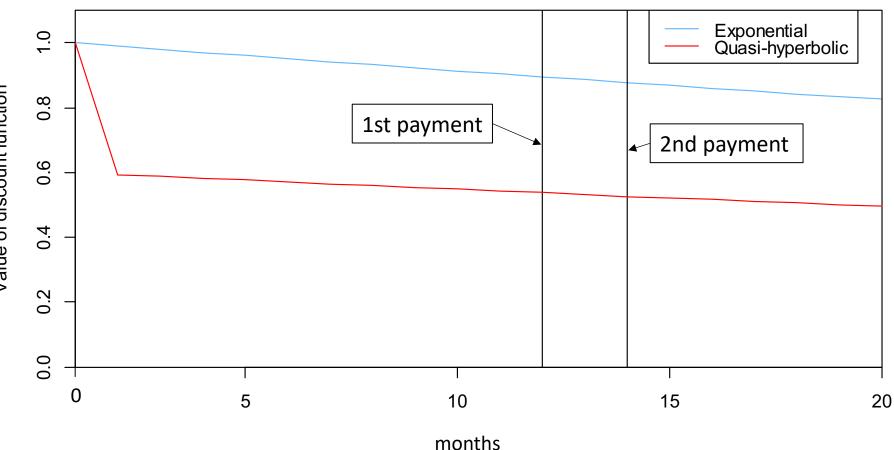
Postpone retirement decision (to get the bonus) is an intertemporal trade-off: a short-term cost from working (disutility) versus a delayed benefit in the long-term from an increased pension (utility).
Is there a behavioral explanation: time inconsistency?

Time inconsistency in an intertemporal trade-off

> The traditional discounting function of a time-consistent agent ("exponential discounting"). With u_t the per-period utility and U_t the overall utility at time t:

$$U_t = u_t + \delta u_{t+1} + \delta^2 u_{t+2} + \dots$$
 with $\delta^t = \frac{1}{(1+r)^t}$ r the discounted rate

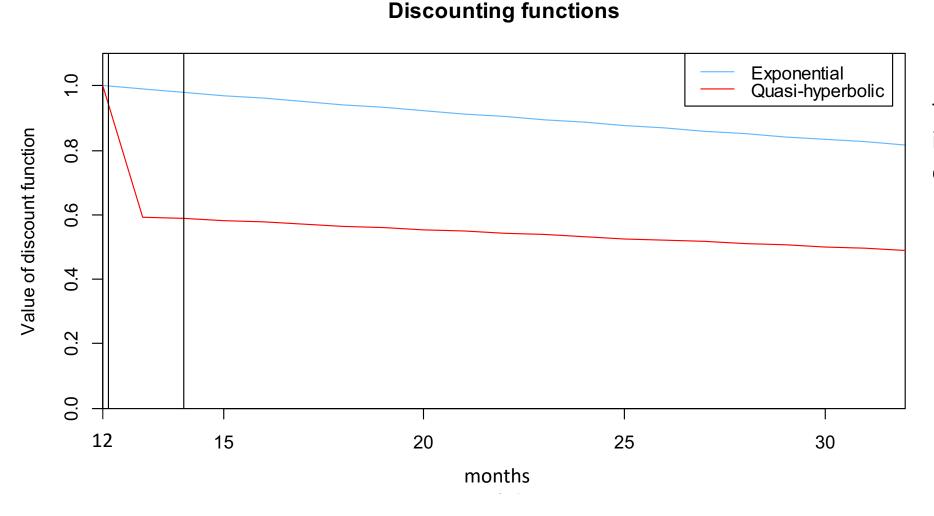
However, a time-inconsistent agent has a decreasing discounted rate with time: Impatient in the short-term and more patient in the long-term (Thaler, 1981). He planned to do an action, but as this action gets near, the agent changes his decision.


 \rightarrow The tractable quasi-hyperbolic function (Laibson, 1997):

$$U_t = u_t + \beta \delta u_{t+1} + \beta \delta^2 u_{t+2} + \dots \qquad \text{with} \quad \beta \delta^t = \frac{\beta}{(1+r)^t}$$

With the present-bias $0 < \beta \le 1$, representing the short-term impatience (vs. δ the long-term impatience). The lower β , the more the agent is time-inconsistent because of the overweighting of immediate outcome.

Time inconsistency in an intertemporal trade-off (2)


For example, a choice between two delayed payments in time (12th month and 14th month). \succ

Discounting functions

In t=0, we assume that both time-consistent and time-inconsistent agents have implied discounted rates such as they are indifferent between the two payments.

Time inconsistency in an intertemporal trade-off (3)

1 year later...

In t=12, the payments are the same, but one is instantaneous and the other is delayed.

- → Time-consistent agent is still indifferent.
- → Time-inconsistent agent prefers the first payment.

Data and the measure of time preferences

- A national French survey "Motivations de depart en retraite" on new retirees between July 2012 and June 2013, merged with administrative data.
 - Cohorts: 1948 (first quarter) 1952

- Individuals who were employees of the private and public sectors, non-active civil servants or selfemployed and who have contributed at least one year to the private sector employee pension fund during their careers.

- > Based on questions on motivations to retire, I construct two ordinal synthetic scores: Short-term impatience (proxy of β) and Long-term impatience (proxy of δ) scores.
 - **1**st **step**: Two groups of questions:

"You decided to retire that year because of the lack of information on earlier/later retirement possibilities".

-> Overweighting of instantaneous disutility from the search cost. Linked to short-term impatience (4 items).

"You decided to retire because your future pension was sufficient".

-> implies the anticipation of future incomes. Linked to long-term impatience (5 items)

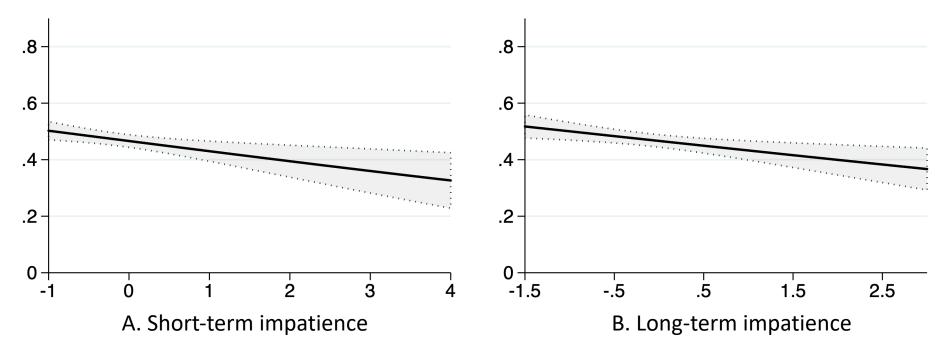
• **2nd step**: answers are recoded in such a way that most impatient agents have the highest scores.

The econometric strategy

Two main objectives

- Verify the impact of time inconsistency on delaying retirement to get a bonus (binary dependent variable)
- Control the likely endogeneity of the bonus knowledge (binary endogenous variable)

 \rightarrow Use of a **recursive bivariate probit model**, with two latent dependent variables:


$$\begin{cases} y_1^* = X_1\beta_1 + \alpha Z + \varepsilon_1, & y_1 = 1(y_1^* > 0), \\ y_2^* = X_2\beta_2 + \gamma y_1 + \varepsilon_2, & y_2 = 1(y_2^* > 0), \end{cases}$$

With y_1 the bonus knowledge and y_2 the delayed retirement choice to get a bonus. X_2 includes both short-term and long-term impatience scores. Z is a set of instruments.

 $\binom{\varepsilon_1}{\varepsilon_2} \to N \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right)$ with ρ the correlation between the error terms.

Results

- Both short-term and long-term impatience scores are significant and impact negatively the probability of retiring with a pension bonus.
- ➤ The marginal effects are not very meaningful (synthetic scores) → I compute the average predicted probability of retiring with a bonus by fixing the level of short-term and long-term impatience, and letting the other explanatory variables at their true values, plotted with following graphs:

Between the most time-consistent agent and the most time-inconsistent agent, an absolute difference in average predicted probabilities of -31.60% (55.41% compared to 23.81%).

Conclusion

- Time inconsistency is a key determinant of the decision to delay retirement to get the bonus.
 - \rightarrow Another **Behavioral** explanation of the limited effectiveness of financial incentives.
- Considering nonstandard preferences (time inconsistency or loss aversion) can improve public information and the efficiency of public policies (Thaler and Sunstein, 2008).
 - \rightarrow For example, by **Nudging** (Thaler and Sunstein, 2008): the way in which the information is presented can change behaviors and limit the impact of behavioral bias.

Thank you for your attention!

References

- Benallah, 2011. Comportements de départ en retraite et réforme de 2003. Les effets de la surcote. *Economie et statistique* 441-442 : 79-99.
- Chan and Stevens, 2008. What you don't know can't help you: pension knowledge and retirement decision-making. *The Review of Economics and Statistics* 90(2): 253-266.
- DREES, 2017. Les retraités et les retraites. Panoramas de la Drees, Direction de la Recherche, des Etudes, de l'Evaluation et des Statistiques.
- Laibson, 1997. Golden eggs and hyperbolic discounting. *The Quarterly Journal of Economics* 112 (2): 443-478.
- Thaler, 1981. Some empirical evidence on dynamic inconsistency. *Economics Letters* 8(3): 201-207.
- Thaler and Sunstein, 2008. Nudge: Improving decisions about health, wealth, and happiness. New Haven, CT: Yale University Press.

	Knowledge of the bonus		Retire with bonus			
	0	1	Student test (S), Wilcoxon- Mann-Whitney test (Z), Pearson chi- squared test (P)	0	1	Student test (S), Wilcoxon- Mann-Whitney test (Z), Pearson chi- squared test (P)
Short-term impatience	0.0750	-0.1006	S = 2.7999***	0.1569	-0.1833	S = 5.5261***
Long-term impatience	-0.0066	0.0088	S = -0.2437	0.1301	-0.1519	S = 4.5587***
Risk aversion (score between -2 and 4)	1.0321	0.9184	Z = 0.960	1.0665	0.8866	Z = 1.988**
Health status (score between 1 and 4)	3.34	3.61	Z = -3.744***	3.32	3.61	Z = -4.633***
Average Annual Salary	19568.72	23129.15	S = -5.8977***	19657.33	22763.85	S = -5.1656***
Gender (woman=1)	53.98%	45.80%	P = 6.7458***	53.06%	47.48%	P = 3.1926*
Another source of income in the household	66.33%	67.57%	P = 0.1768	69.60%	63.66%	P = 4.0959**
Knowledge of the actual insurance duration	26.73%	38.78%	P = 16.8613***	33.09%	30.46%	P = 0.8176
Knowledge of the reference insurance duration	35.53%	56.24%	P = 43.8519***	42.27%	46.85%	P = 2.1817
Age of the first contribution	17.84	18.36	S = -3.3091***	17.99	18.14	S = -0.9800
Participation in the labor force index	0.8837	0.9502	S = -7.4737***	0.8894	0.9387	S = -5.5091***
Knowledge of the bonus				33.99%	52.94%	P = 37.6252***

Results for the first equation P(Knowledge of the bonus=1)

Knowledge of the bonus	Bivariate probit		
Average Annual Salary (ref: less than 12500)			
12500 to 25000 euros	-0.035		
	(0.125)		
More than 25000 euros	0.421		
	(0.142)***		
Occupation before retirement (ref: private sector employee)			
Non-active civil servant	0.302		
	(0.130)**		
Employee of the public sector	0.211		
	(0.176)		
Self-employed worker	-0.425		
	(0.172)**		
Full-time job	-0.025		
	(0.120)		
Contribution to more than one fund	0.190		
	(0.092)**		
Woman	0.201		
	(0.098)**		
Instruments			
Participation to the labor force index	2.008		
	(0.376)***		
First contribution age	0.015		
	(0.016)		
Knowledge of actual insurance duration	-0.003		
	(0.087)		
Knowledge of reference insurance duration	0.340		
	(0.090)***		
Constant	-2.797		
	(0.498)***		

Retiring with bonus	Simple probit	Bivariate probit
Average Annual Salary (ref: less than 12500)		
12500 to 25000 euros	0.364	0.274
	(0.121)***	(0.118)**
More than 25000 euros	0.249	-0.118
	(0.134)*	(0.154)
Preferences		
Short-term impatience	-0.159	-0.122
	(0.047)***	(0.041)***
Long-term impatience	-0.127	-0.115
	(0.045)***	(0.039)***
Small risk aversion	0.083	0.064
	(0.115)	(0.095)
High risk aversion	-0.041	-0.009
	(0.105)	(0.086)
Occupation before retirement (ref: private sector employee)		
Non-active civil servant	-0.258	-0.372
	(0.126)**	(0.118)***
Employee of the public sector	-0.046	-0.115
	(0.177)	(0.165)
Self-employed worker	-0.304	-0.136
	(0.161)*	(0.164)
Full-time job	0.328	0.293
	(0.118)***	(0.116)**
Woman	0.006	0.005
	(0.089)	(0.083)
Knowledge of the bonus	0.440	1.530
	(0.086)***	(0.216)***
Constant	-0.567	-0.735
	(0.178)***	(0.163)***
Ν	1032	1032
Rho		-0.78

Results for the second equation P(Retirement with a bonus=1)