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We investigate the role of the Coulomb interaction in strong field processes. We find that the
Coulomb field of the ion makes its presence known even in highly intense laser fields, in contrast to
the assumptions of the strong field approximation. The dynamics of the electron after ionization is
analyzed with four models for an arbitrary laser polarization: the Hamiltonian model in the dipole
approximation, the strong field approximation, the Coulomb-corrected strong field approximation
and the guiding center. These models illustrate clearly the Coulomb effects, in particular Coulomb
focusing and Coulomb asymmetry. We show that the Coulomb-corrected strong field approximation
and the guiding center are complementary, in the sense that the Coulomb-corrected strong field
approximation describes well short time scale phenomena (shorter than a laser cycle) while the
guiding center is well suited for describing long time scale phenomena (longer than a laser cycle)
like Coulomb-driven recollisions and Rydberg state creation.

I. INTRODUCTION

After ionization in an intense laser field, an ionized
electron travels in the continuum until it reaches the de-
tector, or it can come back to the ionic core and probe the
target in a process called recollision. Recollisions are key
processes in attosecond physics [1–6], since they are the
origin of a variety of highly nonlinear phenomena, such as
high harmonic generation (HHG), non-sequential double
ionization (NSDI), and above-threshold ionization (ATI).
Such processes are widely used in attosecond physics in
order to obtain information about the target atoms or
molecules. For example, it is possible to perform imaging
of molecular orbitals [7–9] and determine the electronic
dynamics inside atoms or molecules [10, 11]. Historically,
the first model of the recollision scenario makes use of the
so-called strong field approximation (SFA), where the ef-
fects of the Coulomb interaction after tunnel-ionization
are neglected [12]. The recollision scenario [1, 13] based
on the SFA has three steps: (i) The electron tunnel-
ionizes through the barrier induced by the laser field on
the ionic core potential [12, 14], (ii) travels in the laser
field alone, and then upon return to the ionic core, (iii) re-
combines with the ion (and triggers HHG), or rescatters
from the ionic core, either elastically (ATI) or inelasti-
cally (NSDI).

In step (ii) of the recollision scenario, the electrons are
outside the ionic core region, in the continuum, and their
dynamics is mainly classical. The main advantage of the
use of the SFA in step (ii) is the analytic expressions
of the trajectories [Eqs. (8)], which sheds some light on
the recollision process. In some cases, the SFA encoun-
ters success, for instance for predicting the HHG cut-
off [1, 15] or frequency versus time profile of HHG radi-
ation [16]. In other cases, the SFA is inaccurate when
it is confronted with experimental results [17–19], espe-
cially when long time scale trajectories (of the order of
multiple laser periods) are involved in the experiment.
In linearly-polarized (LP) fields, the SFA suggests that if
the electron does not return to the ionic core in less than

one laser cycle after ionization, it never comes back to
the core. However, recollisions involving multiple laser
cycles have a significant effect in NSDI. Including the
Coulomb interaction increases the NSDI probability (i.e.,
the recollision probability) by about one order of magni-
tude [19–22]. Coulomb effects play a significant role in
ATI experiments as well [17, 18, 23].

Here we investigate the role of the Coulomb interac-
tion in the recollision and ionization processes by shut-
tling between four models, namely: the Hamiltonian in
the dipole approximation (referred to as the reference
Hamiltonian), the SFA, the Coulomb-corrected SFA [17]
(CCSFA) and the guiding-center (GC) model [25, 28].
The reference Hamiltonian combines both the laser and
the Coulomb interaction. The SFA, which ignores the
Coulomb interaction, is used to point out the contribu-
tions of the Coulomb potential in the reference model.
The CCSFA and GC models decouple the laser and
Coulomb interactions through perturbation theory and
averaging, respectively, and they are used to analyze each
interactions’ contributions independently. We show that
the CCSFA and GC models are complementary, in the
sense that CCSFA describes well short time scale phe-
nomena (shorter than a laser cycle) while the GC is well
suited for describing long time scale phenomena (longer
than a laser cycle) like the multiple laser cycle recolli-
sions, which we refer to as Coulomb-driven recollisions.

In particular, in photoelectron momentum distribu-
tions (PMDs), there is an asymmetry with respect to the
minor polarization axis, known as the Coulomb asym-
metry [17], and a decrease of the final electron energy,
referred to as Coulomb focusing [19, 24]. In Ref. [25],
we introduced the GC model for the motion of ionized
electrons, and we used it to identify the mechanism be-
hind the bifurcation in the peak of the PMDs as a func-
tion of the ellipticity observed in experiments [18, 26].
This bifurcation was attributed as a clear signature of the
Coulomb effects. There, we also showed that the mecha-
nism behind the bifurcation is closely related to Rydberg
state creation [27], a process that cannot be described
without the Coulomb interaction. In this article, on the
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one hand we show that the GC model can also be used
to quantify the amount of Rydberg states creation and
to demonstrate their close relation with the Coulomb-
driven recollisions. On the other hand, we show that the
Coulomb interaction always makes its presence known
for long time scale phenomena such as ATI, in particular
the Coulomb asymmetry, even at high intensity when the
assumptions of the SFA are met.

The article is organized as follows: In Sec. II, we de-
scribe step (i) coupled with step (ii) of the recollision
scenario, using the reference Hamiltonian and the three
reduced models (SFA, CCSFA and GC models) we em-
ploy throughout the article. In Sec. III, we analyze the
PMDs and the initial conditions leading to the PMDs
with the four models. In particular, we identify the do-
main of initial conditions leading to Rydberg state cre-
ation and Coulomb-driven recollisions, which we refer to
as the rescattering domain. We find that the rescatter-
ing domain is absent in the SFA and the CCSFA, while
it is present in the GC model. In Sec. IV, we use the GC
model to interpret Rydberg state creation and the mech-
anism behind Coulomb-driven recollisions. This model
allows us to make qualitative predictions on these two
phenomena, which we compare with classical trajectory
Monte Carlo (CTMC) simulations. Finally in Sec. V, we
investigate the shape of the rescattering domain using
the GC model. We show how the shape of the rescatter-
ing domain manifests itself in experiments, in particular,
in the bifurcation of the PMDs [25].

II. THE MODELS

First, we describe the reference model: The atom is de-
scribed with a single active electron, the ionic core is set
at the origin and is assumed to be static. The position of
the electron is denoted r, and its conjugate momentum is
p. In the length gauge [9] and the dipole approximation,
the Hamiltonian governing the dynamics of an electron
in an atom driven by a laser field reads

H(r,p, t) =
|p|2

2
+ V (r) + r ·E(t), (1)

where atomic units (a.u.) are used unless stated other-
wise. We use the soft-Coulomb potential [29] to describe
the ion-electron interaction, V (r) = −(|r|2 +1)−1/2. The
electric field is elliptically polarized,

E(t) =
E0f(t)
√

ξ2 + 1
[x̂ cos(ωt) + ŷξ sin(ωt)] .

The laser frequency we use is ω = 0.0584 a.u. (corre-
sponding to infrared light of wavelength 780 nm), the
laser ellipticity is ξ ∈ [0, 1], and the laser amplitude is

E0 = 5.338 × 10−9
√
I with I the intensity in W · cm−2.

The laser envelope f(t) is trapezoidal such that f(t) = 1
for t ∈ [0, Tp], f(t) = (Tf − t)/(Tf − Tp) for t ∈ [Tp, Tf ]
and f(t) = 0 otherwise, where T = 2π/ω is the laser

period. Here, Tp and Tf are the duration of the plateau
and the laser pulse, respectively. Throughout the article,
we use a two laser cycle ramp-down, i.e., Tf = Tp + 2T .
The duration of the plateau is Tp = 8T unless stated
otherwise. The major and minor polarization axes are x̂

and ŷ, respectively.

A. Step (i): Ionization model

When the laser field starts to oscillate, it creates
an effective potential barrier through which the elec-
tron can tunnel-ionize. We use the Perelomov-Popov-
Terent’ev [30–32] (PPT) theory to define the ionization
rate and the initial conditions after ionization. The
Keldysh parameter [12] γ = ω

√

2Ip/E0, where Ip is the
ionization potential, is used to estimate the dominant
ionization process. If γ ≪ 1, the ionization process is
the adiabatic tunnel ionization [12, 14], i.e., the potential
barrier is quasi-static during the tunneling. If γ ≫ 1, the
dominant process is multiphoton absorption. For γ ∼ 1,
the process is in between tunnel ionization and multi-
photon absorption. During this so-called nonadiabatic
tunnel-ionization [30–32], the wavepacket absorbs pho-
tons during the tunneling [33]. Here, we show a summary
of part of the PPT theory [30–32] used in this article for
the ionization rate and the initial conditions of the elec-
tron after ionization.

The initial conditions and the ionization rate of the
electron are parametrized by the ionization time t0 and
its momentum p0 at t0. The ionization rate W (t0,p0) is
given in Eq. (A1) while the initial conditions at t = t0 of
the electron are

r0 =
|E(t0)|
ω2

(1 − cosh τ0)n̂‖(t0), (2a)

p0 = p‖n̂‖(t0) + p⊥n̂⊥(t0) + pz,0ẑ, (2b)

with n̂‖(t0) = E(t0)/|E(t0)| and n̂⊥(t0) = −[n̂‖(t0)·ŷ]x̂+
[n̂‖(t0) · x̂]ŷ. In other words, p‖ is the initial momentum
of the electron along the laser field direction, p⊥ is the
initial momentum transverse to the laser field direction
in the polarization plane, and pz,0 is the initial momen-
tum perpendicular to the polarization plane (x̂, ŷ). The
purely imaginary time τ0 = τ0(t0) is solution of the tran-
scendental equation

sinh2 τ0 − ξ2
(

cosh τ0 −
sinh τ0
τ0

)2

= γ0(t0)2, (3)

where γ0(t0) = ω
√

2Ip/|E(t0)|. We consider He (Ip =
0.9) unless stated otherwise. According to the PPT ion-
ization rate, the most probable trajectory ionizes at times
ωt0 = nπ (see Appendix A), i.e., at the peak amplitude of
the electric field, where n ∈ N, with initial longitudinal,
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transverse and perpendicular momenta

P‖ = 0, (4a)

P⊥ =
ξE0

ω
√

ξ2 + 1

(

1 − sinh τ

τ

)

, (4b)

Pz,0 = 0, (4c)

respectively, with τ the solution of Eq. (3) for γ0(t0) =

γ
√

ξ2 + 1. Throughout the article, we consider pz,0 =
Pz = 0 and, as a consequence, the electron dynamics is
constrained to the polarization plane, i.e., r(t) · ẑ = 0
and p(t) · ẑ = 0 for all times t. We refer to the trajectory
with initial conditions (t0 = T/2, p‖ = P‖, p⊥ = P⊥) as
the T-trajectory. Hence, the ionization rate associated
with the T-trajectory is the maximum ionization rate,
and the T-trajectory captures the dominant behavior of
the ionized electrons.

B. Step (ii): Classical models

1. Reference Hamiltonian

The reference Hamiltonian is defined in Eq. (1) with
initial conditions (r0,p0, t0) given by Eq. (2). In order
to derive the reduced models, we use a new set of phase-
space coordinates (rg,pg) such that

rg = r−Σ(t)/ω2, (5a)

pg = p−A(t). (5b)

where ω2A(t) = ∂Σ(t)/∂t and the vector poten-
tial A(t) is such that E(t) = −∂A(t)/∂t. Us-
ing integration by parts, A(t) = −f(t)E0[x̂ sin(ωt) −
ξŷ cos(ωt)]/ω

√

ξ2 + 1+O(T/Tf), where the terms of or-
der O(T/Tf ) are due to the envelope variations. In the
same way, we can show that Σ(t) = E(t) + O(T/Tf ).
Here, we mainly focus on the analyses of the elec-
tronic dynamics during the plateau, and we consider

A(t) ≈ −f(t)E0[x̂ sin(ωt) − ξŷ cos(ωt)]/ω
√

ξ2 + 1 and
Σ(t) ≈ E(t).

Under the canonical change of coordinates (5), Hamil-
tonian (1) becomes

Hg(rg,pg, t) =
|pg|2

2
+ V (rg + Σ(t)/ω2). (6)

The initial conditions in the new coordinates at time t0,
denoted (rg,0,pg,0), are related to the old coordinates by
the transformation (5) and such that

rg,0 = r0 −Σ(t0)/ω2, (7a)

pg,0 = p0 −A(t0). (7b)

The dynamics described by Hamiltonians (1) and (6)
are equivalent. In order to emphasize the role of the
Coulomb interaction, we consider three reduced models
in the new system of coordinates: the SFA where the

Coulomb potential is neglected (V = 0), the CCSFA [17]
where the Coulomb potential is assumed to be a pertur-
bation of the SFA prediction, and the GC model [25, 28]
in which the electron trajectory is averaged over one laser
cycle.

2. SFA

For the SFA and the CCSFA, we assume that the con-
tribution of the Coulomb interaction on the electron dy-
namics acts on long time scales. Under this assumption,
we write the Hamiltonian as

Hg(rg,pg, t) =
|pg|2

2
+ ǫV (rg + Σ(t)/ω2),

where we have introduced an ordering parameter ǫ for
bookkeeping purposes. We consider the correction due
to the Coulomb interaction on a short time scale, hence
rg = rSFAg +ǫ∆rg +O(ǫ2) and pg = pSFA

g +ǫ∆pg +O(ǫ2).
The lowest order in ǫ provides the SFA electron phase-
space trajectory

rSFAg (t) = rg,0 + pg,0(t− t0), (8a)

pSFA
g (t) = pg,0. (8b)

The electron trajectory, in this new set of coordinates, is
that of a free particle with constant energy and drift mo-
mentum |pSFA

g |2/2 and pSFA
g , respectively. At any time t,

the position and momentum of the electron are obtained
by inverting the change of coordinates (5).

3. Coulomb-corrected SFA

The first order in ǫ provides the correction due to the
Coulomb interaction on the SFA trajectory, which reads

∆rg(t) =

∫ t

t0

∆pg(s) ds, (9a)

∆pg(t) = −
∫ t

t0

∇V
(

rSFAg (s) + Σ(s)/ω2
)

ds. (9b)

As mentioned above, the CCSFA is valid to determine
the correction of the Coulomb interaction for short times
(e.g., t − t0 ∼ T ) regardless ellipticity. For longer times
t, looking at Eqs. (8a), if the initial drift momentum of
the electron pg,0 is large, the Coulomb correction (9b) is
significant only for a short time after ionization. Accord-
ing to the PPT theory, the initial drift momentum is of
order |pg,0| ∼ ξE0/ω, hence, we expect the CCSFA to be
valid only for large ellipticity.

The integrals in Eqs. (9) are computed numerically. If
the initial drift momentum of the T-trajectory is very
large, the integrand in Eq. (9b) is large for a very short
time after ionization, so we make the approximation
E(t) ≈ E(t0) + ω2(t − t0)A(t0) − ω2(t − t0)2E(t0)/2.
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As a consequence, the SFA trajectory (8a) is quadratic
in time. Taking V (r) ≈ −1/|r| and the initial condi-
tions of the T-trajectory to be such that P⊥(t − t0) ≪
|r0|+ (t− t0)2|E(t0)|/2 (which becomes valid at high in-
tensity) the correction of the asymptotic drift momentum
is given by

∆pg ≈ π n̂‖(t0)

(2|r0|)3/2
√

|E(t0)|
− P⊥ n̂⊥(t0)

2|r0|2|E(t0)| . (10)

In Ref. [17], a similar result is derived for P⊥ = 0.

4. Guiding-center model

An alternative way to include the Coulomb interaction
is to consider the averaged motion of the electron [25, 28].
In Refs. [25, 28], we showed the electron trajectory can
be viewed as oscillating around a GC trajectory with
constant energy. Assuming that one laser cycle is short
compared to the characteristic time of the ionized elec-
tron trajectory, the ordering parameter ǫ is such that the
laser frequency is large, i.e., ω 7→ ω/ǫ and the Hamilto-
nian may be written

Hg(rg,pg, t) = ǫ

[ |pg|2
2

+ V (rg + ǫ2Σ(t)/ω2)

]

. (11)

Averaging Hamiltonian (11) over the fast time scale [25,
28], at the second order in the ordering parameter ǫ, leads
to

H̄g(r̄g, p̄g) =
|p̄g|2

2
+ V (r̄g). (12)

The initial conditions of the GC trajectory are given by
Eqs. (7). The reconstructed electron trajectory is given
by inverting Eqs. (5), where (r̄g(t), p̄g(t)) are trajectories
of Hamiltonian (12). Therefore, the electron oscillates
around its GC motion described by Hamiltonian (12).
The GC Hamiltonian is invariant under time translation,
implying that its energy E = H̄g(r̄g, p̄g) is conserved.
In addition, for a rotationally invariant potential as in
the case of atoms and in particular the soft Coulomb
potential used in this article, the angular momentum L =
r̄g× p̄g is conserved. Hence, there are as many conserved
quantities as degrees of freedom, and Hamiltonian (12)
is integrable.

By substituting τ0 ≈ sinh−1 γ0(t0) (which holds for
all ellipticities if γ . 5, see Ref. [34]) and considering
|E(t0)| ∼ E0 in Eq. (2), the typical distance between
the electron and the ionic core after tunnel-ionization is
|r0| ∼ (E0/ω

2)(1 −
√

1 + γ2). The GC model is quanti-
tatively accurate when |r0| & E0/ω

2 [28], and as a con-
sequence, we expect the GC model to be quantitatively
accurate for γ & 1.6.

FIG. 1: T-trajectory final momentum P = Pxx̂+Pyŷ as func-
tion of the laser intensity I for ξ = 1. The crosses are the T-
trajectory final momentum of the reference Hamiltonian (1),
where Px and Py are in blue and red, respectively. The dot-
ted, dashed and solid black curves are the T-trajectory final
momentum of the SFA, the CCSFA and the GC model, re-
spectively. The dashed and solid green lines are the approx-
imated and the asymptotic T-trajectory final momentum us-
ing Eqs. (10) and (13), respectively. Momenta are scaled by
E0/ω.

III. PHOTOELECTRON MOMENTUM
DISTRIBUTIONS (PMDS)

The laser-atom interaction gives rise to complex phe-
nomena, involving multiple temporal and spatial scales.
The phenomena arising from short time scale and long
time scale processes manifest themselves in different as-
pects of the measurements and for different values of
the parameters. In this section, we analyze the influ-
ence of short vs. long time scale microscopic phenomena
on macroscopic measurements like the photoelectron mo-
mentum distributions in the light of the reduced models
described in the previous section, and in particular the
CCSFA and the GC models.

A. Short time scale dynamics

First, we consider a circularly polarized (CP) field
(ξ = 1), used for attoclock measurements [35, 36]. For
ellipticity close to 1, the initial drift momentum is large
and the electron goes away from the ionic core quickly.
Therefore, the corrections due to the Coulomb potential
on the electron trajectories occurs on a short time scale,
and we expect the CCSFA to be accurate. In attoclock
measurements, the observable is the offset angle Θ. We
assume that it corresponds to the scattering angle of the
T-trajectory

Θ = tan−1(Py/Px),
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where P = Pxx̂ + Pyŷ is the T-trajectory final momen-
tum (typical such trajectories are depicted in Fig. 12 for
other parameters). Note that, to see the Coulomb asym-
metry in a PMD from a CP field, a short laser pulse
has to be used [35, 36]; otherwise, the PMD would re-
semble a ring around the origin. Figure 1 shows the
T-trajectory final momentum as a function of the inten-
sity I for ξ = 1. For Py (upper panel), we notice that
the dashed black curves (CCSFA), the solid black curves
(GC model) and the crosses [reference Hamiltonian (1)]
overlap for I ∈ [1012, 1016] W · cm−2, and hence a good
agreement between these three models is observed. In
addition, we notice that the value of Py predicted by
these three models is lower compared to the SFA model.
This is a microscopic (at the level of the trajectory) sig-
nature of the Coulomb focusing. Concerning the green
dashed curve [which is the approximation of the CCSFA
given by Eqs. (10)], we observe that the approximation
of the CCSFA [Eqs. (9)] becomes good only at high in-
tensity I & 1015 W · cm−2, where the drift momentum
|pg,0| ∼ E0/ω is very large and where the electron spends
a very short time close to the ionic core. At a very high
intensity I ∼ 1016 W · cm−2, all models converge to the
same value predicted by the SFA P SFA

y = (E0/ω)/
√

2.

For Px (lower panel), we observe that the dashed black
curves (CCSFA) and the crosses [Hamiltonian (1)] over-
lap for I ∈ [1012, 1016] W · cm−2. The solid black
curve (GC model) agrees well with the crosses [ref-
erence Hamiltonian (1)] only for intensities such that
I . 8× 1013 W · cm−2. This intensity range corresponds
to a Keldysh parameter γ & 1.6 for which the electron
initial position is |r0| & E0/ω

2, i.e., for which the GC
model is quantitatively accurate. When the electron ion-
izes close to the ionic core, there is a large contribution
of the Coulomb potential. Mapping the electron coordi-
nates to its GC coordinates [Eq. (5)], and evaluating the
Coulomb interaction on its GC only [Hamiltonian (12)]
leads to a significant underestimate of the Coulomb ef-
fect if the electron is initially close to the ionic core. In
the CCSFA, the evaluation of the Coulomb potential is
performed on the approximate solution of the SFA. As a
consequence, on a short time scale after ionization, the
evaluation of the Coulomb interaction is performed on a
position which is close to the real trajectory [Hamilto-
nian (1)] and therefore close to the core.

We also observe that the dotted curve (SFA, P SFA
x = 0)

never agrees with the crosses [reference Hamiltonian (1)],
even at very high intensity. This is a microscopic signa-
ture of the Coulomb asymmetry. In particular, we ob-
serve that the Coulomb asymmetry persists even for high
intensity. For I & 1015 W · cm−2, we observe that the
dashed green curve [Eq. (10)] agrees well with the dashed
black curve (CCSFA) and the crosses [reference Hamil-
tonian (1)]. For very high intensities, or equivalently for
very small Keldysh parameter, the correction to the T-

trajectory final momentum using Eq. (10) becomes

lim
E0→∞

∆pg

(E0/ω)
= − ωπ x̂

(2Ip)3/2
√

ξ2 + 1
, (13)

which is valid for high ellipticity. The offset angle mea-
sured in an attoclock experiment is asymptotically

lim
E0→∞

Θ = π − tan−1 ξ(2Ip)3/2

ωπ
.

The larger the intensity, the closer to the core the elec-
tron is initiated, and thus the T-trajectory remains de-
flected by the ionic core. Consequently, the Coulomb
asymmetry persists even at very high intensity. In ad-
dition, in the reference Hamiltonian (1), the larger the
intensity, the larger the laser-atom interaction r · E(t)
and the Coulomb potential contribution V (r). There-
fore, the competition between the Coulomb potential and
laser interaction is always present even at high intensity,
as shown in Ref. [24].

In summary, as expected for large ellipticities (i.e.,
close to CP), there is a very good agreement between
the CCSFA [Eqs. (9)] and the reference model [Hamilto-
nian (1)] for all intensities. Indeed, for large ellipticities,
the electron initial drift momentum is also large, and the
Coulomb potential acts significantly on the electron tra-
jectory for a short time after ionization. The Coulomb
interaction causes the deflection of the T-trajectory after
ionization. For intensities I & 8×1013 W ·cm−2, the GC
model also captures this effect well.

B. Long time scale dynamics

For lower ellipticities, we show that important proper-
ties of the system arising from long time scale processes,
in particular Coulomb-driven recollisions and Rydberg
state creation, are well described by the GC model but
not by the CCSFA. To illustrate this, we consider an in-
tensity I = 8×1013 W ·cm−2 (γ ∼ 1.6) and an ellipticity
ξ = 0.4.

1. Analysis of the ionized electron momentum

Figure 2 shows the PMDs computed with CTMC
simulations of the reference Hamiltonian (1), the SFA
[Eqs. (8)] [1, 13], the CCSFA [Eqs. (9)] [17] and the
GC model [Hamiltonian (12)]. The T-trajectory final
momentum is shown with a black dot for each model.
For each model, the PMDs are mainly two clouds cen-
tered around the T-trajectory final momentum. The two
clouds are roughly symmetric with respect to the origin
according to the symmetry (r,p, t) 7→ (−r,−p, t + T/2)
of the reference Hamiltonian (1) for a constant laser en-
velope (f = 1) which is also preserved by the initial con-
ditions [see Eq. (2)] and the reduced models.
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FIG. 2: Photoelectron momentum distributions (PMDs) in logarithmic scale for I = 8 × 1013 W · cm−2 and ξ = 0.4 of the
reference Hamiltonian (1), the SFA [1, 13], the CCSFA [17] and the GC model. The upper (resp. lower) black dot is the
T-trajectory final momentum for each model (resp. its symmetric momentum with respect to the origin). The momenta are
scaled by E0/ω.

For the reference Hamiltonian (1) (leftmost panel of
Fig. 2), the PMD exhibits three significant features: The
asymmetry with respect to the ŷ-axis, the relatively
high density of electrons with near-zero momentum –
corresponding to near-zero energy photoelectrons [37]–,
and the tails for high momentum (regions for |px| > 1).
In order to interpret these features, we compare this
PMD with those of the three reduced models.

In the PMD of the SFA [1, 13] (second panel of Fig. 2
from the left), the two clouds are symmetric with respect
to the ŷ-axis, there is a lack of near-zero energy pho-
toelectrons, and there are no tails for high momentum.
Therefore, these effects observed in the PMD of Hamil-
tonian (1) are a consequence of the Coulomb potential,
which is expected to be significant here since the charac-
teristic time of the ionized trajectories is long compared
to one laser cycle.

In the PMD of the CCSFA [17] (third panel of Fig. 2
from the left), the two clouds are asymmetric with re-
spect to the ŷ-axis. As discussed in the previous sec-
tion, after ionizing, the electron trajectories deviate be-
cause of the Coulomb interaction: This asymmetry is the
Coulomb asymmetry. With the CCSFA, however, we ob-
serve that the distribution is very low around the origin
of momentum space, i.e., there is still a lack of near-zero
energy photoelectrons. Indeed, the drift momentum of
the near-zero energy photoelectrons is low and the con-
ditions on the validity of the CCSFA are not met. We
notice that the integrals we compute numerically for de-
termining the correction to the final momentum of the
electron [Eqs. (9)] do not always converge. Obviously,
the integrals diverge if for instance pg,0 = 0. Also, for
small drift momentum, it is challenging to obtain numer-
ically converged integrals. Finally, we observe tails for
|px| > 1 in the PMD of the CCSFA like in the PMD of
Hamiltonian (1).

In the PMD of the GC model (rightmost panel of
Fig. 2), the clouds are asymmetric with respect to the
ŷ-axis. After ionizing, the electron trajectories are de-

flected by the Coulomb force exerted on their GC [25].
One advantage of this model is that the final momentum
of the electron has an explicit expression for V (r̄g) ≈
−1/|r̄g| (see Appendix B), and as a consequence the com-
putations of the CTMCs are as fast as the computation
of the CTMCs of the SFA. Moreover, this model does
not rely on computing integrals that may or may not
converge. In addition, we observe that the asymmet-
ric clouds are connected to the origin of the momentum
space, showing that the near-zero energy photoelectrons
are well captured by this model. However, the absence of
tails in the GC model suggests that the tails observed in
the reference model and the CCSFA are the contribution
of rescattered electrons [38, 39].

Hence, the asymmetry observed in the PMD of the
reference Hamiltonian (1) is also captured by the reduced
models of the CCSFA and the GC. This asymmetry is due
to the deviation of the electrons or their GC originating
from the Coulomb interaction. In addition, near-zero-
energy photoelectrons are captured by the GC model.
The tails in the PMDs are due to the rescattering of
electrons that have experienced soft recollisions [38], in
which the electron comes close to the ionic core and is
rescattered due to the competitive forces between the
laser and the Coulomb interaction. This short time scale
process is well known and well described by the CCSFA
(see, e.g., Refs. [38, 39]).

2. Analysis of the initial conditions

We investigate the initial conditions of the electron af-
ter ionization to interpret and understand the origin of
the near-zero energy photoelectrons. Figure 3 shows the
final energy of the electron as a function of its initial
conditions after tunneling for I = 8 × 1013 W · cm−2

and ξ = 0.4 for the reference Hamiltonian (1), the SFA
[Eqs. (8)] [1, 13], the CCSFA [Eqs. (9)] [17] and the GC
model [Hamiltonian (12)]. The space of initial conditions
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FIG. 3: Electron final energy as a function of the initial condi-
tions (t0, p⊥, p‖ = 0) for I = 8× 1013 W · cm−2 and ξ = 0.4 of
the reference Hamiltonian (1), the SFA [1, 13], the CCSFA [17]
and the GC model (12). In grey-colored regions, the electron
final energy is negative. The white dashed lines are contours
of constant ionization rate W (t0, p⊥) (see Appendix A) for
W/max(W ) = 10−1, 10−5 and 10−15, from bottom to top.
The red dots correspond to the initial conditions for which
the electron final energy in the SFA is zero, i.e., ESFA = 0 [see
Eq. (14)]. The solid black lines correspond to the initial condi-
tions for which the GC energy is zero, i.e., E = 0 [see Eq. (15)].
The black dashed line corresponds to the initial conditions for
which the GC angular momentum is zero and the initial ra-
dial momentum is negative, i.e., L = 0 and pr(t0) < 0, where
L = r̄g × p̄g and pr = p̄g · r̄g/|r̄g |. The momentum and the
energy are scaled by E0/ω and Up = E2

0/4ω
2, respectively.

is restricted to p‖ = 0, which is the most probable initial
longitudinal momentum.

For the reference Hamiltonian (1) (upper panel of
Fig. 3), we observe two grey regions of initial conditions
where the electron final energy is negative, i.e., in which
the electron is trapped in Rydberg states [27]. The color
corresponds to the final energy of photoelectrons which
have reached the detector. Enveloped by the grey re-
gions, we observe that there are ionized electrons whose
energy depends extremely sensitively on the initial condi-
tions, as a signature of the rescattering process. We refer
to this region containing both the sensitivity to initial
conditions and negative final energies as the rescatter-
ing domain. The boundaries of the rescattering domain

are surrounded by regions of near-zero-energy photoelec-
trons. The part of the rescattering domain with small
p⊥ (lower part of the left grey regions) is in a region
where the ionization rate is high. As a consequence, a
significant number of electrons reach the detector with
near-zero energy, as observed in the leftmost panel of
Fig. 2.

For the SFA [1, 13], the final momentum of the electron
is given by its initial drift momentum pg,0 since it is
constant in time. As a consequence, the electron final
energy is

ESFA =
|pg,0|2

2
. (14)

In the SFA (second panel from the top of Fig. 3), only
two initial conditions lead to near zero-energy electrons,

located at p⊥ = −(E0/ω)ξ/
√

ξ2 + 1 and ωt0 = π, and

at p⊥ = −(E0/ω)/
√

ξ2 + 1 and ωt0 = 3π/2, represented
by red dots in Fig 3. These initial conditions are located
where the ionization rate is one or several orders of mag-
nitude lower than the maximum ionization rate. The
consequence is a lack of near-zero-energy photoelectrons
in the PMD for the SFA observed in Fig. 2.

For the CCSFA [1, 13] (third panel from the top of
Fig. 3), we observe the same patterns as for the SFA. The
initial conditions of the near-zero-energy photoelectrons
for the CCSFA are located in the same region of low ion-
ization rate as for the SFA. Here again, the consequence is
the lack of near-zero-energy electrons for the CCSFA [17]
observed in Fig. 2. However, we observe in the CCSFA a
region with an abrupt change of sensitivity to initial con-
ditions across the light colored path, absent in the SFA.
This path located at p⊥ ≈ 1 at ωt0 ∈ [π, 3π/2], in be-
tween the two red dots, separates near-zero-energy pho-
toelectrons from high energy photoelectrons. This path
is also present in the reference Hamiltonian at p⊥ ≈ 0.7.
It corresponds to soft recollisions [38].

The electron final energy using the GC model is given
by

E =
|pg,0|2

2
+ V (rg,0) . (15)

In the GC panel (lowest panel of Fig. 3), we observe
the same region of initial conditions for which the elec-
tron final energy is negative as for the reference Hamilto-
nian (1), which corresponds to the rescattering domain.
The initial conditions for which the electron final energy
is zero in the SFA are contained inside this region. The
Coulomb potential creates this region in which the GC
motion is bounded, which allows the electron to come
back to the ionic core and to rescatter, or to be trapped
into Rydberg states, scenarios analyzed in Sec. IV. The
boundaries of this rescattering domain correspond to the
initial conditions for which the electron final energy is
zero, i.e., E = 0. We observe that the inclusion of
the Coulomb potential pushes down the near-zero-energy
photoelectrons to regions in momentum space for which
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the ionization rate is higher. As a consequence, we ob-
serve a significant number of near-zero energy photoelec-
trons in the PMD of the GC model. Moreover, we notice
that E = ESFA+V (rg,0), and since the Coulomb potential
is strictly negative, it is evident that electrons lose energy
because of the Coulomb interaction, i.e., that electrons
are subjected to Coulomb focusing.

3. Types of trajectories

In order to understand the origin of the sensitivity to
initial conditions observed in the rescattering domain of
the reference Hamiltonian (1), we analyze the different
types of trajectories. Figure 4a shows the scattering an-
gle of the electron, whose trajectory is obtained from
the reference Hamiltonian (1), as a function of the ini-
tial conditions (t0, p⊥) for ξ = 0.4. The scattering angle
corresponds to the angle between the ionized electron
momentum p at infinity and the major polarization axis
(x̂-axis). In Figs. 4b–e, the dark blue curves are the elec-
tron trajectories of Hamiltonian (1), with initial condi-
tions indicated by the corresponding markers in Fig. 4a.
The light blue curves are the GC trajectories of Hamil-
tonian (12). For Figs. 4c–e (as well for Fig. 5d–e and
Fig. 7d), the GC is initialized far from the ionic core (for
|r| & 2E0/ω

2), during the plateau, in the domain of va-
lidity of the GC model (see Sec. V B 4 for a study of the
discrepancy between the GC and the electron trajectory).

Figure 4b shows a subcycle recollision. The initial con-
dition of this trajectory is in the chaotic region near
the condition for which the GC angular momentum is
L = r̄g × p̄g ≈ 0 and the initial GC radial momentum
is negative. Right after ionization, the GC trajectory is
(mostly) straight, brings the electron to the core, and the
electron recollides. The recollision occurs in a time scale
shorter than one laser cycle, referred to as a subcycle
recollision. We notice that if the electron tunnel-ionizes
further away from the ionic core, the same conditions
(near zero GC angular momentum) could lead to a mul-
tiple laser-cycle recollision.

Figure 4c shows a direct ionization. The initial condi-
tion of this trajectory is in a regular region, for which the
GC energy is positive E > 0. The GC trajectory is un-
bounded, and leaves the ionic core region. The electron
also leaves the ionic core region, driven by its GC.

Figure 4d shows a Coulomb-driven recollision. The
initial condition of this trajectory is in one of the main
chaotic regions, for which the GC energy is negative E <
0. The GC trajectory is bounded. As a consequence, the
electron returns to the ionic core, driven by its GC, and
recollides with the ionic core. After rescattering, the GC
energy jumps to another energy level [28].

Figure 4e shows a Rydberg state creation. The initial
condition of this trajectory is in the grey area, for which
the GC energy is negative E < 0. The GC trajectory
is bounded. However, contrary to the Coulomb-driven
recollision (Fig. 4d), the laser pulse ends before the oc-

FIG. 4: (a) Scattering angle of the electron as a function
of the initial conditions after tunneling (t0, p⊥, p‖ = 0) for

I = 8 × 1013W · cm−2 and ξ = 0.4. The white dashed lines
are the contours of constant ionization rate W (t0, p⊥) (see
Appendix A) for W/max(W ) = 10−1, 10−5 and 10−15, from
bottom to top. The red dots correspond to the initial con-
ditions for which ESFA = 0 [see Eq. (14)]. The solid black
line corresponds to the initial conditions for which E = 0
[boundaries of the rescattering domain for the GC model,
see Eq. (15)]. The black dashed line corresponds to the ini-
tial conditions for which the GC angular momentum is zero
and the initial radial momentum is negative, i.e., L = 0 and
pr(t0) < 0, where L = r̄g × p̄g and pr = p̄g · r̄g/|r̄g |. Grey
areas show the conditions for which the electron is trapped
into Rydberg states. (b–e) Dark and light blue curves are
the electron and its GC trajectory, respectively. The initial
condition of each trajectory is associated with a marker rep-
resented in (a). These trajectories represent a typical: (b)
subcycle recollision, (c) direct ionization, (d) Coulomb-driven
recollision, and (e) Rydberg state creation. Panels (b) and
(c) have positive GC energy, while (d) and (e) have negative
GC energy. Blue shaded panels indicate the cases with recol-
lisions. The momentum and position are scaled by E0/ω and
E0/ω

2, respectively.

currence of the recollision. The Rydberg state creation
corresponds to a frustrated Coulomb-driven recollision.
The laser pulse duration plays an important role in de-
termining the ratio between Coulomb-driven recollisions
and Rydberg state trapping (see Sec. IV A).

We observe that, in the four types of trajectories,
two of them cannot be predicted by the SFA. While di-
rect ionization and one-laser-cycle rescattering (Figs. 4c
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and 4b, respectively) are, at least qualitatively, pre-
dictable by the SFA, Coulomb-driven recollisions and Ry-
dberg state creation (Figs. 4d and 4e, respectively) are
predictable only when the Coulomb potential is taken
into account. In the next section, we analyze Coulomb-
driven recollisions and Rydberg state creation in more
details.

IV. COULOMB-DRIVEN RECOLLISIONS AND
RYDBERG STATE CREATION

A. Ionization time dependence

Figures 5b and 5c show the final scattering angle of
the ionized electron as a function of its initial conditions
(ωt0, p⊥), for an ionization that takes place at the begin-
ning of the pulse and at the end of the pulse, respectively
(see Fig. 5a). Figures 5d and 5e show two electron tra-
jectories with the same initial momentum and the same
laser phase, but with two distinct ionization times (sep-
arated by six laser cycles). Since the phase is the same,
the GC trajectories (light blue curves) in Figs. 5d and 5e
are the same. Since the GC energy of these trajectories
is negative, the GC trajectory is bounded.

In Fig. 5d, for which the electron ionizes at the begin-
ning of the plateau, we observe that the electron oscil-
lates around the bounded GC trajectory, which drives the
electron back to the ionic core. After about four oscilla-
tions around the GC trajectory, the electron comes back
to the ionic core. At this time, the GC energy jumps
to another energy level due to the combined Coulomb
and laser interaction, and the electron ionizes. This is a
Coulomb-driven recollision.

In Fig. 5e, we observe that the electron oscillates as
well around the bounded GC trajectory, which drives
the electron back towards the core. However, when the
electron is still far from the ionic core, the electric field
is turned off, and the electron is trapped into a Rydberg
state. The Rydberg state in which the electron is trapped
corresponds almost to the Rydberg state of its GC.

In other words, for both trajectories of Fig. 5d and 5e,
the electron oscillates around the same GC trajectory.
The difference between these two trajectories is the re-
maining time 10T − t0 before the laser field is turned off.
In Fig. 5d, the electron has enough time to undergo a
close encounter with the ionic core (|r| < E0/ω

2) before
the electric field is turned off, when in Fig. 5e, the electric
field turns off sooner, while the electron is still far from
the ionic core (|r| > E0/ω

2). The close encounter with
the ionic core distinguishes the Coulomb-driven recolli-
sion from the Rydberg state creation. The scenarios of
Coulomb-driven recollision and Rydberg state creation
are closely related, since in both cases, the electron oscil-
lates around a negative-energy GC.

The GC model is used to interpret the relation be-
tween the Rydberg state creation and the Coulomb-
driven recollisions. However, the initial conditions in-

FIG. 5: (a) Electric field components and amplitude as a
function of ωt. The grey regions indicate the ionization
time for which the final scattering angle is computed in (b)
and (c). (b–c) Final scattering angle of the ionized elec-
tron as a function of the initial conditions (ωt0, p⊥, p‖ = 0)

for I = 8 × 1013 W · cm−2 and ξ = 0.4 for the reference
Hamiltonian (1). The white dashed lines are the contour
plot of the ionization rate W (t0, p⊥) (see Appendix A) for
W/max(W ) = 10−1, 10−5 and 10−15, from bottom to top.
The solid black line corresponds to the initial conditions for
which E = 0 [boundaries of the rescattering domain for the
GC model, see Eq. (15)]. The dark grey region corresponds
to the initial conditions for which the electron is trapped into
a Rydberg state at the end of the pulse. (d–e) Dark and light
blue curves are the electron and its GC trajectory, respec-
tively. The initial conditions of the trajectories in (d) and (e)
are indicated by circles in (b) and (c), respectively. The tra-
jectories in (d) and (e) are initialized at the same laser phase,
but (d) is a Coulomb-driven recollision and (e) is a Rydberg
state creation. The momentum and the position are scaled
by E0/ω and E0/ω

2, respectively.

side the rescattering domain corresponding to electrons
that undergo Coulomb-driven recollisions in Figs. 3a,
4a and 5b–c are not visible in Fig. 3d since the GC
model does not describe the rescattering process. In
order to see if the GC model also predicts which ini-
tial conditions lead to recollisions, we look at the excur-
sion time ∆t, which corresponds to the time the recon-
structed electron trajectory spends before entering the
region |r̄(t0 + ∆t)| ≤ R before the end of the laser field,
where r̄(t) = r̄g(t)+Σ(t)/ω2 [see Eq. (5)], and R = 5 a.u.
is an adjustable threshold.

Looking at the excursion time per laser cycle ∆t/T of
the GC model depicted in Figs. 6a–b, we observe sim-
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FIG. 6: Recollisions in the GC model for I = 8×1013 W·cm−2

and ξ = 0.4. (a) ∆t/T as a function of the initial condi-
tions (t0, p⊥, p‖ = 0), where ∆t is the smallest time interval
such that |r̄(t0 + ∆t)| = 5 a.u., with t0 + ∆t < Tf (laser
pulse duration Tf = 10T ) and r̄(t) = r̄g(t) + Σ(t)/ω2 (re-
constructed trajectory). The white and dark grey regions are
where this condition is never met, and where the GC en-
ergy is positive (white region) and negative (grey region).
(b) Zoom of (a) on the largest rescattering domain. (c)

Tg/T = ω/(2|E|)3/2. The dark grey region is where the GC
perihelion [see Eq. (B1)] is greater than the quiver radius
E0/ω

2 ≈ 14 a.u., or where t0 + Tg ≥ Tf . The inset is a
zoom. (a–c) The red dots and the black thick dashed curves
are the same as in Fig. 3a. (c) The crosses are the location
of the GC circular orbits (see Sec. IVB). The dark dashed
lines are contours of constant ionization rate W (t0, p⊥) (see
Appendix A) for W/max(W ) = 10−1, 10−5 and 10−15, from
bottom to top. (d) The lines with markers are the GC trajec-
tories |r̄g(t)| with initial conditions plotted in panel (c) with
the corresponding marker and color, and the light grey lines
are the reconstructed trajectories |r̄(t)|. The light grey region
is when the laser field is turned off. Momenta are scaled by
E0/ω.

ilar patterns as for the reference model (1) in Fig. 3a,
4a and 5b–c. We have checked that these patterns are
robust with respect to the value of the threshold R. For
ωt0 ∈ [π, 3π/2], the initial GC radial momentum is neg-
ative pr(t0) = pg,0 · rg,0/|rg,0| < 0, and therefore, in
Fig. 6a, we observe a yellow region for L ≈ 0 corre-
sponding to trajectories that recollide in shorter than one
laser cycle after ionization, such as the one depicted in
Fig. 4b (subcycle recollision). In Fig. 6b, which is a zoom

of Fig. 6a around the largest rescattering domain, there
are recollisions with excursion times of multiple laser cy-
cles ∆t > T . These are trajectories that spend multiple
laser cycles far from the origin before returning to the
ionic core, such as the one depicted in Fig. 4d (Coulomb-
driven recollision). Hence, the GC model predicts qual-
itatively the initial conditions leading to recollision. We
observe that the the initial conditions associated with
the Coulomb-driven recollisions are organized in layers,
similar to the layers observed in Figs. 3a, 4a and 5b–c.
Each layer is associated with a range of ∆t/T around an
integer number, where, for decreasing ionization time for
ωt0 < π, ∆t/T associated with each layer increases.

In order to picture roughly the conditions for which
the Coulomb-driven recollisions occur, we consider the
period of the GC orbit per laser cycle Tg/T = ω/(2|E|)3/2
(using V (r̄g) ≈ −1/|r̄g|). Figure 6c shows the GC orbit

period per laser cycle Tg/T = ω/(2|E|)3/2 as a function
of the initial conditions in the largest rescattering do-
main. The grey regions correspond to the regions where
the GC perihelion [see Eq. (B1)]—the closest distance be-
tween the GC orbit and the ionic core—is greater than
E0/ω

2 or where t0 + Tg > Tf . Figure 6d shows the GC
distance from the ionic core |r̄g(t)| as a function of time
per laser cycle of a sample of initial conditions indicated
with the markers in Fig. 6c, and the distance from the
ionic core |r̄(t)| of the corresponding reconstructed tra-
jectories. We see that the color code associated with the
GC orbit period Tg agrees well with the color code as-
sociated with the excursion time ∆t in Fig. 6a. Indeed,
in Fig. 6d, we observe that the larger the period of the
GC orbit followed by the electron, the larger its excur-
sion time. As a consequence, the GC orbit period Tg is
a good observable to estimate the excursion time of the
electron ∆t. In addition, the GC orbit period of the tra-
jectory associated with the leftmost marker in Fig. 6c is
such that t0 + Tg > Tf . The electron does not undergo
recollision and ends up trapped in a Rydberg state since
it comes back to the ionic core after the end of the laser
pulse. Therefore, electrons undergoing Coulomb-driven
recollisions are typically driven by GC orbits such that
Tg < Tf − t0.

In summary, the electron is likely to undergo a
Coulomb-driven recollision if it oscillates around a GC
with a negative energy E < 0, a positive initial GC radial
momentum pr(t0) = pg,0 · rg,0/|rg,0| > 0, a GC orbital

period such that Tg = 2π/(2|E|)3/2 < Tf − t0 and a GC
perihelion smaller than the quiver radius. Notice that the
condition that the perihelion of the GC orbit is smaller
than the quiver radius is equivalent to L ≈ 0. As a conse-
quence, all recollisions are likely driven by small absolute
values of the GC angular momentum. In contrast, the
electron is likely to be trapped in a Rydberg state if it
oscillates around a GC with a negative energy E < 0 and
either an orbital period greater than the laser pulse dura-
tion Tg > Tf − t0 or a perihelion greater than the quiver
radius, i.e., a large GC angular momentum. In the next
section, we show that this latter process is robust due to
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FIG. 7: The parameters are I = 8×1013 W·cm−2, ξ = 0.4 and
plateau duration Tp = 100T . (a) GC perihelion [see Eq. (B1)]
in the rescattering domain depicted in the space of initial con-
ditions (t0, p⊥, p‖). (b) Final negative energies of the electron
trajectories of the reference Hamiltonian (1), where (c) is a
zoom around the trapping region. The white color in (a–c)
denotes an electron not trapped at the end of the laser pulse.
(d),(e) Trajectories for the initial conditions indicated with a
diamond in (c) and a triangle in (b), respectively. The dark
blue and cyan curves are the electron trajectory of the ref-
erence Hamiltonian (1) and the GC trajectory, respectively.
The thick dark blue curve curve in (e) is a center-saddle peri-
odic orbit very close to the region depicted in (c). The cyan
crosses in (a) and (b) are the initial conditions of the clockwise
(upper cross) and anticlockwise (lower cross) circular GC or-
bits. The cyan curve in (e) is the GC clockwise circular orbit,
whose initial conditions are very close to the trapping region
depicted in (c). Momenta and distance are scaled by E0/ω
and E0/ω

2, respectively.

the existence of center-saddle periodic orbits which are
weakly unstable.

B. Long plateau durations

In Fig. 6a–b, we notice grey regions in the upper and
lower part of the rescattering domain for which the GC
orbit period is such that Tg < Tf − t0. However, in these

regions, the electron does not recollide because the GC
perihelion is large (greater than E0/ω

2 ≈ 14 a.u.), as
it is shown in Fig. 7a. As a consequence, there exists
no time ∆t such that |r̄(t0 + ∆t)| is small, i.e., it is un-
likely the electron recollides. This is also a scenario we
observe in the reference model (1), in which the electron
spins around the core for multiple laser cycles without
recolliding.

For long plateau durations (Tp = 100T , Tf = Tp + 2T )
and an ionization time at the beginning of the laser pulse
(t0 ≪ Tp), we expect that electrons oscillating around a
negative near-zero energy GC (for which the GC orbit
period is such that Tg > Tf − t0) and electrons with a
large GC perihelion [see Eq. (B1)] (GC perihelion greater
than E0/ω

2 that prevents the electron from rescattering)
create Rydberg states. In Fig. 7b, we observe indeed a
pink thin layer of electrons creating Rydberg states, with
a near-zero-energy GC such as the dark blue trajectory
depicted in Fig. 7d. In addition, we observe two regions
of initial conditions with smaller values of final energy
for which the electrons are trapped in Rydberg states
after having remained in the vicinity of the ionic core, for
which the GC perihelion is larger than the quiver radius,
as shown for the dark blue trajectory of the reference
Hamiltonian in Fig. 7e. However, by comparing Fig. 7a
and Fig. 7b, we observe that not all the electrons with a
GC perihelion larger than the quiver radius are captured
into Rydberg states. Here, we show how some electrons
remain trapped while others do not.

As observed in Fig. 7c, the filled region of initial condi-
tions leading to electrons trapped in Rydberg states with
a large GC perihelion is roughly regular. Figure 7e shows
in dark blue a typical trajectory of Hamiltonian (1) ini-
tiated inside this regular region. We observe that this
trajectory turns around the core multiple times without
being rescattered by the ionic core. As a consequence, the
GC energy of this electron remains negative and roughly
constant throughout the laser pulse duration [28]. When
the laser field is turned off, its GC energy is still negative
and the electron is trapped in a Rydberg state. Near
the initial conditions of this trajectory, there is a center-
saddle periodic orbit of the reference model (1) which
exhibits the same pattern as this trajectory. This center-
saddle periodic orbit is depicted in thick dark blue in
Fig. 7e. In its neighborhood, the periodic orbit is center
in one plane and saddle in a transverse plane defined
by the eigenvectors of the monodromy matrix associ-
ated with the complex and real eigenvalues, respectively.
Hence, there are two-dimensional invariant tori surround-
ing the periodic orbit in the center direction. The saddle
direction is weakly unstable (its eigenvalue is ∼ 1.4) and
the orbit period is large (period of 30T ), which implies
that the unstable direction pushes slowly the electron
away from each invariant torus. Consequently, trajecto-
ries in the vicinity of this periodic orbit remain close to
it for relatively long times, even for long laser pulses.

In Fig. 7a, we observe that when the GC perihelion is
large (greater than E0/ω

2), the recollisions are unlikely
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FIG. 8: Rydberg state creation (RSC) probability as a func-
tion of the laser ellipticity ξ for I = 8 × 1013, 3 × 1014,
and 8 × 1014 W · cm−2. The RSC probability is defined as
the ratio of the RSC yield Y to the ionized electron yield

N =
∫ Tf

0
dt0

∫∞

−∞
d2p0 W (t0,p0). The thick solid and dot-

ted curves are our prediction with the GC model YGC/N
[Eq. (18)], and the SFA YSFA/N , respectively. The thin curves
with stars and crosses are the CTMC simulations of the refer-
ence Hamiltonian (1) using Tp = T and Tp = 8T , respectively.
The filled areas show the estimate of the Coulomb-driven rec-
ollision probability for Tp = 8T . Red circles show the proba-
bility of RSC at the critical ellipticity ξc given by Eq. (22).

to happen as mentioned earlier. In these two regions
of large GC perihelion, there are two cyan crosses in-
dicating the initial conditions for which the GC orbit
is circular. The initial conditions of these circular or-
bits are p⊥ = A(t0) · n̂(t0) ± ω2/|E(t0)| cosh τ0(t0) with
ωt0 = nπ and n ∈ N. They are close to the regular region
in Figs. 7b–c. The circular orbit of the GC is depicted
in cyan in Fig. 7e. We observe that the cyan curve pro-
vides the leading behavior of the averaged trajectory of
the center-saddle periodic orbit in thick dark blue. The
energy of the GC circular orbits (clockwise and anticlock-

wise) is given by E = −ω2
√

ξ2 + 1/(2E0 cosh τ) and their
perihelion by 1/(2|E|).

In summary, there is a region of initial conditions for
which the GC perihelion is larger than the quiver ra-
dius E0/ω

2, preventing the electron to recollide with the
core. Instead, the electron is trapped in a Rydberg state.
We showed that this process is robust because in the
neighborhood of these initial conditions, there are center-
saddle periodic orbits with weakly unstable directions
that keep the electron in the vicinity of the core.

C. Rate of Rydberg state creation

Next, we investigate the rate of Rydberg state cre-
ation as a function of the laser ellipticity. A Rydberg
state is created if the electron energy is negative at the
end of the laser pulse. In the SFA, the condition of
Rydberg state creation ESFA = 0 [see Eq. (14)] is a

one-dimensional curve (t0,p
⋆
0(t0)) in a three-dimensional

space (t0, p‖, p⊥), with p⋆
0(t0) = A(t0). As a conse-

quence, the probability of Rydberg state creation is in
fact zero. In Refs. [27, 40], the yield of Rydberg state

creation is given by YSFA =
∫ Tf

0
dt0 W (t0,p

⋆
0(t0)).

Figure 8 shows the Rydberg state creation probability
as a function of the laser ellipticity from CTMC simula-
tions of the reference Hamiltonian (1) (thin solid curves
with markers) and the SFA prediction (dotted curve)

YSFA/N with N =
∫ Tf

0
dt0

∫∞

−∞
d2p0 W (t0,p0) the yield

of ionized electrons. In Ref. [40], The SFA prediction is
normalized such that it agrees at ξ = 0 with the CTMC
simulations of the reference Hamiltonian (1) for Tp = 8T
(thin lines with plus markers). Notice that only the SFA
prediction is artificially normalized. For the SFA predic-
tion (dotted curves), we observe a good agreement with
the reference model at high ellipticity for all intensities
and at low ellipticity for high intensity. However, there
is a large discrepancy at low ellipticity for low and in-
termediate intensities, i.e., for I . 5 × 1014 W · cm−2.
For such intensities, the rescattering domain where Ry-
dberg states arise is wide compared to the gradient of
the ionization rate as observed in the top panel of Fig. 3
and Fig. 4a. As a consequence, the SFA prediction that
Rydberg states arise from the center of the rescattering
domain is not accurate.

On the contrary, in Fig. 3, we see that the GC model
is a good approximation for evaluating the size of the
rescattering domain where the Rydberg states are cre-
ated. In the GC model, a Rydberg state can be created
only if the GC energy is negative E < 0. As an ap-
proximation, we neglect the cases for which the electron
undergoes a Coulomb-driven recollision according to the
GC model. The GC prediction of the yield of Rydberg
state creation is then given by

YGC =

∫

ΩR

W (t0,p0) dt0d2p0, (16)

where ΩR = {t0 ∈ [0, Tf ],p0 ∈ R
2 | E < 0} is the set

of initial conditions such that the GC energy is negative
[see Eq. (15)].

According to Sec. IV A, an electron populating the
rescattering domain either undergoes a Coulomb-driven
recollision or is trapped in a Rydberg state. Hence, in or-
der to minimize Coulomb-driven recollisions, we compare
the GC prediction with CTMC simulations of the refer-
ence model for Tp = T . Figure 8 shows the GC prediction
of Rydberg state creation probability (dashed curves)
YGC/N . We observe an excellent agreement between the
results of the simulation of the reference model (1) for
Tp = T and the GC prediction for all ellipticities and
intensities plotted here. For increasing intensity, the vol-
ume of the rescattering domain decreases, as shown in
the next section. Hence, at high intensity, the ioniza-
tion rate varies on large scales compared to the size of
the rescattering domain, and the ionization rate is al-
most constant in the rescattering domain. Therefore, for
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high intensity, YSFA ∝ YGC as we observe in Fig. 8 for
I = 8 × 1014 W · cm−2.

V. THE SHAPE OF THE RESCATTERING
DOMAIN AND ITS EXPERIMENTAL

IMPLICATIONS

A. Analysis of the shape of the rescattering domain

After ionization, the GC energy of the electron is given
by Eq. (15). Substituting A(t0) = [A(t0)·n̂‖(t0)]n̂‖(t0)+
[A(t0)·n̂⊥(t0)]n̂⊥(t0) in Eq. (15), the rescattering domain

defined by E < 0 is the ensemble of initial conditions
(t0,p0) such that

[

p‖ − p⋆‖(t0)
]2

+ [p⊥ − p⋆⊥(t0)]
2
< ∆p(t0)2, (17)

where ∆p(t0) =
√

2|V (r̄g(t0))|, p⋆
0(t0) = p⋆‖(t0)n̂‖(t0) +

p⋆⊥(t0)n̂⊥(t0), hence p⋆‖(t0) = A(t0) · n̂‖(t0) and p⋆⊥(t0) =

A(t0) · n̂⊥(t0). Here, r̄g(t0) = −E(t0) cosh τ0(t0)/ω2 [see
Eqs. (7)]. For a given ionization time t0, the rescattering
domain is a circle centered at p⋆

0(t0) and of radius ∆p(t0)
in momentum space. The yield of Rydberg state creation
in the GC model [see Eq. (16)] becomes

YGC =

∫ Tf

0

dt0 ∆p(t0)2
∫ 1

0

dρ ρ

∫ 2π

0

dθ W (t0,p
⋆
0(t0) + ρ∆p(t0)n̂(t0, θ)), (18)

where n̂(t0, θ) = n̂‖(t0) cos θ+n̂⊥(t0) sin θ. Equation (18)
is used to compute the yield of Rydberg state creation of
Fig. 8, and the integrals are performed numerically.

Figures 9a and 9b show the boundaries of the rescat-
tering domain in the space (t0, p‖, p⊥) for ξ = 0.2 and
ξ = 0.7. To see how the shape of the rescattering do-
main evolves as a function of the parameters, we focus
on the conditions p‖ = 0 for which the ionization rate is
maximum. For low ellipticity, the surface p‖ = 0 and the
rescattering domain intersect in approximately ellipsoidal
subdomains, while for high ellipticity, they intersect in a
band.

1. Close to LP

First, we consider the second order Taylor expansion
of the shape of the rescattering domain for p‖ = 0 as a
function of the ellipticity in the plane (t0, p⊥) close to LP
(ξ ≪ 1). For low ellipticity, the rescattering domain is
approximately a set of ellipses, with two subsets: ellipses
at the peak laser amplitude [around ωt0 = nπ, with n ∈
N], and ellipses at the lowest laser amplitude [around
ωt0 = (n + 1/2)π)].

For p‖ = 0, the local minima of the final electron
energy [see Eq. (15)] are located at ωt⋆0 = nπ/2 and
p⋆⊥ = p⋆⊥(t⋆0) for n ∈ N. The local minima of the fi-
nal GC energy are the red dots depicted in Fig. 9c. In
Eq. (17), we fix p‖ = 0 and we Taylor expand with re-
spect to t0 − t⋆0. We obtain that the rescattering domain
for p‖ = 0 can be written in the form

(p⊥ − p⋆⊥)2

∆p2⊥
+

(t0 − t⋆0)2

∆t20
< 1, (19)

where terms of order (t0 − t⋆0)4 and higher are neglected.
Consequently, the subsets of rescattering domain in the

plane (t0, p⊥) defined by p‖ = 0 are approximately el-
lipses and are centered around the local minima of the
GC energy (t⋆0, p

⋆
⊥). The expressions for p⋆⊥, ∆p⊥ and

∆t0 depend on whether the ellipse is at the peak laser
amplitude or at the lowest laser amplitude.
a. Rescattering domains at the lowest laser ampli-

tude: After Taylor expanding Eq. (17) with respect to
t0 and ξ around the local minima ωt⋆0 = (n + 1/2)π and
ξ = 0, respectively, one gets (at the third order in the
Taylor expansion) p⋆⊥ ≈ (E0/ω)(1 − ξ2/2),

∆p⊥ ≈ (E0/ω)ξccγ

(

1 − ξ2

4γ2

)

,

ω∆t0 ≈ ξ ξccγ ,

where cγ =
√
γ(1 + γ2)1/4/ sinh−1 γ, ξc is defined in

Eq. (22), and we have used τ ≈ sinh−1 γ. Hence, at low
ellipticities, the area of these ellipses is proportional to ξ
and consequently very small. For LP, the area of these
ellipses is zero. In addition, at low ellipticities, these el-
lipses have a low weight given by the ionization rate, so
their influence is negligible.
b. Rescattering domains at the peak laser amplitude:

After Taylor expanding Eq. (17) with respect to t0 and
ξ around the local minima ωt⋆0 = nπ and ξ = 0, respec-
tively, one gets (at the third order in the Taylor expan-
sion) p⋆⊥ ≈ ξ(E0/ω)(1 − ξ2/2),

∆p⊥ ≈ (E0/ω)ξcCγ

[

1 +
ξ2

4(1 + γ2)

]

, (20a)

ω∆t0 ≈ ξcCγ

[

1 + ξ2
7 + 6γ2

4(1 + γ2)

]

, (20b)

where Cγ = γ/ sinh−1 γ and we have used τ ≈ sinh−1 γ.
Here, the area of the ellipses is non-zero for LP, and be-
cause these ellipses are highly weighted by the ionization
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FIG. 9: Shape of the rescattering domain for I = 8×1013 W ·
cm−2 and ξ = 0.2 [close to LP, (a) and (c)], and ξ = 0.7 [close
to CP, (b) and (d)]. (a), (b) Boundary of the rescattering
domain as a function of the initial conditions (t0, p‖, p⊥). The
color is the logarithm of the PPT ionization rate normalized
by its maximum. The black lines are the boundaries of the
rescattering domain for p‖ = 0. (c),(d) Slice of the initial
conditions p‖ = 0 [shaded blue planes in (a) and (b)]. Only
the dominant orders in ξ are depicted. Momenta are scaled
by E0/ω.

rate, they have a strong influence in the phenomena re-
lated to the rescattering domain such as, for instance,
Rydberg state creation. We observe that for increasing
intensity, these elliptical domains shrink towards their
centers for which the GC energy is minimal (red dots in
Fig. 9), which correspond also to the SFA conditions for
which the electron final energy is zero [see Eq. (14)].

2. Close to CP

Next, we consider the second order Taylor expansion
of the shape of the rescattering domain for p‖ = 0 as a
function of the ellipticity in the plane (t0, p⊥) close to
CP (1− |ξ| ≪ 1). For ellipticity close to 1, the rescatter-
ing domain is approximately a band between two lines.
We write Eq. (17) in the form p⊥ < p⋆⊥(t0) ± [p⋆‖(t0)2 +

∆p(t0)2]1/2. By Taylor expanding this expression to the

FIG. 10: Photoelectron momentum distribution along the
minor polarization axis ŷ as a function of the ellipticity for
I = 1.2 × 1014 W · cm−2 and Ar (Ip = 0.58 a.u.) and γ ∼ 1.
The color scale is the experimental data of Ref. [26]. The
dotted and dashed black lines are the T-trajectory of the
SFA and the CCSFA, respectively. The cross markers and
red solid lines are the T-trajectory of the reference Hamilto-
nian (1) and the GC model (12), respectively. Momenta are
scaled by E0/ω.

first order (the second and third order expansion are too
lengthy and do not provide additional relevant informa-
tion to the discussion) with respect to 1 − |ξ| around
ξ = 1, one gets that the lines surrounding the rescatter-
ing domain are

p±⊥(t0) ≈ E0√
2ω

[

cos(2ωt0)
ξ − 1

2
+ 1 ± ξ1

]

, (21)

where ξ1 = (ω2/E
3/2
0 )(γ2 + 1/2)−1/4 and we have used

τ ≈ sinh−1 γ. Hence, Coulomb-driven recollisions and
Rydberg state creation after tunneling are likely when
the lowest boundary line of the rescattering domain (see
Fig. 9) approaches the regions of initial conditions with
high ionization rate, i.e., p−⊥(t0) . P⊥. Fixing ξ = 1 and
using Eq. (21), one gets

E
3/2
0 . ω2 γ(γ2 + 1/2)1/4

sinh−1 γ
.

The term on the right-hand side of the inequality de-
creases for increasing γ. For γ ≪ 1, the inequality be-
comes I . 2 × 1013 W · cm−2. However, the condition
γ ≪ 1 implies that Ip ≪ 0.1 a.u. in order for the electron
to undergo a Coulomb-driven recollisions or be trapped
in a Rydberg state at this frequency. Therefore, it is un-
likely that the electron undergoes a Coulomb-driven rec-
ollision or is trapped in a Rydberg state for nearly-CP
pulses, if the ionization takes place during the plateau.

B. Implication of the shape of the rescattering
domain

In this section, we investigate the physical phenom-
ena related to the shape of the rescattering domain, and
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we compare the results with experimental data. For in-
stance, when the laser ellipiticity ξ varies, the rescatter-
ing domain moves in phase space and as a consequence
the PMDs change shape. In Fig. 10, we show the ex-
perimental measurements from Ref. [26], of the final mo-
mentum distribution of the electron along the minor po-
larization axis ŷ as a function of the ellipticity ξ for
I = 1.2 × 1014 W · cm−2, Ar (Ip = 0.58 a.u.) and γ ∼ 1.
The experimental measurements of the final momentum
along the minor polarization axis (color scale) show a dis-
tribution peaked around zero for small ellipticity. As the
ellipticity increases, we observe a bifurcation of the peak
of the distribution at a critical ellipticity ξc ≈ 0.25, for
which the distribution is no longer peaked around zero.
After the bifurcation (for ξ > ξc), the peaks of the dis-
tribution move further apart for increasing ellipticity.

In Fig. 10, we also show the ŷ-component of the T-
trajectory final momentum Py computed using the SFA

PSFA = ŷξ(E0/ω) sinh τ/(τ
√

ξ2 + 1) (dotted lines), the
CCSFA from Eq. (9) (dashed lines), the reference Hamil-
tonian (1) (crosses) and the GC prediction [see Eq. (23)]
(solid lines). The prediction of the reference Hamilto-
nian (1) is depicted only if the ionization is direct, i.e.,
if it has not undergone any recollisions and has not been
trapped in Rydberg states. The GC prediction is de-
picted only when the GC energy is positive. Otherwise,
the GC energy is negative and the electron does not reach
the detector according to the GC model. We observe
an excellent agreement between the experimental results
from Ref. [26], the reference solution [Hamiltonian (1)]
and the GC prediction.

In a nutshell, for ξ < ξc, the T-trajectory is inside
the rescattering domain. The GC motion is most often
bounded, and as a consequence the electron undergoes
recollisions or is trapped in a Rydberg state. When the
ellipticity increases, the rescattering domain and the ini-
tial conditions of the T-trajectory move in phase space.
At the critical ellipticity ξc, the T-trajectory is on the
boundary of the rescattering domain, i.e., its GC energy
is zero. For ξ > ξc, the GC motion is unbounded, and
the electron ionizes without recollision. Therefore, the
bunches in the PMDs after the bifurcation (as observed in
Fig. 2) are mainly composed of direct ionizations. Right
after the bifurcation, a ridge structure can be seen for
a certain range of laser parameters and atoms [39, 41].
The ridge structure is composed of near-zero-energy elec-
trons that have undergone rescattering, and the bifurca-
tion with ellipticity can be used to isolate these electrons
from the electrons ionized directly [39, 41].

1. Critical ionization time

In LP fields, for p⊥ = 0 which reduces to a one-
dimensional model, the SFA predicts that if an electron
ionizes after a peak laser amplitude, i.e., at t0 > t⋆0
(ωt⋆0 = nπ where n ∈ N), it undergoes a recollision [1],
while if it ionizes before this peak, i.e., at t0 < t⋆0, it ion-

izes directly. In the top panel of Fig. 3 and in Figs. 4a
and 5a–b, we observe that this critical time ωt0 = nπ
predicted by the SFA is lower if the Coulomb potential
is taken into account, and according to the discussion
in Sec. IV A, the electron potentially comes back to the
ionic core even if it ionizes before the peak of the laser
field.

According to the GC model, using Eqs. (19) and (20)
for p⊥ = 0, the left boundaries of the rescattering do-
main are given by ωtc = nπ − ξcCγ . If the electron
ionizes at t0 < tc, the electron ionizes directly. If the
electron ionizes at t0 > tc, the electron is in the rescatter-
ing domain. According to the discussion in Sec. IV, the
electron either populates Rydberg states, or undergoes a
recollision. In particular, if an electron ionizes before the
peak of the laser field and recollides, it is mainly because
of the Coulomb interaction and the bounded motion of
its GC that brings the electron back to the core. If the
electron ionizes after the peak of the laser field, its GC
initial radial momentum is negative (and its angular mo-
mentum is zero in 1D), and as a consequence the electron
recollides.

The same arguments are extended to estimate tc for
low ellipticity and ξ ≥ ξc. We fix the initial momentum
at its most probable value given by (p‖ = P‖, p⊥ = P⊥)
and we let the ionization time t0 free. At low ellipticity
P‖ ≈ 0 and P⊥ ≈ 0, and if ωt0 = ωt⋆0 the trajectory is
approximately at the center of the rescattering domain
(see Fig. 9c). As a consequence, there exist intervals
of ionization time t0 for which the initial conditions are
inside the rescattering domain, but also because of the
shape of the rescattering domain (see Fig. 9c), there are
intervals of ionization times t0 for which the initial con-
ditions are outside the rescattering domain. The critical
time tc is the ionization time for which (tc, P‖, P⊥) is on
the boundary of the rescattering domain. In Eq. (19),
we transform the inequality into an equality and we fix
p⊥ = P⊥ ≈ ξ(E0/ω)(1 − γ/ sinh−1 γ) [see Eq. (4b)].
Then, using Eqs. (20) up to the second order in ξ, the
critical time tc is given by

ωtc ≈ ωt⋆0 − Cγ

√

ξ2c − ξ2,

with Cγ = γ/ sinh−1 γ and ξc defined Eq. (22). Also, we
have seen in Sec. IV that if the ionization takes place after
the peak of the laser field, the GC radial momentum is
negative and the electron tends to recollide with the ionic
core. Hence, the ionization time t0 for direct ionization
is ωt0 ∈ ωtc − [0, π/2]. This is in agreement with the
CTMC simulations of Ref. [42].

2. Critical ellipticity

Next, we consider the bifurcation with respect to the
laser parameters. We consider the T-trajectory given by
the initial conditions (4) and ωt0 = π. For LP (ξ = 0),
the T-trajectory is inside the rescattering domain. As
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a consequence, the GC energy of the T-trajectory is
negative, and the electron is either trapped in a Ry-
dberg state, or undergoes a recollision. For increasing
ellipticity, p⋆⊥(t0) increases and P⊥ decreases. At ellip-
ticity ξ = ξc, the initial condition of the T-trajectory
(ωt0 = π, p‖ = P‖, p⊥ = P⊥) crosses the boundary
of the rescattering domain. In Eq. (19), we substitute
the initial conditions of the T-trajectory ωt0 = nπ and
p⊥ = P⊥ ≈ ξ(E0/ω)γ/ sinh−1 γ [see Eq. (4b)] and we use
Eq. (20) up to the first order in ξ. Replacing ξ by ξc and
assuming that ξ2c ≪ 1, the critical ellipticity is

ξc ≈
√

2ω2

E
3/2
0

sinh−1 γ

γ(1 + γ2)1/4
, (22)

(see Supplemental Materials of Ref. [25] for a detailed
derivation). For ξ > ξc, the GC energy of the T-
trajectory is positive and its motion is unbounded. The
T-trajectory ionizes directly, i.e., it does not experience
rescattering. This corresponds to a direct ionization. In-
deed, in Fig. 8, we observe that for ξ > ξc, the probability
of Rydberg state creation and Coulomb-driven recolli-
sions decreases significantly for increasing ellipticity.

Hence, for ξ > ξc, the GC motion is unbounded and the
electron is driven to the detector. The initial condition of
the GC of the T-trajectory is determined by combining
Eqs. (7) and (4), and reads

Rg,0 = x̂
E0

ω2
√

ξ2 + 1
cosh τ,

Pg,0 = ŷ
ξE0

ω
√

ξ2 + 1

sinh τ

τ
.

Since Hamiltonian (12) is time-independent and rotation-
ally invariant, the GC energy ET and angular momentum
ℓT = ẑ ·Rg,0×Pg,0 of the T-trajectory are conserved and
given by

ET =
ξ2E2

0

2ω2(ξ2 + 1)

sinh2 τ

τ2
− ω2

√

ξ2 + 1

E0 cosh τ
,

ℓT =
ξE2

0

ω3(ξ2 + 1)

sinh 2τ

2τ
.

When the electric field is turned off, we assume that the
final momentum of the T-trajectory and the final mo-
mentum of its GC are equal, with Px =

√
2ET cos Θ and

Py =
√

2ET sin Θ, where its scattering angle is given by

Θ = π/2 + sin−1(2ET ℓ2T + 1)−1/2. As a consequence,

Px = −
√

2ET (2ET ℓ2T + 1)−1/2, (23a)

Py =
√

2ET
[

1 − (2ET ℓ2T + 1)−1
]1/2

. (23b)

Equations (23) are used to compute Px and Py of the
GC throughout the article. In the PMDs, we recall that
the bifurcation in Px signals the appearance of Coulomb
asymmetry as a function of the ellipticity, while the bifur-
cation in Py shows the breakdown of Coulomb focusing

as a function of the ellipticity. We observe that Coulomb
asymmetry appears at the same time as Coulomb focus-
ing begins to recede. Close to the bifurcation, for ξ ≈ ξc
and using τ ≈ sinh−1 γ, one has

ET ≈ (ξ − ξc)4Upξcγ
2/(sinh−1 γ)2, (24a)

Px ≈ −(ξ − ξc)
1/2

√

2ξc(E0/ω)(γ/ sinh−1 γ), (24b)

Py ≈ (ξ − ξc)2
√

2(E0/ω)(γ/ sinh−1 γ), (24c)

where Up = E2
0/4ω2 is the ponderomotive energy (see

Ref. [25] for more details). As a consequence, the crit-
ical exponents of the bifurcation predicted by the GC
model for Px and Py are 0.5 and 1, respectively, i.e.,

Px ∼ (ξ − ξc)
1/2 and Py ∼ (ξ − ξc). We observe that

close to the bifurcation and for increasing ellipticity, the
Coulomb asymmetry measured by the bifurcation in Px

increases faster than the breakdown of Coulomb focusing
measured by the bifurcation in Py.

3. Comparison with experiments

In Fig. 11, we show the final momentum of the T-
trajectory P as a function of the ellipticity ξ computed
using the SFA (dotted lines), the CCSFA from Eq. (9)
(dashed lines), the reference Hamiltonian (1) (crosses)
and the GC from Eqs. (23) (solid lines). The T-trajectory
final momentum of the reference Hamiltonian (1) is not
depicted if it is trapped in a Rydberg state or undergoes
rescattering. In the lower-left panel, the hexagrams are
the experimental data of P reproduced from Ref. [18].

For I = 8 × 1013 W · cm−2, He (Ip = 0.9 a.u.) and
γ ∼ 0.6 (top panels of Fig. 11), the T-trajectory of the
reference Hamiltonian (1) corresponds to a direct ion-
ization at the critical ellipticity ξc ≈ 0.25, and reaches
the detector without undergoing rescattering for ξ > ξc.
The critical ellipticity is in agreement with the prediction
ξc ≈ 0.26 of Eq. (22). On the left panel, we observe a
good agreement between the T-trajectory final momen-
tum P of the reference Hamiltonian (1) (thin curves with
crosses) and that of the GC model (thick solid curves) for
the entire range of ellipticities ξ > ξc.

For I = 1.2 × 1014 W · cm−2, Ar (Ip = 0.58) and
γ ∼ 1 (middle panels of Fig. 11), the T-trajectory of
the reference Hamiltonian (1) becomes a direct ioniza-
tion at ξc ≈ 0.19 while the GC prediction [see Eq. (22)]
is ξc ≈ 0.24. There is a small disagreement between the
critical ellipticity of the reference model and the predic-
tion of Eq. (22). However, there is a good agreement
of the GC critical ellipticity with the experimental mea-
surements of Ref. [26] of ξc ≈ 0.24 as observed in Fig. 10.
Furthermore, there is a good agreement between the T-
trajectory final momentum P of the reference Hamilto-
nian (1) (thin curves with crosses) and that of the GC
model (thick solid curves) for ξ & 0.3. However, we ob-
serve a small disagreement between Px of the reference
Hamiltonian (1) (thin curves with crosses) and the GC
prediction for all ellipticities. This discrepancy is related
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FIG. 11: Final momentum of the T-trajectory P = Pxx̂+Pyŷ
as a function of the ellipticity ξ. Top panels: I = 8×1013 W ·
cm−2, He (Ip = 0.9 a.u.) and γ ∼ 1.6. Middle panels:
I = 1.2 × 1014 W · cm−2, Ar (Ip = 0.58 a.u.) and γ ∼ 1.
Bottom panels: I = 8 × 1014 W · cm−2, He (Ip = 0.9 a.u.)
and γ ∼ 0.6. The hexagrams are the experimental data re-
produced from Ref. [18]. In all panels: the dotted and dashed
black lines are the T-trajectory of the SFA and the CCSFA,
respectively. The thin (with crosses) and solid curves are
the T-trajectory of the reference Hamiltonian (1) and the GC
model (12), respectively. The components of the final momen-
tum of the T-trajectory Px and Py are depicted in blue and
red, respectively. The critical ellipticity ξc is at the intersec-
tion between the grey and white regions and corresponds to
the largest ellipticity for which the T-trajectory of the refer-
ence Hamiltonian (1) is negative. The right panels are zooms
of the left panels in the neighborhood of the critical elliptic-
ity. We indicate the scaling of P of the reference model (1)
in the neighborhood of the bifurcation. Momenta are scaled
by E0/ω.

to the observations made in Fig. 1 and whose origin is
discussed below.

For I = 8 × 1014 W · cm−2, He (Ip = 0.9) and γ ∼ 0.6
(lower panels of Fig. 11), the T-trajectory of the reference
Hamiltonian (1) becomes a direct electron at ξc ≈ 0.05.
The critical ellipticity is in agreement with the predic-
tion ξc ≈ 0.07 of Eq. (22). In addition, these values
agree well with the critical ellipticity ξc ≈ 0.08 of the ex-
periments [18] (hexagrams). There is again a good agree-
ment between the T-trajectory final momentum P of the
reference Hamiltonian (1) (thin curves with crosses) and
that of the GC model (thick solid curves) for ξ & 0.1.
However, we observe a disagreement between Px of the
reference Hamiltonian (1) (thin curves with crosses) and
the GC prediction in the entire ellipticity range. We no-
tice that for decreasing Keldysh parameters, the disagree-
ment between Px of the reference Hamiltonian (1) and
the GC model increases, as observed in the lower panel

of Fig. 1.
On the right panels of Fig. 11, we observe a good agree-

ment between the exponents of Px of the reference Hamil-
tonian (1) at the bifurcation and the prediction 0.5 of
Eq. (24). However, the exponent of Py at the bifurca-
tion is much smaller than the exponent 1 predicted by
Eq. (24).

In the left panels of Fig. 11, we observe excellent agree-
ment between the T-trajectory final momentum of the
reference Hamiltonian (1) (thin curves with crosses) and
that of the CCSFA (dashed curves) after the bifurcation
when the electron final energy is large.

4. T-trajectory analysis

Here, we show that the origin of the disagreements be-
tween the T-trajectory of the reference Hamiltonian (1)
and the GC T-trajectory –the disagreement of Px for
small Keldysh parameters, or the disagreement with
the critical exponents of Py in the neighborhood of
the bifurcation– are related to an underestimate of the
Coulomb interaction by the GC model for a short time
after ionization. In contrast, we show that the CCSFA
agrees well with the solution of the reference Hamilto-
nian (1) for ξ ≫ ξc while it cannot capture correctly the
phenomena related to the bifurcation.

In Fig. 12, the red dash-dotted, cyan solid and black
dashed curves are the T-trajectory of Hamiltonian (6),
the GC model (12), and the CCSFA given by Eqs. (9),
respectively. The thick dark blue curves are the T-
trajectory of the reference Hamiltonian (1). Associated
with each trajectory, we also show the GC energy, for
each model, as a function of time per laser cycle t/T .
The GC energy for each model consists substituting the
solution (rg(t),pg(t)) for each model in the GC Hamilto-
nian (12), i.e., H̄(rg(t),pg(t)). Where the GC energy of
the reference model is conserved, the GC model (whose
GC energy is conserved) is valid [28].

For γ ∼ 1.6 (see Fig. 12a–d), the electron ionizes far
from the ionic core (|r0| ∼ E0/ω

2). For ξ = 0.25 and
ξ = 0.7, respectively, we see the variations of the GC en-
ergy of the T-trajectory of Hamiltonian (6) (dash-dotted
curve) are small, a signature of the validity of the GC
model and an absence of rescattering. When the GC
energy of Hamiltonian (6) becomes constant, it is only
about 0.02 a.u. above the GC model prediction. As a
consequence, we observe a good agreement between the
trajectories of Hamiltonian (6) and the GC model trajec-
tories in Fig. 12a and Fig. 12b. In particular, at ξ = 0.25,
we observe the T-trajectory of Hamiltonian (6) is trapped
in a Rydberg state, a feature which is reproduced by the
GC model (cyan solid curve), but not well reproduced by
the CCSFA (dashed black curve). Indeed, the Coulomb
interaction remains significant for a long time after ion-
ization during Rydberg state creation, and the conditions
for the validity of the CCSFA are not met.

For γ ∼ 1 (see Fig. 12e–h), the electron ionizes closer to
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FIG. 12: (a,b,e,f,i,j) T-trajectory in the polarization plane
(x, y). The thick dark blue curves are the T-trajectory of
the reference Hamiltonian. The red dash-dotted, cyan solid
and dashed black curves are the T-trajectory of Hamilto-
nian (6), the GC model (12) and the CCSFA (9), respec-
tively. (c,d,g,h,k,l) Energy (12) as a function of (t − t0)/T ,
with t0 = T/2, associated with each model. Right panels:
ξ = 0.7. (a,c), (e,g) and (i,k) (the grey background panels are
those for ξ < ξc) ξ = 0.25, ξ = 0.15 and ξ = 0.05, respectively.
(a–d) are for I = 8 × 1013 W · cm−2, He (Ip = 0.9 a.u.) and
γ ∼ 1.6 (same parameters as the top panels of Fig. 11). (e–h)
are for I = 1.2×1014 W ·cm−2, Ar (Ip = 0.58 a.u.) and γ ∼ 1
(same parameters as the middle panels of Fig. 11). (i–l) are
for I = 8 × 1014 W · cm−2, He (Ip = 0.9 a.u.) and γ ∼ 0.6
(same parameters as the lower panels of Fig. 11). The dots
indicate the origin, and the circles |r| = E0/ω

2. The distances
are scaled by E0/ω

2.

the ionic core (|r0| ∼ 0.4E0/ω
2). For ξ = 0.15, the elec-

tron T-trajectory of Hamiltonian (6) (dash-dotted curve)
and the GC model are trapped in Rydberg states. How-
ever, there is a large discrepancy between the trajecto-
ries. Indeed, in Fig. 12g, we observe that the dash-dotted
red curve varies after ionization, indicating that the elec-
tron rescatters for a short time after ionization [28]. For
ξ = 0.7, the same happens in terms of energy (see
Fig. 12h), and we see that the GC trajectory does not
agree well with the T-trajectory of Hamiltonian (6) (see
Fig. 12f). When the energy of Hamiltonian (6) becomes

constant at t ≈ T/2, it is larger than the GC energy pre-
diction of 0.15 a.u. In Fig. 12e or Fig. 12f, we observe
that after ionization, the initial electron distance from
the core is |r0| ∼ 0.4E0/ω

2, while the GC initially at a
distance |rg,0| ∼ 1.4E0/ω

2 from core. Since in the GC
model, the Coulomb interaction is evaluated at the GC
position only, when the electron is closer to the core than
predicted by the GC model, as is the case after ionization
for γ . 1.6, the Coulomb interaction is underestimated
in the GC model: the closer the electron to the ionic core,
the more underestimated the Coulomb interaction.

For γ ∼ 0.6 (see Figs. 12i–l), the electron ionizes even
closer to the ionic core (|r0| ∼ 0.15E0/ω

2). For ξ = 0.05
and ξ = 0.07, there are also discrepancies between the
cyan and red curves. We observe that the energy of the
T-trajectory of Hamiltonian (6) (red dash-dotted curve
in Figs. 12k and 12l) varies a lot for a short time after ion-
ization (about 0.2T ). Here again, the electron rescatters
after ionization. In Fig. 12l, when the red dash-dotted
curve becomes constant, the energy is above the GC pre-
diction only by 0.02 a.u. However, this agreement is only
coincidental since the T-trajectories of Hamiltonian (6)
and of the GC disagree significantly due to the increase
in energy of the rescattering. We observe that this in-
crease in energy after ionization is well captured by the
CCSFA.

In each panel, we observe an excellent agreement be-
tween the CCSFA and the T-trajectory of Hamilto-
nian (6) for a short time after ionization, i.e., 0 < t−t0 .
T , when the hypotheses of the CCSFA are met. This
method is effective for short-time dynamics or phenom-
ena [38, 39, 43]. This agreement persists for longer times
if the electron leaves quickly the ionic core region like in
Ref. [17] or for large ellipticity (see Sec. III A), i.e., if its
drift momentum is initially large.

Conclusions

In this article, we have investigated the role of the
Coulomb potential in atoms subjected to strong laser
fields. We have considered three reduced models of the
reference Hamiltonian (1) to do so, namely the SFA
[Eqs. (8)], the CCSFA [Eqs. (9)], and the GC model
[Eqs. (12)]. The analysis of these three reduced mod-
els allowed us to shed light on the manifestation of the
Coulomb potential in various ionization processes. In the
SFA, there are two types of trajectories: subcycle recolli-
sions and direct ionizations. However, even when the in-
tensity is very large, i.e., when the conditions of the SFA
are met, the Coulomb interaction still makes its presence
known for long time scale phenomena. In particular, even
at very high intensities, the Coulomb asymmetry persists
as seen in Fig. 1 and discussed in Sec. III A. The Coulomb
interaction brings with it a variety of additional types of
trajectories, such as Coulomb-driven recollisions and Ry-
dberg states. We have shown in Sec. IV that these two
processes are intimately related, and can be interpreted
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and predicted by the GC model.
During step (ii) of the recollision scenario, we have

shown that the electron oscillates around the GC trajec-
tory. In phase space, the GC trajectory lies on a curve
of constant energy E = H̄(r̄g , p̄g). If E > 0, the GC mo-
tion is unbounded. In this case, it is likely the electron
recollides if its GC angular momentum is near zero and
its initial radial momentum is negative (like in Fig. 4b).
Otherwise, the electron ionizes directly without recolli-
sion (like in Fig. 4c). If E < 0, the GC motion is bounded.
In this case, there exists at least one time at which the
electron turns back towards the ionic core far from the
origin. Then, the electron returns to the ionic core be-
fore the laser field is turned off and recollides, or not. If
the electron does recollide (like in Figs. 4d and 5d), the
GC energy jumps to a new energy level, as described in
Ref. [28]. If the laser field is turned off before the electron
recollides (as in Figs. 4e and 5e), the electron ends up on
a Rydberg state.

During step (iii), the electron is rescattered by the ionic
core. The GC model does not capture the rescattering
effects close to the ionic core but the CCSFA can since
it is a rather short time scale phenomenon [38, 39]. Af-
ter a close encounter with the ionic core, the GC energy
jumps to another energy level. As observed in Fig. 12,
the variations of energy of the reference model can be
well described by the CCSFA for short time scales. Af-
ter rescattering, the electron potentially ionizes if its GC
energy becomes positive (such as in Fig. 4d). Therefore,
the CCSFA and the GC models are clearly complemen-
tary. The CCSFA is adapted for describing short time
scale processes such as rescattering while the GC model
is more suited for describing long time scale processes
such as Coulomb-driven recollisions and the creation of
Rydberg states.
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Appendix A: Ionization rate

Throughout this article, we use the nonadiabatic ion-
ization rate given by the Perelomov-Popov-Terent’ev [31]
formulas, rewritten in a different form in Ref. [34]. We
denote γ0(t0) = ω

√

2Ip/|E(t0)|. The initial position of
the electron is parametrized by the ionization time t0
and its initial momentum is written as p0 = p‖n̂(t0) +

p⊥n̂(t0) + pz,0ẑ for a polarization plane (x̂, ŷ). The PPT
ionization rate [31] reads

W (t0,p0) ∝ h(γ0(t0), ξ)

|E(t0)| exp

[

−2Ip
ω

g(γ0(t0), ξ)

]

× exp

{

− 1

ω

[

c‖p
2
‖ + c⊥ (p⊥ − P⊥)2 + czp

2
z,0

]

}

, (A1)

where the functions g and h are

g(γ0, ξ) =

(

1 +
1 + ξ2

2γ2
0

)

τ0

−(1 − ξ2)
sinh 2τ0

4γ2
0

− ξ2
sinh2 τ0
γ2
0τ0

,

h(γ0, ξ) =
2σγ0

sinh 2τ0
,

with the notation

σ =

(

1 − ξ2 + ξ2
tanh τ0

τ0

)−1

.

The coefficients c‖ c⊥, and cz, which are inversely pro-
portional to the square of the standard deviation of the
distribution along the longitudinal and transverse mo-
mentum, are given by

c‖ = τ0 − σ tanh τ0,

c⊥ = τ0 + σξ2
(τ0 − tanh τ0)

2

τ20 tanh τ0
,

cz = τ0.

The coefficients satisfy c‖ > c⊥, implying that the dis-
tributions are more spread out along the transverse di-
rection than along the longitudinal direction. The most
probable initial transverse momentum pmax

⊥,0 is

pmax
⊥,0 =

ξE0

ω
√

ξ2 + 1

(

1 − sinh τ0
τ0

)

,

for a transverse unitary vector defined as n̂⊥(t0) =
−[n̂‖(t0) · ŷ]x̂ + [n̂‖(t0) · x̂]ŷ. Throughout the article,
we take pz,0 = 0.

Appendix B: Final momentum of the electron in the
GC model

In the GC model given in Eq. (12), the energy E and
the angular momentum ℓ = rg×pg · ẑ are conserved. The
model is accurate far from the core, and as a consequence
we assume that V (rg) = −1/|rg|. The Hamiltonian reads

H̄g(rg,pg) =
|pg|2

2
− 1

|rg|
.

Using polar coordinates, the Hamiltonian becomes

H̄g(r, θ, pr) =
p2r
2

+
ℓ2

2r2
− 1

r
,
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where the energy E = H̄g(r, θ, pr). We denote
(r0, θ0, pr,0) the initial conditions in the polar coordi-
nates. They are determined from the inverse transfor-
mation pr = pg · rg/|rg|, ℓ = rg × pg · ẑ, r = |rg| and
cos θ = x̂ · r/|r|, sin θ = ŷ · r/|r|.

If E < 0, the electron motion is bounded. The two
turning points at which the electron radial momentum
changes sign are the perihelion r− (closest distance of
the orbit from the core) and the aphelion r+ (largest
distance of the orbit from the core) such that

r± =
1

2|E|
(

1 ±
√

1 − 2ℓ2|E|
)

. (B1)

If E > 0, the GC trajectory is unbounded and the elec-
tron reaches the detector. The asymptotic configuration
(when r goes to infinity) is given by pr =

√
2E . Con-

cerning the final scattering angle θ, if ℓ = 0, θ = θ0 (if
pr,0 > 0) and θ0 + π (if pr,0 < 0). If ℓ 6= 0, the final
scattering angle is given by

θ =







θ0 + sin−1 u0 − sin−1 u∞ if pr,0 > 0,
θ0 + sin−1 um − sin−1 u∞ if pr,0 = 0,
θ0 + 2 sin−1 um − sin−1 u0 − sin−1 u∞ if pr,0 < 0,

(B2)
with u0 = β(ℓ/r0 − 1/ℓ), u∞ = −β/ℓ and um = +1
(resp. −1) if ℓ > 0 (resp. < 0) with β = (2E + 1/ℓ2)−1/2.
Finally, the final momentum of the GC in the Cartesian
coordinates is given by

p = pr (x̂ cos θ + ŷ sin θ) .
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