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Abstract 

Hydroquinone (HQ) can form a gas clathrate in specific pressure and temperature conditions in the 

presence of CO2 molecules. This study presents experimental data of clathrate phase equilibrium 

and storage capacity for the CO2-HQ system in the range of temperature from about 288 to 354 K. 

Intercalation enthalpy and entropy are determined using the obtained equilibrium data and the 

Langmuir adsorption model. On a kinetic point of view, CO2-HQ clathrate formation by solid/gas 

reaction revealed a non-negligible effect of textural parameters on enclathration rate. 

Introduction 

Gas clathrates are inclusion compounds formed with host molecules self-associating and forming cages, able to retain 

low molecular-weight guest molecules of gas, which have recently been highlighted as an alternative way for gas 

storage, transportation and separation [1-2]. Gas hydrates show high gas storage capacity. However, for potential 

industrials applications, the hydrate-based processes require a non-negligible energetic cost as gas hydrates are usually 

formed at low temperature, typically a few degrees above 273 K, and high pressure of several MPa [3]. To overcome 

this problem, hydroquinone (HQ) has been pointed out because of its capability to form organic clathrates over a wide 

range of temperature and at moderate pressure (a few MPa) [4-6]. The stable form of HQ at ambient conditions of 

pressure and temperature is the -HQ. Whereas, the clathrate form is the -HQ. The maximum storage capacity of -

HQ is defined by its ideal stoichiometry of 1 molecule of gas per 3 molecules of HQ, if all the cavities are filled by 

one guest molecule [7]. Thus, for CO2-HQ clathrates the maximum theoretical quantity of gas which can be stored is 

67.8 L (STP) / kgHQ.  

This work presents experimental data on phase equilibria and kinetics of CO2-HQ clathrate formation. Such results 

could be of interest for potential gas storage, transportation, or separation applications that could be developed with 

this compound. The equilibrium curve, the clathrate occupancy and the intercalation enthalpy and entropy are 

determined in the range of temperature from about 288 to 354 K. Ways for kinetic improvements are proposed and 

discussed. Interestingly, the use of HQ-silica composite materials as reactive medium has shown that the kinetic of 

HQ clathrate formation can be significantly improved. 

Experimental section 

Materials 

HQ with purity of 99.5 mol% is provided by Acros Organics. The solvents used for the titration and impregnation 

experiments are butyl acetate and absolute ethanol (purities higher than 99 mol%). CO2 gas used for the experiments 

(mole fraction purity of 99.995%) is purchased from Linde Gas SA. The porous supports are analytical grade spherical 

silica particles (SiliaSphere®) sizing 200-500 µm with pore size of 100 nm provided by SiliCycle. 
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Apparatus and Procedures 

The experimental apparatus used for determining equilibrium conditions of clathrates is composed by a jacketed and 

stirred high pressure crystallizer connected to a gas storage tank, a solvent container, and a vacuum pump [8]. This 

experimental set-up allows achieving isothermal titration [8], which is the method used to determine both the HQ-

HQ-CO2 equilibrium curve and the clathrate occupancy. 

The capture kinetic and the gas storage capacity measurements are performed by a gravimetric method [9] at 3.0 MPa 

and 323 K, using a Rubotherm magnetic suspension balance. For these measurements, the HQ is conditioned in two 

ways in an attempt to increase the clathrate formation kinetics. Pure HQ is ground or deposited on porous support.  

The HQ deposition on porous silica support is performed in fluidized bed in a dry impregnation process [10]. This 

method consists in intermittently spraying a warm fluidized bed of porous silica particles with a HQ solution, allowing 

the coupling of the HQ solution penetration in the particle porosity and the solvent evaporation. 

Results and discussion 

Phase Equilibria and occupancies 

The experimental equilibrium data for the CO2−HQ systems are obtained in this work from isothermal titration 

experiments [8]. The equilibrium curve and the clathrate occupancies at these equilibrium conditions are shown in 

Figure 1. Compared to the CO2 hydrates equilibrium curve [11-12], it can be noted that the CO2-HQ clathrates can be 

formed over a wide range of temperature and at pressures not exceeding 1 MPa for temperatures close to 360 K. 

Regarding the obtained clathrate occupancies, it is obvious that these ones are temperature dependent. The CO2−HQ 

clathrate occupancy decreases with temperature, as already pointed out in literature for other HQ clathrates [13].  

Figure 1: Equilibrium data for CO2-HQ system: , clathrate equilibrium curve; , clathrate 

occupancies as a function of temperature. 

As there is an analogy between enclathration and adsorption, the gas-clathrate equilibrium obey a Langmuir type 

isotherm [13-15], where the involved reaction, given by Equation 1, corresponds to the liberation of the CO2 guest 

molecules from the -HQ host lattice. 

θ CO2 ∙ 3 HQβ      ⇋      3 HQβ    +   θ CO2 (1) 

The Langmuir constant Clang related to this reaction (i.e. the thermodynamic equilibrium constant) depends on clathrate 

occupancy θ and equilibrium pressure Peq, as described by Equation 2. 

Clang = Peq ∙ (1 − θ) θ⁄ (2) 

Thus, the intercalation enthalpy and entropy can be determined from the slope and the intercept of the linear fit of the 

logarithm of the Langmuir constant as a function of the inverse of equilibrium temperature (Figure 2) [13-14]. The 



obtained enthalpy is 42.3 ± 4.0 kJ/molCO2 (14.1 ± 1.3 kJ/molHQ) and the associated entropy is 235 ± 11 J/molCO2/K (78 

± 4 J/molHQ/K). To determine the total dissociation enthalpy of the CO2-HQ clathrate, it is necessary to consider the 

enthalpy of the reversion of the residual -HQ to the -HQ structure of about -0.67 kJ/molHQ [16]. As a result, these 

data indicate that the CO2 can be recovered more easily from CO2-HQ clathrates than from CO2 hydrates as the 

dissociation enthalpy is about 60.6 ± 1.8 kJ/molCO2 (10.0 ± 0.3 kJ/molH2O) between the quadruples points Q1 and Q2 

of this system [17]. 

 

 
Figure 2: Linear fit of the logarithm of the Langmuir constants of CO2-HQ clathrates as a function 

of the inverse of temperature. 

 

 

Kinetic aspects 
 

When the gas clathrate is formed by direct gas/solid reaction between the CO2 and the HQ, the clathrate formation 

kinetics seems to be enhanced by increasing the gas/solid contact area [4-6]. Thus, working on the HQ conditioning 

(i.e. the increase of the specific area of the media and the improvement of the contact area between the CO2 and the 

HQ) is very important to achieve rapid enclathration kinetics.  

 

In this work, we have tested and compared the kinetic performances of HQ powder and of a HQ-silica composite 

material. The grinding of HQ gives a powder with a particle size of about 100 µm. The HQ deposition on porous silica 

support allows developing a composite material having the HQ content of 0.44 gHQ/gSilica.  

 

As shown in Figure 3 by SEM images of the obtained composite, it appears clearly that HQ coats uniformly the 

external surface of the silica particle. Moreover, HQ crystals could be present in the 100 nm pores. Indeed, as suggested 

by Hemati et al. [10] the growth phenomenon does not arise before the full filling of internal porosity. 

 

 
 

Figure 3: SEM images of HQ-silica composite material: (a) full particle and (b) external surface. 

 

The native, ground, and impregnated HQ are evaluated as media in CO2 capture experiments. The amount of CO2 

captured by enclathration as a function of time is shown in Figure 4. For HQ-silica composite materials, the amount 

of CO2 likely to be adsorbed on native silica (i.e. 0.34 molCO2/kgSilica) has been deduced from the total CO2 gas 



captured. It is worth noting that the two conditionings improve the kinetic of clathrate formation, which highlights the 

importance of CO2/HQ contact area.  

 

 
Figure 4: Molar quantity of CO2 captured by enclathration as a function of time normalized by mass of HQ: (full 

line) native HQ, (dashed line) ground HQ, and (dotted line) HQ impregnated on silica particles. 

 

Table 1 presents the kinetic criteria deduced from the gas capture measurements: (i) the reaction rate for the CO2 

solubilization in the -HQ, (ii) the induction time, (iii) the enclathration reaction rate, and (iv) the characteristic time 

at which the clathrate occupancy is 50%.  

 

Compared to native HQ, although grinding of HQ seems kinetically interesting, it is obvious that the HQ-silica 

composite material is the most efficient medium for enclathration. Indeed, for this reactive medium there is no 

induction period, the enclathration reaction rate is increased by a factor 52, and the time to fill 50% of the clathrate 

cavities is decreased by a factor 55 compared to native HQ.  

 

Moreover, for HQ-silica composite material, the system reaches an equilibrium value of clathrate occupancy of 0.89 

after approximately 3.5 days, whereas the clathrate occupancies are 0.18 and 0.34 for native and ground HQ, 

respectively at the same time. After about 1 month of reaction, it is found occupancies of 0.63 and 0.71 for native and 

ground HQ, respectively. These values are in agreement with the ones previously found for CO2-HQ clathrates mono-

crystals synthesized by crystallization from solvent [18]. 

 

Table 1: Kinetic data on the CO2 capture by HQ clathrate formation. 

 

 

 

 

 

 

 

 

 

 

Conclusion 
 

This study brings some information on the potentiality of HQ clathrates for CO2 capture and storage process. The 

measured equilibrium conditions suggest the possibility to overcome specific process limitation, as CO2-HQ clathrates 

can be formed in a wide range of temperature (reaching at least 354 K) and at moderate pressure (few MPa). 

Furthermore, on a kinetic point of view, it is shown that the enclathration kinetic can be improved by a specific 

conditioning of HQ allowing to increase the gas/solid contact area. The induction period can be avoided with a non-

negligible increase of enclathration rate using HQ-silica composite materials. Now, some works are necessary to 

evaluate the viability and feasibility of such reactive media in clathrate-based processes. 

 

 

HQ 

conditioning 

r0 

(mmolCO2/kgHQ/min) 
tind (h) 

rc 

(mmolCO2/kgHQ/min) 
tc

50 (h) 

Native 0.02 23.4 0.32 356.5 

Grinding 0.16 4.2 0.52 218.9 

Impregnation - - 16.5 6.5 
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