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Abstract: Molecular weight, stiffness, temperature, and polymer and ionic concentrations are
known to widely influence the viscosity of polymer solutions. Additionally, polymer molecular
weight—which is related to its dimensions in solution—is one of its most important characteristics.
In this communication, low molecular weight DNA from salmon sperm was purified and then studied
in solutions in a wide concentration range (between 0.5 and 1600 mg/mL). The intrinsic viscosity
of this low molecular weight DNA sample was firstly determined and the evidence of the overlap
concentration was detected around the concentration of 125 mg/mL. The chain characteristics of
these short molecules were studied in terms of the influence of their molecular weight on the solution
viscosities and on the overlap parameter CDNA[η]. Furthermore, to complete previously reported
experimental data, solutions of a large molecular weight DNA from calf-thymus were studied in a
high concentration range (up to 40 mg/mL). The rheological behavior is discussed in terms of the
generalized master curve obtained from the variation of the specific viscosity at zero shear rate (ηsp,0)
as a function of CDNA[η].

Keywords: low and high molecular weight DNA; hydrodynamic behavior; overlap parameter CDNA[η]

1. Introduction

Up to now, two of the most-studied fundamental properties of biomacromolecules such as
DNA, proteins, and polysaccharides have been the hydrodynamic and conformational properties [1,2].
For these purposes, the intrinsic viscosities and the radii of gyration have been the most often
determined [1,3,4]. In the field of biotechnology, changes in the hydrodynamic properties of
these kinds of biomolecules are useful in the development and study of targeting pharmaceutical
molecules [5,6]. Moreover, small fragments of DNA, oligonucleotides, or short biomolecules are
important in nanotechnology studies, due to their contribution to several biological processes such
as DNA packing around histones, compaction, gene transcription, gene delivery via small volume
carriers for gene therapy, among others [7–10].

Recently, Pan et al. [11] reported that zero shear rate viscosity of semi-dilute unentangled DNA
solutions have a power law dependence on the scaled concentration C/C* (where C is the polymer
mass concentration and C* is the overlap concentration), with an effective exponent depending on the
solvent quality parameter z. In their work, they determined the θ-temperature of dilute DNA solutions
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in the presence of salt excess, but they never considered the stiffness of the DNA molecule. Recently,
a detailed study of the rheological behavior of high molecular weight DNA (calf-thymus) solutions
was reported, as well as evidence of the two critical concentrations of the system—i.e., the overlap
and the entanglement concentrations (C* and C**, respectively) [1]. Furthermore, a generalized master
curve was proposed from the variation of the specific viscosity at zero shear rate (ηsp,0) as a function of
the overlap parameter (C[η]) in a range of CDNA[η] values up to 40.

In this paper, a novel representation of the ηsp,0 vs. C[η] relationship based on the expression
previously reported by Kwei et al. [12] is proposed, taking into account the rheological behavior of the
semi-dilute regime with entanglements—i.e., for concentrations over C** and CDNA[η] values up to 160.
Additionally, chain characteristics of very short molecules (only some tens of base pairs), which are of
great importance to molecular or cell biology, [13–15] are studied. The ηsp,0 vs. C[η] relationship was
then found to be applicable to DNA chains with a molecular weight lower than the one corresponding
to the persistence length of 50 nm, where DNA molecules behave as semi-flexible rods.

2. Materials and Methods

2.1. Materials and Solutions Preparation

Low molecular weight (LMW) DNA from salmon sperm, purchased as lyophilized powder,
was purified and then turned into its sodium salt form. The purification process is described in the
following section. Anhydrous NaCl was used to prepare a solvent solution at a concentration of 0.1 M.
A series of low molecular weight DNA solutions was prepared in the concentration range from 0.5
to 1600 mg/mL. High molecular weight (HMW, Mw = 6,559,500 g/mol [1]) DNA samples from calf
thymus DNA were used to prepare solutions in a concentration range from 0.01 to 40 mg/mL. A buffer
solution prepared with Tris-HCl (100 mM) and EDTA (10 mM) was used to maintain a pH of 7.3.
These HMW DNA solutions were prepared with a solvent consisting of a 9:1 ratio of HPLC water
and the Tris–HCl/EDTA buffer (TE buffer). All reagents were provided by Sigma-Aldrich Company
(Toluca, México). All solutions were prepared with HPLC-grade water. To prevent water evaporation,
the vials were closed and sealed with Parafilm® (Bemis NA, Neenah, WI, USA). All solutions were
stored at a temperature of 4 ˝C in order to prevent DNA degradation and were left for a period of at
least one week for stabilization and homogenization.

2.2. Purification of Low Molecular DNA from Salmon Sperm

Low molecular weight lyophilized DNA powder from salmon sperm was firstly dissolved in
water, adding a stoichiometric amount of NaOH 1.0 N. A precipitation with ethanol (60% v/v) was then
performed in the presence of salt excess (NaCl 1.0 M) to exchange the possible divalent counterions
and to recover the sodium salt of DNA, which must be water soluble [16]. Finally, DNA was recovered
by solvent exchange with ethanol–water mixtures up to 100% in ethanol, and drying at 40 ˝C.

2.3. Capillary Measurements

Viscosity measurements of low molecular weight DNA solutions with concentrations between 0.5
and 100 mg/mL were carried out with a capillary viscometer Micro-Ubbelohde (SCHOTT Instruments
GmbH, Mainz, Germany) connected with a semi-automatic chronometer ViscoClock (SCHOTT
Instruments GmbH, Mainz, Germany) at a temperature of 20 ˝C. The selected capillary (No. 501 01)
has a diameter of 0.53 ˘ 0.01 mm and a constant K equal to 0.005.

2.4. Rheological Measurements

The rheological behavior of low and high molecular weight DNA solutions was studied through
flow measurements by using a DHR-3 rheometer from the TA Instruments Company (New Castle,
DE, USA). Three different geometries were used, depending on DNA molecular weight and on the
solution concentration: (1) a steel cone with a 60 mm diameter and an angle of 2˝ was used for low and
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high molecular weight DNA solutions with concentrations in the dilute regime and in the semi-dilute
regime without entanglements (CDNA < C**); (2) a steel cone with a 40 mm diameter and an angle of 2˝

was used for low molecular weight DNA solutions with concentrations higher than 1000 mg/mL and
for high molecular weight DNA solutions with concentrations between 2 mg/mL and 10 mg/mL;
and (3) a rough steel cone and plate for high molecular weight DNA solutions with concentrations
higher than 10 mg/mL, the cone having a 35 mm diameter and an angle of 2˝. Simple shear steady
state measurements were performed in a shear rate range from 1 ˆ 10´3 to 1000 s´1, using five points
per decade. Each sweep was performed at a temperature of 20 ˘ 0.1 ˝C, controlled by a Peltier plate.

3. Results and Discussion

3.1. Low Molecular Weight DNA Sample Characterization

After purification, the commercial low molecular weight DNA from salmon sperm was
characterized through UV-Vis and 1H NMR measurements to confirm its structure [17,18].
When dissolved in water, the structure of this purified LMW DNA sample corresponds to that of an
oligonucleotide in a semi-denatured conformation. The absorbance ratio A260/A280 was measured
on a purified sample dissolved in NaCl 0.1 M, from which was possible to evaluate its purity
(i.e., 1.70 ˘ 0.01), in good agreement with the literature [1,19].

Then, since the DNA molecule bears one formal negative charge per nucleotide, its conformation
is certainly sensitive to changes in the ionic strength, in the number of base pairs, and in the molecular
weight [20–22]. In this manner, the information about intrinsic viscosity is necessary to determine and
to understand the hydrodynamic properties of the DNA molecule under specific conditions. Therefore,
viscosity capillary measurements were performed in order to determine the intrinsic viscosity of
the low molecular weight DNA sample in NaCl 0.1 M at 20 ˝C. Reduced viscosities were calculated
according to Equation (1), and were plotted as a function of DNA concentration (CDNA) following the
Huggins relation [1,23].

ηred “ ηsp{C “ rηs ` k1rηs2C (1)

where C is the polymer concentration (g/mL), ηred is the reduced viscosity, ηsp is the specific viscosity
(corresponding to (η ´ ηs)/ηs, where ηs is the solvent viscosity), [η] is the intrinsic viscosity (mL/g)
and k’ is the Huggins constant.

The intrinsic viscosity, (8.49 mL/g) was obtained from extrapolation to zero concentration. It is
worth mentioning that low values of intrinsic viscosities between 7.5 mL/g and 160 mL/g were
previously reported for oligonucleotides and oligosaccharides [2,24,25]. A recently established
Mark-Houwink relation (Equation (2) for the low molecular weight DNA range—between 10
and 3000 bp (base pair)—was used to estimate the viscometric-average molecular weight of the
sample [2].

rηs “ 3.5ˆ 10´4M1.05 (2)

Thus, the calculated viscometric-average molecular weight for this sample is equal
to 15,000 g/mol, equivalent to around 23 bp (estimated by taking the average weight of a DNA
nucleotide in salt solution as 325 g/mol).

Finally, the overlap concentration (C*) was estimated through the deviation from linear behavior
in the dilute regime (i.e., 125 mg/mL), which is also in good agreement with the value obtained from
the relation to C*~[η]´1.

3.2. Rheological Behavior of Low Molecular Weight DNA

It is well known that long DNA chains like T2, T4, T5, and T7 viruses [26,27], and even
fragments of whole chains viruses [28], present a viscoelastic behavior; however, as the chains
get smaller, the critical value for the shear rate—characterizing the appearance of non-Newtonian
behavior—increases. This transition from Newtonian to non-Newtonian behavior also depends on the
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polymer concentration. In this work, the viscosity of low molecular weight DNA solutions at low shear
rates was studied through flow measurements as a function of DNA concentration. The behavior of
the solution remains Newtonian in all the domains of the selected shear rates—i.e., up to 100 s´1. Then,
the variation of the specific viscosity as a function of polymer concentration was analyzed in terms
of the overlap parameter (CDNA[η]) by means of the generalized master curve, initially proposed for
hyaluronans with various molecular weights. The importance of this approach is recognized since the
intrinsic viscosity values ([η]) also contain information regarding the stiffness of the polymer [29,30].
All the data obtained for the specific viscosity determined by capillary and rheological measurements
for low molecular weight DNA samples and for the specific viscosity determined in the Newtonian
plateau for high molecular DNA samples are plotted together and collapse in the same curve (Figure 1).

It should be pointed out that knowing the intrinsic viscosity of the polymer, it becomes possible
to calculate the specific viscosity at zero shear rate (ηsp,0) for a given polymer concentration and to
estimate the critical concentrations of the system—i.e., the overlap concentration (C*~[η]´1) and the
entanglement concentration (C**, corresponding to C[η]~10).
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Figure 1. Dependence of the specific viscosity at zero shear rate (ηsp,o) as a function of the overlap
parameter CDNA[η] for low molecular weight (LMW) DNA from salmon sperm and high molecular
weight (HMW) DNA from calf-thymus at different concentrations CDNA. The solid line represents the
master curve expressed by Equation (3).

Equation (3) presents a novel representation of the relationship between the specific viscosity
and the overlap parameter, which is based on the expression previously proposed by Kwei et al. for
hyaluronan samples [12].

ηsp “ Crηs r1 ` k1pCrηsq ` k2pCrηsq2 ` k3pCrηsq3.3s (3)

where k1 represents the Huggins constant, which for several water soluble polymers is equal to 0.4,
k2 = (k1)2/2! = 0.08 and k3 = 0.0213.

In this equation, the fourth term represents the behavior of the semi-dilute entangled regime,
with a final slope equal to 4.3 at high polymer concentrations (around C[η] > 10), instead of the value
proposed by Kwei et al. [12] with k3 = (k1)2/3!. This slope value is in good agreement with the power
law established for the regime over the entanglement concentration C**, for which η/ηRouse varies as
(C/C**)3.4 and η varies as (C/Ce)4.42 [31,32]. Furthermore, the reported behavior of the experimental
values for the specific viscosities of hyaluronan and xanthan samples at high polymer concentrations
in 0.1 N NaCl followed the slopes of 4.18 and 4.24, respectively [16,33].
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3.3. Rheological Behavior of High Molecular Weight DNA in the High Concentration Domain

In order to prevent wall-slip phenomena while performing steady state flow measurements of
high molecular weight DNA in the concentration domain larger than 10 mg/mL [34], a cone–plate
geometry with roughened base plate and cone was selected. The roughening of the geometry surfaces
has been satisfactorily applied by several authors and with different materials, like sandblasting or
sandpaper [35–37].

At DNA concentrations higher than 10 mg/mL, there is a large non-Newtonian domain, implying
the use of a model to describe the rheological curve. Then, the viscosity dependence on shear rate for
several DNA solutions with concentrations between 15 and 40 mg/mL was analyzed with the Cross
model, given by Equation (4) [38] (the goodness of the fits having an average R2 of 0.98 ˘ 0.01).

η ´ η8
η0 ´ η8

“
1

1` pK
‚
γq

m (4)

where
‚
γ is the shear rate, η0 is the zero shear-rate viscosity, η8 is the viscosity at infinite shear-rate,

m is a dimensionless parameter related to the degree of shear thinning, and K has the dimensions
of time.

At larger polymer concentrations, the specific viscosity from the zero shear-rate viscosity
determined through the Cross model follows the previously-presented master curve up to
CDNA[η] = 160 (Figure 1). The slope value for specific viscosity as a function of CDNA[η] for these
highly concentrated calf-thymus DNA solutions corresponds to that of the semi-dilute regime with
entanglements, and remains 4.3.

4. Conclusions

A commercial low molecular weight DNA sample from salmon sperm was purified, characterized,
and then studied in solution in a wide concentration range between 0.5 and 1600 mg/mL. The intrinsic
viscosity was found to be equal to 8.49 mL/g, which is in the range of the values of oligonucleotides
and oligosaccharides. The viscometric-average molecular weight value for this sample corresponds
to 15,000 g/mol. The evidence of the overlap concentration was detected around the concentration
of 125 mg/mL. The behavior of these low molecular weight DNA solutions remains Newtonian in all
domains of the selected shear rates (i.e., up to 100 s´1).

All of the data for the specific viscosity at zero shear rate obtained for this LMW DNA were
plotted together as a function of the overlap parameter, and collapse on the curve obtained for the
HMW DNA. The proposed relationship between ηsp,o and CDNA[η] is then valid for DNA chains with
molecular weights lower than 1 ˆ 105 g/mol, where chains are in an almost rod-like state, and for
DNA chains having higher molecular weights, where molecules behave as worm-like chains.

For high molecular weight DNA solutions from calf-thymus with concentrations up to
CDNA[η] = 160, the zero shear-rate viscosity determined through the Cross model follows the improved
master curve. Up to C[η] = 160, the slope value remains at 4.3, with a behavior corresponding to that
of the semi-dilute regime with entanglements.
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Abbreviations

The following abbreviations are used in this manuscript:

DNA Deoxyribonucleic Acid
LMW Low Molecular Weight
HMW High Molecular Weight
TE TrisHCl-EDTA
bp Base pair
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