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SNARE proteins zipper to form SNAREpins that power vesicle fusion
with target membranes in a variety of biological processes. A single
SNAREpin takes about 1 second to fuse two bilayers, yet a hand-
ful can ensure release of neurotransmitters from synaptic vesicles
much faster, in a 10th of a millisecond. We propose that, similar to
the case of muscle myosins, the ultrafast fusion results from cooper-
ative action of many SNAREpins. The coupling originates from me-
chanical interactions induced by confining scaffolds. Each SNARE-
pin is known to have enough energy to overcome the fusion barrier
of 25-35 kBT, however, the fusion barrier only becomes relevant when
the SNAREpins are nearly completely zippered and from this state
each SNAREpin can deliver only a small fraction of this energy as
mechanical work. Therefore they have to act cooperatively and we
show that at least 3 of them are needed to ensure fusion in less than
a millisecond. However, to reach the pre-fusion state collectively,
starting from the experimentally observed half-zippered metastable
state, the SNAREpins have to mechanically synchronize which takes
exponentially longer time as the number of SNAREpins increases. In-
corporating this somewhat counter-intuitive idea in a simple coarse
grained model results in the novel prediction that there should be an
optimum number of SNAREpins for sub-ms fusion: 3-6 over a wide
range of parameters. Interestingly, in situ cryo-electron microscope
tomography has very recently shown that exactly six SNAREpins par-
ticipate in the fusion of each synaptic vesicle. This number is in the
range predicted by our theory.

SNARE | membrane fusion | protein folding | neurotransmitter release
| muscle contraction

1. Introduction

Protein transport within cells relies heavily on membrane-
enveloped vesicles that ferry packets of enclosed cargo

(1–4). The content of the vesicles is released via their fusion
with target membranes. This transition is impeded by repul-
sive forces acting when the distance between the membranes
is in the range of ∼1 nm. The encountered energy barrier
is of the order of 30 kBT, implying that spontaneous fusion
would take minutes, which is not fast enough in most biolog-
ical situations (5–8). For this reason, the process is assisted
by SNARE proteins (soluble N-ethylmaleimide-sensitive fac-
tor attachment protein receptors, SNAREpins) whose confor-
mational change (zippering) exerts forces pulling the vesicle
membrane towards the target membranes.

While the total free energy change associated with the zip-
pering process is of the order of ∼70 kBT (9), most of this
energy is consumed as the SNAREpins bring the membranes
into close apposition. Biologically, the initial assembly prior
to fusion provides compartmental specificity (pairing the cor-
rect SNAREs together) and allows for temporal regulation
(clamping). Terminal zippering is then the process which
utilizes the remaining energy for bilayer fusion at the small

(∼1 − 2 nm) separations where the repulsive forces become
relevant. Recent studies suggest that each SNAREpin can
deliver only about 5 kBT of mechanical work at this stage
(10, 11), which explains why it takes about 1 second for a
single SNAREpin to fuse two bilayers (12, 13).

It is known however that the release of neurotransmitters
from synaptic vesicle occurring at nerve endings happens con-
siderably faster, in a 10th of a ms as is necessary to keep pace
with action potentials, and ensure synchronous release (4, 14–
18). A widely accepted explanation for this remarkable differ-
ence in time scales is that multiple SNAREpins would need
to cooperate to accelerate fusion after being synchronously
released from a clamped state. There have been indirect indi-
cations that the number of SNAREpins necessary to achieve a
sub-millisecond fusion may be relatively small, ranging from 2
to 6 (19–21). Very recently, cryo-electron microscope tomog-
raphy of synaptic vesicles in situ revealed an underlying 6-fold
symmetry suggesting that exactly 6 SNAREpins are involved
in such processes (22).

How so few co-operating SNAREpins manage to accelerate
fusion ten thousand times (from ∼1 s to ∼0.1 ms) has been
a mystery. Previous modeling attempts have suggested that
more than 16 SNAREpins would be required (23, 24). Here we
show that the key to understand how only a few SNAREpins
can achieve such rapid fusion is the simple fact that they are
mechanically coupled through effectively rigid common mem-
branes. The account of such mechanical coupling leads to a
striking prediction that the number of SNAREpins must be
highly constrained to ensure sub-millisecond release of neuro-
transmitters. Quite remarkably, the predicted optimal range,
3-6, is in excellent agreement with most recent experimental
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Fig. 1. The fusion machinery. (A) schematic of the two membranes with two attached
SNAREpins. (B) Mechanical model with N = 4 SNAREpins in parallel bridging the
two membranes separated by the distance y; two SNAREpins are in state c and two
are in state n so Nc = 2. (C) Model of a single SNAREpin. (D) Fusion energy
landscape. See Table 1 for the complete list of parameter values.

results (22).
We draw a fundamental analogy between the collective zip-

pering of the SNAREpins and the power-stroke in a bundle of
elastically coupled muscle myosin II proteins which is known
to also take place at 1 ms timescale. Building upon the sem-
inal theory of the myosin power-stroke proposed by Huxley
and Simmons (25–28), we model the fusion machinery as a
mechanical system where the SNAREpins are represented as
snap-springs interacting through supporting membranes. The
implied bi-stability is supported by recent experiments show-
ing the presence of a metastable half-zipped state (10, 11).

The theoretical approach developed in this paper high-
lights the essential role of mechanical coupling among proteins
undergoing conformational changes in ensuring swift, highly
synchronized mechanical response. This is likely a general
biological principle (27, 29).

2. Fusion Machinery

The goal of the model is to describe the dynamic coupling be-
tween the individual SNAREpins zippering and to study the
associated evolution of the distance between the vesicle and
a the target membrane. The assembled SNARE machinery is
represented as a bundle of N parallel SNAREpins bridging the
two membranes, separated by the distance y, see Fig. 1[(A)
and (B)]. We assume that irreversible fusion occurs when this
distance reaches a critical value yf . The characteristic length
associated with the deformation of the membranes generated
by a zippering SNAREpin is large compared to the typical size
of the SNARE bundle, see Materials and Methods A. Hence,
the membranes can be viewed as two rigid backbones cross-
linked by N identically stretched SNAREpins.

Single SNAREpin as a bi-stable snap-spring The experimental
work conducted in Refs. (10, 11, 30), suggests that a single
SNAREpin can switch randomly between two metastable con-
formations: n (half-zippered) when only the N-terminal do-
main of the SNAREs is zippered and c (fully zippered), when
both the C-terminal and the linker domain are zippered. To
describe this process, we assume that the half-to fully zip-
pered transition in a SNARE complex is similar to the pre-

Table 1. Physical parameters adopted in the model and references

Parameter Symbol Value Units Reference

Zipping distance a 7 nm (10)
Energy bias e0 28 kBT (10)
Fully zipped stiffness κc 12 pN nm−1 SI**
Half-zipped stiffness κn 2.5 pN nm−1 SI
Maximum zippering rate k 1 MHz (10)

Drag coefficient η 3.8 × 10−7 N s m−1

FB* position yf 2 nm (5, 31)
FB width σf 0.3 nm (6, 32)
FB height ef 26 kBT (7, 8)

*FB: Fusion Barrier; **SI: SI Appendix; 1 kBT ≈ 4 zJ

to post-power-stroke conformational change in a myosin mo-
tor, (25, 27).

Suppose that each SNAREpin is equipped with an inter-
nal spin type degree of freedom characterizing the state of
the protein, n or c. We denote by a the amount of shortening
resulting from the n → c transition in the absence of external
load, and by e0 the energy difference between the two states.
This parameter can be interpreted as the typical amount of
mechanical work necessary to force the c → n transition (par-
tial unzipping), see Fig. 1(C).

When the SNAREs are bound to the membranes, we
assume that the rates k+(y)—associated with the n → c
transition—and k−—associated with the c → n transition—
depend on the mechanical load induced by the variations of
the inter-membrane distance. To specify this dependence,
both states are assumed to be “elastic” in the sense that
they exist, as phases, over an extended range of separations
y, due to elongations of the zippered and unzippered SNARE
residues, internal bonds rearrangement etc..., see Fig. 1(C).
For simplicity we assume that the deformations remains in
the elastic regime so that states n, c can be associated with
quadratic energies en,c(y), with minima located y = {0, a},
and with the lumped stiffnesses κn,c. The transitions rates
are defined so that, for a given separation, they favor the
state with the lowest energy and verify detailed balance. For
the detailed expressions of en,c and k±, see Materials and
Methods B.

Dynamics of the fusion machinery The parallel arrangement
of the SNAREs implies that the conformational state of the
bundle is fully characterized by Nc, the number of SNARE-
pins in state c. This variable evolves according to the
stochastic equation Nc(t + dt) = Nc(t) + {1, −1, 0}, with
the outcomes {1, −1, 0}, characterized by the probabilities
W+1(y, Nc) = (N − Nc) k+(y)dt, W−1(y, Nc) = Nc k−(y)dt
and W0 = 1 − W+1 − W−1. While the SNAREpins can switch
independently, the transition rates k± are functions of the
collective variable y, whose dynamics in turn depends on Nc.

To specify the coupling between the two degrees of freedom
Nc and y, and thereby formulate the complete model of the
fusion process, we first recall that the motion of the vesicle
in the overdamped regime results from the balance between
the force applied by the N SNAREpins, the membrane repul-
sion and the viscous drag. Taking into account the thermal
fluctuations, this force balance translates into the stochastic
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Fig. 2. Main results. [(A) and (B)] typical stochastic trajectories of the inter-membranes distance y (A) and the number Nc(t) of SNAREpins in state c (B) obtained from
the numerical simulation. (C) Average of the waiting times τ1 (black), τ2 (blue) and τfusion = τ1 + τ2 (red) obtained from the numerical simulations (symbols) and from
our effective chemical model (lines). (D) Effective free energy landscape Φ showing the three stages of fusion and the associated transition rates. Parameters are listed in
Table 1.

equation,

ηẏ = − ∂

∂y
(Esnare + Efusion) +

√
2η kBT ξ(t), [1]

where ξ(t) is a standard white noise, and η is a drag coefficient
representing the friction opposing the motion of the vesicle.
At a given y, the force applied by the bundle derives from
the sum of individual SNAREpin energies Esnare(y, Nc) =
Nc ec(y) + (N − Nc) en(y). Finally, the inter-membrane repul-
sion, due to short-range forces between the two membranes,
is schematically modeled by a Gaussian energy barrier (5)
Efusion(y) = ef exp[−(y − yf )2/(2σ2

f )], where yf is the critical
separation, while ef and σf are the height and the width of
the barrier, respectively, see Fig. 1(D). The ensuing dynamics
of the system unfolds in the space of two variables: the contin-
uous one, y(t), and the integer-valued one, Nc(t). The associ-
ated energy landscape has a multiwell structure that accounts
for the configurational states of N individuals. The response
is governed by the two stochastic equations, for which initials
conditions still need to be specified. We consider the initial
state Nc(t = 0) = 0, and y(t = 0) = a, which corresponds to
the configuration where the SNAREpins are at the bottom of
the energy well describing state n. This configuration char-
acterizes the system immediately after the calcium induced
collapse of Synaptotagmin which triggers the full zippering of
the SNAREs (33). This point is discussed in more details in
Section 4.

Model parameters The model is calibrated as follows, see Ta-
ble 1 and SI Appendix (A) for further details. The mechanical
parameters characterizing a single SNAREpin, a, e0, κn and
κc, are determined by using our model to reproduce the ex-
perimental results obtained from stretching tests with optical
tweezers, see Refs. (9, 10). The energy bias a and e0 are
chosen to be compatible with the results obtained from these
studies. The procedure used to estimate the stiffnesses κn,c is
more complex and explained in details in SI Appendix. The
value of the rate k, is fixed in accordance with estimates from
Refs. (10, 34). The drag coefficient is computed using the

Stokes formula η = 6πµR, where R = 20 nm is the vesicle ra-
dius, and µ = 10−3 Pa s the fluid viscosity. The corresponding
characteristic timescale is τη = ηa2/(kBT ) ≈ 4.5 µs.

The values of the parameters yf , σf and ef are chosen to be
compatible with the current literature (7, 8, 11, 12, 23, 24, 35–
41). In particular, values of ef between 26 and 34 kBT have
been reported for various types of lipids. We chose 26 kBT
[POPC∗, see Ref. (8)] which leads to a single SNAREpin av-
erage fusion time of 1 s.

3. Results

Numerical simulations Typical stochastic trajectories, y(t)
and Nc(t) obtained from numerical simulations, are shown in
Fig. 2[(A) and (B)]. They indicate that the fusion process can
be decomposed into two stages, characterized by the times τ1
and τ2. During the first stage, the system remains in its initial
configuration (y ≃ a, Nc = 0) with only isolated n → c → n
transitions. After a time τ1, the inter-membrane distance
drops abruptly to y ≃ 2.5 nm, while all the SNAREpins collec-
tively switch from state n to state c. The inserts in Fig. 2[(A)
and (B)] show that this transition occurs within 10 ns after
the inter-membrane distance has reached the value y = y∗; the
irreversible collective zippering itself (Nc = 0 → Nc = 4) last-
ing about 1 ns. After the synchronized n → c transition the
inter-membrane distance remains above the threshold y = yf

for a time τ2 before fusion. The duration of the whole process
is therefore τfusion = τ1 + τ2.

The mean timescales τ̄1 and τ̄2 (obtained by averaging 103

stochastic trajectories) are represented as functions of the
number of SNAREpins in Fig. 2(C) on a semi-logarithmic
scale. Observe that τ̄1 increases exponentially with N and
τ̄2 decreases exponentially with N . These antagonistic N -
dependencies result in the average fusion time τ̄fusion = τ̄1 + τ̄2
exhibiting a remarkably sharp minimum, see Fig. 2[(C), red].
With the set of parameters values reported in Table 1, this
minimum is attained at N∗ = 4 and is associated with a fu-
sion timescale of ∼100 µs. In addition we obtain a fusion time

∗1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine lipid
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of the order of 1 s for a single SNAREpin. Both values are
consistent with in vitro (12) and in vivo (14, 42) experimental
measurements.

Fusion as a two-stage reaction To elucidate the mechanism of
fusion in two stages, we present here a ‘toy’ model where the
whole process is recast as two successive reactions

unfused ↽−−−
k−1

k1−−−−−⇀ IS k2−−→ fused, [2]

where IS stands for an intermediate state whose character-
istics depend on the mechanical properties of the zippered
SNAREpins. In this representation, the fusion is viewed as
the outcome of two distinct sub-steps: the collective zippering
and the topological membrane merger.

To justify such model reduction, we assume that the
timescale of the n ⇌ c transition is negligible compared to
the timescale describing the relaxation of the vesicle position.
In the corresponding limit (ktη ≫ 1) Eq. (1) can be averaged
with respect to the equilibrium distribution of the variable
Nc(t) [see Materials and Methods D], so the original system
reduces to the one-dimensional stochastic equation

ηẏ = − d
dy

[
Nfsnare(y) + Efusion(y)

]
+

√
2η kBT ξ(t), [3]

where, the energy Esnare(Nc, y) appearing in Eq. (1)—
which depends on Nc and y—is replaced by the equilib-
rium free energy fsnare(y) = −kBT log {exp [−ec(y)/(kBT ) ] +
exp [−en(y)/(kBT ) ] }—which depends only on y. This free
energy is illustrated in Fig. 2[(D) dashed line]. The overall
potential Φ(y) = Nfsnare(y) + Efusion(y), driving the effective
dynamics (3) is shown by the solid red line in Fig. 2(D). It
exhibits two local minima representing two metastable states.
The first metastable state [point A in Fig. 2(D)] is located
at y ≃ a, where on average all the SNAREpins are in state
n. The second one [point B in Fig. 2(D)] is located at
yf < y2 < y∗ and represents the intermediate state where
on average all the SNAREpins are in state c, still confronting
a reduced fusion barrier.

The system evolving in this energy landscape from the
initial—y ≃ a—to the final—y = yf — state faces two succes-
sive energy barriers ∆Φ1 and ∆Φ2. With each barrier ∆Φ1,2
one can associate a waiting time τ̄1,2, that can be approxi-
mated by the Kramers formula (43–45)

τ̄1,2 = τηα1,2 exp [∆Φ1,2/(kBT )] . [4]

The values of the numerical prefactors α1,2 are determined by
the local curvatures of the potential Φ at its critical points
and depend weakly on N , see Materials and Methods D.

The approximated timescales τ̄1,2 are compared with the
numerically computed values τ1,2 in Fig. 2[(C) solid lines].
The excellent agreement between the two sets of results sug-
gests that the whole fusion process can effectively be described
by two successive ‘chemo-mechanical’ reactions, and that the
rates in Eq. (2) can be computed from the formulas k1,2 = τ̄−1

1,2
while the remaining rate k−1 is prescribed by the condition of
detailed balance.

Finally, note that with the parameters reported in Table 1,
kτη = 4.5, which shows that our effective model is accurate
even if the condition kτη ≫ 1 is not fully satisfied.

The peculiar dependencies of the waiting times τ1,2 on the
number of SNAREpins N can be now understood by referring
to the N -dependence of the energy barriers ∆Φ1,2.

Timescale τ2: The cooperative action of the SNAREs reduces the
time for crossing the fusion barrier. In the intermediate state
[point B in Fig. 2(D)], the SNAREpins are all in state c and
the pulling force they apply on the membranes is exactly bal-
anced by the short range repulsive forces. The system remains
trapped in this state until a thermal fluctuation delivers the
energy ∆Φ2 allowing the system to reach the distance y = yf ,
where the fusion occurs.

In the absence of SNAREs, this energy difference is simply
the bare fusion barrier ef , see Fig. 1(D). When the SNARE-
pins are present, the total force they apply brings the two
membranes in close contact, which reduces the energy bar-
rier. This effect is amplified by an increase in the number of
SNAREpins: the larger the number of SNAREpins, the larger
the overall force, so the closer the membrane can be brought
together, see Fig. 2(D).

Since the inter-membrane potential Efusion(y) decays
rapidly as y increases, we can approximate the second energy
barrier by ∆Φ2 ≃ ef − Nw, where w represents the amount
of mechanical work that a single SNAREpin can deliver, see
Materials and Methods E for the derivation of this result and
the mathematical expression of w. According to Eq. (4), we
then have

τ̄2(N) ∝ exp [−Nw/(kBT )] , [5]
hence the exponential decay of the time τ2 with the number
of SNAREpins.

With the parameters of Table 1, each SNAREpin provides
a mechanical work w ≃ 4.5 kBT when it encounters the fusion
barrier, which reduces the average time for fusion τ̄2 by a fac-
tor of ∼ 100, see Fig. 2(D). This multiplicative effect allows
fast fusion at the sub-millisecond timescale with as few as
three SNAREpins. For large enough number of SNAREpins
(here N > 7), the overall applied force surpasses the mem-
brane repulsion and the remaining fusion barrier disappears.
The obtained exponential decay of the timescale τ2 with the
number of SNAREpins suggest that the fusion could in prin-
ciple proceed much faster than ∼100 µs, being only limited by
viscous forces. Considering that each vesicle can accommo-
date up to ∼100 SNAREpins, one cannot rule out the possi-
bility of neurotransmitter release occurring much faster than
100 µs. Next we argue that such scenario is unlikely by show-
ing that the fusion process gets slowed down if the number of
SNAREpins becomes too large.

Timescale τ1: Increasing the number of SNAREpins slows down the
synchronous zippering. The average time τ̄1, taken for all the
SNAREpins to switch from the n to the c conformation and
then pull the membranes toward the bottom of the fusion bar-
rier, exponentially increases with the number of SNAREpins
N , see Fig. 2C. This dependence can be explained as follows.

As long as y∗ < y < a, the individual transition rates are
such that k+ < k− which implies that, on average, all the
SNAREpins are in state n and therefore under compression,
see Fig. 1(C). This idea is in agreement with the experimen-
tal results from Ref. (9), that revealed the presence of the
half-zipped metastable state. Consequently in the interval
y∗ < y < a the average force −dfsnare/dy, that the SNARE-
pins collectively exert on the membranes, is repulsive. Be-
yond the point y ≃ y∗, the state c is stabilized (k+ > k−)
and the average force becomes attractive. Since this force is
proportional to the number of SNAREpins, the waiting time
before a fluctuation can provide enough energy to surpass the

4–8 | Manca et al.



  

Fig. 3. Effect of the intrinsic energy barrier ∆e on the optimal number of SNAREpins
(A) and on the associated fusion time (B).The parameters values are taken from
Table 1 with κn = 0.11 − 24 pN nm−1.

repulsion—and overcome the barrier ∆Φ1—increases with N .
This constraint results from the mechanical feedback induced
by the membranes. The latter play the role of a rigid back-
bone that forces the SNAREpins to bridge approximately the
same intermembrane distance, see Refs. (28, 29, 46).

To specify the N -dependence of τ1, we use the fact that
for y > y∗ we can consider that Efusion = 0, so ∆Φ1 can
be approximated by ∆Φ1 ≃ N [fsnare(y∗) − fsnare(a)] ≃ ∆e −
kBT log(2), where ∆e = en(y∗)−e0. According to Eq. (4), we
can then write

τ̄1(N) ∝ exp [N∆e/(kBT )] , [6]

which shows that the timescale τ̄1 increases exponentially with
the number of SNAREpins.

From Eq. (6) we obtained that the first energy barrier is
fully controlled by a single parameter ∆e which therefore has
a strong influence on both the existence and value of the op-
timal number of SNAREpins. To study the effect of ∆e on
the fusion time, we varied the parameter κn describing the
curvature of the energy en. The results of our parametric
study are summarized in Fig. 3. These data were obtained
by using Eq. (4) to compute the intersection of the curves
τ̄1,2(N) for each value of ∆e. We checked that the results are
in good agreement with direct numerical simulations. Despite
the broadness of the interval of parameter values tested, the
optimal number of SNAREpins remains below 10. If we con-
sider only the cases corresponding to sub-millisecond fusion
times, we obtain N ≥ 3 with ∆e < 4 kBT. The latter value is
compatible with recent estimate of ∆e ≈ 5 kBT for the n → c
transition energy barrier, see Refs. (9, 17). Note also that the
predicted optimal number of SNAREpins is robust because it
corresponds to a plateau on the N∗(∆e) curve, see Fig. 3(A).

Robustness of the predictions. The results presented above,
were obtained for the parameters values listed in Table 1. For
some of these parameters only a rough estimate is available at
this stage, see SI Appendix. To test the robustness of our the-
oretical predictions, we computed the average waiting times
τ̄1,2(N) from Eq. (4) for different values of four key parame-
ters of the model, e0, κc, ef , σf , see Fig. 4. For each of these
parameters, the lower and the upper bounds delimit broad
intervals covering the values obtained from different experi-
mental studies.

A comparison between Fig. 4 and Fig. 2(B) shows that
our results are only marginally affected by changes in the
parameter values. In particular, the existence of a sharp min-
imum of the fusion time, associated with an optimal number

  

Fig. 4. Robustness of the prediction. Influence of the parameters e0 (A), κc (B), ef

(C) and σf (D), on the timescales τ̄1,2 and τ̄fusion. The results were obtained using
Eq. (4).

of SNAREpins, is a robust prediction. In addition, the value
of the optimal number of SNAREpins, is weakly sensitive to
the parameters: it always remains in between 3 and 6. Re-
markably, despite the large difference between the upper and
lower bounds for each of the parameters, the average fusion
time remains in the sub-millisecond scale.

The energy landscape associated with the zippering of the
SNARE complexes is the object of intense current research
(9, 17, 47). In our model this landscape is fully character-
ized by only four parameters: the distance a, the energy e0,
and the stiffnesses κn,c. While the distance a has been mea-
sured with precision in recent works (9, 10), the values of
the other three parameters are still not known with certainty.
Several estimates of the energy bias e0 lying between 20 and
40 kBT can been found in the literature (9, 48). We show in
Fig. 4(A) that variations within this interval affect mostly τ1,
change the fusion time by one order of magnitude, but have
almost no effect on the optimal number of SNAREpins. Cur-
rently, only indirect evaluation of the stiffnesses κn,c can be
obtained from the available data, see SI Appendix. Within
the broad range of values tested in our numerical simulations
we again observed only small variations of the optimal number
of SNAREpins, see Fig. 3, and Fig. 4(B).

One of the most documented physical phenomena involved
in the fusion process is the merging of the two membranes.
The amplitude of the associated repulsion force depends, in
our model, on the parameters ef and σf , whose influence on
the fusion time is illustrated in Fig. 4[(C) and (D)], respec-
tively. As expected from the analysis presented in Section 3,
changing the values of these two parameters affect only the
height of energy barrier ∆Φ2 and therefore the timescale τ2.
Increasing ef raises the height of the maximum of Efusion [see
Fig. 1(D]), while decreasing σf deepens the second energy well
[point B in Fig. 2(D)], which results in both cases in the in-
crease of τ2. This leads in fine to the increase of the optimal
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number of SNAREs. Notice that ef depends on the type of
lipids, on the membrane curvature and is also strongly sen-
sitive to the membrane tension (37–41). Therefore, its value
can be different in different cells or experimental set-ups. In
particular, we expect the in vivo value to be smaller than
the value measured in artificial systems (35 kBT ), which in
general use low tension and low curvature membranes, see
Ref. (8).

In conclusion, while additional experimental studies are
needed to refine the calibration of the model, the above para-
metric study shows the robustness of the effects of the me-
chanical crosstalk between the SNAREpins.

4. Discussion

In this paper, we elucidated the central role played by me-
chanical coupling in synchronizing the activity of SNAREpins,
which is necessary to enable sub-millisecond release of neuro-
transmitters. Our approach to the problem complements pre-
vious studies focussed predominantly on the molecular details
of the single SNARE zippering transition (9, 10, 30, 37, 47, 49–
53).

As a starting point we used a previously unnoticed anal-
ogy between the activity of SNARE complexes and the func-
tioning of myosin II molecular motors. Viewed broadly, both
systems ensure ultra-fast mechanical contraction. In the case
of muscle, destabilization of the pre-power stroke state is the
result of a mechanical bias created by an abrupt shortening
of the myofibril (25, 54). In the case of SNAREs, similarly
abrupt destabilization is a result of the calcium-induced re-
moval of the synaptotagmin-based clamp, most likely when
Ca2+ triggers disassembly of the synaptotagmin ring (55).

To pursue this analogy, we developed a variant of the
power-stroke model of Huxley and Simmons (25, 27), in which
the zipping is viewed as a transition between two discrete
states endowed with different elastic properties. This repre-
sentation is supported by recent experiments (9, 10), which
provided essential data for the calibration of the model.

Our analysis of the collective behavior of N “switchers”
of this type suggests that the main function of the SNARE
machinery is to bring the two membranes to a distance be-
yond which the fusion process can proceed spontaneously.
The emerging intermediate configuration, where the two mem-
branes are sufficiently closely tethered, can be then viewed
as an intermediate state in the reaction process linking the
fused and unfused states. The result is a representation of
the SNARE mediated fusion as a two stage reaction.

We linked the first stage of the process with the collec-
tive zippering of the SNAREpins and showed that this step
gets exponentially more sluggish as the number of SNARE-
pins increases. This phenomenon was studied previously in
the context of muscles, see Refs. (26, 29). It originates (i)
from the experimentally suggested presence of a metastable
half-zipped state along the zippering free energy landscape (9),
and (ii) from the long-range mechanical interactions mediated
by the scaffolding membranes, which create a negative feed-
back preventing a fast collective escape from the metastable
half-zippered state.

The second stage of the process is the transition from
the intermediate state to the fused state. The associated
timescale τ2 decreases exponentially with the number of
SNAREpins because the larger the number of acting SNARE-

pins, the closer the membranes can be brought together in
the intermediate state and therefore the higher is the energy
of this state. This results in an exponential decay of the
timescale τ2 with the number of SNAREpins. Behind this
phenomenon is the presence of a residual force in the con-
figuration where the SNAREpins have reached the interme-
diate state. This perspective is supported by the results of
Ref. (10, 11).

The antagonistic N -dependence of the rates characterizing
the two stages reveals the existence of an optimal number of
SNAREs N∗ allowing the system to perform fusion at the
physiologically appropriate timescales. Our prediction N∗ =
4 − 6 is supported by recent in situ cryoelectron microscope
tomography observation, see Ref. (22).

We remark that our result strongly depend on the initial
configuration of the system, which we link with the structure
of the fusion machinery immediately after Synaptotagmin re-
moval by calcium. Notice that the position y∗ of the barrier
separating the half-zippered and the fully zippered states is
such that y∗ < a. Therefore the timescale τ1 exists only if
the initial membrane separation y0 > y∗. This assumption
seems to be supported by experiments, see Ref. (56). It has
previously been reported that, upon approach of two mem-
branes devoid of SNAREs, Synaptotagmin exerts repulsive
force from 10 nm down to 4 nm where it becomes a repulsive
wall (56). According to this result, y0 should range between 4
and 10 nm. However it is probably slightly larger under phys-
iological conditions because of the presence of the SNAREs.
With the parameters adopted in our simulations (see Table 1),
the position of the barrier is yf ≃ 4.5 nm in accordance with
Refs. (9, 10), see Fig. 2. Therefore, in all likelihood, y0 is
larger than y∗ and our predictions should be valid.

Finally we mention the fact that the timescale τ2 exponen-
tially decrease with N seems to be supported by experimental
studies reporting sub-millisecond fusion time with N = 3 − 6
(19–21) However, in a recent theoretical study the decay was
also found to be exponential but with a much slower decay:
the cooperation of at least sixteen SNAREs was predicted
to be necessary to reach the physiological fusion time ∼100 µs
(23, 24). The difference is explained by the fact that the resid-
ual work in this study is w = 0.48 kBT instead of 4.5 kBT in
our model, seeEq. (5). This difference originates from the as-
sumption made by the authors that the zippering energy of a
SNARE complex is entirely dissipated before the membranes
encounter the fusion barrier. In other words, the authors have
implicitly assumed that after the calcium entry, the zippering
of the SNAREpins does not generate any pulling force to as-
sist fusion and concluded that the remaining residual force
is of entropic nature. Recent direct microscopic observations
implying that synaptic fusion involves only six SNAREpins
(22) would appear to invalidate this assumption.

In conclusion, our model describes membrane fusion by a
team of mechanically interacting SNAREpins as a two stage
process. We show that conventional biochemical and biophys-
ical measurements cannot be used directly to predict the as-
sociated rates and that mechanical modeling is crucial for
linking these rates with independently measured parameters.
Our work emphasizes the importance of identifying mechani-
cal pathways and specifying mechanistic feedbacks. The main
conceptual outcome of our study is the realization that in the
case of synaptic fusion, SNARE proteins can perform opti-
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mally only if they act collectively. The remarkable fact is that
when the team is of the optimal size, such synchronization is
not deterred by thermal fluctuations, which guarantees that
the collective strike is simultaneously fast, strong and robust.

Finally, we mention that the synaptic fusion is only one
of many biophysical processes involving mechanically-induced
collective conformational changes. Other examples include
ion gating in hair cells (57, 58), collective decohesion of ad-
hesive clusters (59, 60), folding-unfolding of macromolecular
hairpins (61–63) and folding of ParB-ParS complexes in DNA
condensation (64, 65). In each of these situations one can iden-
tify a dominating long-range mechanical interaction making
the theoretical framework developed in this paper potentially
useful.

Materials and Methods

A. Rigid membrane assumption. We assume for simplicity that the
vesicle and the target membranes are rigid, which implies that all
the SNAREpins share the same inter-membrane distance y. This
approximation is valid if the characteristic length ℓ associated with
the deformation generated by a single SNAREpin is large compare
to the size of the SNARE bundle. We can use the following es-
timate ℓ =

√
κ/σ, where κ is the membrane rigidity and σ is

the membrane tension. We have typically κ ∼ 20 − 50 kBT and
σ ∼ 10−4 − 10−6 N m−1 so ℓ ∼ 30 − 120 nm. Since the size of the
SNARE bundle is less than 10 nm, our assumption should be valid.

B. Model of a single SNAREpin. We set, for simplicity, that the ener-
gies en and ec of the SNAREpins in the states n and c, respectively,
depend on y quadratically, so that

en(y) = (κn/2)(y − a)2 + e0,

ec(y) = (κc/2)y2,
[7]

where κc,n represent lumped stiffnesses parameters. We denote y∗
the distance where en(y∗) = ec(y∗), see Fig. 1(C). In the absence
of external load (zero force), the stable states are located at y = a
and y = 0. In this situation the entire energy associated with the
zippering process is consumed when the SNAREpin reaches state
c at y = 0, which can then be considered as a ground state with
zero energy.

The rates k± of the n ⇌ c transitions obey the detailed balance
relation k+/k− = exp [(ec − en)/(kBT )], with the bias towards the
direct transition n → c, i.e. k+ > k−, at y < y∗ and conversely,
in the direction of the reverse transition c → n at y > y∗, see
Fig. 1(C)

For simplicity, and following (25), we consider that the transi-
tion from the high to the low energy state occurs at a constant
rate k, which fixes the characteristic timescale of the conforma-
tional change. This assumption could be easily replaced by a more
adequate one at the expense of introducing two additional param-
eters but with only a minimal impact on the results, see Ref. (28).
With this assumption and using the detailed balance, we write the
transition rates as

k−(y) = k, k+(y) = k exp{[en(y) − ec(y)]/(kBT )}, if y > y∗

k+(y) = k, k−(y) = k exp{[ec(y) − en(y)]/(kBT )}, if y < y∗.

C. Numerical implementation of the model. The discrete stochastic
process associated with the variable Nc was simulated as a two-
state Markov chain with a fixed timestep ∆t = 10−6 tη . At each
timestep the transition probabilities W+1,−1,0∆t are computed and
the next event is chosen based on an acceptation-rejection condition
using a random number uniformly distributed between 0 and 1.
The Langevin equation was simulated using a first order explicit
Euler scheme. More details about the computer algorithms can be
found in SI Appendix.

D. Adiabatic elimination of the variable Nc. We consider the situa-
tion where tη ≫ k−1: the characteristic time of the conformational
changes is negligible compared to the timescale associated with the
relaxation of the vesicle’s position. In this limit, the conforma-
tional state of each SNAREpin can be considered at equilibrium.
Therefore for a given position of the vesicle y, the probability of a
configuration with Nc SNAREpins in state c follows the Boltzmann
distribution

ρ(Nc; y) =
1

Z(y)
( N

Nc

)
exp {− [Ncec(y) + (N − Nc)en(y)] / (kBT )} ,

[8]
where

(
N
Nc

)
= N !

Nc!(N−Nc)! . We then integrate Eq. (1) with respect
to the distribution (8) and obtain Eq. (3). Since the energy Esnare
is linear in Nc, our approximation results in replacing Nc by its
average ⟨nc⟩(y) =

∑
Nc

Ncρ(Nc; y) in Eq. (1). In Eq. (4), the pref-
actors are given by (45) α1,2 = 2πkBT

a2
√

Φ′′
1,2(ymax)|Φ′′

1,2(ymin)|
, where

ymax and ymin denote the positions of the considered barrier and
minimum, respectively.

E. Estimation of the mechanical work w. In the intermediate state,
inter membrane distance y2 is sufficiently lower than the threshold
y∗, so that the free energy can be well approximated by the energy
of the state c. We then write Φ(y) ≃ Efusion(y) + N κc

2 y2 which
leads to the following expression for the energy barrier separating
the intermediate state and the fused state,

∆Φ2 = ef

{
(1 − exp

[
−(y2 − yf )2/(2σ2

f )
]}

+ N
κc

2
(y2

f − y2
2).

By noting that y2 verifies dΦ(y)
dy

∣∣∣
y=y2

= 0, we obtain ∆Φ2 =

ef − Nw, with

w ≃ κc

(
y2

2 − y2
f +

σ2
f y2

y2 − yf

)
≥ 0.

Notice that since the energy Efusion decays rapidly for y > yf , the
parameter y2 depends weakly on N .
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