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EQUICONTINUITY AND LI-YORKE PAIRS OF

DENDRITE MAPS

GHASSEN ASKRI

Abstract. In this paper, relationships between equicontinuity of a den-
drite map f on Λ(f), absence of Li-Yorke pairs, collection of minimal
sets and regularly recurrent points are investigated.

1. Introduction

Let (X, f) be a dynamical system i.e. X is a compact metric space with
metric d and f : X → X is a continuous map. Denote by N the set
{1, 2, 3, . . . } and Z+ = N ∪ {0}. For any n ∈ N, fn = fn−1 ◦ f where f0 is
the identity map.

1.1. Topological dynamics. Let x ∈ X. The orbit of x (under f) is
Orbf (x) = {fn(x);n ∈ Z+} and the ω-limit set of x is ωf (x) = {y ∈ X :
lim infn→+∞ d(fn(x), y) = 0}. The point x is called

- fixed if f(x) = x and N -periodic (or periodic with period N) if
fN (x) = x and f i(x) 6= x for 0 < i < N ,

- regularly recurrent if for any open set U containing x, OrbfN (x) ⊂ U
for some N ∈ N,

- almost periodic if for any open set U containing x, there is N ∈ N
such that for all i ∈ Z+, {f i(x), f i+1(x), . . . , f i+N (x)} ∩ U 6= ∅,

- recurrent if x ∈ ωf (x).

We denote by Λ(f) the union of all ω-limit sets and Fix(f), P (f), RR(f),
AP (f) and R(f) the sets of fixed points, periodic points, regularly recurrent
points, almost periodic points and recurrent points, respectively. Recall that
always we have

P (f) ⊂ RR(f) ⊂ AP (f) ⊂ R(f) ⊂ Λ(f).

A nonempty subset of X is called minimal if it is closed, f -invariant and
has no proper subset with these properties. The map f is called minimal if
X itself is minimal. Notice that M is minimal if and only if any point in it
is almost periodic. Let A be a subset of X. Then A is called N -periodic (or
periodic with period N) if A, f(A), . . . , fn−1(A) are pairwise disjoint and
fN (A) = A. The orbit of A (under f) is the set Orbf (A) = ∪n∈Z+f

n(A).
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A point y ∈ X is called an α-limit point of x under f if and only if there
is a strictly increasing sequence of positive integers (kn)n≥0 and a sequence
of points (yn)n≥0 in X such that

• fkn(yn) = x for all n ≥ 0, and
• limn→+∞ yn = y.

The set αf (x) of all α-limit points of x under f is called the α-limit set.

1.2. General topology. For A ⊂ B ⊂ X, Int(A,B) mean the interior of
A relatively to B. For any subset A of X, A′ is the set of accumulation
points of A.

1.3. Li-Yorke pairs and entropy.

• A pair (x, y) ∈ X2 is called
- proximal if lim infn→+∞ d(fn(x), fn(y)) = 0,
- asymptotic if lim supn→+∞ d(fn(x), fn(y)) = 0,
- distal they are not proximal,
- a Li-Yorke pair if it is proximal but not asymptotic.

The map f is called distal if (x, y) ∈ X2 is proximal then x = y.
• Let n ∈ N and ε > 0. A subset E of X is called (n, ε)-separated if

for any distinct points x, y ∈ E, we have max0≤i<n d(f i(x), f i(y)) >
ε. Denote by Sep(n, f, ε) the maximal possible cardinality of an
(n, f, ε)-separated set in X. The topological entropy of f is defined
by

h(f) = lim
ε→0

lim sup
n→+∞

logSep(n, f, ε)

n
.

It was proved by Blanchard et al [4] that any dynamical system
with positive topological entropy is Li-Yorke chaotic i.e. it has an
uncountable set for which each proper pair is a Li-Yorke pair.

1.4. Equicontinuity. f is called equicontinuous (or stable in the sense of
Lyapunov) at x ∈ X if for any ε > 0 there is δ > 0 such that d(fn(x), fn(y)) <
ε for all n ≥ 0 provided that d(x, y) < δ. The map f is equicontinuous if it
is equicontinuous at any point of X or equivalently for any ε > 0 there is
δ > 0 such that d(fn(u), fn(v)) < ε for all n ≥ 0 provided that d(u, v) < δ.
Notice that f is equicontinuous at x if and only if fk is so at f i(x) for any
positive integers k and i.

1.5. Hyperspace. We denote by 2X the hyperspace of all nonempty closed
subsets of X. The Hausdorff metric dH is defined as follows: Let A,B ∈ 2X ,

dH(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}

where d(x,A) = infy∈A d(x, y). The space 2X endowed with dH is a compact
metric space.
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1.6. Dendrites. A dendrite is a locally connected compact connected met-
ric space containing no simple closed curve. Let X be a dendrite. A point
x ∈ X is called endpoint (resp. branch point) if X\{x} is connected (resp.
has at least three connected components). We denote by End(X) and B(X)
the sets of endpoints and branch points of X, respectively. A triod is a
dendrite with unique branch point and finitely many endpoints. Any two
distinct points a and b in X can be joined by a unique arc, we denote it by
[a, b]. We denote by [a, b) = [a, b]\{b} and (a, b) = [a, b]\{a, b}. The convex
hull of a nonempty subset A of X is the connected subset [A] = ∪x∈A[a, x]
for any a ∈ A. An arc I of X is called free if I ∩ B(X) = ∅. Let Y be a
subdendrite of X and x ∈ Y . The order of x relatively to Y , denoted by
ordY (x), is the number of connected components of Y \{x}. For any x ∈ X,
let rY (x) be the unique point in Y belonging to the arc joining x and z for
any z ∈ Y . The map rY : X → Y is called the first point map.

1.7. Motivation and Main result. Li-Yorke chaotic dynamical systems
has been extensively studied in the literature during the last forty years . In
such a system various kind of ω-limit sets and recurrent points can occur.
It is interesting to study the behavior of points of systems without Li-Yorke
pairs. In [9], [5] and [6], Smital and his co-authors investigated nonchaotic
interval maps.

Theorem 1.1. ([6], [5]) Let f : I → I be an interval map. Then the
following assertions are equivalent:

(1) f has no Li-Yorke pairs,
(2) f|Λ(f) is equicontinuous,
(3) Λ(f) = RR(f).

In this paper we generalise the previous theorem on dendrites.
The main result of the paper is the following.

Theorem 1.2. Let (X, f) be a dynamical system. The relations between the
properties:

(1) f has no Li-Yorke pairs,
(2) f|Λ(f) is equicontinous,
(3) R(f) = RR(f),
(4) the collection of minimal sets is closed in 2X ,
(5) Λ(f) = AP (f).

are described by the scheme below where the thick (resp. thin, dashed) arrow
means that the implication is true for general dynamical systems(resp. true
for dendrites X with End(X) countable and closed, false).
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R(f) = RR(f)

f has no Li-Yorke pairs f|Λ(f) is equicontinuous

Λ(f) = AP (f) is closed The set of minimal sets is closed

2. Auxilary results

Definition 2.1. Let f : X → X be a dendrite map and let I and J be two
arcs of X which are either disjoint or intersect only in their endpoint. If
fn(I)∩ fm(J) ⊃ I ∪ J for some n,m ∈ N then we say that I, J form an arc
horseshoe for f .

Lemma 2.2. ([7], Theorem 2 ) Let f be a continuous map of a dendrite. If
there is an integer n such that fn has an arc horseshoe then h(f) > 0.

Lemma 2.3. ([3], Lemma 1 ) Let (X, f) be a dynamical system, f be onto
and x ∈ X. Then αf (x) is non-empty, closed and f -invariant.

Lemma 2.4. [8] Let X be a compact Hausdorff space and let f : X → X
be a minimal map. If U is a nonempty open subset of X then there is a
positive integer r such that X = ∪ri=0f

i(U).

The following result is a folklore.

Lemma 2.5. Let (X, f) be a dynamical system. If f is equicontinuous then
it is distal. In particular, f has no Li-Yorke pairs.

The following Theorem is due to Auslander and Ellis.

Theorem 2.6. Let (X, f) be a dynamical system. Then for any x ∈ X
there is some almost periodic point y ∈ Orbf (x) such that (x, y) is proximal.

Remark. In the previous theorem, y can be choosen in ωf (x).

Lemma 2.7. Let (X, f) be a dynamical system without Li-Yorke pairs.
Then any ω-limit set is minimal. In other words, Λ(f) = AP (f).

Proof. Let L = ωf (x) be an ω-limit set of f . By Auslander-Ellis’s theorem,
there is a minimal set M ⊂ L and a point y ∈M such that (x, y) is proximal.
Since f has no Li-Yorke pairs then (x, y) is asymptotic. It follows that
L = M . �

Lemma 2.8. Let (X, f) be a dynamical system. If f|Λ(f) is equicontinuous

then the collection of all minimal sets of f is closed in (2X , dH).

Proof. Let (Mn)n≥1 be a sequence of minimal sets converging in (2X , dH)
to M . Then M is a closed f -invariant set. Suppose that M is not minimal.
Then there is a proper minimal subset F of M . Let z ∈M\F , ε = dH(z, F )
and x0 ∈ F . By equicontinuity of f|Λ(f), there is 0 < δ < ε

2 such that for
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all x ∈ Λ(f) and all n ∈ Z+, d(fn(x0), fn(x)) < ε
2 provided that d(x, x0) <

δ. Let p > 0 such that dH(M,Mp) < δ. There is x ∈ Mp such that

d(x, x0) < δ. As Mp is minimal, there is k > 0 such that d(fk(x), z) < ε
2 .

Then d(fk(x0), z) ≤ d(fk(x0), fk(x)) + d(fk(x), z) < ε. So dH(z, F ) < ε.
Absurd. �

Lemma 2.9. Let (X, f) be a dynamical system such that f|Λ(f) is equicon-
tinuous. Then Λ(f) = AP (f).

Proof. It is clear that AP (f) ⊂ Λ(f). Suppose that there is an ω-limit set
L = ωf (x) and y ∈ L such that y /∈ AP (f). Then there is a minimal set
M ⊂ L and z ∈M such that (y, z) is proximal. Since f|Λ(f) is equicontinu-
ous then by Lemma 2.5 (y, z) is asymptotic. On the other hand, by Lemma
2.3 αf|L(y) is a nonempty, closed and f -invariant subset of L.

Claim. M ⊂ αf|L(y).

Proof. Suppose that M * αf|L(y). Then by minimality of M , M ∩αf|L(y) =

∅. Let ε0 = dH(M,αf|L(y)) and let w ∈ αf|L(y). Let δ > 0. There is t ∈ L
such that d(t, w) < δ and fn(t) = y for some n ≥ 1. So there is N ≥ 1 such
that d(fk(t), fk(w)) > ε0

2 for all k ≥ N . Thus f|L is not equicontinuous.
Absurd. This finishes the proof of the Claim.

There is a sequence (yn)n≥1 in L converging to z and a nondecreasing
sequence of integers (kn)n≥1 such that fkn(yn) = y for all n ≥ 1. For
any α > 0 and any N ≥ 1, there is n ≥ N such that d(yn, z) < α, but

d(fkn(yn), fkn(z)) = d(y, fkn(z)) > d(y,M)
2 . It follows that f|L is not equicon-

tinuous at z. Absurd. Thus Λ(f) ⊂ AP (f). Hence Λ(f) = AP (f). �

From Lemmas 2.8 and 2.9 we can deduce the following

Corollary 2.10. Let (X, f) be a dynamical system such that f|Λ(f) is equicon-
tinuous. Then Λ(f) is closed.

Lemma 2.11. Let (X, f) be a dynamical system such that f|Λ(f) is equicon-
tinuous. Then h(f) = 0.

Proof. Since Λ(f) is closed, then R(f) ⊂ Λ(f). Hence by [2] h(f) =
h(f|R(f)

) = h(f|Λ(f)). As f|Λ(f) is equicontinuous, we get h(f) = 0. �

3. Splitting minimal sets of maps on dendrites X with
Card(End(X)) < c

Definition 3.1. Let X be a dendrite. An arc [x, y] in X is called a tracing
arc starting from x if Fix(f) ∩ [x, y) = ∅ and for any z ∈ [x, y), (z, f(z)) ∩
[x, y] 6= ∅. Moreover, if f(y) = y then [x, y] is called a complete tracing arc.

Lemma 3.2. ([11], Proposition 2.9) Let f : X → X be a dendrite map.
Then, for any given x ∈ X\Fix(f), there exists a unique complete f -tracing
arc starting from x.

The proof of the following Lemma is inspired from [1].
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Lemma 3.3. Let f : X → X be a zero topological entropy dendrite map
with Card(End(X)) < c and let M be a nondegenerate (finite or infinite)
minimal set. Then there is a connected subset C of X and an integer k ≥ 2
satisfying the following properties:

(i) C ∩M has nonempty interior in M ,
(ii) fk(C) ⊂ C,

(iii) M ⊂ ∪k−1
i=0 f

i(C),

(iv) C, f(C), . . . , fk−1(C) are pairwise disjoint.

Proof. Let Y = [M ]. We distinguish two cases:

Case 1: Y ∩ Fix(f) 6= ∅. Let a ∈ Y be a fixed point. Denote by
A = ∪n∈Nf−n(a) and AY = A ∩ Y . Notice that ordY (a) < ∞
(It’s clear if M is finite. Suppose that M is infinite and ordY (a) =
∞. Then there are infinitely many pairwise disjoint connected sub-
sets (Ci)i≥1 of Y \{a} such that Ci ∩ M 6= ∅ for all i ≥ 1. So
limi→+∞ diam(Ci) = 0. Since a ∈ Ci for all i ≥ 1, we get a ∈ M .
Absurd).

Claim 1. [AY ] ∩M = ∅.
Proof. Suppose the contrarily. Then there is b ∈ Y and y ∈M such
that y ∈ (a, b) and fn(b) = a for some n ≥ 1. Let I = [a, y] and
J = [y, b]. Since M is closed, there is z ∈M such that b ∈ (y, z). So
there are integers p, q > 0 such that fp(I) ∩ f q(J) ⊃ I ∪ J . Hence
I, J is an arc horseshoe. By Lemma 2.2, h(f) > 0. Absurd. This
finishes the proof of Claim 1.

Proof of (i) We have M = ∪e∈End(X)[a, e] ∩M . Since Card(End(X)) < c,
then by the well known theorem of Baire, there is e0 ∈ End(X)
such that Int([a, e0] ∩ M,M) is nonempty. Let M0 = M ∩
[a, e0]. By Claim 1, [M0] ∩ A∞ = ∅. So let C be the connected
component of X\A∞ containing M0. Hence Int(M∩C,M) 6= ∅.

Proof of (ii) Let x ∈ M0, there is k > 0 such that fk(x) ∈ M0. So fk(C) ∩
C 6= ∅. As fk(C) ∩A∞ = ∅, we get fk(C) ⊂ C.

We can assume that k is the smallest integer with this property.
Proof of (iii) Since Int(M0,M) 6= ∅, then by [8], we have ∪Ni=0f

i(M0) = M
for some N ≥ k. As M0 ⊂ C, we get ∪Ni=0f

i(M0) ⊂ ∪Ni=0f
i(C).

So using (ii), M ⊂ ∪k−1
i=0 f

i(C).
Proof of (iv) Suppose on the contrary that f i(C) ∩ f j(C) 6= ∅ for some 0 ≤

i < j ≤ k − 1. Let s = k − j. Then fs+i(C) ∩ f s+j(C) 6= ∅.
Since fs+j(C) = fk(C) ⊂ C, fs+i(C)∩C 6= ∅. As 0 < s+i < k,
this contradicts the minimality of k.
The integer k is greater than 1 since ordY (a) > 1 and M ⊂
∪k−1
i=0 f

i(C).
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Case 2: Y ∩ Fix(f) = ∅. Let x ∈ M . Then by Lemma 3.2 there is
a complete tracing arc with endpoints x and a where a ∈ Fix(f).
By Lemma 5.5 of [1], for any y ∈ Y , [y, a] is a complete tracing arc
starting from y. Let b = rY (a) and B = ∪n≥0f

−n(b). Notice that
f(b) /∈ Y , b /∈M and k := ordY (b) <∞.
Claim 2. [B ∩ Y ] ∩M = ∅.
Proof. Suppose the contrary. Then there are b′ ∈ Y and x ∈ M
such that x ∈ (b, b′) and fn(b′) = b for some n ∈ N. Let I = [b, x],
J = [x, b′] and y ∈ M such that [x, b′] ⊂ (b, y). Since b ∈ [x, f(b)],
then f(I) ⊃ [b, f(x)]. More generally, we have fk(I) ⊃ [b, fk(x)]
for all k ∈ N. Since y ∈ ωf (x) = M , there is N ≥ n such

that fN (I) ⊃ I ∪ J . On the other hand, fn(J) ⊃ [b, fn(x)]. So
fN (J) ⊃ I ∪ J . Hence I, J is an arc horseshoe for f . Absurd.
As in Case 1, there is a connected subset C of X\B satisfying prop-
erties (i)− (iv).

This ends the proof of the Lemma. �

Proposition 3.4. Let f : X → X be a zero topological entropy dendrite
map with Card(End(X)) < c and let M be a nondegenerate minimal set.
If M is finite then set I = {1, 2, . . . , p}. If M is infinite then set I = N.
Then there is a sequence of subdendrites (Dn)n∈I of X and a sequence of
nondecreasing integers (kn)n≥1 satisfying the following properties:

(P.1) for any n ∈ I, Dn is periodic of period kn and kn|kn+1 whenever
n+ 1 ∈ I,

(P.2) for any i, j ∈ {0, 1, . . . , kn−1} (i 6= j), f i(Dn) and f j(Dn) are either
disjoint or intersect only in one common point,

(P.3) for any n ≥ 1, ∪qn−1
i=0 f ikn(Dn+1) ⊂ Orbf (Dn) where qn = kn+1

kn
,

(P.4) M ⊂ ∩n≥1Orbf (Dn),

Proof. Let C be a connected subset of X satisfying properties (i) − (iv) of
Lemma 3.3. For any 0 ≤ i ≤ k1 − 1, we have f(Mi) = Mi+1modk1 where
Mi = f i(C) ∩M . Let D1 = ∩+∞

i=0 f
k1i(C). Then

• D1 is a subdendrite of X and fk1(D1) ⊂ D1,
• for any 0 ≤ i < j < k1, f i(D1) and f j(D1) are either disjoint or

intersect in one common point.
• for any 0 ≤ i < k1, Mi ⊂ f i(D1). So M ⊂ Orbf (D1).

Now, fk1|D1
: D1 → D1 is a dendrite map of zero topological entropy

and Card(End(D1)) < c. Since M0 is a minimal set of fk1|D1
, there is

a periodic subdendrite D2 ⊂ D1 under fk1|D1
of period q1 ≥ 2 such that

M0 ⊂ ∪q1−1
j=0 f

k1j(D2), fk1i(D2) and fk1j(D2) (0 ≤ i 6= j < q1) are either dis-
joint or intersect only on one common point. So D2 is a periodic subdendrite
of period k2 = k1q1 such that M ⊂ Orbf (D2) and ∪q1−1

i=0 f ik1(D2) ⊂ Orb(D1).
We continue this process to construct the sequence (Dn)n≥1 satisfying prop-
erties (P1)− (P4). �
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Lemma 3.5. Let X be a dendrite with End(X) countable and closed and
let (Dn)n∈N be a sequence of subdendrites of X satisfying (P.1), (P.2) and
(P.3). Then there is an integer N ≥ 1 such that ∀n ≥ N , f i(Dn) is a free
arc for some 0 ≤ i < kn.

Proof. Suppose that for any integer n and any 0 ≤ i < kn, f i(Dn) ∩
End(X) 6= ∅. Then for any n ≥ 1, the subsets En,i = f i(Dn) ∩ End(X)
(0 ≤ i < kn) are pairwise disjoint and closed. Let τ = (i0, i1, i2, . . . ) ∈∏+∞
n=0 Z/qnZ where q0 = k0 = 1. By the property (P3), the subset ∩+∞

n=1f
∑n−1

j=0 ijkj (Dn)
is nonempty, closed and intersect End(X). Furthermore, Eτ∩Eτ ′ = ∅ when-
ever τ 6= τ ′. Pick xτ ∈ Eτ ∩ End(X). Then the map τ ∈

∏+∞
n=0 Z/qnZ 7→

xτ ∈ End(X) is injective. This implies that End(X) is uncountable. Ab-
surd. So there is N ∈ N such that f i(DN ) ∩ End(X) = ∅ for some
0 ≤ i < kN . Since End(X) is closed, f i(DN ) ∩ B(X) is finite. By tak-
ing kn sufficiently large, we have f j(Dn) ∩ B(X) = ∅ for some n ≥ N and
0 ≤ j < kn. It follows that f j(Dn) is a free arc. �

4. Li-Yorke pairs and equicontinuity of a dendrite map f on Λ(f)

Lemma 4.1. Let X be a dendrite with End(X) is countable and closed and
let f : X → X be a continuous map. If f|Λ(f) is equicontinuous then f has
no Li-Yorke pairs.

Proof. Suppose on the contrary that (x, y) is a Li-Yorke pair of f . By
Lemma 2.9 ωf (x) ∪ ωf (y) ⊂ AP (f). We can assume that ωf (x) is infinite.
By [10] ωf (x) * P (f). So there is an infinite minimal set M ⊂ ωf (x).
By Lemma 2.11 h(f) = 0. So by Proposition 3.4 and Lemma 3.5 there
is a periodic free arc I of X of period p such that M ⊂ Orbf (I). Set
g = fp. Then M0 := M ∩ I is an infinite minimal set of g. There is n ≥ 0
such that fn(x) ∈ I. Since (fn(x), fn(y)) is a Li-Yorke pair of g, there
is a nondecreasing sequence of integers (ni)i≥1 such that (gni(fn(x)))i≥1

and (gni(fn(y)))i≥1 converges to some z ∈ I. If gm(f (y)) ∈ I for some
m ≥ 1 then (fn(x), fn(y)) is a Li-Yorke pair for g|I . Otherwise, z ∈ ∂(I).

Hence g2(z) = z. So (fn(x), z) ∈ I2 is also a Li-Yorke pair for g|I . In all
cases, the interval map g|I : I → I has a Li-Yorke pair. By [6] g|I is not
equicontinuous on Λ(g). Then so does for f on Λ(f). Absurd. Thus f has
no Li-Yorke pairs. �

Remark 4.2. Lemma 4.1 fails if End(X) is not closed (See [1], Example
2).

Lemma 4.3. Let X be a dendrite with End(X) countable and closed and
let f : X → X be a continuous map. Suppose that f has no Li-Yorke pairs.
Then f|Λ(f) is equicontinuous at any point in Λ(f)\(P (f) ∩ End(X)′).

Proof. Let x ∈ Λ(f)\(P (f) ∩ End(X)′). Then there is a minimal set M in
X containing x. We distinguish two cases.
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Case 1: x /∈ P (f). Then M is infinite. Let I be an N -periodic free arc
in X such that M ⊂ Orbf (I). There is k ≥ 0 such that I is a neigh-

borhood of fk(x). Since fN|I has no Li-Yorke pairs, then by Theorem

1.1 fN is equicontinuous at fk(x). Hence f is equicontinuous at x.
Case 2: x ∈ P (f). Then x /∈ End(X)′. Without loss of generality,

we can assume that f(x) = x. As End(X) is closed, there is a
neighborhood V = ∪ri=1[x, ei] of x such that V ∩ B(X) ⊂ {x}. Fix
ε0 > 0. There is 0 < ε < d(x,X\V ) such that for all 0 ≤ i ≤ 2r,
d(f i(u), f i(v)) < ε0 whenever d(u, v) < ε. There is δ > 0 such
that d(x, f i(y)) < ε for all 0 ≤ i ≤ 2r whenever d(x, y) < δ. Let
y ∈ Λ(f)∩B(x, δ). Then f i(y), f j(y) ∈ [x, es) for some 0 ≤ i < j ≤ r
and 1 ≤ s ≤ r. We can assume that i = 0 and y ∈ (x, f j(y)).
If y /∈ P (f), as ωf (y) has no isolated points, we can assume that
(y, f j(y)) ⊂ (w, z) for some w, z ∈ ωf (y) ∩ [x, es]. Let Y be the
connected component of X\{x} containing y.

Claim 1. Ofj (y) ⊂ Y .
Proof. Suppose the contrary. Let p > 1 be the smallest integer
for which fpj(y) /∈ Y . Then there is x′ ∈ (y, f j(y)) such that

f (p−1)j(x′) = x. So [y, x′], [x′, f j(y)] is an arc horseshoe, absurd.
This finishes the proof of Claim 1.

Claim 2. [y, f j(y)] ∩ Fix(f j) 6= ∅.
Proof. Let q > 1 be the smallest integer such that f qj(y) ∈ [x, f j(y)).
Then by Lemma 3.2 there is a point a ∈ Fix(f j) such that b :=

r|[Orb
fj

(y)] ∈ [fnj(y), f (n+1)j(y)] for some n ≥ 0. Let b′ ∈ (y, f j(y))∩
f−nj(b). If b /∈ (y, f j(y)) then [y, b′], [b′, f j(y)] is an arc horseshoe.
Absurd. So b ∈ (y, f j(y)). As [y, f j(y)] is a free arc, f j(b) = b. This
finishes the proof of Claim 2.

Claim 3. Orbf2j (y) ⊂ [x, b].

Proof. Suppose that f2j(y) /∈ [x, y]. As y ∈ R(f j), there is n > 1
such that f jn(y) ∈ (x, y). Suppose that n is the smallest one.

So there is b′ ∈ [f j(y), f2j(y)] such that f (n−2)j(b′) = b. Thus
[f j(y), b′], [b′, f2j(y)] is an arc horseshoe. Absurd. So we get, f2j(y) ∈
[x, b]. The connected subset of [x, b]\(∪n≥0f

−nj(b) ∪ ∪n≥0f
−n(x))

containing [y, f2j(y)] is f2j-invariant. So f2nj(y) ∈ [x, y] for all
n ≥ 0. This finishes the proof of Claim 3.

Now, we have d(x, y) < δ. So d(x, f2nj(y)) ≤ d(x, f j(y)) < ε for
all n ≥ 0. So d(x, f2nj+m(y)) < ε0 for any 0 ≤ m ≤ 2r and n ≥ 0.
Thus f is equicontinuous at x.

�
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Lemma 4.4. There is a dendrite X with End(X) is countable and closed
and a continuous map f : X → X without Li-Yorke pairs such that Λ(f) =
P (f) but the collection of minimal sets is not closed in 2X . As a consequence,
f|Λ(f) is not equicontinuous.

Proof. Construction of the dendrite X.
We construct the dendrite X on the plane R2 as follows.

• Let I0 = [e0, e−1] where e0 = (1, 0) and e−1 = (−1, 0),
• For any n ≥ 1, let Jn = [bn,0, en] where bn,0 = (1 − 1

n , 0) and en =

(1− 1
n ,

1
n),

• For any n ≥ 1 and k ≥ 1, let In,k = [bn,k, en,k] where bn,k = (1 −
1
n ,

1
n(1− 1

k+1)) and en,k = (1− 1
n −

1
2k+n ,

1
n(1− 1

k+1)).

Then X = I0 ∪
⋃
n≥1 Jn ∪

⋃
n,k≥1 In,k is a dendrite with End(X) = {en;n ≥

−1} ∪ {en,k;n, k ≥ 1} which is countable and closed.

Construction of the map f .
The notation [a, b] ⇀f [c, d] means that f send linearly the arc [a, b] to the
arc [c, d] such that f(a) = c and f(b) = d. We define the map f : X → X
as follows. For all n, k ≥ 1,

• f(e1) = f(e0) = e0,
• [bn,0, bn+1,0] ⇀f [bn+1,0, bn+2,0],

• [b1,k−1, b1,k] ⇀
f [bk+1,0, bk+2,0],

• [b1,0, e−1] ⇀f [b2,0, e2,1] and [b1,k, e1,k] ⇀
f [bk+2,0, ek+2,1],

• [b2,0, b2,1] ⇀f [b3,0, b1,0] and [b2,k, b2,k+1] ⇀f [b1,k−1, b1,k],

• [bn+1,0, bn+1,1] ⇀f [bn+2,0, bn,0],[bn+1,1, bn+1,2] ⇀f [bn,0, bn,2] and [bn+1,k−1, bn+1,k] ⇀
f

[bn,k, bn,k+1],

• [b2,1, e2,1] ⇀f [b1,0, e−1] and [bn+1,k, en+1,k] ⇀
f [bn,k+1, en,k+1].

It is easy to check that the map f : X → X is continuous, has no Li-
Yorke pairs and the collection of minimal sets is not closed in 2X . We have
Λ(f) = P (f) = {e0, e−1}∪{en,k;n, k ≥ 1}. Indeed, for any n ≥ 1, Orbf (en,1)

is a periodic orbit which converges in 2X to the set M = {en;n ≥ 1}. Since
f(e0) = e0, then M is not minimal. (See Figures 1 and 2)



EQUICONTINUITY AND LI-YORKE PAIRS OF DENDRITE MAPS 11

Figure 1. The action of f on I0 and {en;n ≥ −1}

Figure 2. The action of f on branch points bn,k (n ≥ 1, k ≥ 0)

�

Lemma 4.5. Let X be a dendrite with End(X) countable and closed and
let f : X → X be a continuous map. If f has no Li-Yorke pairs then
R(f) = RR(f).

Proof. It suffices to prove that R(f) ⊂ RR(f). Let x ∈ R(f). Then M =
ωf (x) is a minimal set. If x ∈ P (f) then x ∈ RR(f). Suppose that x /∈ P (f).
Then there is a p-periodic free arc I in X such that M ⊂ Orbf (I). Let
0 ≤ i < p such that x ∈ f i(I). There is x′ ∈ I ∩M such that f i(x′) = x. Let
U be an open set in X containing x. Then f−i(U) is an open subset in X
containing x′. By Theorem 1.1 R(fp|I) = RR(fp|I). As x′ ∈ ωfp|I (x′), we get



12 GHASSEN ASKRI

x′ ∈ RR(fp|I). So there is an integer N > 0 such that OrbfpN (x′) ⊂ f−i(U).

It follows that OrbfpN (x) ⊂ U . Thus x ∈ RR(f). We conclude that R(f) =
RR(f). �

In the following Lemma, we strengthen absence of Li-Yorke pairs to get
equicontinuity on Λ(f).

Lemma 4.6. Let X be a dendrite with End(X) countable and closed and
let f : X → X be a continuous map. Suppose that f has no Li-Yorke pairs.
If one of the following assertions holds

(1) the collection of minimal sets is closed in (2X , dH),
(2) f|Λ(f) is equicontinuous at every point in End(X)′,
(3) f|P (f) is equicontinuous,

then f|Λ(f) is equicontinuous.

Proof. (1) Suppose that the collection of minimal sets is closed in (2X , dH).
Let x ∈ Λ(f). By Lemma 4.3 we can assume that x ∈ P (f). Also
we may assume that x ∈ Fix(f). Let (yn)n≥1 be a sequence in Λ(f)
converging to x. For any n ≥ 1, Mn = ωf (yn) is a minimal set con-
taining yn. We can assume that (Mn) is convergent to some closed
set M . Then d(yn,M) goes to 0 when n → +∞. As the collection
of minimal sets is closed in (2X , dH), then M is a minimal set. So
M = {x}. Now fix ε > 0. There is α > 0 such that if d(x, y) < α
then d(x, ωf (y)) < ε. This implies that d(fn(x), fn(y)) < ε for all
n ≥ 0. thus f is equicontinuous at x.

(2) and (3) follows from Lemma 4.3
�

Proof of the main Theorem The implications (2)⇒ (1), (2)⇒ (4) and
(1)⇒ (3) are given in Lemmas 4.1, 2.8 and 4.5. The implication (1)⇒ (5)
is proved in Lemma 2.7 . Finally, (1) ; (4) is given by Lemma 4.4.
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