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In this paper, relationships between equicontinuity of a dendrite map f on Λ(f ), absence of Li-Yorke pairs, collection of minimal sets and regularly recurrent points are investigated.

Introduction

Let (X, f ) be a dynamical system i.e. X is a compact metric space with metric d and f : X → X is a continuous map. Denote by N the set {1, 2, 3, . . . } and Z + = N ∪ {0}. For any n ∈ N, f n = f n-1 • f where f 0 is the identity map.

1.1. Topological dynamics. Let x ∈ X. The orbit of x (under f ) is Orb f (x) = {f n (x); n ∈ Z + } and the ω-limit set of x is ω f (x) = {y ∈ X : lim inf n→+∞ d(f n (x), y) = 0}. The point x is called -fixed if f (x) = x and N -periodic (or periodic with period N ) if f N (x) = x and f i (x) = x for 0 < i < N , -regularly recurrent if for any open set U containing x, Orb f N (x) ⊂ U for some N ∈ N, -almost periodic if for any open set U containing x, there is N ∈ N such that for all i ∈ Z + , {f i (x), f i+1 (x), . . . , f i+N (x)} ∩ U = ∅, -recurrent if x ∈ ω f (x). We denote by Λ(f ) the union of all ω-limit sets and F ix(f ), P (f ), RR(f ), AP (f ) and R(f ) the sets of fixed points, periodic points, regularly recurrent points, almost periodic points and recurrent points, respectively. Recall that always we have

P (f ) ⊂ RR(f ) ⊂ AP (f ) ⊂ R(f ) ⊂ Λ(f ).
A nonempty subset of X is called minimal if it is closed, f -invariant and has no proper subset with these properties. The map f is called minimal if X itself is minimal. Notice that M is minimal if and only if any point in it is almost periodic. Let A be a subset of X. Then A is called N -periodic (or periodic with period N ) if A, f (A), . . . , f n-1 (A) are pairwise disjoint and f N (A) = A. The orbit of A (under f ) is the set Orb f (A) = ∪ n∈Z + f n (A).

A point y ∈ X is called an α-limit point of x under f if and only if there is a strictly increasing sequence of positive integers (k n ) n≥0 and a sequence of points (y n ) n≥0 in X such that • f kn (y n ) = x for all n ≥ 0, and • lim n→+∞ y n = y.

The set α f (x) of all α-limit points of x under f is called the α-limit set.

1.2. General topology. For A ⊂ B ⊂ X, Int(A, B) mean the interior of A relatively to B. For any subset A of X, A is the set of accumulation points of A.

1.3. Li-Yorke pairs and entropy.

• A pair (x, y) ∈ X 2 is called -proximal if lim inf n→+∞ d(f n (x), f n (y)) = 0, -asymptotic if lim sup n→+∞ d(f n (x), f n (y)) = 0, -distal they are not proximal, -a Li-Yorke pair if it is proximal but not asymptotic. The map f is called distal if (x, y) ∈ X 2 is proximal then x = y. • Let n ∈ N and ε > 0. A subset E of X is called (n, ε)-separated if for any distinct points x, y ∈ E, we have max 0≤i<n d(f i (x), f i (y)) > ε.
Denote by Sep(n, f, ε) the maximal possible cardinality of an (n, f, ε)-separated set in X. The topological entropy of f is defined by

h(f ) = lim ε→0 lim sup n→+∞ log Sep(n, f, ε) n .
It was proved by Blanchard et al [START_REF] Blanchard | On Li-Yorke pairs[END_REF] that any dynamical system with positive topological entropy is Li-Yorke chaotic i.e. it has an uncountable set for which each proper pair is a Li-Yorke pair.

1.4. Equicontinuity. f is called equicontinuous (or stable in the sense of Lyapunov ) at x ∈ X if for any ε > 0 there is δ > 0 such that d(f n (x), f n (y)) < ε for all n ≥ 0 provided that d(x, y) < δ. The map f is equicontinuous if it is equicontinuous at any point of X or equivalently for any ε > 0 there is

δ > 0 such that d(f n (u), f n (v)) < ε for all n ≥ 0 provided that d(u, v) < δ.
Notice that f is equicontinuous at x if and only if f k is so at f i (x) for any positive integers k and i. It is interesting to study the behavior of points of systems without Li-Yorke pairs. In [START_REF] Preiss | A characterisation of non-chaotic maps of the interval stable under small perturbations[END_REF], [START_REF] Fedorenko | Dynamics of one dimensional mapping[END_REF] and [START_REF] Fedorenko | Characterizations of Weakly Chaotic Maps of the Interval[END_REF], Smital and his co-authors investigated nonchaotic interval maps.

Theorem 1.1. ([6], [START_REF] Fedorenko | Dynamics of one dimensional mapping[END_REF]) Let f : I → I be an interval map. Then the following assertions are equivalent:

(1) f has no Li-Yorke pairs,

(2) f |Λ(f ) is equicontinuous, (3) Λ(f ) = RR(f ).
In this paper we generalise the previous theorem on dendrites. The main result of the paper is the following. Theorem 1.2. Let (X, f ) be a dynamical system. The relations between the properties:

(1) f has no Li-Yorke pairs, (2) f |Λ(f ) is equicontinous, (3) R(f ) = RR(f ), (4) the collection of minimal sets is closed in 2 X , (5) Λ(f ) = AP (f ).
are described by the scheme below where the thick (resp. thin, dashed) arrow means that the implication is true for general dynamical systems(resp. true for dendrites X with End(X) countable and closed, false).

R(f ) = RR(f ) f has no Li-Yorke pairs f |Λ(f ) is equicontinuous Λ(f ) = AP (f ) is closed
The set of minimal sets is closed

Auxilary results

Definition 2.1. Let f : X → X be a dendrite map and let I and J be two arcs of X which are either disjoint or intersect only in their endpoint. If f n (I) ∩ f m (J) ⊃ I ∪ J for some n, m ∈ N then we say that I, J form an arc horseshoe for f . Lemma 2.2. ([7], Theorem 2 ) Let f be a continuous map of a dendrite. If there is an integer n such that f n has an arc horseshoe then h(f ) > 0.

Lemma 2.3. ([3], Lemma 1 ) Let (X, f ) be a dynamical system, f be onto and x ∈ X. Then α f (x) is non-empty, closed and f -invariant.

Lemma 2.4. [START_REF] Kolyada | Noninvertible minimal maps[END_REF] Let X be a compact Hausdorff space and let f : X → X be a minimal map. If U is a nonempty open subset of X then there is a positive integer r such that X = ∪ r i=0 f i (U ). The following result is a folklore. Lemma 2.5. Let (X, f ) be a dynamical system. If f is equicontinuous then it is distal. In particular, f has no Li-Yorke pairs.

The following Theorem is due to Auslander and Ellis.

Theorem 2.6. Let (X, f ) be a dynamical system. Then for any x ∈ X there is some almost periodic point y ∈ Orb f (x) such that (x, y) is proximal.

Remark. In the previous theorem, y can be choosen in ω f (x).

Lemma 2.7. Let (X, f ) be a dynamical system without Li-Yorke pairs. Then any ω-limit set is minimal. In other words, Λ(f ) = AP (f ).

Proof. Let L = ω f (x) be an ω-limit set of f . By Auslander-Ellis's theorem, there is a minimal set M ⊂ L and a point y ∈ M such that (x, y) is proximal. Since f has no Li-Yorke pairs then (x, y) is asymptotic. It follows that

L = M . Lemma 2.8. Let (X, f ) be a dynamical system. If f |Λ(f ) is equicontinuous then the collection of all minimal sets of f is closed in (2 X , d H ). Proof. Let (M n ) n≥1 be a sequence of minimal sets converging in (2 X , d H ) to M . Then M is a closed f -invariant set. Suppose that M is not minimal. Then there is a proper minimal subset F of M . Let z ∈ M \F , ε = d H (z, F ) and x 0 ∈ F . By equicontinuity of f |Λ(f ) , there is 0 < δ < ε 2 such that for all x ∈ Λ(f ) and all n ∈ Z + , d(f n (x 0 ), f n (x)) < ε 2 provided that d(x, x 0 ) < δ. Let p > 0 such that d H (M, M p ) < δ. There is x ∈ M p such that d(x, x 0 ) < δ. As M p is minimal, there is k > 0 such that d(f k (x), z) < ε 2 . Then d(f k (x 0 ), z) ≤ d(f k (x 0 ), f k (x)) + d(f k (x), z) < ε. So d H (z, F ) < ε. Absurd. Lemma 2.9. Let (X, f ) be a dynamical system such that f |Λ(f ) is equicon- tinuous. Then Λ(f ) = AP (f ).
Proof. It is clear that AP (f ) ⊂ Λ(f ). Suppose that there is an ω-limit set L = ω f (x) and y ∈ L such that y / ∈ AP (f ). Then there is a minimal set M ⊂ L and z ∈ M such that (y, z) is proximal. Since f |Λ(f ) is equicontinuous then by Lemma 2.5 (y, z) is asymptotic. On the other hand, by Lemma 2.3 α f |L (y) is a nonempty, closed and f -invariant subset of L.

Claim. M ⊂ α f |L (y). Proof. Suppose that M α f |L (y). Then by minimality of M , M ∩α f |L (y) = ∅. Let ε 0 = d H (M, α f |L (y)) and let w ∈ α f |L (y). Let δ > 0. There is t ∈ L such that d(t, w) < δ and f n (t) = y for some n ≥ 1. So there is N ≥ 1 such that d(f k (t), f k (w)) > ε 0
2 for all k ≥ N . Thus f |L is not equicontinuous. Absurd. This finishes the proof of the Claim.

There is a sequence (y n ) n≥1 in L converging to z and a nondecreasing sequence of integers (k n ) n≥1 such that f kn (y n ) = y for all n ≥ 1. For any α > 0 and any

N ≥ 1, there is n ≥ N such that d(y n , z) < α, but d(f kn (y n ), f kn (z)) = d(y, f kn (z)) > d(y,M ) 2 . It follows that f |L is not equicon- tinuous at z. Absurd. Thus Λ(f ) ⊂ AP (f ). Hence Λ(f ) = AP (f ).
From Lemmas 2.8 and 2.9 we can deduce the following Corollary 2.10. Let (X, f ) be a dynamical system such that f |Λ(f ) is equicontinuous. Then Λ(f ) is closed.

Lemma 2.11. Let (X, f ) be a dynamical system such that f |Λ(f ) is equicon- tinuous. Then h(f ) = 0. Proof. Since Λ(f ) is closed, then R(f ) ⊂ Λ(f ). Hence by [2] h(f ) = h(f |R(f ) ) = h(f |Λ(f ) ). As f |Λ(f ) is equicontinuous, we get h(f ) = 0.

Splitting minimal sets of maps on dendrites X with

Card(End(X)) < c [START_REF] Mai | R = P for maps of dendrites X with Card(End(X)) < c[END_REF], Proposition 2.9) Let f : X → X be a dendrite map. Then, for any given x ∈ X\F ix(f ), there exists a unique complete f -tracing arc starting from x.

Definition 3.1. Let X be a dendrite. An arc [x, y] in X is called a tracing arc starting from x if F ix(f ) ∩ [x, y) = ∅ and for any z ∈ [x, y), (z, f (z)) ∩ [x, y] = ∅. Moreover, if f (y) = y then [x, y] is called a complete tracing arc. Lemma 3.2. ([
The proof of the following Lemma is inspired from [START_REF] Askri | Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets[END_REF].

Lemma 3.3. Let f : X → X be a zero topological entropy dendrite map with Card(End(X)) < c and let M be a nondegenerate (finite or infinite) minimal set. Then there is a connected subset C of X and an integer k ≥ 2 satisfying the following properties:

(i) C ∩ M has nonempty interior in M , (ii) f k (C) ⊂ C, (iii) M ⊂ ∪ k-1 i=0 f i (C), (iv) C, f (C), . . . , f k-1 (C) are pairwise disjoint. Proof. Let Y = [M ].
We distinguish two cases:

Case 1: Y ∩ F ix(f ) = ∅. Let a ∈ Y be a fixed point. Denote by A = ∪ n∈N f -n (a) and A Y = A ∩ Y . Notice that ord Y (a) < ∞ (It's clear if M is finite. Suppose that M is infinite and ord Y (a) = ∞.
Then there are infinitely many pairwise disjoint connected subsets

(C i ) i≥1 of Y \{a} such that C i ∩ M = ∅ for all i ≥ 1. So lim i→+∞ diam(C i ) = 0. Since a ∈ C i for all i ≥ 1, we get a ∈ M . Absurd). Claim 1. [A Y ] ∩ M = ∅. Proof. Suppose the contrarily. Then there is b ∈ Y and y ∈ M such that y ∈ (a, b) and f n (b) = a for some n ≥ 1. Let I = [a, y] and J = [y, b]. Since M is closed, there is z ∈ M such that b ∈ (y, z).
So there are integers p, q > 0 such that f p (I) ∩ f q (J) ⊃ I ∪ J. Hence I, J is an arc horseshoe. By Lemma 2.2, h(f ) > 0. Absurd. This finishes the proof of Claim 1.

Proof of (i) We have M = ∪ e∈End(X) [a, e] ∩ M . Since Card(End(X)) < c, then by the well known theorem of Baire, there is e 0 ∈ End(X)

such that Int([a, e 0 ] ∩ M, M ) is nonempty. Let M 0 = M ∩ [a, e 0 ]. By Claim 1, [M 0 ] ∩ A ∞ = ∅. So let C be the connected component of X\A ∞ containing M 0 . Hence Int(M ∩C, M ) = ∅. Proof of (ii) Let x ∈ M 0 , there is k > 0 such that f k (x) ∈ M 0 . So f k (C) ∩ C = ∅. As f k (C) ∩ A ∞ = ∅, we get f k (C) ⊂ C.
We can assume that k is the smallest integer with this property. Proof of (iii) Since Int(M 0 , M ) = ∅, then by [START_REF] Kolyada | Noninvertible minimal maps[END_REF], we have 

∪ N i=0 f i (M 0 ) = M for some N ≥ k. As M 0 ⊂ C, we get ∪ N i=0 f i (M 0 ) ⊂ ∪ N i=0 f i (C). So using (ii), M ⊂ ∪ k-1 i=0 f i (C). Proof of (iv) Suppose on the contrary that f i (C) ∩ f j (C) = ∅ for some 0 ≤ i < j ≤ k -1. Let s = k -j. Then f s+i (C) ∩ f s+j (C) = ∅. Since f s+j (C) = f k (C) ⊂ C, f s+i (C)∩C = ∅. As 0 < s+i < k, this contradicts the minimality of k. The integer k is greater than 1 since ord Y (a) > 1 and M ⊂ ∪ k-1 i=0 f i (C).
∈ M such that [x, b ] ⊂ (b, y). Since b ∈ [x, f (b)], then f (I) ⊃ [b, f (x)]. More generally, we have f k (I) ⊃ [b, f k (x)] for all k ∈ N. Since y ∈ ω f (x) = M , there is N ≥ n such that f N (I) ⊃ I ∪ J. On the other hand, f n (J) ⊃ [b, f n (x)]. So f N (J) ⊃ I ∪ J.
Hence I, J is an arc horseshoe for f . Absurd. As in Case 1, there is a connected subset C of X\B satisfying properties (i) -(iv). This ends the proof of the Lemma. Proposition 3.4. Let f : X → X be a zero topological entropy dendrite map with Card(End(X)) < c and let M be a nondegenerate minimal set. If M is finite then set I = {1, 2, . . . , p}. If M is infinite then set I = N. Then there is a sequence of subdendrites (D n ) n∈I of X and a sequence of nondecreasing integers (k n ) n≥1 satisfying the following properties:

(P.1) for any n ∈ I, D n is periodic of period k n and k n |k n+1 whenever n + 1 ∈ I, (P.2) for any i, j ∈ {0, 1, . . . , k n -1} (i = j), f i (D n ) and f j (D n ) are either disjoint or intersect only in one common point,

(P.3) for any n ≥ 1, ∪ qn-1 i=0 f ikn (D n+1 ) ⊂ Orb f (D n ) where q n = k n+1 kn , (P.4) M ⊂ ∩ n≥1 Orb f (D n ),
Proof. Let C be a connected subset of X satisfying properties (i) -(iv) of Lemma 3.3. For any 0

≤ i ≤ k 1 -1, we have f (M i ) = M i+1modk 1 where M i = f i (C) ∩ M . Let D 1 = ∩ +∞ i=0 f k 1 i (C). Then • D 1 is a subdendrite of X and f k 1 (D 1 ) ⊂ D 1 ,
• for any 0 ≤ i < j < k 1 , f i (D 1 ) and f j (D 1 ) are either disjoint or intersect in one common point.

• for any 0 ≤ i < k 1 , M i ⊂ f i (D 1 ). So M ⊂ Orb f (D 1 ). Now, f k 1 |D 1 : D 1 → D 1 is a dendrite map of zero topological entropy and Card(End(D 1 )) < c. Since M 0 is a minimal set of f k 1 |D 1 , there is a periodic subdendrite D 2 ⊂ D 1 under f k 1 |D 1 of period q 1 ≥ 2 such that M 0 ⊂ ∪ q 1 -1 j=0 f k 1 j (D 2 ), f k 1 i (D 2 ) and f k 1 j (D 2 ) (0 ≤ i = j < q 1
) are either disjoint or intersect only on one common point. So D 2 is a periodic subdendrite of period

k 2 = k 1 q 1 such that M ⊂ Orb f (D 2 ) and ∪ q 1 -1 i=0 f ik 1 (D 2 ) ⊂ Orb(D 1
). We continue this process to construct the sequence (D n ) n≥1 satisfying properties (P 1 ) -(P 4 ). Lemma 3.5. Let X be a dendrite with End(X) countable and closed and let (D n ) n∈N be a sequence of subdendrites of X satisfying (P.1), (P.2) and (P.3). Then there is an integer N ≥ 1 such that ∀n ≥ N , f i (D n ) is a free arc for some 0 ≤ i < k n .

Proof. Suppose that for any integer n and any 0

≤ i < k n , f i (D n ) ∩ End(X) = ∅. Then for any n ≥ 1, the subsets E n,i = f i (D n ) ∩ End(X) (0 ≤ i < k n ) are pairwise disjoint and closed. Let τ = (i 0 , i 1 , i 2 , . . . ) ∈ +∞ n=0 Z/q n Z
where q 0 = k 0 = 1. By the property (P 3 ), the subset

∩ +∞ n=1 f n-1 j=0 i j k j (D n ) is nonempty, closed and intersect End(X). Furthermore, E τ ∩E τ = ∅ when- ever τ = τ . Pick x τ ∈ E τ ∩ End(X). Then the map τ ∈ +∞ n=0 Z/q n Z → x τ ∈ End(X) is injective. This implies that End(X) is uncountable. Ab- surd. So there is N ∈ N such that f i (D N ) ∩ End(X) = ∅ for some 0 ≤ i < k N . Since End(X) is closed, f i (D N ) ∩ B(X) is finite. By tak- ing k n sufficiently large, we have f j (D n ) ∩ B(X) = ∅ for some n ≥ N and 0 ≤ j < k n . It follows that f j (D n ) is a free arc.
4. Li-Yorke pairs and equicontinuity of a dendrite map f on Λ(f ) Lemma 4.1. Let X be a dendrite with End(X) is countable and closed and let f : X → X be a continuous map. If f |Λ(f ) is equicontinuous then f has no Li-Yorke pairs. Proof. Suppose on the contrary that (x, y) is a Li-Yorke pair of f . By Lemma 2.9 ω f (x) ∪ ω f (y) ⊂ AP (f ). We can assume that ω f (x) is infinite. By [START_REF] Marzougui | On totally periodic ω-limit sets[END_REF] ω f (x) P (f ). So there is an infinite minimal set M ⊂ ω f (x). By Lemma 2.11 h(f ) = 0. So by Proposition 3.4 and Lemma 3.5 there is a periodic free arc I of X of period p such that M ⊂ Orb f (I). Set g = f p . Then M 0 := M ∩ I is an infinite minimal set of g. There is n ≥ 0 such that f n (x) ∈ I. Since (f n (x), f n (y)) is a Li-Yorke pair of g, there is a nondecreasing sequence of integers (n i ) i≥1 such that (g n i (f n (x))) i≥1 and (g n i (f n (y))) i≥1 converges to some z ∈ I. If g m (f ( y)) ∈ I for some m ≥ 1 then (f n (x), f n (y)) is a Li-Yorke pair for g |I . Otherwise, z ∈ ∂(I). Hence g 2 (z) = z. So (f n (x), z) ∈ I 2 is also a Li-Yorke pair for g |I . In all cases, the interval map g |I : I → I has a Li-Yorke pair. By [START_REF] Fedorenko | Characterizations of Weakly Chaotic Maps of the Interval[END_REF] g |I is not equicontinuous on Λ(g). Then so does for f on Λ(f ). Absurd. Thus f has no Li-Yorke pairs.

Remark 4.2. Lemma 4.1 fails if End(X) is not closed (See [1], Example 2).
Lemma 4.3. Let X be a dendrite with End(X) countable and closed and let f : X → X be a continuous map. Suppose that f has no Li-Yorke pairs. Then f |Λ(f ) is equicontinuous at any point in Λ(f )\(P (f ) ∩ End(X) ).

Proof. Let x ∈ Λ(f )\(P (f ) ∩ End(X) ). Then there is a minimal set M in X containing x. We distinguish two cases.

Case 1: x / ∈ P (f ). Then M is infinite. Let I be an N -periodic free arc in X such that M ⊂ Orb f (I). There is k ≥ 0 such that I is a neighborhood of f k (x). Since f N |I has no Li-Yorke pairs, then by Theorem 1.1 f N is equicontinuous at f k (x). Hence f is equicontinuous at x. Case 2: x ∈ P (f ). Then x / ∈ End(X) . Without loss of generality, we can assume that f (x) = x. As End(X) is closed, there is a neighborhood V = ∪ r i=1 [x, e i ] of x such that V ∩ B(X) ⊂ {x}. Fix ε 0 > 0. There is 0 < ε < d(x, X\V ) such that for all 0 ≤ i ≤ 2r, d(f i (u), f i (v)) < ε 0 whenever d(u, v) < ε. There is δ > 0 such that d(x, f i (y)) < ε for all 0 ≤ i ≤ 2r whenever d(x, y) < δ. Let y ∈ Λ(f )∩B(x, δ). Then f i (y), f j (y) ∈ [x, e s ) for some 0 ≤ i < j ≤ r and 1 ≤ s ≤ r. We can assume that i = 0 and y ∈ (x, f j (y)). If y / ∈ P (f ), as ω f (y) has no isolated points, we can assume that (y, f j (y)) ⊂ (w, z) for some w, z ∈ ω f (y) ∩ [x, e s ]. Let Y be the connected component of X\{x} containing y.

Claim 1. O f j (y) ⊂ Y .
Proof. Suppose the contrary. Let p > 1 be the smallest integer for which f pj (y) / ∈ Y . Then there is x ∈ (y, f j (y)) such that f (p-1)j (x ) = x. So [y, x ], [x , f j (y)] is an arc horseshoe, absurd. This finishes the proof of Claim 1.

Claim 2. [y, f j (y)] ∩ F ix(f j ) = ∅.
Proof. Let q > 1 be the smallest integer such that f qj (y) ∈ [x, f j (y)). Then by Lemma 3. Proof. Suppose that f 2j (y) / ∈ [x, y]. As y ∈ R(f j ), there is n > 1 such that f jn (y) ∈ (x, y). Suppose that n is the smallest one. So there is b ∈

[f j (y), f 2j (y)] such that f (n-2)j (b ) = b. Thus [f j (y), b ], [b , f 2j (y)] is an arc horseshoe. Absurd. So we get, f 2j (y) ∈ [x, b]. The connected subset of [x, b]\(∪ n≥0 f -nj (b) ∪ ∪ n≥0 f -n (x)) containing [y, f 2j (y)] is f 2j -invariant. So f 2nj (y) ∈ [x, y]
for all n ≥ 0. This finishes the proof of Claim 3. Now, we have d(x, y) < δ. So d(x, f 2nj (y)) ≤ d(x, f j (y)) < ε for all n ≥ 0. So d(x, f 2nj+m (y)) < ε 0 for any 0 ≤ m ≤ 2r and n ≥ 0. Thus f is equicontinuous at x. Lemma 4.4. There is a dendrite X with End(X) is countable and closed and a continuous map f : X → X without Li-Yorke pairs such that Λ(f ) = P (f ) but the collection of minimal sets is not closed in 2 X . As a consequence, f |Λ(f ) is not equicontinuous.

Proof. Construction of the dendrite X. We construct the dendrite X on the plane R 2 as follows.

• Let I 0 = [e 0 , e -1 ] where e 0 = (1, 0) and e -1 = (-1, 0), 

• For any n ≥ 1, let J n = [b n,0 , e n ] where b n,0 = (1 -1 n , 0) and e n = (1 -1 n , 1 n ), • For any n ≥ 1 and k ≥ 1, let I n,k = [b n,k , e n,k ] where b n,k = (1 - 1 n , 1 n (1 -1 k+1 )) and e n,k = (1 -1 n -1 2 k+n , 1 n (1 -1 k+1 )). Then X = I 0 ∪ n≥1 J n ∪ n,k≥1 I n,k is a dendrite with End(X) = {e n ; n ≥ -1} ∪ {e n,k ; n, k ≥ 1}
• f (e 1 ) = f (e 0 ) = e 0 , • [b n,0 , b n+1,0 ] f [b n+1,0 , b n+2,0 ], • [b 1,k-1 , b 1,k ] f [b k+1,0 , b k+2,0 ], • [b 1,0 , e -1 ] f [b 2,0 , e 2,1 ] and [b 1,k , e 1,k ] f [b k+2,0 , e k+2,1 ], • [b 2,0 , b 2,1 ] f [b 3,0 , b 1,0 ] and [b 2,k , b 2,k+1 ] f [b 1,k-1 , b 1,k ], • [b n+1,0 , b n+1,1 ] f [b n+2,0 , b n,0 ],[b n+1,1 , b n+1,2 ] f [b n,0 , b n,2 ] and [b n+1,k-1 , b n+1,k ] f [b n,k , b n,k+1 ], • [b 2,1 , e 2,1 ] f [b 1,0 , e -1 ] and [b n+1,k , e n+1,k ] f [b n,k+1 , e n,k+1 ].
It is easy to check that the map f : X → X is continuous, has no Li-Yorke pairs and the collection of minimal sets is not closed in 2 X . We have Λ(f ) = P (f ) = {e 0 , e -1 }∪{e n,k ; n, k ≥ 1}. Indeed, for any n ≥ 1, Orb f (e n,1 ) is a periodic orbit which converges in 2 X to the set M = {e n ; n ≥ 1}. Since f (e 0 ) = e 0 , then M is not minimal. (See Figures 1 and2) Proof. It suffices to prove that R(f ) ⊂ RR(f ). Let x ∈ R(f ). Then M = ω f (x) is a minimal set. If x ∈ P (f ) then x ∈ RR(f ). Suppose that x / ∈ P (f ). Then there is a p-periodic free arc I in X such that M ⊂ Orb f (I). Let 0 ≤ i < p such that x ∈ f i (I). There is x ∈ I ∩ M such that f i (x ) = x. Let U be an open set in X containing x. Then f -i (U ) is an open subset in X containing x . By Theorem 1.1 R(f p |I ) = RR(f p |I ). As x ∈ ω f p |I (x ), we get

x ∈ RR(f p |I ). So there is an integer N > 0 such that Orb f pN (x ) ⊂ f -i (U ). It follows that Orb f pN (x) ⊂ U . Thus x ∈ RR(f ). We conclude that R(f ) = RR(f ).

In the following Lemma, we strengthen absence of Li-Yorke pairs to get equicontinuity on Λ(f ). Lemma 4.6. Let X be a dendrite with End(X) countable and closed and let f : X → X be a continuous map. Suppose that f has no Li-Yorke pairs. If one of the following assertions holds

(1) the collection of minimal sets is closed in (2 X , d H ), (2) f |Λ(f ) is equicontinuous at every point in End(X) , (3) f |P (f ) is equicontinuous, then f |Λ(f ) is equicontinuous.

Proof.

(1) Suppose that the collection of minimal sets is closed in (2 X , d H ). Let x ∈ Λ(f ). By Lemma 4.3 we can assume that x ∈ P (f ). Also we may assume that x ∈ F ix(f ). Let (y n ) n≥1 be a sequence in Λ(f ) converging to x. For any n ≥ 1, M n = ω f (y n ) is a minimal set containing y n . We can assume that (M n ) is convergent to some closed set M . Then d(y n , M ) goes to 0 when n → +∞. As the collection of minimal sets is closed in (2 X , d H ), then M is a minimal set. So M = {x}. Now fix ε > 0. There is α > 0 such that if d(x, y) < α then d(x, ω f (y)) < ε. This implies that d(f n (x), f n (y)) < ε for all n ≥ 0. thus f is equicontinuous at x. 

Case 2 :

 2 Y ∩ F ix(f ) = ∅. Let x ∈ M . Then by Lemma 3.2 there is a complete tracing arc with endpoints x and a where a ∈ F ix(f ). By Lemma 5.5 of [1], for any y ∈ Y , [y, a] is a complete tracing arc starting from y. Let b = r Y (a) and B = ∪ n≥0 f -n (b). Notice that f (b) / ∈ Y , b / ∈ M and k := ord Y (b) < ∞. Claim 2. [B ∩ Y ] ∩ M = ∅. Proof. Suppose the contrary. Then there are b ∈ Y and x ∈ M such that x ∈ (b, b ) and f n (b ) = b for some n ∈ N. Let I = [b, x], J = [x, b ] and y

Claim 3 .

 3 2 there is a point a ∈ F ix(f j ) such that b := r |[Orb f j (y)] ∈ [f nj (y), f (n+1)j (y)] for some n ≥ 0. Let b ∈ (y, f j (y)) ∩ f -nj (b). If b / ∈ (y, f j (y)) then [y, b ], [b , f j (y)] is an arc horseshoe. Absurd. So b ∈ (y, f j (y)). As [y, f j (y)] is a free arc, f j (b) = b. This finishes the proof of Claim 2. Orb f 2j (y) ⊂ [x, b].

  which is countable and closed. Construction of the map f . The notation [a, b] f [c, d] means that f send linearly the arc [a, b] to the arc [c, d] such that f (a) = c and f (b) = d. We define the map f : X → X as follows. For all n, k ≥ 1,

Figure 1 .Figure 2 .

 12 Figure 1. The action of f on I 0 and {e n ; n ≥ -1}

( 2 )

 2 and (3) follows from Lemma 4.3 Proof of the main Theorem The implications (2) ⇒ (1), (2) ⇒ (4) and (1) ⇒ (3) are given in Lemmas 4.1, 2.8 and 4.5. The implication (1) ⇒ (5) is proved in Lemma 2.7 . Finally, (1) (4) is given by Lemma 4.4.

  The space 2 X endowed with d H is a compact metric space. 1.6. Dendrites. A dendrite is a locally connected compact connected metric space containing no simple closed curve. Let X be a dendrite. A point x ∈ X is called endpoint (resp. branch point) if X\{x} is connected (resp. has at least three connected components). We denote by End(X) and B(X) the sets of endpoints and branch points of X, respectively. A triod is a dendrite with unique branch point and finitely many endpoints. Any two distinct points a and b in X can be joined by a unique arc, we denote it by [a, b]. We denote by [a, b) = [a, b]\{b} and (a, b) = [a, b]\{a, b}. The convex hull of a nonempty subset A of X is the connected subset [A] = ∪ x∈A [a, x] for any a ∈ A. An arc I of X is called free if I ∩ B(X) = ∅. Let Y be a subdendrite of X and x ∈ Y . The order of x relatively to Y , denoted by ord Y (x), is the number of connected components of Y \{x}. For any x ∈ X, let r Y (x) be the unique point in Y belonging to the arc joining x and z for any z ∈ Y . The map r Y : X → Y is called the first point map.1.7. Motivation and Main result. Li-Yorke chaotic dynamical systems has been extensively studied in the literature during the last forty years . In such a system various kind of ω-limit sets and recurrent points can occur.

1.5. Hyperspace. We denote by 2 X the hyperspace of all nonempty closed subsets of X. The Hausdorff metric d H is defined as follows

: Let A, B ∈ 2 X , d H (A, B) = max{sup

x∈A d(x, B), sup y∈B d(y, A)} where d(x, A) = inf y∈A d(x, y).