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Confidence level optimization of DG piecewise
affine controllers in distribution grids

Jérôme Buire, Student Member, IEEE, Frédéric Colas, Jean-Yves Dieulot, Léticia De Alvaro, Xavier
Guillaud, Member, IEEE

Abstract—Distributed generators (DG) reactive powers are
controlled to mitigate voltage overshoots in distribution grids
with stochastic power production and consumption. Classical
DGs controllers may embed piecewise affine laws with dead-
band terms. Their settings are usually tuned using a decentralized
method which uses local data and optimizes only the DG node
behavior. It is shown that when short-term forecasts of stochastic
powers are Gaussian and the grid model is assumed to be
linear, nodes voltages can either be approximated by Gaussian
or sums of truncated Gaussian variables. In the latter case, the
voltages probability density functions (pdf) that are needed to
compute the overvoltage risks or DG control effort are less
straightforward than for normal distributions. These pdf are
used into a centralized optimization problem which tunes all
DGs control parameters. The objectives consist of maximizing
the confidence levels for which voltages and powers remain in
prescribed domains and minimizing voltage variances and DG
efforts. Simulations on a real distribution grid model show that
the truncated Gaussian representation is relevant and that control
parameters can easily be updated even when extra DGs are added
to the grid. The DG reactive power can be reduced up to 50 %
or node voltages variances can be reduced up to 30 %.

Index Terms—Confidence level optimization; control tun-
ing; distribution network; piecewise affine controller; stochastic
power flow.

NOMENCLATURE AND ACRONYMS

DG Distributed Generator.
OLTC On Load Tap Changer.
HV, MV High voltage, Medium voltage.
n+ 1,m Number of nodes, number of DGs
I Vector of 1s, dimension n.
Ṽ Vector of voltages, nodes 1 to n: Ṽ =

[Ṽ1, ..., Ṽn]T .
Ṽ0 OLTC node voltage.
V ref0 OLTC node voltage reference.
Ṽ err0 OLTC node voltage error.
Ĩ Vector of currents entering or exiting

nodes (̃I = [Ĩ1, ..., Ĩn]T ).
Ĩ0 Currents entering or exiting slack bus 0.
Y Admittance matrix.
Z Impedance matrix, Z = Y−1.
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P̃ vector of active powers (P̃ =
[P̃1, ..., P̃n]T ).

P̃l vector of consumption active powers
(P̃l = [P̃ l1, ..., P̃

l
n]T ).

P̃p Vector of production reactive powers
(P̃p = [P̃ p1 , ..., P̃

p
n ]T ).

Q̃ Vector of reactive powers (Q̃ =
[Q̃1, ..., Q̃n]T ).

Q̃l Vector of consumption reactive powers
(Q̃l = [Q̃l1, ..., Q̃

l
n]T ).

Q̃p List of production reactive powers (Q̃p =
[Q̃p1, ..., Q̃

p
n]T ).

Qshunti Reactive power of node i shunt admit-
tance.

PNi DG nominal power at node i.
α, β, Q0 Control parameters vectors of affine or

piewise affine laws.
γ Breakpoints vector of piecewise affine

control laws.
ai, bi Vector of truncations at voltage Vi.
µX̃ , σX̃ Mean and standard deviation of the

stochastic variable X̃ .
N (µ, σ2) Normal distribution with mean µ and

variance σ2.
TN(µ, σ2, a, b) Normal distribution with mean µ and

variance σ2 truncated in the interval
[a, b].

x 7→ φ(x) Standard Gaussian probabilistic distribu-
tion function.

x 7→ Φ(x) Standard Gaussian cumulative distribu-
tion function.

χ2 Pearson’s chi-squared test.
wV , wQ Objective function weighting factors.
η, λ Confidence levels.

I. INTRODUCTION

W ITH a high penetration level of renewable energy
generation, distribution grids face new issues such as

reverse power flows. Consequently, the likelihood of voltage
violations of the prescribed domain (mainly over-voltage situ-
ations) is increased [1]. The magnitude and location of these
voltage violations depend on the network topology and on the
uncontrollable stochastic inputs (i.e. the active power of DGs
and the power consumption of loads); however, they can be
mitigated by controlling the On Load Tap Changer (OLTC)
voltage reference and the Distributed Generators (DGs) re-
active powers. Because these controllers embed only local
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measurements, the system is communication fault tolerant
and each controller can operate in standalone mode (with
intermittent or without communication) [2]. These controllers
have a simple structure and do not need to be optimized in
real-time (as for Model Predictive Controllers proposed in [3],
[4]).

The main problem addressed by this paper is the central-
ized tuning of local controllers’ parameters, under intermit-
tent power production and consumption, using a stochastic ap-
proach. As discussed in the survey [5], most existing methods
proposed to tune volt/var curves are based on deterministic
approaches which often consider worst-case bounds to cope
with uncertainties. These bounds neither consider the produc-
tion and consumption patterns which are very different ac-
cording to the seasons, the day of the week, the hours, etc.,
nor the many interactions between the grid components of a
real distribution network (loads, DGs, conductors). The use
of error bounds tuning methods may yield very conservative
solutions and generate a significant control effort to keep the
voltages within prescribed values. When a high number of
DGs with intermittent production are connected to the grid,
it is recommended to use an intraday centralized control pa-
rameters tuning method to save reactive power. Such a daily
scheduling algorithm is improved when the random nature and
stochastic characteristics of the power production and power
consumption day-ahead forecasts are taken into account be-
cause it is possible to estimate the probabilities that the grid
operates according to the European regulations.

An important contribution of the paper is to propose a
model that is able to provide the stochastic profiles of each
node voltage and an estimate of the likelihood of voltage
violation. Another contribution consists of using a confidence
level optimization method which minimizes the violation risks
and which is not found in the literature. Quantile optimization
requires to find the maximum bound Vmax such that the
probability that voltages are smaller than Vmax is greater
than a fixed confidence level p (e.g. 0.95) [6]. On the other
hand, confidence level optimization aims to maximize p when
Vmax is given, that is find the minimum possible risk (here of
voltage overvoltage). In the power system literature, adjusting
or minimizing the confidence level has been done so far only
for Unit Commitment or pricing problems [7], [8], but has
not addressed control parameter tuning. In general, confidence
level optimization are not convex [9], and chance-constrained
relaxation as Chebychev generating functions [10] are not
applicable.

A main benefit over robust optimization algorithms, which
update control parameters using uncertainty bounds regardless
of the load and the production forecasting stochastic distri-
butions [11], [12] is that these methods are able to provide
confidence levels, that is a rate of service for the DSO or the
customers. Moreover, the representation given in this paper is a
stochastic extension of an accurate linear model of [13] which
allows the use of convex optimization, provides the probability
distribution of each node voltage and greatly alleviates the
computational time . The computational time issue is quite
important as the optimization algorithm should perform hourly
updates. Contrary to the algorithm presented in the paper, most

stochastic methods for power systems that are found in the
literature are based on sampling and a nonlinear model of the
grid such as the well-known Monte-Carlo Simulation (MCS).
Such methods should be discarded, because they bear a sig-
nificant computational burden - at least a few hours - for large
scale grids [14], even with the use of relaxation techniques
[15], [16],

In practice, a local industrial controller embeds a nonlinear
dead-band term, which alleviates unnecessary reactive power
actuation, and saturations. More generally, the literature con-
siders smooth linear or nonlinear droop controllers and ignores
centralized tuning methods that can be applied on real size net-
works which embed piecewise affine control laws [12] (with
the exception of [17] which displays a scenario without any
stochastic variables). An original contribution of the paper is
to find easily the probability densities and confidence levels
of node voltages generated by the use of piecewise affine con-
trollers and to tune optimally the breakpoints and dead-band
width.

In this paper, the DG reactive control parameters are opti-
mized using a stochastic centralized approach with a low com-
putational time for real size networks. This stochastic approach
realizes a trade-off between voltage variances, DG control ef-
fort, and confidence levels that voltages and powers remain
within prescribed domains, which is not covered by the litera-
ture. Moreover, a precise stochastic representation of the grid
is given when some of the DG have a piecewise affine reac-
tive power control law (e.g. droop control with a deadband)
and using the stochastic characteristics of the production and
consumption forecasts considered. It is shown that the node
voltages can be represented either by Gaussian of sums of
truncated Gaussian distributions. The existence of such dis-
tributions assumes that the error of the daily short-term fore-
cast of consumption and production can be characterized by
Gaussian distributions, as highlighted in [18], along with an
accurate linear power flow model such as found in [13]. This
stochastic truncated law has only been used to characterize
the production or consumption powers in the literature [19],
[20] and not the node voltages. This allows, in a second time,
to compute means, variances, confidence levels, etc. and to
perform the confidence level optimization of the grid. While
keeping the industrial control structure, the main benefits of
the methodology are the computation and optimization of con-
fidence levels (i.e. rates of service) at a reasonable control cost.

The paper is organized as follows: In section II, the linear
stochastic power flow, the stochastic modeling of inputs and
the controller structure are presented. Section III introduces
truncated Gaussian distributions, the optimization problem and
the procedure to solve it. A simulation of a real distribution
grid is given in section IV.

II. STOCHASTIC MODELING OF THE SYSTEM

A. Linear power flow model

In this section, accurate linear models are presented which
introduce the nodes voltages (Ṽ) as linear functions of
load/production active (P̃) and reactive (Q̃) powers [13], [21]
which is briefly recalled hereafter. Bold variables represent
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matrices or vectors. A tilde (˜) placed on top of a symbol
indicates that the corresponding variable is stochastic. The
subscript i refers to node i. Subscript is g for a node which
contains a generator. Superscript refers to some property of the
variable. For example, superscript j refers to the jth interval
of the piecewise affine control law.

We consider a distribution grid comprising some lines,
loads, n+ 1 nodes and m DGs. The slack bus 0 has a voltage
(Ṽ0) and a zero angle. It refers to the secondary of the HV/MV
distribution transformer and is controlled by an On Load Tap
Changer (OLTC). Tap changer is a mechanism in transformers
which allows for variable turn ratios to be selected in discrete
steps [4]. Note that due to this intrinsic quantization, the
precision of this actuator is around 1 %. The other bus voltages
are noted Ṽ = [Ṽ1, ..., Ṽn]T . The study is restricted to the
steady state behavior of the system. All voltages and currents
are sinusoidal signals which have the same frequency and can
be represented as complex numbers. Ohm’s and Kirchhoff’s
circuit laws establish relation (1), where Y∗ represent a known
non stochastic admittance matrices:[

Ĩ0
Ĩ

]
= Y

[
Ṽ0
Ṽ

]
=

[
Y0 Y0V

YV0 Y

] [
Ṽ0
Ṽ

]
(1)

Shunt admittances are neglected in this linear approximation
[13]. However, in distribution networks, many underground
cables can be found for which these shunt admittances cannot
be neglected and are represented by capacitances Yii. In order
to keep the model simple, they are considered as constant
reactive power productions Qshunti which are added to the
power buses and computed assuming that the deterministic
voltage value Vh has been fixed (typically we choose 1 pu):

Qshunti = YiiV
2
h (2)

The linear approximation of the nodes voltages (3), for which
Z = Y−1 and vectors P̃ and Q̃ are the sets of active and
reactive powers, is valid under condition (4).

ˆ̃
V = Ṽ0(I +

1

Ṽ0
2Z(P̃− jQ̃)) (3)

Ṽ0
2
> 4||Z||∗||P̃ + jQ̃|| (4)

where the vector 2-norm ||.|| on CN and the matrix norm ||.||∗
are defined in (5) on CN×N .

||A||∗ = max
h
||Ah∗|| = max

h

√∑
k

|Ahk|2 (5)

The theoretical upper bound of the voltage error at the node
j is given by (6). Monte Carlo simulations of real distribution
networks have shown that the real error is lower than 0.001 pu
and far below the theoretical upper bound of the voltage error
which is below 0.01 pu [22].

| ˆ̃Vi − Ṽi| =
4

Ṽ0
3 ||Zi∗||||Z|| (6)

Eventually, the linear power flow model is given by the generic
equation (7), which will be used for next discussions.

Ṽ = AP̃ + BQ̃ + IṼ0 (7)

A simple estimation of current lines is obtained by the
admittance matrix and Ohm’s law.

B. Stochastic modeling of inputs

The inputs (consumption and production powers) are char-
acterized by their statistical properties and they come from
day-ahead forecasts. The time-dependent power profile is not
embedded in the control algorithm. Besides voltage expecta-
tions, the PDFs of voltages and confidence levels should be
considered. This can be achieved using the linear model (7),
stochastic forecasting data and model uncertainties. Let us split
power vectors P̃ in (8) and Q̃ in (9) in consumptions P̃l and
Q̃l and productions P̃p and Q̃p (the nominal power of the DG
of the node i is noted PNi ). P̃l is a stochastic variable which
is not used for feedback. P̃p corresponds to the DG stochastic
active power which will not be curtailed in this paper but can
be used in the feedback control law of the DG reactive power
controllers. In this paper, the control variable is the reactive
power

P̃ = P̃l − P̃p (8)
Q̃ = Q̃l − Q̃p (9)

Productions and consumptions are provided by short term
forecasting [18], [23]. Fig.1 shows two examples of the short-
term (e.g. daily) wind power forecasting error probability
density functions (PDF); their histograms can be approximated
by Gaussian distributions. Likewise, stochastic consumptions
and productions powers can be modeled as Gaussian variables.
The voltage Ṽ0 is controlled by the OLTC which selects the
appropriate tap according to the voltage reference V ref0 which
is prescribed by the distribution transformer [4]. The absolute
voltage error is limited by 0.01 pu. V0 can also be considered
as a stochastic variable. Using historical data, the voltage error
distribution can be approximated by a Gaussian law, in the case
study Ṽ err0 = N (0, 0.052). A Gaussian variable is completely
characterized by its mean µ and standard deviation σ.

Fig. 1. Error of wind power forecasting [23]

As all variables which are fed to the linear model (7) are
assumed to be Gaussian, it is possible to show that nodes
voltages and powers are also Gaussian which means and
standard deviations can be determined analytically without any
iteration.

Frederic Colas
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C. Structure of local controllers

In distribution networks, the actuators are the OLTC and the
distributed generators reactive powers. The voltage reference
V0
ref is the OLTC control parameter defined by (10) [4]:

Ṽ0 = V0
ref + Ṽ err0 (10)

The error voltage Ṽ err0 = N (0, 0.052) comes mainly from
quantization (tap selection). Contrary to the OLTC, the DGs
are scattered all over the distribution grid. The structure of the
DG reactive power industrial controllers can be either affine
or piecewise affine. In the first case, the reactive power is an
affine function of local measurements such as the voltage and
the active power production. The affine controller of a DG
located at the node g is given by equation (11).

Q̃pk = αkṼk + βkP̃
p
k +Q0

k (11)

P̃ pk and Ṽk are respectively the active power production and
the voltage of the node k. αk, βk and Q0

k are the controller
parameters.

In the second case, the continuous control law is piecewise
affine and uses only local voltage feedback. The common
industrial practice is 5 intervals, and displays two affine
sections, two saturation levels, and a deadband [24]. The
levels and breakpoints extremal values are chosen in order to
guarantee the system stability and to keep the control within
the regulatory requirements (PQ diagrams). Without loss of
generality, this work can be extended to any piecewise affine
control law. The piecewise affine control law at the node g is
given by equation (12) [24].

Q̃pg =



α1
gṼg +Q01

g if Ṽg < γ1g
α2
gṼg +Q02

g if γ1g ≤ Ṽg < γ2g
α3
gṼg +Q03

g if γ2g ≤ Ṽg < γ3g
α4
gṼg +Q04

g if γ3g ≤ Ṽg < γ4g
α5
gṼg +Q05

g if γ4g ≤ Ṽg

(12)

Ṽg is the voltage of the node g. αjg , Q0j
g and γjg are the

controller parameters which are defined for each interval j, as
shown in Fig. 2. Deadbands prevent oscillations or repeated
activation-deactivation cycles. Control saturation is necessary
to avoid stability problems [24]. The controllable inputs are
the DERs reactive powers. The main goal of the paper is to
tune the parameters of the piecewise affine control laws which
is described in the next section.

Ṽg

Q̃p
g

0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04 1.05 1.06

0.1

0.2

0.3

0.4

0.5

0

-0.1

-0.2

-0.3

-0.4

-0.5

Γ1
g Γ2

g

Γ3
g Γ4

g

α2
g

α4
g

Fig. 2. Piecewise affine control law

III. CONFIDENCE LEVEL OPTIMIZATION OF
PIECEWISE AFFINE CONTROLLER PARAMETERS

In this section, it will be shown that stochastic laws of the
nodes voltages of model (7) can be approximated by either
Gaussian or sums of truncated Gaussian laws when the system
is under piecewise affine control. Then, a confidence level
optimization which embeds the voltages stochastic laws will
determine the appropriate OLTC reference voltage and adjust
the controller settings (levels and breakpoints) for each DG
and for each interval.

A. Stochastic models of nodes voltages

Figure 3 shows the node voltages PDFs along a feeder
embedding a single DG equipped with a piecewise affine
controller located at its end. These profiles are obtained
from a Monte Carlo simulation, assuming that the inputs are
Gaussian. It can be noticed that when nodes are close to the
OLTC, their voltages look like Gaussian variables, and when
they are close to the DG, they behave as sums of truncated
Gaussian variables (”TN” represents a truncated Gaussian
variable which is detailed in the Appendix).

Proposition 1:
Consider a feeder with m nodes for which the voltage is

controlled by a set of DG equipped with an affine controller
defined in (11) and a single DG equipped with the piecewise
affine reactive power control law defined in (12). Let αj a
diagonal matrix for which the diagonal element αjii = αi when
i is a linear DG node, αjii = 0 when i is a load node, and αjii =
αji corresponds to the slope of the piecewise affine control law
of the DG node i for the interval j, j = 1 · · · 5. The vector of
control parameters Q0j is defined in the same way. Assume
that the OLTC voltage and powers inputs are Gaussian and
that the invertibility condition det(I−Bαj) 6= 0, j = 1 · · · 5,
is fulfilled, then, the voltage Ṽi at node i is a sum of truncated
Gaussian variables, which distribution is given by:

Ṽi =

5∑
j=1

TN(µji , (σji )
2, aji , b

j
i ) (13)

The truncations of the DG node g are:

ag = {−∞, γ1g , γ2g , γ3g , γ4g}, (14)

bg = {γ1g , γ2g , γ3g , γ4g ,+∞} (15)

and the truncations of the node i (i 6= g) are:

ai = {−∞, Ṽi|Ṽg = γ1g , Ṽi|Ṽg = γ2g ,

Ṽi|Ṽg = γ3g , Ṽi|Ṽg = γ4g} (16)

bi = {Ṽi|Ṽg = γ1g , Ṽi|Ṽg = γ2g ,

Ṽi|Ṽg = γ3g , Ṽi|Ṽg = γ4g ,+∞} (17)

where Ṽi|Ṽg = γjg is the conditional random variable Vi given
Vg = γjg .
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Fig. 3. Typical voltage profiles along a feeder

Proof: The linear power flow model (7) combined with
equations (11, 12) yields the global piecewise linear model,
equation (18).

Ṽj = (I−Bαj)
−1

[(A + Bβ)P̃+B(Q0j + Ql)+IṼ0] (18)

where Ṽj refers to the nodes voltages within the interval j
of the piecewise affine control law. As the inputs P̃ and Ṽ0
are Gaussian and the parameters αj and Q0j are piecewise
constant, each part of Ṽ is a sum of weighted Gaussian so is
Gaussian over each interval. However, the behavior at the DG
node differs from that at the other nodes:
• The variable which triggers changes in the piecewise

affine control law parameters, depending on the break-
points (γ1g , γ2g , γ3g , γ4g ), is the DG node voltage. As
a consequence, the DG node g is a sum of truncated
Gaussian variables which intervals stem directly from the
breakpoints (see Fig.3 case 4).

• For other nodes, which lie between the OLTC and the DG,
the voltages given by equation (18) will always behave
as Gaussian variables within each interval. However the
truncations are not deterministic, because they depend
on the stochastic behavior of the system. Indeed, the
breakpoint γjg of the DG node g propagated to the node
i (i 6= g) becomes the conditional random variable
Ṽi|Ṽg = γjg . Using the properties of multivariate condi-
tional Gaussian variables [25], the stochastic truncation is
a Gaussian variable which mean and variance are defined
in (19, 20).

µ
Ṽi|Ṽg=γjg = µṼi +

CoV (Ṽi, Ṽg)

σ2
Ṽg

(γjg − µṼg ) (19)

σ2
Ṽi|Ṽg=γjg = σ2

Ṽi
+
CoV (Ṽi, Ṽg)

σ2
Ṽg

CoV (Ṽg, Ṽi) (20)

This second case is illustrated in Fig.3 case 2 and case
3.

Whereas Proposition 1 states that all node voltages can
be represented by sums of truncated Gaussian variables, the
main difficulty is to consider the stochastic truncations given
by (16), (17). The computational effort required by the use
of analytical tools allowing to take stochastic truncations
into account (e.g. convolutions) is way too important for the

purpose of controller tuning. As a consequence, it is necessary
to simplify the voltage stochastic model. Intuitively, two cases
can be considered as shown in Fig. 3:

• When nodes are close to the DG (equipped with a
piecewise affine controller), the stochastic truncations are
narrow and boil down to their expectations. Hence, since
the truncations are deterministic, the voltage distributions
are approximated by sums of truncated Gaussian vari-
ables (case 3).

• When nodes are close to the OLTC (and far from the
DG) the previous approximation does not hold any more
and the truncated Gaussian PDFs, given by (18), have a
substantial overlap. Hence, the node voltage behaves as
a sum of many stochastic variables, and, by virtue of the
Central Limit Theorem, converges to a Gaussian variable.
Its characteristics are computed using a linearized control
law and the global linear model in (18) (case 2).

There is no analytical method which allows to choose
whether a node voltage distribution can be approximated
either by a sum of piecewise Gaussian distributions or by
a Gaussian distribution nor yields a quantitative bound for
the approximation error. This selection is addressed in section
III.B, using a chi-square test.

Remark: In the full affine control case (without any piece-
wise affine controller), the nodes voltages are completely
defined by (18) and the Gaussian inputs; the nodes voltages are
sums of Gaussian variables, and can therefore be defined by
Gaussian variables [25]. Note also that the result of Proposition
1 is valid for one piecewise affine controller per feeder, but
the number of other DGs with affine control is not restricted.

B. Selection of the stochastic voltage model

Proposition 1 concludes on the fact that nodes voltages can
be modeled either by Gaussian variables or sums of truncated
Gaussian variables. If the node voltages were modeled only by
sums of truncated variables, one obtains 5 different truncated
distributions for each node and 3 truncation values under the
control law given in Fig. 1, which amounts to 6 times more
parameters than when only Gaussian distributions are consid-
ered. Nevertheless, Gaussian distributions (and even Gaussian
Mixture Models) are unable to represent distributions with dis-
continuities which happens when a the control law exhibits a

Frederic Colas
ici, pour le 6 fois plus soit on eneleve soit on explique un peu plus pourquoi 6 fois.

Frederic Colas


Frederic Colas
Fig. 2

tenailleau
Zone de texte 



IEEE TRANSACTIONS ON SMART GRID 6

deadband. There is a need to know which is the best stochas-
tic representation of each voltage node to provide a trade-off
between accuracy and complexity.

The nature of a node voltage distribution is related to
the distance of a node to a piecewise affine controlled DG.
A heuristic method is proposed (flowchart of Fig.4) which
selects, using standard conditions - whether a node voltage
should a priori exhibit a Gaussian or a truncated sum of
Gaussian distribution. A Monte Carlo method based on the
Newton Raphson algorithm is used only once in the selection
process. However, the optimization method presented in this
paper and described in section III.C is not a Monte-Carlo
method.

Selection of the stochastic model

Minimum

χ2
N χ2

TN

Gaussian model
Monte Carlo
AC power flow

Sum of truncated
Gaussian model

Fixed controllers parameters

Stochastic power production
Stochastic power consumption

Stochastic OLTC voltage

Fig. 4. Flowchart of the selection algorithm

First, the controllers parameters are fixed at standard values
obtained by tuning local DG voltages. Then, by feeding the
input powers and the OLTC voltage to a nonlinear model of the
grid, nodes voltages PDFs are computed using Monte Carlo
Simulations. Then, for each node, a Gaussian approximation
and a sum of truncated Gaussian approximation of the voltage
PDF are computed. For each node, the voltage interval is
discretized with N values (e.g. in the interval [0.9; 1.1] pu,
a step of 0.002 pu and N = 100 can be selected). Eventually,
Pearson’s chi-squared test (21) is used to select the model
which fits the node voltage PDF (obtained with Monte Carlo
Simulations) best:

χ2 =

N∑
i=1

(
pmontei − pfiti

)2
pmontei

(21)

where pmontei is the expected frequency of type i obtained by
Monte Carlo Simulations and pfiti is the frequency obtained by
the Gaussian or the Piecewise Gaussian distribution. This test
is able to compute a sum of relative error between the Monte
Carlo Simulations and either a Gaussian law (χ2

N ), or a sum
of truncated Gaussian laws (χ2

TN ). The numerical value of the
test indicates the accuracy of the approximation in Proposition
1.

Once the selection procedure (which takes about ten minutes
for the presented case study in section IV) is complete,
the structure of every node voltage PDF is fixed, that is
which PDFs should be represented by Gaussian variables (22)
and which ones should be represented by sums of truncated
variables (23). The choice between both types of model is
obtained using a single set of standard control parameters.
Then, the structure selected by this initialization procedure
remains the same once and for all at each step in the confidence
level optimization algorithm presented in section III.C.

Ṽi = N (µni , (σni )2) (22)

Ṽi =

5∑
j=1

TN(µji , (σji )
2, aji , b

j
i ) (23)

C. Definition of the optimization problem

In the previous section, it has been shown that voltage
nodes can be represented by Gaussian or truncated Gaussian
variables. The characteristics of their PDFs depend strongly
on the piecewise affine controllers parameters, that is the
breakpoints γj , levels Q0j and the slopes αj of the piecewise
functions. Hence, this model can be embedded in a confi-
dence level optimization problem, for which the controllers
parameters γj , Q0j, αj and the reference voltage V ref0 are
the decision variables as shown in (24). A main objective
is the maximization of the confidence levels ηi for which
every voltage Vi remains within the specified range, in the
case study [0.95; 1.05] pu. That is, one wants to provide a
maximum level of service to the user. It is impossible to find
a set of control parameters that give an optimal value for each
individual confidence level, because of the strong coupling
between the voltages and all control parameters, as shown
in equation (20). Among all confidence levels, one should
consider the worst one ηworst and try to maximize it. An
alternative which was found to be more easily algorithmically
tractable is to maximize the sum of all confidence levels, that
is to minimize the occurrence of faulty situations, as shown
in e.g. [26]. It is also sought to maximize the confidence
level λi for which the DG powers of the node i remain
within prescribed PQ domains. When the confidence levels
are very high, secondary objectives are the reduction of the
voltage variances (V ar(Ṽi)) and the DGs efforts (| Q̃

p
i

PNi
|). These

objectives are scaled with weights wV and wQ. The means,
variances, PDFs, CDFs and confidence levels of nodes voltages
and DGs powers are computed using (11) to (20). They are
not approximated and do not require multiple simulations. The
objective function is given in the equation (24).

max
α,β,Q0,V ref0

wη min
i=[0;n]

ηi + wλ min
i=[0;n]

λi

− wV
n

n∑
i=0

V ar(Ṽi)−
wQ
m

n∑
i=0

| Q̃
p
i

PNi
| (24)

Note that the decisions variables in equation (24) α,β,Q0

are the affine, piecewise affine and OLTC control parameters.
In addition to the objective functions, some technical or con-
tractual constraints should be respected: There is a minimum
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probability that the PQ powers remain in the prescribed PQ
domain, that is the confidence level of the DG node g λg
should exceed a prescribed value λs as displayed in (25a). A
well-designed network should never endure overcurrents. For
all lines, the probability δl that the conductor current Il does
not exceed the maximum bound Imax should be less than
a prescribed value δs (25b). The OLTC voltage reference
V ref0 should also remain within a prescribed interval (25c).
The weights wV , wQ are normalized which allows for scale-
up with respect to the size of the grid. Equations (25d) state
that the outer intervals slopes of the piecewise affine control
structure are set to zero to prevent DGs PQ powers to leave the
contractual PQ diagram (e.g. if | Q̃

p
g

PNi
| does not exceed −0.35

or 0.4, which are the bounds of the contractual PQ diagram).
The central slope is enforced to zero which avoids to call
for unnecessary actuation of the DGs reactive powers for low
voltage variations (25d). Finally, for the interval j, the slopes
αjg of the industrial piecewise affine controller with 5 segments
are bounded to keep the stability of the closed-loop system
[27] (equation (25e)).

λg > λs ∀ DGs (25a)
δl > δs ∀ conductors (25b)

V0
ref ∈

[
V min0 ;V max0

]
(25c)

α1
g = 0 α3

g = 0 α5
g = 0 (25d)

|αig| < αmax (25e)

The voltage Ṽi is a sum of truncated Gaussian variables
which allows to deal with discontinuities and is characterized
by :

FṼi(x) =



Φ(
x−µ1

i

σ1
i

) if x ∈]−∞; b1i ]

Φ(
x−µ2

i

σ2
i

) if x ∈]a2i ; b
2
i ]

Φ(
x−µ3

i

σ3
i

) if x ∈]a3i ; b
3
i ]

Φ(
x−µ4

i

σ4
i

) if x ∈]a4i ; b
4
i ]

Φ(
x−µ5

i

σ5
i

) if x ∈]a5i ; +∞[

(26)

The confidence level ηi that the voltage Ṽi remain within
[Vmin;Vmax] is given by ηi = FṼi(Vmax)− FṼi(Vmin)

Knowing the nature of the distributions allows to boil down
the complex behavior to a few parameters (variances, means,
truncation values) and to compute straightforwardly the op-
timization objective (confidence levels, etc.). This is a main
advantage over a trial and error procedure such as the Monte-
Carlo method. For example, consider a real distribution grid
with 4000 nodes, 100 parameters to tune and 1000 samples are
taken for each Monte Carlo simulation. Let us assume that the
4000 densities of probability are obtained within 500 seconds
on a standard computer, and that the algorithm converges in 20
iterations (steps). If we use a brute force algorithm, the total
computational time will amount to 2000000 seconds, that is
more than 500 hours. Even with an improved optimization
code, and a reduction of the computational cost by 100, the
optimization problem would be solved in 5 hours. This method
is able to reach an optimal solution within 10 minutes, which

allows for hourly updates. It is possible to embed losses in
the objective function, which is done generally, however, at
the design stage as explained in [28].

IV. APPLICATION OF CONFIDENCE LEVEL
OPTIMIZATION TO A REAL DISTRIBUTION GRID

A. Description of the case study

The optimization problem (24) s.t. (25) is applied to a
grid based on a real distribution network. The grid contains
3441 nodes, 690 loads, 21 generators (mainly PV), which
are distributed on 27 feeders. The maximal consumption of
loads is 84.1 MW and 38 MVAr. The nominal power of
all generators is 29.5 MW. Only one DG per mixed feeder
is equipped with a piecewise affine controller. Other DGs
reactive power controllers are affine. There are 7 feeders
equipped with a piecewise affine controller, and 14 DGs
equipped with an affine controller. This distribution grid is
real so it is designed to avoid overvoltages. However, in the
future, new distributed generators could be added to an existing
grid without other topology and hardware modification. In
the case study, one check whether two additional DG with
an active power 3 MW can be added to mixed feeders. The
idea is to tune all DGs reactive power controllers and find the
appropriate OLTC voltage to keep voltages and powers in the
prescribed domains. The result on the whole distribution is
too long and cannot be detailed, but can be handled in less
than 10 minutes by the optimization algorithm. The mixed
feeder presented in Fig.5 is relevant to illustrate the proposed
method.

The tuning is performed using a realistic and critical opera-
tion, which occurs typically at the beginning of the afternoon
in summer. As load and production rates are respectively 30 %
and 80 %, working conditions create situations for which
voltages are close to the upper bounds. The characteristics
of forecasting errors can be inferred from a measurement
data base and are summarized in Table I, and load spreading
uncertainty is considered in the study.

TABLE I. UNCERTAINTIES STANDARD DEVIATIONS

Uncertainty (in % of nominal or reference
power)

Standard deviation

Aggregated load forecast uncertainty 3.45 %

Load spreading uncertainty 50 %

Production forecast uncertainty (photovoltaic
energy)

17.16 %

OLTC uncertainty 0.005 pu

B. Results and discussion

Proposition 1 has shown that all voltages can be modeled
by either Gaussian variables or sums of truncated Gaussian
variables. The initialization stage selects the stochastic model
of the voltages nodes. The distribution of the models in one
of the 27 feeders, shown in Fig.5, is detailed.

The nodes voltages close to the DG (from node 101 to
the feeder end) can be modeled by sum of truncated Gaus-
sian variables. About 1/3 of nodes voltages distributions are
approximated by piecewise Gaussian distributions and the
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Fig. 5. Illustration of the mixed feeder and the stochastic model selected

remaining 2/3 can be represented by Gaussian distributions.
The nature of the distribution changes between nodes 74 and
101. The DG equipped with a piecewise affine controller is
located at node 26.

A confidence level optimization program is not a linear
program, and no formal proof of convergence or convexity can
be given when it involves piecewise affine functions. However,
using a Monte Carlo method, the numerical convexity of the
problem has been assessed. The optimization is applied to
the whole grid, uses a classical interior point method of the
routine fmincon [29] of Matlab 2016b dedicated to solve
convex problems [29] and is performed on a PC with 2.8
GHz Intel Core i7 and 16 GB RAM. The constraints settings
are λs = δs = 0.95, V min0 = 1.02 pu, V max0 = 1.04 pu,
αmax = 15 pu/pu. The optimal solution (which verifies the
constraints (25)) is computed within 10 minutes on a standard
computer which allows, if necessary, an hourly update.

Fig. 6. Optimized possible voltages along the feeder

Results related to the feeder shown in Fig.5 is detailed.
A global view of the possible voltages along the feeder
is shown in Fig.6. These results are obtained with the AC
power flow method with Monte Carlo Simulations used as
the reference method. The filled area represents 95 % of the

voltages which lie within 2 standard deviations of the mean, in
green with optimized control, and red without reactive power.
This figure demonstrates that nodes voltages are kept in the
domain [0.95; 1.05] pu, and that voltage variances are reduced,
specifically when close to the DG. The optimization algorithm
sets the OLTC reference voltage to 1.02 pu which is the
lowest bound allowed. It is consistent with the fact that under
this operating point, the distribution grid endures high voltage
problems. The DG at the feeder end (node 26) has a voltage
mean of 1.035 pu and standard deviation of 0.05 pu, which
can be compared with the 1.04 pu mean and 0.06 pu standard
deviation of the uncontrolled voltage.

The piecewise affine function controlling the DG reactive
power and the voltage of the node connected to the DG
are both presented in Fig.7. One can see that the controller
is mainly activated in one interval (the decreasing segment
between 1.028 pu and 1.043 pu). The optimized value of the
segment slope is −13.5 pu/pu which is close to the the lower
bound, thereby allowing to decrease the variance. The last
segment after 1.043 pu enforces the reactive power rate to a
value of −0.28 pu. Fig.7 shows that this value corresponds to
a voltage bound of 1.05 pu.
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Fig. 7. The optimized piecewise affine function with its voltage PDF

The reduction of the DGs efforts is a very important result
of the optimization. Decreasing DGs efforts improves DGs
lifetime, and reduces maintenance operations. Fig.8 shows the
PDF of the reactive power which can be split into three parts.
These parts are outer bounds with two fixed values (−0.28 pu
and 0 pu) and an intermediate part which is a truncated
Gaussian variable with a mean value of −0.15 pu.
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The optimized DG effort is µQ
optim = 0.14 pu, which

can be compared to the same DG effort obtained with the
French parameters of the law Q = f(V ) [30]. At the same
operating point, these parameters impose the DG effort to
be µQfrench = 0.1606 pu. This comparison shows that the
optimization can save 10% DG effort. This gain is the result
of the short-term optimization. The DG effort can be optimized
in the range [0.06; 0.16] pu and the node 26 voltage standard
deviation can be optimized in the range [0.005; 0.006] pu.
All the subparts of the objective function (24) are conflicting
and the weighting factors wλ, wη, wV , wQ can be selected by
finding a Pareto optimum. A Pareto frontier between the mean
of DG efforts and the maximum risk level is given in Fig.9.
Using a Pareto barrier for the four weighting factors, one
obtains wη = wλ = 0.9995, wV = 1, wQ = 0.0005;. When
the priority is given to only DGs efforts reduction, a value of
µQ

optim = 0.06 pu can be obtained, dividing these efforts by
50 % .
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Fig. 9. Pareto frontier between the mean of DG efforts and the risk level
1−mini=[1;n](ηi)

Whereas the tuning method needs a distribution of the fore-
cast errors in a time window (i.e. probabilities), their time-
profile is not required as for real-time control. Contrary to
advanced real-time control (e.g. predictive control), the method
can be applied with the current communication and actuation
technologies. The price to be paid is reasonable and consists
of sending periodically (say on an hourly basis) the stochastic
behavior of the production and consumption forecasts to a
centralized supervisor, which, in turn, after performing a con-
fidence level optimization, should communicate periodically
(on the same time basis) their new control parameter to each
DER. Note however that once this is done, the DERs operate
in a fully decentralized mode. In France, this could be done
using a device called DEIE [31].

V. CONCLUSION

The paper addresses a centralized optimization of the
controllers settings in a distribution grid with a stochastic
representation of renewable productions and consumptions.
The controllers actuate the OLTC and the DGs reactive powers
and enforce both the nodes voltages to remain within specified
bounds and the DG powers to stay in a prescribed PQ domain.
DGs reactive power controllers have a droop-like structure

and may embed a dead-band term which is used to decrease
unnecessary actuation.

The proposed stochastic model uses Gaussian variables
or sums of truncated Gaussian variables to represent nodes
voltages and DGs reactive powers. Their characteristics (mean,
variance, confidence level) can be inferred from the stochastic
model and control parameters.

The suggested optimization algorithm finds the DG piece-
wise affine controller parameters (levels and breakpoints) and
the OLTC voltage reference which minimize a weighted sum
of voltage variances, confidence levels and DG efforts. The
proposed method has been applied on the model of a real
distribution network. The DGs efforts are cut by half while
nodes voltages and DG powers remain within the prescribed
domains. It is possible to extend the results of Proposition
1 to the case where several piecewise affine controllers can
be found in a feeder. In this case, the stochastic truncations
from several feeders will propagate along the lines, and the
interactions between the piecewise affine controllers must be
considered. Intuitively, one can consider that results from
Proposition 1 are still relevant when two DGs are close and
can be aggregated or when they are far with a weak coupling.
The modelling problem has been addressed with an algorithm
similar to the selection procedure of section III.B in [32].
Future works will design a daily planning of grid operations
considering infrequent and asynchronous updates of the DG
controllers. The main issue will be to predict possible critical
voltage problems and trigger an update of voltage controllers
parameters.

APPENDIX
PROPERTIES OF TRUNCATED GAUSSIAN VARIABLES

A truncated Gaussian variable is a Gaussian variable which is trun-
cated in an interval. Consider the Gaussian variable X̃ ∼ N (µ, σ2),
the truncated Gaussian variable Ỹ of the equation (27) is based on
X̃ and is truncated in the interval [a; b]. The PDF is given by (28).

Ỹ = Pr(X̃|a < X̃ < b) ∼ TN(µ, σ2, a, b) (27)

f(x;µ, σ, a, b) =

{
φ( x−µ

σ
)

σ(Φ( b−µ
σ

)−Φ( a−µ
σ

))
for a 6 x 6 b

0 otherwise
(28)

where φ(x) = 1√
2π
e−

1
2
x2 the standard Gaussian PDF and Φ(x) =

x∫
−∞

φ(t)dt =
x∫
−∞

1√
2π
e−

1
2
t2dt is the standard Gaussian Cumulative

Distribution Function (CDF).
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