
HAL Id: hal-02006069
https://hal.science/hal-02006069v2

Preprint submitted on 5 Jun 2019 (v2), last revised 3 Mar 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Practical Algorithm for Multiplayer Bandits when
Arm Means Vary Among Players

Etienne Boursier, Emilie Kaufmann, Abbas Mehrabian, Vianney Perchet

To cite this version:
Etienne Boursier, Emilie Kaufmann, Abbas Mehrabian, Vianney Perchet. A Practical Algorithm for
Multiplayer Bandits when Arm Means Vary Among Players. 2019. �hal-02006069v2�

https://hal.science/hal-02006069v2
https://hal.archives-ouvertes.fr


A Practical Algorithm for Multiplayer Bandits
when Arm Means Vary Among Players

Etienne Boursier
CMLA, ENS Paris-Saclay

boursier@cmla.ens-cachan.fr

Emilie Kaufmann
Univ. Lille, CNRS, Inria SequeL,

UMR 9189 - CRIStAL, Lille, France
emilie.kaufmann@univ-lille.fr

Abbas Mehrabian
School of Computer Science

McGill University
Montréal, Canada

abbas.mehrabian@gmail.com

Vianney Perchet
CMLA, ENS Paris-Saclay

Criteo AI Lab, Paris
vianney.perchet@normalesup.org

Abstract

We study a multiplayer stochastic multi-armed bandit problem in which players
cannot communicate, and if two or more players pull the same arm, a collision
occurs and the involved players receive zero reward. We consider the challenging
heterogeneous setting, in which different arms may have different means for
different players, and propose a new, efficient algorithm that combines the idea
of leveraging forced collisions for implicit communication and that of performing
matching eliminations. We give a finite-time analysis of our algorithm, bounding
its regret by O((log T )1+κ) for any fixed κ > 0. If the optimal assignment of
players to arms is unique, we further show that it attains the optimal O(log(T ))
regret, solving an open question raised at NeurIPS 2018 [7].

1 Introduction

Stochastic multi-armed bandit models have been studied extensively as they capture many sequential
decision-making problems of practical interest. In the simplest setup, an agent repeatedly chooses
among several actions (referred to as “arms”) in each round of a game. To each action i is associated
a real-valued parameter µi. Whenever the player performs the ith action (“pulls arm i”), she receives
a random reward with mean µi. The player’s objective is to maximize the sum of rewards obtained
during the game. If she knew the means associated with the actions before starting the game, she
would play an action with the largest mean reward during all rounds. The problem is to design a
strategy for the player to maximize her reward in the setting where the means are unknown. The
regret of the strategy is the difference between the accumulated rewards in the two scenarios.

To minimize the regret, the player is faced with an exploration/exploitation trade-off as she should
try (explore) all actions to estimate their means accurately enough but she may want to exploit the
action that looks probably best given her current information. We refer the reader to [10, 18] for
surveys on this problem. Multi-armed bandit (MAB) have been first studied as a simple model for
sequential clinical trials, see [26, 24], but have also found many modern applications to online content
optimization, such as designing recommender systems, see [19]. In the meantime, MAB models have
also been used for cognitive radio problems, see [15, 1]. In this context, arms model different radio
channels on which each device can communicate, and the reward associated to each arm is either a
binary indicator of the success of the communication or some measure of its quality.
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The applications to cognitive radios have motivated the multiplayer bandit problem, in which several
agents (devices) play on the same bandit (communicate using the same channels). If two or more
agents pull the same arm, a collision occurs and all agents pulling that arm receive zero reward.
Without communicating, each agent must adopt a strategy aimed at maximizing the global reward
obtained by all agents (so, we are considering a cooperative scenario rather than a competitive one).
While most previous work on this problem focuses on the case where the mean of the arms are
identical across players (the homogeneous variant), in this paper we study the more challenging
heterogeneous variant, in which each user may have a different utility for each arm: if player m
selects arm k, she receives a reward with mean µkm. This variant is more realistic for applications to
cognitive radios, as the quality of each channel may vary from one user (device) to another, depending
for instance on its configuration and its location.

More precisely, we study the model introduced by [7], which has two main characteristics: first, each
arm has a possibly different mean for each player, and second, we are in a fully distributed setting
with no communication allowed between players. The authors of [7] proposed an algorithm with
regret bounded by O((log T )2+κ) (for any constant κ), proved a lower bound of Ω(log T ), and asked
if there is an algorithm matching this lower bound. In this paper, we propose a new algorithm for
this model, called M-ETC-Elim, which depends on a hyperparameter c, and we upper bound its
regret by O(log(T )1+1/c) for any c > 1. Moreover, if the optimal assignment of the players to the
arms is unique, we prove that instantiating M-ETC-Elim with c = 1 yields regret at most O(log(T )),
which is optimal and answers affirmatively the open question mentioned above in this particular case.
We present a non-asymptotic regret analysis of M-ETC-Elim leading to nearly optimal regret upper
bounds, and also demonstrate the empirical efficiency of this new algorithm via simulations.

Paper organization. In Section 2 we formally introduce the heterogeneous multiplayer multi-
armed bandit model and give a detailed presentation of our contributions. These results are put in
perspective by comparison with the literature, given in Section 3. We describe the M-ETC-Elim
algorithm in Section 4 and upper bound its regret in Section 5. Finally, we report in Section 6 results
from an experimental study demonstrating the competitive practical performance of M-ETC-Elim.

2 The Model and Our Contributions

We study a multi-armed bandit model where M players compete over K arms, with M ≤ K.
We denote by µmk the mean reward (or expected utility) of arm k for player m. At each round
t = 1, 2, . . . , T , player m selects arm Am(t) and receives a reward

Rm(t) = Y mAm(t),t

(
1− 1

(
CAm(t),t

))
,

where (Y mk,t)
∞
t=1 is an i.i.d. sequence with mean µmk taking values in [0, 1], Ck,t is the event that at

least two players have chosen arm k in round t, and 1 (Ck,t) is the corresponding indicator function.
In the cognitive radio context, Y mk,t models the quality of channel k for player m if she were to use
this channel in isolation in round t, but her actual rewards is set to zero if a collision occurs.

We assume that player m in round t observes her reward Rm(t) and the collision indica-
tor 1

(
CAm(t),t

)
. Note that in the special case in which the reward distributions satisfy

P(Y mk,t = 0) = 0 (e.g., if the corresponding distribution is continuous), 1
(
CAm(t),t

)
can

be reconstructed from the observation of Rm(t). The decision of player m at round t can
be based only on her past observations, that is, Am(t) is Fmt−1 measurable, where Fmt =

σ
(
Am(1), Rm(1),1

(
CAm(1),1

)
, . . . , Am(t), Rm(t),1

(
CAm(t),t

))
. Hence, our setting is fully dis-

tributed: a player cannot use extra information such as observations made by others to make her
decisions. Under this constraint, we aim at maximizing the global reward collected by all players.

We use the shorthand [n] := {1, . . . , n}. A matching is a one-to-one assignment of players to arms;
formally, any one-to-one function π : [M ] → [K] is a matching, and the utility (or weight) of a
matching π is defined as U(π) :=

∑M
m=1 µ

m
π(m). We denote byM the set of all matchings and let

U∗ := maxπ∈M U(π) denote the maximum attainable utility. A maximum matching (or optimal
matching) is a matching with utility U∗. The strategy maximizing the social utility of the players (i.e.
the sum of all their rewards) would be to play in each round according to a maximum matching, and
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the (expected) regret with respect to that oracle is defined as

RT := TU∗ − E

[
T∑
t=1

M∑
m=1

Rm(t)

]
.

Our goal is to design a strategy (a sequence of arm pulls) for each player m that attains the smallest
possible regret. Our regret bounds will depend on the gap between the utility of the best matching and
the utility of the matching with the second best utility, defined as ∆ := minπ:∆(π)>0 ∆(π), where
∆(π) := U∗ − U(π). Note that ∆ > 0 even in the presence of several optimal matchings.

Our contributions. We propose a new, efficient algorithm for the heterogeneous multiplayer
bandit problem achieving (quasi) logarithmic regret. The algorithm, called Multiplayer Explore-
Then-Commit with matching Elimination (M-ETC-Elim) is described in details in Section 4. It
combines the idea of exploiting collisions for implicit communication, initially proposed by [9] for
the homogeneous setting (which we have improved and adapted to our setting), with an efficient way
to perform ‘matching eliminations’. M-ETC-Elim consists of several epochs combining exploration
and communication, and may end with an exploitation phase if a unique optimal matching has been
found. The algorithm depends on a parameter c ≥ 1 controlling the epochs sizes and enjoys the
following regret guarantees.
Theorem 1. (a) The M-ETC-Elim algorithm with parameter c ∈ {1, 2, . . . } satisfies

RT = O

(
MK

(
M2 ln(KT )

∆

)1+1/c
)
.

(b) If the maximum matching is unique, the M-ETC-Elim algorithm with parameter c = 1 satisfies

RT = O

(
M3K ln(KT )

∆

)
.

A consequence of part (a) is that for a fixed problem instance, for any (arbitrarily small) κ, there
exists an algorithm (M-ETC-Elim with parameter c = d1/κe) with regret RT = O((log(T ))1+κ).
We would like to emphasize that we carry out a non-asymptotic analysis of M-ETC-Elim. The regret
bounds of Theorem 1 are stated with the O(·) notation for the ease of presentation and the hidden
constants depend on the chosen parameter c only. In Theorems 3 and 8 we provide the counterparts
of these results with explicit constants.

To summarize, we present a unified algorithm that can be used in the presence of either unique or
multiple optimal matchings and get a nearly logarithmic regret in both cases, almost matching the
known logarithmic lower bound. Moreover, our algorithm is easy to implement, performs well in
practice as shown in Section 6 and does not need problem-dependent hyperparameter tuning.

3 Related Work

Centralized variant. Relaxing the need for decentralization, i.e., when a central controller is
jointly selecting A1(t), . . . , AM (t), our problem coincides with a combinatorial bandit problem with
semi-bandit feedback, a setup first studied by [13]. More precisely, introducing M ×K elementary
arms with means µkm for m ∈ [M ] and k ∈ [K], the central controller selects at each time step M
elementary arms whose indices form a matching. Then, the utility of each chosen elementary arm is
observed and the obtained reward is their sum. A well-known algorithm for this setting is CUCB [30],
whose regret satisfies RT = O

(
(M2K/∆) log(T )

)
[17] (see also [29] for a Thompson sampling-

based algorithm with similar regret). Improved dependency in M was obtained for the ESCB
algorithm [11, 12], which is less numerically appealing as it requires to compute an upper confidence
bound for each matching at every round. In this work, we propose an efficient algorithm with regret
upper bounded by (roughly) O

(
(M3K/∆) log(T )

)
for the more challenging decentralized setting.

Homogeneous variant. Back to the decentralized setting, the particular case in which all players
share a common utility for all arms, i.e. µmk = µk for all m ∈ [M ], has been studied extensively:
the first line of work on this variant combines standard bandit algorithms with an orthogonalization
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mechanism [20, 1, 5], and obtains logarithmic regret, with a large multiplicative constant due to the
number of collisions. [25] proposes an algorithm based on a uniform exploration phase in which each
player identifies the top M arms, followed by a “musical chairs” protocol that allows each player
to end up on a different arm quickly. Drawing inspiration from this musical chairs protocol, [9]
recently proposed an algorithm with an O (((K −M)/∆ +KM) log(T )) regret, which relies on
two other crucial ideas: exploiting collisions for communication and performing arm eliminations. Our
algorithm also leverages these two ideas, with the following enhancements. The main advantage of
our communication protocol over that of [9] is that the followers only send each piece of information
once, to the leader, instead of sending it to the M − 1 other players. Then, while [9] uses arm
eliminations (coordinated between players) to reduce the regret, we cannot employ the same idea for
our heterogeneous problem, as an arm that is bad for one player might be good for another player,
and therefore cannot be eliminated. Our algorithm instead relies on matching eliminations.

Towards the fully distributed and heterogeneous setting. Various semi-distributed variants of
our problem in which some kind of communication is allowed between players have been studied
by [4, 16, 23]. In particular, the algorithms proposed by [16, 23] require a pre-determined channel
dedicated to communications: in some phases of the algorithm, players in turn send information
(sequences of bits) on this channel, and it is assumed that all other players can “listen” and have
access to the sent information.

The fully distributed setting was first studied by [7], who proposed the Game-of-Thrones (GoT)
algorithm and proved its regret is bounded by O((log T )2+κ) for any given constant κ > 0, if its
parameters are appropriately tuned. In a recent preprint [8], the same authors provide an improved
analysis, showing the same algorithm (with slightly modified phase lengths) enjoys quasi-logarithmic
regret O((log T )1+κ). GoT is quite different from M-ETC-Elim: it proceeds in epochs, each
consisting of an exploration phase, a so-called GoT phase and an exploitation phase. During the GoT
phase, the players jointly run a Markov chain whose unique stochastically stable state corresponds
to a maximum matching of the estimated means. A parameter ε ∈ (0, 1) controls the accuracy of
the estimated maximum matching obtained after a GoT phase. Letting c1, c2, c3 be the constants
parameterizing the lengths of the phases, the improved analysis of GoT [8] upper bounds its regret
by Mc32k0+1 + 2(c1 + c2)M log1+κ

2 (T/c3 + 2) . This upper bound is asymptotic as it holds for T
large enough, where ‘how large’ is not explicitly specified and depends on ∆.1 Moreover, the upper
bound is valid only when the parameter ε is chosen small enough: ε should satisfy some complicated
constraints (Equation (66)-(67)) also featuring ∆. Hence, a valid tuning of the parameter ε would
require prior knowledge on the arms utilities. In contrast, we provide in Theorem 3 a non-asymptotic
regret upper bound for M-ETC-Elim, which holds for any choice of the parameter c controlling the
epochs lengths. Also, we show that if the optimal assignment is unique, M-ETC-Elim has logarithmic
regret. Besides, we also illustrate in Section 6 that M-ETC-Elim outperforms GoT in practice. Finally,
GoT has several parameters to set (δ, ε, c1, c2, c3), while M-ETC-Elim has only one integral parameter
c, and setting c = 1 works very well in all our experiments.

Finally, we would like to mention the recent independent preprint [27]. Although this work studies
a slightly stronger feedback model,2 the proposed algorithms share similarities with M-ETC-Elim:
they also have exploration, communication and exploitation phases, yet without eliminations. We
elaborate in Appendix E on our positioning with respect to this work.

4 Description of the M-ETC-Elim algorithm

Our algorithm relies on an initialization phase, in which the players elect a leader in a distributed
manner. Then a communication protocol is set up, in which the leader and the followers have different
roles: followers explore some arms and communicate to the leader estimates of the arm means, while
the leader maintains a list of candidate optimal matchings, and communicates to the followers the list
of arms that need exploration in order to refine the list, i.e. to eliminate some candidate matchings.
The algorithm is called Multiplayer Explore-Then-Commit with matching Eliminations (M-ETC-Elim
for short). Formally, each player executes the following Algorithm 1.

1 [8, Theorem 4] requires T ≥ c3(2k0 − 2), where k0 satisfies Equation (16) featuring κ and ∆.
2In their model, each player has the option of ‘observing whether a given arm has been pulled by someone.’
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Algorithm 1: M-ETC-Elim with parameter c
Input: Time horizon T , number of arms K

1 R,M ←− INIT(K, 1/KT )
2 if R = 1 then LEADERALGORITHM(M) else FOLLOWERALGORITHM(R,M)

M-ETC-Elim requires as input the number of arms K (as well as a shared numbering of the arms
across the players) and the time horizon T (the total number of arm selections). However, if the
players only know an upper bound for T , our results hold with T replaced by that upper bound as
well. If no upper bound for T is known, the players can employ a simple doubling trick [6]: we
execute the algorithm assuming T = 1, then we execute it assuming T = 2 × 1, and so on, until
the actual time horizon is reached. If the expected regret of the algorithm for a known time horizon
T is RT , then the expected regret of the modified algorithm for unknown time horizon T would be
R′T ≤

∑log2(T )
i=0 R2i ≤ log2(T )×RT .

Initialization. The initialization procedure, borrowed from [9], outputs for each player a rank
R ∈ [M ] as well as the value of M , which is initially unknown to the players. This initialization
phase relies on a “musical chairs” phase after which the players end up on distinct arms, followed by
a so-called Sequential Hopping protocol that permits them to know their ordering. For the sake of
completeness, it is described in detail in Appendix A, where we also prove the following.

Lemma 2. Fix δ0 > 0. With probability at least 1 − δ0, if the M players run the INIT(K, δ0)
procedure which takes K ln(K/δ0) + 2K − 2 < K ln(e2K/δ0) many rounds, all players learn M
and obtain a distinct ranking from 1 to M .

Communication phases. Once all players have learned their ranks, player 1 becomes the leader and
other players become the followers. The leader executes additional computations, and communicates
with the followers individually, while each follower communicates only with the leader.

The leader and follower algorithms, described below, rely on several communication phases, that
start at the same time for every player. During communication phases, the default behavior of each
player is to pull her communication arm. It is crucial that these communication arms are distinct:
an optimal way to do so is for each player to use her arm in the best matching found so far. In the
first communication phase, such an assignment is unknown and players simply use their ranking
as communication arm. Suppose at a certain time the leader wants to send a sequence of b bits
t1, . . . , tb, to the player with ranking i and communication arm ki. During the next b rounds, for
each j = 1, 2, . . . , b, if tj = 1, the leader pulls arm ki, otherwise, she pulls her own communication
arm k1, while all other followers stick to their communication arms. Player i can thus reconstruct
these b bits after these b rounds, by observing the collisions on arm i. The converse communication
between follower i and the leader is similar. The rankings are also useful to know in which order
communications should be performed, as the leader successively communicates messages to the
M − 1 followers, and the M − 1 followers successively communicate messages to the leader.

In case of unreliable channels where some of the communicated bits may be lost, there are several
options to make this communication protocol more robust, such as sending each bit multiple times or
using the Bernoulli signaling protocol of [27]. Robustness has not been the focus of our work.

Leader and follower algorithms. The leader and the followers perform different algorithms
explained next. Consider a bipartite graph with parts of size M and K, where the edge (m, k) has
weight µmk and associates player m to arm k. The weights µmk are unknown to the players, but the
leader maintains a set of estimated weights that are sent to her by the followers, and approximate the
real weights. The goal of these algorithms is for the players to jointly explore the matchings in this
graph, while gradually focusing on better and better matchings. For this purpose, the leader maintains
a set of candidate edges E , which is initially [M ]×[K], that can be seen as edges that are potentially
contained in optimal matchings, and gradually refines this set by performing eliminations, based on
the information obtained from the exploration phases and shared during communication phases.

Both algorithms proceed in epochs whose length is parameterized by c. In epoch p, the leader
weights the edges using the estimated weights. Then for every edge (m, k) ∈ E , the leader computes
the associated matching π̃m,kp defined as the maximum matching containing the edge (m, k). This
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computation can be done in polynomial time using, e.g., the Hungarian algorithm [22]. The leader
then computes the utility of the maximum matching and eliminates from E any edge for which the
weight of its associated matching is smaller by at least 4Mεp, where

εp :=
√

ln(2/δ)/21+pc , with δ := (M2KT 2)−1. (1)

The leader then forms the set of associated candidate matchings C := {π̃m,kp , (m, k) ∈ E} and
communicates to each follower the list of arms to explore in these matchings. Then exploration
begins, with each player assigned to her arm in each matching. For each of them, the player pulls that
arm 2p

c

times and records the reward received. Then another communication phase begins, during
which each follower sends her observed estimated mean for the arms to the leader. More precisely,
for each explored arm, the follower truncates the estimated mean (a number in [0, 1]) and sends
only the pc+1

2 most significant bits of this number to the leader. The leader updates the estimated
weights and everyone proceeds to the next epoch. If at some point the list of candidate matchings C
becomes a singleton, it means that the real maximum matching is unique and has been found; so all
players jointly pull that matching for the rest of the game (the exploitation phase). The pseudocode
for the leader’s algorithm is presented below, while the corresponding follower algorithm appears in
Appendix A. In the pseudocodes, (comm.) refers to a call to the communication protocol.

Note that in the presence of several optimal matchings, the players will not enter the exploitation
phase but will keep exploring several optimal matchings, which still ensures small regret. Also,
observe that C does not necessarily contain all potentially optimal matchings, but all the edges in
those matchings remain in E and are guaranteed to be explored.

Procedure LeaderAlgorithm(M) for the M-ETC-Elim algorithm with parameter c
Input: Number of players M

1 E ←− [M ]× [K] // list of candidate edges
2 µ̃mk ←− 0 for all (m, k) ∈ [M ]× [K] // empirical estimates for utilities
3 for p = 1, 2, . . . do
4 C ←− ∅ // list of associated matchings

5 π1 ←− argmax
{∑M

m=1 µ̃
m
π(m) : π ∈M

}
// using Hungarian algorithm

6 for (m, k) ∈ E do
7 π ←− argmax

{∑M
n=1 µ̃

n
π(n) : π(m) = k

}
// using Hungarian algorithm

8 if
∑M
n=1

{
µ̃nπ1(n) − µ̃

n
π(n)

}
≤ 4M ×

√
ln(2M2KT 2)/21+pc then add π to C

9 else remove (m, k) from E
10 end
11 for each player m = 2, . . . ,M do
12 Send to player m the value of size(C) // (comm.)
13 for i = 1, 2, . . . , size(C) do
14 Send to player m the arm associated to player m in C[i] // (comm.)
15 end
16 Send to player m the communication arm of the leader, π1(1)
17 end
18 if size(C) = 1 then pull for the rest of the game the arm associated to player 1 in the unique

matching in C // enter the exploitation phase
1920 for i = 1, 2, . . . , size(C) do
21 pull 2p

c

times the arm associated to player 1 in the matching C[i] // exploration
22 end
23 for k = 1, 2, . . . ,K do
24 µ̃1

k ←− empirically estimated utility of arm k if it was pulled in this epoch, 0 otherwise
25 end
26 Receive the values µ̃m1 , µ̃

m
2 , . . . , µ̃

m
K from each player m // (comm.)

27 end
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5 General Finite-Time Analysis of M-ETC-Elim

In the sequel, ln(·) denotes the natural logarithm and lg(·) denotes logarithm in base 2. Theorem 3
below provides a non-asymptotic upper bound on the regret of M-ETC-Elim.
Theorem 3. For any positive integer c, the M-ETC-Elim algorithm with parameter c, has its regret

at time T ≥ T0(c) := exp(2
cc

lnc(1+ 1
2c

) ) upper bounded by

2 +MK ln(e2K2T ) + 6M2K lg(K)(lg T )1/c + e2MK(lg T )1+1/c +
2M3K lg(K)√

2− 1

√
ln(2M2KT 2)

+
2
√

2

3− 2
√

2
M2K

√
ln(2M2KT 2) lg(ln(T )) +

2
√

2− 1√
2− 1

∑
(m,k)∈[M ]×[K]

(
32M2 ln(2M2KT 2)

∆(πm,k)

)1+1/c

,

where πm,k is the best sub-optimal matching attributing arm k to player m, namely πm,k ∈
argmax {U(π) : π(m) = k and U(π) < U∗} .

Statement (a) in Theorem 1 easily follows by lower bounding all gaps by ∆. Statement (b) in
Theorem 1 similarly follows from Theorem 8, stated and proved in Appendix C. The constant T0(c)
in Theorem 3 is equal to 252 for c = 1 but becomes significantly larger when c increases. Still, the
condition on T is explicit and independent of the problem parameters.

In the rest of this section, we give a proof of Theorem 3, which has several intermediate lemmas,
whose proofs are delayed to Appendix D. We first introduce useful notations. Let Cp denote the
set of candidate matchings used in epoch p, and for each matching π let Ũp(π) be the utility of π
that the leader can estimate based on the information received at the end of epoch p. Let p̂T be the
total number of epochs before the (possible) start of the exploitation phase. As 2p̂

c
T ≤ T , we have

p̂T ≤ lg(T ). Recall that a successful initialization means that all players identify M , and that their
ranks are distinct. We introduce the good event

GT =
{

INIT(K, 1/KT ) is successful and ∀p ≤ p̂T ,∀π ∈ Cp+1, |Ũp(π)− U(π)| ≤ 2Mεp

}
. (2)

During epoch p, for each candidate edge (m, k), player m has pulled arm k at least 2p
c

times and the
quantization error is smaller than εp. Hoeffding’s inequality and a union bound over at most lg(T )
epochs (see Appendix D.1) together with Lemma 2 yield that GT holds with large probability.

Lemma 4. P (GT ) ≥ 1− 2
MT .

If GT does not hold, we may upper bound the regret by MT . Hence it suffices to bound the expected
regret conditional on GT , and the unconditional expected regret is bounded by this value plus 2.

Suppose that GT happens. First, the regret incurred during the initialization phase is upper bounded
by MK ln(e2K2T ) by Lemma 2. Then, using the best estimated matching as communication arms
yields regret at most 2 + 2Mεp−1 in each communication round of epoch p, which is used to prove
Lemma 5 below, which upper bounds the regret incurred during all communication phases.
Lemma 5. The regret due to communications is bounded by:

3M2K lg(K)p̂T +MK(p̂T )c+1 +
2c
√

2

3− 2
√

2
M2K

√
ln(2/δ) +

2M3K lg(K)√
2− 1

√
ln(2/δ).

For large horizons, Lemma 6 bounds some terms such as p̂T and (p̂T )c.

Lemma 6. For any sub-optimal matching π, let P (π) be the smallest positive integer such that
8MεP (π) < ∆(π). The assumption T ≥ T0(c) implies for any matching π that ∆(π)2P (π)c ≤(

32M2 ln(2M2KT 2)
∆(π)

)1+ 1
c

. Also, 2c ≤ 2 lg(ln(T )), p̂T ≤ 2(lg T )1/c and (p̂T )c ≤ e lg T .

Hence for T ≥ T0(c), we can further upper bound the first three terms of the sum in Lemma 5 by

6M2K lg(K)(lg T )1/c + e2MK(lg T )1+1/c +
2
√

2

3− 2
√

2
M2K

√
ln(2/δ) lg(ln(T )). (3)

7



It then remains to upper bound the regret incurred during exploration and exploitation phases.
On GT , the players are jointly pulling a matching during those phases, and no regret is incurred
during the exploitation phase. For an edge (m, k), let ∆̃m,k

p := U∗ − U(π̃m,kp ) be the gap of its
associated matching at epoch p. During any epoch p, the incurred regret is then

∑
π∈Cp ∆(π)2p

c

=∑
(m,k)∈E ∆̃m,k

p 2p
c

. We recall that πm,k is the best sub-optimal matching attributing the arm k

to the player m. Observe that for any epoch p > P (πm,k), since GT happens, πm,k (and any
worse matching) is not added to Cp; thus during any epoch p > P (πm,k), the edge (m, k) is either
eliminated from the set of candidate edges, or it is contained in some optimal matching and satisfies
∆̃m,k
p = 0. Hence, the total regret incurred during exploration phases is bounded by

∑
(m,k)∈[M ]×[K]

P (πm,k)∑
p=1

∆̃m,k
p 2p

c

. (4)

The difficulty for bounding this sum is that ∆̃m,k
p depends on p and is random, since π̃m,kp is random.

Yet, a convexity argument allows us to overcome this and relate ∆̃m,k
p to ∆(πm,k):

Lemma 7. For any edge (m, k), if p ≤ P (πm,k)− 1, then ∆̃m,k
p 2p

c ≤ ∆(πm,k) 2P (πm,k)c

√
2
P (πm,k)−(p+1)

.

From Lemma 7, we have
P (πm,k)∑
p=1

∆̃m,k
p 2p

c

≤

( ∞∑
p=0

1
√

2
p

)
∆(πm,k)2P (πm,k)c +∆̃m,k

P (πm,k)
2P (πm,k)c .

As π̃m,k
P (πm,k)

is either optimal or its gap is larger than ∆(πm,k), from Lemma 6 we have that

∆̃m,k
P (πm,k)

2P (πm,k)c ≤
(

32M2 ln(2M2KT 2)
∆(πm,k)

)1+1/c

in both cases. Therefore, we find that

P (πm,k)∑
p=1

∆̃m,k
p 2p

c

≤ 2
√

2− 1√
2− 1

(
32M2 ln(2M2KT 2)

∆(πm,k)

)1+1/c

.

Plugging this bound in (4), the bound (3) in Lemma 5 and summing up all terms yields Theorem 3.

6 Numerical Experiments

We executed the following algorithms: M-ETC-Elim with c = 1 and c = 2, GoT (the latest version
in [8]) with parameters δ = 0, ε = 0.01, c1 = 500, c2 = c3 = 6000 (these parameters and the reward
matrix U1 below are from the simulations section of [8]), and Selfish-UCB, a heuristic studied by
[5, 9] in the homogeneous case in which each player runs the UCB algorithm [3] on the reward
sequence (Rm(t))∞t=1 (which is not i.i.d.). We experiment with Bernoulli rewards and the reward
matrices

U1 =

(
0.1 0.05 0.9
0.1 0.25 0.3
0.4 0.2 0.8

)
and U2 =


0.5 0.49 0.39 0.29 0.5
0.5 0.49 0.39 0.29 0.19
0.29 0.19 0.5 0.499 0.39
0.29 0.49 0.5 0.5 0.39
0.49 0.49 0.49 0.49 0.5

 ,

where the entry (m, k) gives the value of µmk . Figure 1 reports the algorithms’ regrets for various
time horizons T , averaged over 100 independent replications. The first instance (matrix U1, left plot)
has a unique optimal matching and we observe that M-ETC-Elim has logarithmic regret (as promised
by Theorem 1) and largely outperforms all competitors. The second instance (matrix U2, right plot)
is a more challenging instance, with more arms and players, two optimal matchings and several
near-optimal matchings. It can be observed that M-ETC-Elim with c = 1 performs the best for large
T as well, though Selfish-UCB is also competitive. Yet there is very little theoretical understanding of
Selfish-UCB. Appendix B contains the results of additional experiments corroborating our findings,
where we also discuss some practical aspects of the implementation of M-ETC-Elim.
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Figure 1: RT as a function of T with reward matrices U1 (left) and U2 (right) and Bernoulli rewards.

7 Conclusion

In this paper, we presented a practical algorithm for the heterogeneous multiplayer bandit problem
that can be used in the presence of either unique or multiple optimal matchings and get a nearly
logarithmic regret in both cases, thus answering an open question of [7]. M-ETC-Elim crucially
relies on the assumption that the collision indicators are observed in each round. In future work, we
will investigate whether algorithms with logarithmic regret can be proposed when the players observe
their rewards Rm(t) only. So far, such algorithms only exist in the homogeneous setting [21, 9].
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A Description of the Initialization Procedure and Followers’ Pseudocode

The pseudocode of the INIT(K, δ0) procedure, first introduced by [9], is presented in Algorithm 2 for
the sake of completeness. We now provide a proof of Lemma 2.

Algorithm 2: INIT, the initialization algorithm
Input: number of arms K, failure probability δ0
Output: Ranking R, number of players M
// first, occupy a distinct arm using the musical chairs algorithm

1 k ←− 0
2 for T0 := K ln(K/δ0) rounds do // rounds 1, . . . , T0

3 if k = 0 then
4 pull a uniformly random arm i ∈ [K]
5 if no collision occurred then k ←− i // arm k is occupied
6 else
7 pull arm k
8 end
9 end
// next, learn M and identify your ranking

10 R←− 1
11 M ←− 1
12 for 2k − 2 rounds do // rounds T0 + 1, . . . , T0 + 2k − 2
13 pull arm k
14 if collision occurred then
15 R←− R+ 1
16 M ←−M + 1
17 end
18 end
19 for i = 1, 2, . . . ,K − k do // rounds T0 + 2k − 1, . . . , T0 +K + k − 2
20 pull arm k + i
21 if collision occurred then
22 M ←−M + 1
23 end
24 end
25 for K − k rounds do // rounds T0 +K + k − 1, . . . , T0 + 2K − 2
26 pull arm 1
27 end

Let T0 := K ln(K/δ0). During the first T0 rounds, each player tries to occupy a distinct arm using
the so-called musical chairs algorithm (first introduced in [25]): she repeatedly pulls a random arm
until she gets no collision, and then sticks to that arm. We claim that after T0 rounds, with probability
1− δ0 all players have succeeded in occupying some arm. Indeed, the probability that a given player
A that has not occupied an arm so far, does not succeed in the next round is at most 1− 1/K, since
there exists at least 1 arm that is not pulled in that round, and this arm is chosen byA with probability
1/K. Hence, the probability that A does not succeed in occupying an arm during these T0 rounds is
not more than

(1− 1/K)T0 < exp(−T0/K) = δ0/K ≤ δ0/M,

and a union bound over the M players proves the claim.

Once each player has occupied some arm, the next goal is to determine the number of players and their
ranking. This part of the procedure is deterministic. The ranking of the players will be determined by
the indices of the arms they have occupied: a player with a smaller index will have a smaller ranking.
To implement this, a player that has occupied arm k ∈ [K] will pull this arm for 2k − 2 more rounds
(the waiting period), and will then sweep through the arms k + 1, k + 2, . . . ,K, and can learn the
number of players who have occupied arms in this range by counting the number of collisions she
gets. Moreover, she can learn the number of players occupying arms 1, . . . , k − 1 by counting the
collisions during the waiting period; see Algorithm 2 for details. The crucial observation to verify the
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correctness of the algorithm is that two players occupying arms k1 and k2 will collide exactly once,
and that happens at round T0 + k1 + k2 − 2.

Next, we describe the pseudocode that the followers execute in M-ETC-Elim.

Procedure FollowerAlgorithm(R,M) for the M-ETC-Elim algorithm with parameter c
Input: Ranking R, number of players M

1 for p = 1, 2, . . . do
2 Receive the value of size(C) // (comm.)
3 for i = 1, 2, . . . , size(C) do
4 Receive the arm associated to this player in C[i] // (comm.)
5 end
6 Receive the communication arm of the leader
7 if size(C) = 1 // (enter exploitation phase)
8 then
9 pull for the rest of the game the arm associated to this player in the unique matching in C

10 end
11 for i = 1, 2, . . . , size(C) do
12 pull 2p

c

times the arm associated to this player in the matching C[i]
13 end
14 for k = 1, 2, . . . ,K do
15 µ̂Rk ←− empirically estimated utility of arm k if arm k has been pulled in this epoch, 0

otherwise
16 Truncate µ̂Rk to µ̃Rk using the pc+1

2 most significant bits
17 end
18 Send the values µ̃R1 , µ̃

R
2 , . . . , µ̃

R
K to the leader // (comm.)

19 end

B Practical considerations and additional experiments

B.1 Implementation enhancements for M-ETC-Elim

In the implementation of M-ETC-Elim, the following enhancements improve the regret significantly
in practice (and have been used for the reported numerical experiments), but only by constant factors
in theory, hence we have not included them in the analysis for the sake of brevity.

First, to estimate the means, the players are better off taking into account all pulls of the arms, rather
than just the last epoch. Note that after the exploration phase of epoch p, each candidate edge has been
pulled Np :=

∑p
i=1 2i

c

times. Thus, with probability at least 1− 2 lg(T )/(MT ), each edge has been
estimated within additive error ≤ ε′p =

√
ln(M2TK)/2Np by Hoeffding’s inequality. The players

then truncate these estimates using b := d− lg(0.1ε′p)e bits, adding up to 0.1ε′p additive error due to
quantization. They then send these b bits to the leader. Now, the threshold for eliminating a matching
would be 2.2Mε′p rather than 4M ×

√
ln(2M2KT 2)/21+pc (see line 8 of the LeaderAlgorithm

presented on page 6).

Second, we choose the set C of ‘matchings to explore’ more carefully. Recall that a matching is a
candidate if its estimated gap is at most 2.2Mε′p, and an edge is candidate (lies in E) if it is part
of some candidate matching. There are at most MK candidate edges, and we need only estimate
those in the next epoch. Now, for each candidate edge, we can choose any good matching containing
it, and add that to C. This guarantees that |C| ≤ MK, which gives the bound in Theorem 1. But
to reduce the size of C in practice, we do the following: initially, all edges are candidate. After
each exploration phase, we do the following: we mark all edges as ‘uncovered.’ For each candidate
uncovered edge e, we compute the maximum matching π′ containing that edge (using estimated
means). If this matching π′ has gap larger than 2.2Mε′p, we remove it from the set of candidate edges.
Otherwise, we add π′ to C, and moreover, we mark all of its edges as ‘covered.’ We then look at the
next uncovered candidate edge, and continue similarly, until all candidate edges are covered. This
guarantees that all the candidate edges are explored, while the number of explored matchings could
be much smaller than the number of candidate edges.
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To reduce the size of C even further, we do the following after each exploration phase: first, find the
maximum matching (using estimated means), add it to C, mark all its edges as covered, and only then
start looking for uncovered candidate edges as explained above.

B.2 Other reward distributions.

In our model and analysis, we have assumed that Y mk,t ∈ [0, 1] for simplicity (this is a standard
assumption in online learning), but it is immediate to generalize the algorithm and its analysis to
reward distributions bounded in any known interval. Also, we can adapt our algorithm and analysis to
subgaussian distributions with mean lying in a known interval. A random variableX is σ-subgaussian
if for all λ ∈ R we have E[eλ(X−EX)] ≤ eσ2λ2/2. This includes in particular Gaussian distributions
and distributions with bounded support. Suppose for simplicity that the means lie in [0, 1]. Then
the algorithm need only change in two places: first, when the followers are sending the estimated
means to the leader, they must send 0 and 1 if the empirically estimated mean is < 0 and > 1,
respectively. Second, the definition of εp must be changed to εp :=

√
σ2 ln(2/δ)/2pc−1. The only

change in the analysis is that instead of using Hoeffding’s inequality which requires a bounded
distribution, one has to use a concentration inequality for sums of subgaussian distributions (see,
e.g., [28, Proposition 2.5]). We executed the same algorithms as in Section 6 with the same reward
matrices but with Gaussian rewards with variance 0.05. The results are somewhat similar to the
Bernoulli case and can be found in Figure 2.

Figure 2: Numerical comparison of M-ETC-Elim, GoT and Selfish-UCB on reward matrices U1 (left)
and U2 (right) with Gaussian rewards and variance 0.05. The x-axis has logarithmic scale in both
plots. The y-axis has logarithmic scale in the right plot.

The reason we performed these Gaussian experiments is to have a more fair comparison against GoT.
Indeed the numerical experiments of [8] rely on the same reward matrix U1 and Gaussian rewards.

C Regret Analysis in the Presence of a Unique Maximum Matching

In Theorem 8 below we provide a refined analysis of M-ETC-Elim with parameter c = 1 if the
maximum matching is unique. It notably justifies the O(KM

3

∆ log(T )) regret upper bound stated in
Theorem 1(b). Its proof, given below, follows essentially the same line as the finite-time analysis
given in Section 5, except for the last part. In the sequel, ln(·) denotes the natural logarithm and lg(·)
denotes logarithm in base 2.
Theorem 8. If the maximum matching is unique, for all T , the regret of the M-ETC-Elim algorithm
with parameter c = 1 is upper bounded by

2 +MK ln(e2K2T ) + 3M2K lg(K) lg

(
64M2 ln(2M2KT 2)

∆2

)
+MK lg2

(
64M2 ln(2M2KT 2)

∆2

)
+

4
√

2− 2

3− 2
√

2
M3K lg(K)

√
ln(2M2KT 2) +

2
√

2− 1√
2− 1

∑
(m,k)∈[M ]×[K]

64M2 ln(2M2KT 2)

∆(πm,k)
.

Proof. The good event and the regret incurred during the initialization phase are the same as in the
finite-time analysis given in Section 5. When there is a unique optimal matching, if the good event
happens, the M-ETC-Elim algorithm will eventually enter the exploitation phase. That is p̂T can be
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much smaller than the crude upper bound used in Lemma 6 in the previous proof. More specifically,
introducing π′ as the second maximum matching, so that ∆(π′) = ∆, it can be shown that, on the
event GT ,

p̂T ≤ P (π′) ≤ lg

(
64M2 ln(2M2KT 2)

∆2

)
.

Plugging this bound in Lemma 5 yields that the regret incurred during communications is bounded by

3M2K lg(K) lg

(
64M2 ln(2M2KT 2)

∆2

)
+MK lg2

(
64M2 ln(2M2KT 2)

∆2

)
+

2M3K lgK√
2− 1

√
ln(2/δ) +

2
√

2

3− 2
√

2
M2K

√
ln(2/δ).

Also, for c = 1 and any matching π, it can be shown as in Appendix D.3 that

P (π) ≤ 1 + lg

(
32M2 ln(2M2KT 2)

∆(π)2

)
.

In particular, ∆(π)2P (π) ≤ 64M2 ln(2M2KT 2)
∆(π) . Using the same argument as in Section 5, the regret

incurred during exploration and exploitation phases is then bounded by

2
√

2− 1√
2− 1

∑
(m,k)∈[M ]×[K]

64M2 ln(2M2KT 2)

∆(πm,k)
.

Summing up the regret bounds for all phases then proves Theorem 8.

D Proofs of Auxiliary Lemmas for Theorems 3 and 8

D.1 Proof of Lemma 4

We first recall Hoeffding’s inequality.
Proposition 9 (Hoeffding’s inequality [14, Theorem 2]). Let X1, . . . , Xn be independent random
variables taking values in [0, 1]. Then for any t ≥ 0 we have

P
(∣∣∣∣ 1n∑Xi − E

[
1

n

∑
Xi

]∣∣∣∣ > t

)
< 2 exp(−2nt2).

Recall the definition of the good event

GT =
{

INIT(K, 1/KT ) is successful and ∀p ≤ p̂T ,∀π ∈ Cp+1, |Ũp(π)− U(π)| ≤ 2Mεp

}
.

and recall εp :=
√

ln(2/δ)/2pc+1. Let H be the event that INIT(K, 1/KT ) is successful for all
players. One has

P (GcT ) ≤ P (Hc) + P
(
∃p ≤ p̂T ,∃π ∈M with candidate edges : |Ũp(π)− U(π)| > 2Mεp|H

)
≤ 1

KT
+ P

(
∃p ≤ lg(T ),∃π ∈M with candidate edges : |Ũp(π)− U(π)| > 2Mεp|H

)
,

where we use that p̂T ≤ lg(T ) deterministically.

Fix an epoch p and a candidate edge (m, k). We denote by µ̂mk (p) the estimated mean of arm k for
player m at the end of epoch p and by µ̃mk (p) the truncated estimated mean sent to the leader by this
player at the end of epoch p.

By Hoeffding’s inequality and since this estimated mean is based on at least 2p
c

pulls, we have

P (|µ̂mk (p)− µmk | > εp) < δ.

Now the value µ̃mk (p) ∈ [0, 1] that is sent to the leader uses the (pc + 1)/2 most significant bits. The
truncation error is thus at most 2−(pc+1)/2 < εp, hence we have

P (|µ̃mk (p)− µmk | > 2εp) < δ.
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Conditionally on the eventH that the initialization is successful, the quantity Ũp(π) is a sum of M
values µ̃mk (p) for M different arms k. Hence, it follows that

P
(
∃π ∈M with candidate edges : |Ũp(π)− U(π)| > 2Mεp|H

)
≤ P (∃ candidate edge (m, k) : |µ̃mk (π)− µmk | > 2εp)

≤ KMδ.

Finally, a union bound on p yields

P (GcT ) ≤ 1

KT
+ lg(T )KMδ ≤ 1

MT
+

1

MT
.

D.2 Proof of Lemma 5

For each epoch p, the leader first communicates to each player the list of candidate matchings. There
can be up to MK candidate matchings, and for each of them the leader communicates to the player
the arm she has to pull (there is no need to communicate to her the whole matching) which requires
lgK bits, and there are a total of M players, so this takes at most M2K lg(K) many rounds3.

At the end of the epoch, each player sends the leader the empirical estimates for the arms she has
pulled, which requires at most MK(1 + pc)/2 many rounds. As players use the best estimated
matching as communication arms for the communication phases, a single communication round
incurs regret at most 2 + 2Mεp−1, since the gap between the best estimated matching of the previous

phase and the best matching is at most 2Mεp−1, where we define ε0 :=
√

ln(2/δ)
2 ≥ 1

2 . The first
term is for the two players colliding, while the term 2Mεp−1 is due to the other players who are
pulling the best estimated matching instead of the real best one. With p̂T denoting the number of
epochs before the (possible) start of the exploitation, the total regret due to communication phases
can be bounded by

Rc ≤
p̂T∑
p=1

(
2M2K lg(K) +MK(1 + pc)

)
(1 +Mεp−1)

≤ 3M2K lg(K)p̂T +MK(p̂T )c+1 +M2K

p̂T∑
p=1

(2M lg(K) + (1 + pc)) εp−1.

We now bound the sum as:
p̂T∑
p=1

(2M lg(K) + (1 + pc)) εp−1 = 2M lg(K)
√

ln(2/δ)

p̂T−1∑
p=0

1
√

2
1+pc +

√
ln(2/δ)

p̂T−1∑
p=0

1 + (p+ 1)c
√

2
1+pc

≤ 2M lg(K)
√

ln(2/δ)

∞∑
n=1

1√
2
n +

√
ln(2/δ)

∞∑
n=1

n2c

√
2
n

≤ 2M lg(K)
√

ln(2/δ)
1√

2− 1
+
√

ln(2/δ)
2c
√

2

(
√

2− 1)2
,

completing the proof of Lemma 5.

D.3 Proof of Lemma 6

The assumption T ≥ exp(2
cc

lnc(1+ 1
2c

) ) gives lg(lnT )1/c ≥ c
ln(1+1/2c) . In particular, (lg T )1/c ≥ c.

We will also use the inequality
(x+ 1)c ≤ ec/xxc, (5)

which holds for all positive x, since (x+ 1)c/xc = (1 + 1/x)c ≤ exp(1/x)c = exp(c/x).

Using a crude upper bound on the number of epochs that can fit within T rounds, we get p̂T ≤
1 + (lg T )1/c. As (lg T )1/c ≥ c ≥ 1 one gets p̂T ≤ 2(lg T )1/c. Also (5) gives (p̂T )c ≤ e lg T .

3Actually the leader also sends her communication arm and the size of the list she is sending, but there are
actually at most MK −M + 1 candidate matchings as the best one is repeated M times. So it still takes at
most M2K lgK many rounds.
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Also, 2 lg(ln(T )) ≥ 2cc ≥ 2c. It remains to show the first inequality of Lemma 6.

Straightforward calculations using the definition of εp in (1) give

P (π) ≤ 1 + L(π)1/c, where L(π) := lg

(
32M2 ln(2M2KT 2)

∆(π)2

)
.

We claim that we have

P (π)c ≤
(

1 +
1

2c

)
L(π). (6)

Indeed, since ∆(π) ≤ M , we have L(π)1/c > (lg lnT )1/c ≥ c
ln(1+1/2c) and so (5) with x =

L(π)1/c gives (6). Hence,

∆(π)2P (π)c ≤ ∆(π)

(
32M2 ln(2M2KT 2)

∆(π)2

)1+1/2c

≤
(

32M2 ln(2M2KT 2)

∆(π)

)1+1/c

. (7)

D.4 Proof of Lemma 7.

For the sake of clarity, we define for this proof ∆ := ∆(πm,k), P := P (πm,k) and ∆p := ∆̃m,k
p .

First, ∆ > 8MεP by definition of P . Also, ∆p ≤ 8Mεp−1 for any p ≤ P − 1, otherwise the edge
(m, k) would have been eliminated before epoch p. It then holds

∆p ≤
εp−1

εP
∆ =

√
2
P c−(p−1)c

∆. (8)

It comes from the convexity of x 7→ xc that (p+1)c+(p−1)c−2pc ≥ 0 and thus P c+(p−1)c−2pc ≥
P c − (p+ 1)c ≥ P − (p+ 1). It then follows

pc +
P c − (p− 1)c

2
≤ P c +

p+ 1− P
2

.

Plugging this in (8) finally bounds:

2p
c

∆p ≤
2P

c

√
2
P−(p+1)

∆.

E Positioning with respect to [27]

The recent independent preprint [27] studies a slightly stronger feedback model than ours: they
assume each player in each round has the option of ‘observing whether a given arm has been pulled
by someone,’ without actually pulling that arm (thus avoiding collision due to this “observation”),
an operation that is called “sensing.” Due to the stronger feedback, communications do not need to
be implicitly done through collisions and bits can be broadcast to other players via sensing. Note
that it is actually possible to send a single bit of information from one player to all other players in a
single round in their model, an action that requires M − 1 rounds in our model. Still, the algorithms
proposed by [27] can be modified to obtain algorithms for our setting, and M-ETC-Elim can also be
adapted to their setting.

The two algorithms proposed by [27] share similarities with M-ETC-Elim: they also have exploration,
communication and exploitation phases, but they do not use eliminations. Regarding the theoretical
guarantees obtained, a first remark is that those claimed in [27] only hold in the presence of a unique
optimal matching, whereas our analysis of M-ETC-Elim applies in the general case. Moreover, we
believe that the current statements of their regret upper bounds are imprecise. Indeed, the regret
upper bound O(M2K log(T )) claimed in their Theorem 4 does not feature any dependency in the
gap parameter ∆, which contradicts the (asymptotic) Ω(((K −M)/∆) log(T )) lower bound of [2]
for the easier centralized homogeneous variant. In fact, checking the proofs more carefully, one
observes that both their regret bounds for the heterogeneous setting (Theorems 3 and 4) indeed
depends exponentially on 1/∆ while this is not stated in their theorem statements.

Here we explain why the dependence of their regret bounds on the gap ∆ is exponential, and in
particular, it is at least 2Θ(∆−2). First, note that in the presence of a unique optimal matching, ∆min
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in their notation is exactly ∆ in ours. In their proof of Theorem 3 in their Appendix B, the exploitation
regret is written as RE1 (T ) + RE2 (T ). Then the term RE1 (T ) is bounded by 2l

′+1(1 + ∆max). If
we look at the definition of l′, we see it is the smallest l such that log−β/2(tl) =: ε(l) ≤ ∆min.
Note that tl is the start of the lth exploration phase, so it is roughly of order 2l, and to be more
precise, we have log(tl) = Θ(l). This gives l′ = Θ(∆

−2/β
min ), hence the upper bound for RE1 (T ), i.e.,

(1 + ∆max) × 2l
′+1, is at least 2l

′
= 2Θ(∆

−2/β
min ) ≥ 2Θ(∆−2

min) because β < 1. This dependency is
ignored in their proof and it is written (1 + ∆max)× 2l

′+1 = C2, implying C2 is a constant.

A similar situation holds for the proof of their Theorem 4. There, l1 plays the role of l′.
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