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Abstract

Some materials are provided as wire or other slender geometries and are commonly used as mechan-

ical parts, especially in medical applications. If slender geometries are well adapted to quasi-static

tensile tests, such geometries cannot be properly tested under shear and compressive loads. The

shear and compressive stress-strain curves nevertheless remain of major interest to engineers and

designers. This paper proves and illustrates that material shear and compressive stress-strain curves

can e�ciently be extracted from torsion and bending tests on thin wires, even in noisy situations.

The method is �rst presented to analyze torsion tests. This method is then developed and adapted

to extract the material compressive stress-strain curve from both pure bending and uni-axial tensile

tests.

Keywords: Beams, Inverse method, Bending, Torsion, Compression,

1. Introduction

Experimentally assessing the mechanical behavior of materials is essential since it allows to

properly design mechanical parts and to model their behavior through constitutive equations. The

results of these experimental tests are often synthesized as a set of stress-strain curves under ele-

mentary loads such as shear and uni-axial tensile and compressive loads.

These curves present various shapes over di�erent loading ranges depending on the studied

materials. In addition, compressive and tensile load behaviors are not always symmetrical (magne-

sium [1�3], NiTi Alloys [4], etc), which underlines the necessity of experimental characterizations

to assess all these behaviors.

Di�erent mechanical setups have been designed to experimentally identify these sought stress-

strain curves. On one hand, classical setups attempt to induce uniform stress state in the tested

material (e.g. uni-axial tensile, uni-axial compressive [4] or pure shear tests [5]). These tests are par-

ticularly convenient as they straightforwardly provide the desired stress-strain relation. They may
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yet present experimental di�culties: some material display strain localization (Lüders bands [6, 7])

when loaded under tension. From an other point of view, obtaining the compressive behavior of

material has always proved challenging as compressive tests are subjected to buckling [8, 9]. This

phenomenon particularly restrains the mechanical characterization of materials provided in the

shape of slender specimens such as thin tubes, wires or sheets. For many geometry and materi-

als, reaching a satisfying compression load range is thus di�cult. Standard compression methods

generally require using speci�c anti-buckling setups inducing friction during the tests (example and

short review in [2, 4]). However, such setups remain ill adapted to experimentally deal with thin

wires or thin walled tubes.

On the other hand, samples can be more easily tested under non uniform stress loadings. In

this work, stress loadings such as (1) torsion and (2) pure bending have been studied. The afore-

mentioned stress-strain relations are then contained into the obtained experimental data but are

yet not straightforwardly provided. Knowing the applied loading, inverse problems have to be

solved to identify parameters of chosen constitutive equations. These equations unfortunately only

approximately describe the true material behavior and hence a�ect the identi�cation of the sought

stress-strain relations. Extracting information from complex stress loading thus keeps being an

active research �eld.

(1) Concerning torsion test, literature already documents di�erent methods to extract non linear

shear stress-strain relationships from torsion test in the large shear strain range [10, 11] for circular

cross section specimens. In particular, Yang et al. [11] proposes an e�cient method to identify the

shear stress-strain curves from torsion tests. These calculations are based on Fourier analysis and

are equivalent to the use of a low-pass �lter of cut-o� pulsation wc to separate high frequency noise

from the experimental data [10, 12]. In this work, it has been chosen to use a chosen function basis to

describe the sought non-linear shear stress-strain curves in torsion. A global mean-square approach

is used to perform this identi�cation while �ltering out the experimental noise. The identi�ed

shear stress-strain curves and noise sensitivity of these two methods will be shortly compared in

section 3.1.

(2) Concerning pure bending tests, experimental data contain information about the tensile and

compressive material behavior and associated asymmetry, which would be of interest to extract.

Yet, to the author knowledge, no attempt has yet been published to directly extract stress-strain

relationship from such data. In fact, researches about pure bending behavior are still undergoing,

but usually try to predict the bending behavior assuming models (elasto-plastic strain-hardening

model [13, 14], non-linear models tacking into account loading-unloading cycles [15, 16], taking into

account material inhomogeneity [17], predicting ultimate pure bending [18], etc.). Fewer works
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propose method to extract information from bending test or are interested in information such

as the hardening parameters during cyclic loading [19�21]. These predictions yet usually assume

speci�c material models and tension-compression symmetrical behavior which is not true for all

materials. Direct extraction of stress-strain curves has thus not been published.

This gap in literature is probably due to (i) the lack of experimental mean to reach large

curvature ranges and (ii) to the fact that extracting the elementary stress-strain curves from pure

bending data is highly challenging: the extraction robustness depends on the input data quality,

the presence of bending experimental noise/bias, the knowledge of specimen section geometry and

variations during the test, the curvature identi�cation, etc. Obstacle (i) has been progressively

overcame thanks to the recent development of new experimental bending setups (thin plates [22, 23],

few millimeter diameter rods [24, 25], cylindrical shells [9]). More recently, the setup developed

in [26] provided an e�cient experimental system to obtain pure bending measurements on thin

wires or tubes over large curvature ranges (curvature radii from in�nite to about 2.5 mm for wires

of diameter less than 1 mm). The obstacle (ii) is tackled in the present paper; solutions to the

many associated challenges are proposed and evaluated.

This paper thus proposes an original method to extract material elementary stress-strain re-

lations from either torsion (section 2.1) or pure bending tests (section 2.2). This study has been

restricted to a thorough analyze of the proposed method performances on simulated experiments

to evaluate its noise robustness and sensibility to the various parameters described in obstacle (ii)

(section 3). Application of this method to analyze real experimental data will be published in

further work so as not to overly lengthen this paper.

2. Method

From a general point of view, during torsion or pure bending of a wire, the specimen circu-

lar cross-section S is loaded by the di�erent components of the tensor stress �eld σ(M) (Fig. 1),

where σ(M) is the Cauchy stress tensor at any point M of the cross-section S. The overall resulting

force
−→
R and moment

−−→
MO in the cross-section S can be simply written:

−→
R =

∫∫
S

σ(M)
−→uzdS (1)

−−→
MO =

∫∫
S

−−→
OM ∧ (σ(M)

−→uz)dS (2)

where −→uz is the unit vector orthogonal to the cross-section S, and dS is an elementary surface area

element. The point O is the point of section S where the moment
−−→
MO is estimated.
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In this paper, overall resulting force
−→
R and moment

−−→
MO have been simulated either during

torsion (section 3.1) or pure bending tests (section 3.2). The aim of this work is to extract from

these tests the material local shear and compressive stress-strain behaviour contained into the

Cauchy stress tensor σ(M).

2.1. Torsion test

2.1.1. Method overview

Torsion is a loading con�guration where (i) a specimen (here a wire) is twisted along its principal

axis A by a torque
−−−→
M tors
O (Fig. 2) and (ii) the overall resulting force

−→
R is zero. In this paper,

notations referring to torsion loading conditions has been labeled as Xtors. In torsion around −→uz

(Fig. 2), for circular cross-section specimens (tubes or rods), the local Cauchy stress tensor can be

expressed in the frame (−→ur,−→uθ,−→z ) as:

σ(M) =

0 0 0

0 0 τ(γ)

0 τ(γ) 0


(M,−→ur,−→uθ,−→z )

(3)

where τ is the local shear stress and γ the local shear strain. Assuming a planar cross-section

remains planar during the torsion test and that a radius line remains a line [27, 28], the local shear

strain γ can be written [28]:

γ =
θ

L
r = αr (4)

where θ is the relative rotation between the specimen tips, L is the specimen length and r is the

distance between the wire center and any point M of the cross-section S (Fig. 2).The angle α is

the relative rotation per specimen length. Equations 1 and 2 can thus be simpli�ed into:

−−−→
Rtors =

∫∫
S

τ(γ)−→uθdS =
−→
0 (5)

−−−→
M tors
O =

∫∫
S

r−→ur ∧ τ(γ)−→uθdS =
(∫∫
S

rτ(γ)dS
)−→uz (6)

During torsion experiments, a set of P experimental torque values with respect to the relative

rotation {M tors
O (αp)}, p ∈ [1;P ] is provided. The aim of this method is to identify the shear stress

function τ(γ) from these experimental data.

As an overview, the true shear stress function τ(γ) has been approximated by an analytical shear

stress function fshear(γ). This sought function fshear is directly related to its associated analytical

torque function M tors approx
O (Eq. 6). The function fshear and torque function M tors approx

O are
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thus sought so as to minimize the function Φtors de�ned in the least mean square sense as:

Φtors =

P∑
p=1

(
M tors
O (αp)−M tors approx

O (αp)
)2

(7)

2.1.2. Method details

More speci�cally, the shear stress function fshear has been written as a linear combination of K

elementary functions Sk, k ∈ [1;K] (e.g. polynomial, spline,etc.) so that:

fshear(γ) =

K∑
k=1

qkSk(γ) =
〈
S1(γ) · · ·SK(γ)

〉


q1
...

qK

 (8)

where qk are the K real coe�cients to be identi�ed. These K unknown coe�cients qk com-

pose the column matrix {qk}; the K elementary functions Sk compose the function row ma-

trix
〈
S1(γ) · · ·SK(γ)

〉
. Combining equations 4, 6 and 8, the searched torsion moment M tors approx

O

thus naturally writes:

M tors approx
O (αp) =

K∑
k=1

(
qk

∫∫
S

rSk(γ)dS
)

(9)

=

K∑
k=1

qkUk(αp) =
〈
U1(αp) · · ·UK(αp)

〉


q1
...

qK

 (10)

where the K functions Uk(αp), k ∈ [1;K] are de�ned as:

Uk(αp) =

∫∫
S

rSk(γ)dS with γ = αpr (11)

Using Eq. 9, the function φtors (Eq. 7) to be minimized thus eventually writes:

Φtors(qk) =

P∑
p=1

(
M tors
O (αp)−

K∑
k=1

qkUk
(
αp
))2

(12)

An additional constraint can also be written as the shear strain is zero when the specimen is

not loaded:

fshear(γ = 0) =

K∑
k=1

qkSk(γ = 0) =
〈
Sk(γ = 0)

〉
{qk} = 0 (13)

where
〈
Sk(γ = 0)

〉
is a K element row matrix.
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Identifying the mechanical behaviour under shear load fshear thus consists in solving the corre-

sponding problem Ptors by �nding the unknown column matrix {qk} that minimizes function Φtors

(Eq. 12) while respecting the constraint de�ned by Eq. 13:

Ptors

∣∣∣∣∣∣∣∣∣∣
min
qk

Φtors(qk)

u. c.
〈
Sk(γ = 0)

〉
{qk} = 0

(14)

The corresponding Lagrangian Ltors of the problem Ptors writes [29]:

Ltors = Φtors(qk)− λ
( K∑
k=1

qkSk(γ = 0)− 0
)

(15)

where λ is the Lagrange multiplier related to the constraint.

From a practical point of view, the unknown column matrix {qk} can simply be obtained by

solving the linear system written [29]:

[
HLtors

]{qk}λ
 =

{M
tors
O (αp)}

0

 (16)

where
[
HLtors

]
is the corresponding bordered Hessian (P + 1)× (P + 1) matrix written:

[
HLtors

]
=

 [U]
t
[U] {Sk(γ = 0)}〈

Sk(γ = 0)
〉

0

 (17)

where the notation Xt stand for the matrix transposition. The P × K matrix [U] is computed

by estimating the function row matrix
〈
U1(αp) · · ·UK(αp)

〉
(Eqs. 10 and 11) at the di�erent mea-

surement relative angles αp; the P ×K matrix [U] represents the P equations system coupling the

approximated torques values
{
M tors approx
O (αp)

}
and column matrix {qk} (Eq. 10):

{
M tors approx
O (αp)

}
=



〈
U1

(
α1

)
U2

(
α1

)
· · · UK

(
α1

)〉
〈
U1

(
α2

)
U2

(
α2

)
· · · UK

(
α2

)〉
...

. . .
...〈

U1

(
αP
)

· · · · · · UK
(
αP
)〉




q1
...

qK

 = [U] {qk} (18)

Once the column matrix {qk} is identi�ed solving equation 16, the approximated shear stress

function fshear(γ) can be computed using equation 8.

The method analytical identi�cation robustness to experimental noise and bias is shortly studied
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in the next section.

2.1.3. Error analyze

Identi�cation errors between the real function τ(γ) and the sought shear stress function fshear

can be due to di�erent factors:

• Elementary functions basis {Sk} (k ∈ [1;K]) inadequacy: the chosen elementary func-

tions basis {Sk} may not be rich enough to properly describe the real material behavior τ(γ).

The error induced by this inadequacy can be reduced by increasing the functions basis rich-

ness, for example by increasing the number K of elementary functions Sk. Such an increase

will also unfortunately increase the identi�cation sensitivity to noise and a trade-o� should

be found (see Section 3.1). The functions basis quality can yet be a posteriori analyzed by

studying the eventual di�erence between the experimental and approximated torque (M tors
O

and M tors approx
O , respectively).

• Experimental bias and noise: the experimentally measured torques
{
M tors meas
O

(
αp
)}

unavoidably contain bias and noise. An experimental measurement can thus be seen as the

sum of the real values
{
M tors
O

(
αp
)}

and the experimental torque error or bias {∆M tors
O } so

that: {
M tors meas
O

(
αp
)}

=
{
M tors
O

(
αp
)}

+
{

∆M tors
O

}
(19)

This noise will induce errors {δqk} on the identi�ed values {qk} that will be added to the

solution column matrix {qk0} identi�ed in noiseless conditions. Using Eq. 16 in noisy and

noiseless conditions, this error {δqk} can be simply estimated by solving the system:

[
HLtors

]{δqk}δλ

 =

{∆M
tors
O }

0

 (20)

It should be underlined here that this system is independent of the real function τ(γ) and

depends only on the elementary chosen functions basis contained into
[
HLtors

]
and of the

experimental torque error or bias {∆M tors
O }. This equation can thus be used a posteriori

to estimate identi�cation error-bars on the results: assuming a bias or noise model allows

to estimate in�uence of the torque experimental noise/bias {∆M tors
O } on the identi�ed rela-

tion fshear.

• Specimen section geometry: the function fshear is identi�ed by integrating the elementary

functions {Sk} (k ∈ [1;K]) over the specimen section S (Eq. 11). Computing these functions
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requires thus to assume the specimen section geometry; di�erences between the experimental

and theoretical specimen section will impact the identi�ed function fshear.

The method results and robustness have been analyzed while dealing with numerical torsion

results in section 3.1. Moreover, a short comparison of the noise-robustness of this method and the

method proposed by [11] has been proposed.

2.2. Pure bending test

2.2.1. Method overview

The method previously presented to analyze torsion tests has been extended to analyze pure

bending tests. For concision sake, only the main steps are presented here as the method has been

thoroughly described to deal with torsion test in section 2.1.

Pure bending is a loading con�guration where the specimen is a wire bent in one of its plane of

symmetry Pl by two opposite, yet equal, couples
−−−−→
M bend
O = ±M bend

O
−→ux, where −→ux is orthogonal to

the plane of symmetry Pl (Fig. 3,a). In this paper, notations referring to pure bending conditions

have been labeled Xbend. In this con�guration:

• the convex specimen part is loaded in tension;

• the concave specimen part is loaded in compression;

• the neutral surface contains �bers that are not subjected to any tensile or compressive stress;

the neutral axis is de�ned by the intersection between the neutral surface and the plane of

symmetry Pl. The specimen neutral surface is located at a distance y0 from the median

surface and its position may change during the test depending on the applied loading and

material tensile/compression asymmetry.

The theoretical stress-strain repartition during such a loading is available in literature for homoge-

neous linear materials [30] or heterogeneous materials [31, 32]. In this work, the specimen material is

supposed homogeneous and no constitutive equations are formulated. Given Bernoulli displacement

�eld hypotheses, the component εzz of the Biot strain tensor in the specimen simply writes [30]:

εzz = (y − y0)(C − C0) (21)

where C0 and C are the specimen initial and current curvature, respectively. The parameter y

represents the distance between the median surface and any point M of the section S. In this

work, the di�erent �elds and values above and under the neutral surface position y0 have been

denoted Xtens and Xcomp, respectively.
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In case of pure bending around −→ux, the overall resulting force
−−−→
Rbend is zero and, neglecting the

component of stress σyy [30], the corresponding Cauchy stress tensor �eld σ(M) can be simpli�ed in

the frame (−→ux,−→uy,−→uz) as:

σ(M) =

0 0 0

0 0 0

0 0 σzz(εzz)


(M,−→ux,−→uy,−→uz)

(22)

Using this stress �eld σzz, equations 1 and 2 can be simpli�ed and written as scalar equations

while dissociating the tensile and compressive contributions above and under the neutral surface in

section S such as:

Rbend =

∫∫
Stens

σtenszz (εtenszz )dS +

∫∫
Scomp

σcompzz (εcompzz )dS = 0 (23)

M bend
O =

∫∫
Stens

yσtenszz (εtenszz )dS +

∫∫
Scomp

yσcompzz (εcompzz )dS (24)

During pure bending experiments, using the setup presented in [26], a set of P experimental

bending moment with respect to curvature
{
M bend
O (Cp)

}
, p ∈ [1;P ] is provided. The aim of the

method is to identify both the function σcompzz (εcompzz ) and the variation of the neutral surface

position {y0(Cp)} during the test using equations 23 and 24.

• In the case in which the specimen material tensile and compressive behavior are symmetrical, a

unique stress-strain relation σtenszz (εtenszz ) = −σcompzz (−εtenszz ) is sought. Equation 23 can be simpli�ed

into:

Rbend =

∫∫
Stens

σtenszz (εtenszz )dS −
∫∫
Scomp

σtenszz (−εtenszz )dS = 0 (25)

For a circular cross-section, equations and 25 and 21 imply that the neutral surface position y0 is

zero and the surfaces Stens and Scomp are symmetrical. Equation 24 can thus be simpli�ed into:

M bend
O = 2

∫∫
Stens

yσtenszz (εtenszz )dS (26)

Equations 25 and 26 are very similar to equations 5 and 6; adapting the previous method to analyze

bending tests is straightforward in such a situation.

• In the case in which the specimen material tensile and compressive behavior are not symmet-

rical, equations 23 and 24 cannot be simpli�ed as previously. An experimental measurement of the

tensile behaviour function σtenszz (εtenszz ) is thus required.

The method described in section 2.1 has been adapted as an iterative process to identify both
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the function σcompzz (εcompzz ) and the variation of the neutral surface position {y0(Cp)} during the test

using equations 23 and 24. As a summary, during each iteration c, the function σcompzz is approx-

imated by an analytical compression function f compc . This analytical compression function f compc

is directly related to an analytical bending function M bend approx
O,c (Eq. 24) and is searched so as to

minimize the function Φbendc de�ned in the least mean square sense as:

Φbendc =

P∑
p=1

(
M bend
O

(
Cp
)
−M bend approx

O,c

(
Cp
))2

(27)

2.2.2. Method details

The iterative method has been summarized as a �owchart in Fig 4 and is detailed hereafter:

Initialization c = 0:

Initially, the neutral �ber position is assumed to remain at the specimen medium line during

the whole test:

If c = 0, ∀p ∈ [1, P ], {y0,c(Cp)} = {0} (28)

Iteration c (c ≥ 1):

As when analyzing the torsion tests, the function σcompzz (εcompzz ) is approximated by an analytical

functions f compc at each iteration c:

f compc (εcompzz ) =

K∑
k=1

qckSk(εcompzz ) =
〈
S1(εcompzz ) · · ·SK(εcompzz )

〉


qc1
...

qcK

 (29)

where f compc is the function to be identi�ed during iteration c. The functions basis {Sk}, k ∈ [1;K]

is chosen and de�ned in a very similar way as for the torsion case (Eq. 8, adapted to bending).

During iteration c, the aim is to identify the column matrix {qck} de�ning the function f compc

as a better approximation than during the previous iteration (function f compc−1 ) and the associated

neutral �ber position {y0,c(Cp)} during the test.

Step 1�Determination of the coe�cients {qck} and function f compc

Using this basis and equations 24 and 29, the associated analytical bending functionM bend approx
O,c

simply writes:

M bend approx
O,c (Cp) =

∫∫
Stens

yσtenszz

(
εtenszz

)
dS +

K∑
k=1

qckUk(Cp) (30)

where the functions {Uk}, k ∈ [1;K] are de�ned in a very similar way as to the torsion case (Eq. 11,

adapted to bending) using the elementary functions basis {Sk}, k ∈ [1;K].

10



The integrand
∫∫

Stens

yσtenszz (εtenszz )dS and each function Uk(Cp) composing the bending func-

tion M bend approx
O,c in Eq. 30 can be numerically computed since the integration sections Stens

and Scomp have been de�ned through the neutral surface position
{
y0,c−1(Cp)

}
during the previous

iteration or initialization. The function σtenszz (εtenszz ) is known thanks to a previously performed

tensile test and the strain �eld εtenszz can be estimated in the section S using Eq. 21.

Using Eq. 30, the function Φbendc (Eq. 27) to be minimized during iteration c eventually writes:

Φbendc (qck) =

P∑
p=1

M bend
O

(
Cp
)
−
∫∫
Stens

yσtenszz

(
εtenszz

)
)dS −

K∑
k=1

qckUk(Cp)

2

(31)

An additional constraint can then be written as the strain should be zero when the specimen is not

loaded:

f comp(εcompzz = 0) =
K∑
k=1

qckSk(εcompzz = 0) =
〈
Sk(εcompzz = 0)

〉
{qck} = 0 (32)

The bending problem Pbend is similar to the torsion problem Ptors. This problem is solved

using the same method, i.e. by solving the linear system [29]:

[
HLbend

]{q
c
k}

λ

 =


{
M bend
O

(
Cp
)
−
∫∫

Stens

yσtenszz

(
εtenszz

)
)dS

}
0

 (33)

where
[
HLbend

]
is de�ned similarly as for the torsion case (Eq. 17 and 18 using the elementary

functions basis de�ned in the bending case).

Solving this system provides the unknown column matrix {qck} minimizing the function Φbendc

(Eq. 31) and respecting the constraint provided by equation 32.

The solution column matrix {qck} can be used to compute the new approximated function f compc

and the approximated bending moment {M bend approx
O,c (Cp)} (Eq. 29 and 30, respectively). If the

approximated bending moment {M bend approx
O,c (Cp)} is judged too di�erent from the experimental

bending moment {M bend
O,c (Cp)}, a new spline elementary functions basis {Sk}, k ∈ [1;K] can be

de�ned and Step 1 is updated.

Step 2�Determination of neutral �ber position {y0,c(Cp)}

Using the new approximated function f compc , equation 23 can be written for each measured

curvature Cp:

Rbend(Cp) =

∫∫
Stens

σtenszz

(
εtenszz

)
dS +

∫∫
Scomp

f compc

(
εcompzz

)
dS = 0 (34)

In this equation and for iteration c, only the neutral surface position {y0,c(Cp)} separating the two
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integrated sections Stens and Scomp is unknown. The position of the neutral surface {y0,c(Cp)} can

be estimated by applying a bisection method at any measurement curvature Cp so that Eq. 34 is

ful�lled.

Step 3�Termination criterion

Iteration process ends when the di�erence between two successively identi�ed compressive func-

tions (f compc−1 and f compc ) is considered negligible, i.e. when the following termination criterion is

veri�ed:

max
(f compc − f compc−1

f compc

)
≤ δ (35)

where δ is a user chosen value. If the criterion de�ned by Eq. 35 is veri�ed, f compc and its as-

sociated neutral surface position {y0,c(Cp)} are considered to be the sought stress-strain function

under compressive load. If the termination criterion is not veri�ed, an additional iteration c+ 1 is

performed, starting at Step 1.

2.2.3. Error analyze

As for the torsion test, the identi�cation error origins are similar (inadequacy of the chosen

functions basis, experimental noise and erroneous specimen section). In particular: the experimen-

tally measured bending moments
{
M bend meas
O

(
Cp
)}

unavoidably contain noise or bias. Using the

same notations as presented in Eq. 19 and 20, this noise/bias on the measured torque
{

∆M bend
O

}
will induce an identi�cation error {δqk} added to the solution column matrix {qk0} identi�ed in

noiseless conditions. Using equation 33 in noisy and noiseless conditions, and neglecting the noise

in�uence on the identi�ed �nal neutral surface position {y0(Cp)}, this error {δqk} can be simply

approximated by solving the system:

[
HLbend

]{δqk}δλ

 =


{

∆M bend
O

}
0

 (36)

As for the torsion case, this system is independent of the real function σtenszz (εtenszz ) and depends

only on the elementary chosen functions basis contained in
[
HLbend

]
and on the bending moment

noise/bias
{

∆M bend
O

}
. By simply assuming a noise model, this equation can be used a posteriori

to estimate the identi�cation error-bars.

3. Validation

In order to assess the method e�ciency and quantify the identi�cation errors, numerical torsion

and pure bending simulations have been analyzed. These simulations were performed using stress-

12



strain functions used as references; the identi�ed relationships have been thus straightforwardly

compared with the reference functions to assess the identi�cation accuracy and robustness.

3.1. Numerical torsion

A shear stress-shear strain function τ(γ) has been created so as to simulate a complex mechanical

behaviour (Fig. 5a). In particular, this law has been created so as to mimic NiTi alloy mechanical

behavior which is of particular interest to the authors [7]. Using this function and a cylindrical

specimen (Rext = 0.25 mm, Fig. 2), a torsion test has been simulated (Eq. 6). This simulation

provided here P = 180 values of the moment with respect to the relative rotation {M tors
O (αp)} for

this material behavior (Fig. 5b). These simulated data {M tors
O (αp)} have been used to analyze the

impact of three main parameters on the identi�cation quality:

1. the choice of the elementary functions basis {Sk} (k ∈ [1;K]),

2. the noise on experimental signal,

3. error on the specimen geometry.

Eventually, the method proposed by Yang in [11] has been applied to the same simulation so as to

compare the methods identi�cation performances.

3.1.1. Functions basis choice

In this work and for illustration purpose, linear spline functions have been chosen to compose

the functions basis Sk (results could also have been generated using cubic splines, polynomials or a

di�erent kind of functions basis). A �rst splines basis {Sk} composed of K = 5 linear evenly spaced

splines has been �rst arbitrarily chosen (Fig. 6a, dashed line). The associated normalized functions

basis {Uk} are also illustrated (Fig. 6b, dashed line, Eq. 11).

The method presented in section 2.1 has been applied with this basis (Fig. 7a and b, dashed

line). As a result, the simulated moment-twist results {M tors
O (αp)} are crudely approximated by

the identi�ed function {M tors approx
O (αp)} obtained with this �rst splines basis; the observed dif-

ference {M tors approx
O (αp) − M tors

O (αp)} is unsatisfactory. It is thus obvious that the functions

basis {Uk} is unadapted to correctly approximate the simulated data {M tors
O (αp)}. As expected,

the associated identi�ed shear stress-shear strain function fshear also crudely approximates func-

tion τ(γ) (Fig. 7b). This result underlines the choice importance of the functions basis {Sk}

and {Uk}.

This basis choice can be modi�ed until a satisfactory di�erence between the identi�ed and simu-

lated torsion moments {M tors approx
O (αp)−M tors

O (αp)} is obtained. Here, the splines basis support

has been re�ned locally and iteratively until the observed di�erence max({|M tors approx
O (αp) −
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M tors
O (αp)|}) is less than an arbitrarily chosen threshold of 0.1 Nmm; the identi�ed and simulated

moments visually overlap (Fig. 7a, continuous line). This second splines basis {Sk}, composed of

K = 8 linear splines not evenly spaced, and associated functions {Uk} resulting of this iterative

process are presented in Fig. 6a and b (continuous line). With this new basis, the identi�ed shear

stress-shear strain function fshear is judged satisfactory (Fig. 7b, dashed line).

These results underline (i) the identi�cation method ability, (ii) the functions basis choice

decisiveness, (iii) a criterion existence to validate a posteriori the splines basis choice and (iv) the

possibility to apply a speci�c re�ning method to obtain a satisfactory splines basis {Sk}.

3.1.2. Noise impact:

The identi�cation method robustness to noise has been tested by adding a noise/bias copy {∆M tors
0 }

to the simulated torsion moment {M tors
O (αp)}. This robustness analysis has been performed using

the second splines basis previously described (Fig. 6a and b, continuous line). For illustration pur-

pose, the noise has simply been simulated as a normally distributed Gaussian noise, written {N1},

of standard deviation σnoise = 1 Nmm (i.e. a standard deviation of 6% of the maximal torsion

moment).

The noiseless, noisy input torsion moment and identi�ed moment ({M tors
0 }, {M tors

0 +N1}

and {M tors approx
0 }, respectively) are presented Fig. 8a. Due to the noise copy {N1}, the iden-

ti�ed unknown column matrix {qk N1
} and identi�ed moment {M tors approx

0 N1
} are di�erent from

the unknown column matrix {qk0} and moment {M tors approx
0 } identi�ed in noiseless conditions;

the relative error between the results identi�ed in noisy and noiseless condition is here in a range

of ±7% (Fig. 8a, right scale).

The associated identi�ed shear stress function fshearN1
also presents additional error compared to

the result obtained in noiseless conditions fshear0 (Fig. 8b). The relative error between the results

identi�ed in noisy and noiseless condition is here in a range of ±7% (Fig. 8b, right scale).

These results are considered excellent considering that the chosen noise standard deviation is 6%

of the maximal torsion moment. It should yet also be mentioned here that the noise impact also de-

pends on the number of measurement P (here, P = 180) contained in the input signal {M tors
0 +N1}.

The identi�cation error on torsion torque and shear function due to the noise copy {N1}

({δM tors
0 N1
} = {M tors approx

0 N1
} − {M tors approx

0 } and δfshearN1
= fshearN1

− fshear0 , respectively) can be

predicted by injecting the noise copy {N1} into Eq. 20 to compute the error column matrix {δqk N1
}.

This error column matrix is then injected into Eq. 8 and 9 to provide the identi�cation error. Using

this method, the errors are perfectly predicted; this prediction has not been presented in a speci�c

�gure for concision sake but will be presented while analyzing identi�cation on bending tests.
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While analyzing real experimental data, the speci�c noise copy/bias {N1} and reference func-

tions are obviously unknown. Nevertheless, simulating di�erent random noise copies {Nj} , j ∈ [1; J ]

provides a family of error functions {δM tors
0 Nj
} and {δfshearNj

}, j ∈ [1; J ]. The Standard-deviations

(Std) of these error families have then been computed to simulate the identi�cation error-bar

functions
(
errorbarsM = ±2 Std(δM tors

0 Nj
)
)
and

(
errorbarsf = ±2 Std(δfshearNj

)
)
.

These error-bar functions have been plotted on both sides of the reference functions as gray areas

in Fig. 8a and b. The functions M tors approx
0 N1

and fshearN1
, identi�ed on noisy signal, are contained

into the envelopes thus created, emphasizing the method prediction validity: it is thus possible

to quantify a posteriori the e�ect of noise on the identi�cation results by assuming a noise model

representing the experimental noise.

Important features to be underlined here are that the error-bar functions errorbarsf and

errorbarsM (i) are proportional to the Gaussian noise standard-deviation σnoise (Eq. 20), (ii)

increase with the loading level (twist angle rate α and shear strain γ respectively) and (iii) depend

on the chosen splines basis.

This last point can be illustrated by predicting the shear error-bar function errorbarsf =

2 Std(δfshearNj
) for di�erent evenly spaced linear splines basis families and for a standard devia-

tion σnoise = 1 Nmm (Fig. 9). The identi�cation noise sensitivity increases with the number of

spline K in the family; the noise �ltering ability of a chosen functions basis decreases with the basis

richness, which is a classical result. A trade-o� should thus be found: the functions basis {Sk}

should be chosen rich enough so as the experimental torsion moment M tors
O is properly �tted, and

simple enough so as to reduce the noise impact on the identi�cation of fshear.

3.1.3. Di�erence between experimental and theoretical specimen geometry:

The identi�cation quality is also dependent on the knowledge of the specimen section geometry S.

In this work, only wire specimens have been studied. Measuring a diameter Dapprox di�erent

from the real specimen diameter Dtrue and using it during the identi�cation process will induce

identi�cation errors (Eq. 6). The identi�cation robustness to this geometrical parameter has been

studied and compared with the results obtained while identifying shear moduli G on linear materials

behaviour.

Linear mechanical behavior:

For a linear material behavior, estimating the shear function fshear is equivalent to identify

the material shear modulus G. Classically, the relation between the shear modulus G, the
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torsion torque and the relative rotation α is simply (Eq. 6):

G =
M tors

0

α

32

πD4
(37)

The identi�ed shear modulus Gapprox using an erroneous measured diameter Dapprox would

thus simply write:

Gapprox =
( Dtrue

Dapprox

)4
G (38)

This equation indicates that an error as small as +2.5% on the diameter measurement Dapprox

induces an error of −10% on the identi�ed shear modulus Gapprox. Similar conclusion is

expected while analyzing complex mechanical behavior.

Complex mechanical behavior:

For complex material behavior, as previously simulated (Fig. 5a and b, cylindrical speci-

men, Dtrue = 0.5 mm), a simple relative error equation cannot be derived from Eq. 6; the

method robustness has been analyzed numerically. The shear function fshear has thus been

identi�ed on the simulated data for erroneous diameters Dapprox from a range of 90 to 110%

of the real specimen diameter Dtrue. The functions basis to perform this analysis has been

chosen identical to the second spline basis previously described (Fig. 6a and b, continuous

line).

The identi�cation results are presented in Fig. 10a. As expected, the chosen diameter Dapprox

a�ects non linearly the identi�ed shear functions fshear. The overall function shape is yet

considered satisfactory. As for the linear case, an overestimated diameter Dapprox leads to

underestimate the identi�ed shear function fshear (Fig. 10a and b). Reciprocally, an under-

estimated diameter Dapprox leads to overestimate the identi�ed shear function fshear.

These identi�cation errors are of the same magnitude order than while analyzing linear ma-

terials: about −10% for an error on the diameter Dapprox of +2.5%.

As a rough estimation, obtaining an error of less than ±1% on the identi�ed shear function fshear

would thus require to estimate the specimen diameter with a precision of ±0.25%. This result

underlines the method sensibility to the specimen geometry; its dimensions should be experimentally

estimated with great care. Once the other parameters have been chosen, additional error-bars

should also be computed by estimating the shear function fshear boundaries using the diameter

experimental measurement tolerance on the specimen section S.
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3.1.4. Method feature comparison with [11]:

The method proposed by Yang et al in [11] also aims at providing the shear function fshear from

torsion tests. To compare the two methods identi�cation and noise robustness abilities, the previous

tests have been performed using Yang's method on the simulated torsion moment {M tors
O (αp)}: the

function fshear has been identi�ed in noiseless and noisy conditions. Only the main results have

been presented for concision sake.

To put it in a nutshell, Yang identify the shear stress-strain curve by expressing equation 6 in

the form:

fshear =
3M tors

0 + α
dMtors

0

dα

2πR3
ext

(39)

where Rext is the wire external radius. To compute the shear function fshear, equation 39 requires

the calculus of the torque derivative versus the relative rotation
dMtors

0

dα .

This calculus is performed using a trick to create a periodical function using the experimental

torque M tors
0 . This periodical function is then approximated and di�erentiated using a �ltering

function basis designed using Fourier analysis theory. This approximation is equivalent to ap-

plying to the periodical function a low-pass �lter of cut-o� pulsation wc [12], removing thus the

high frequency harmonics mainly attributed to noise. The approximated function M tors approx
0

and associated derivative
dMtors approx

0

dα are then reconstructed so as to compute the shear function

fshear approx using equation 39. The main parameter impacting the identi�cation quality with

Yang's method is thus the chosen cut-o� pulsation wc which should be adjusted depending on

the analyzed signal richness and the noise frequency content. The in�uence of this parameter is

illustrated hereafter in exactly the same layout as previously.

Function basis choice : similarly as previously with the number of splines K in the spline basis,

the chosen cut-o� pulsation wc a�ects the approximation basis richness. It is thus obvi-

ous that the approximated torque and shear functions {M tors approx
O } and {fshear approx0 }

are di�erent from the simulated functions {M tors
O } and

{
fshear

}
even if the identi�cation is

performed in noiseless conditions (�gure 11a) and b), respectively). These results are compa-

rable with those obtained for the presented method in �gure 7. To allow a fare comparison

of the method results, the cut-o� pulsation wc has been increased until the observed dif-

ference max({|M tors approx
O (αp) − M tors

O (αp)|}) is less than the previously arbitrarily cho-

sen threshold of 0.1 Nmm; this criterion has been satis�ed here for a cut-o� pulsation

wc = 0.10 rad s−1.

Noise impact : due to the noise in the data, the functions identi�ed in noisy and noiseless situation

are di�erent. Thanks to the superposition theorem applied to equation 39 and to the �ltering
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function basis, the error
{
δfshearN1

}
=
{
fshearN1

}
−
{
fshear0

}
can easily be written such as:

{δfshearN1
} = [F ] {∆M tors

O } (40)

where {∆M tors
O } represents the torque moment noise/bias and matrix

[
F
]
depends on the

chosen �ltering function basis. The matrix
[
F
]
thus depends on the cut-o� pulsation wc but

is independent on the material behavior.

As previously, a Gaussian noise model has been assumed to simulate the torque moment noise

{∆M tors
O }. Di�erent random noise copies {Nj} , j ∈ [1; J ] of standard deviation σnoise =

1 Nmm (i.e. a standard deviation of 6% of the maximal torsion moment) are thus computed.

The associated family of error functions
{
δfshearNj

}
, j ∈ [1; J ] have then been estimated using

equation 40. The shear error-bar functions errorbarsf = 2 Std(δfshearNj
) can thus be plotted

for di�erent cut-o� pulsation values (�gure 12). The obtained results are similar in both

methods (see �gure 9): (1) the error-bar on the identi�ed shear function increases with the

shear strain γ and (2) increasing the cut-o� pulsation wc, which is equivalent to increasing

the richness of the function basis, increases the noise sensitivity.

In particular, the error-bar function obtained for wc = 0.10 rad s−1 should be compared

to the spline basis composed of K = 9 linear splines both chosen so that the di�erence

max({|M tors approx
O (αp) − M tors

O (αp)|}) is smaller that the threshold 0.1 Nmm (�gures 9

and 12): the identi�cation noise robustness for the two method is similar.

3.1.5. Intermediary conclusion:

These results con�rm the method ability to identify the shear stress-shear strain functions

from noisy numerical torsion test. The functions basis {Sk} should be iteratively re�ned until the

obtained error {M tors approx
O (αp)} − {M tors

O (αp)} is small enough. The user should also be aware

that re�ning the functions basis {Sk} increases the overall identi�cation noise sensitivity. This

noise sensitivity can be estimated a posteriori by estimating the identi�cation errors by assuming

an experimental noise/bias model. Special care should also be taken to properly measure the

specimen section S dimension; two di�erent identi�cations should be performed using the section

measurement tolerance interval.

3.2. Numerical pure bending

The method features and robustness have also been studied in the case of pure bending.

Stress-strain functions under tensile and compressive load were created so as to simulate com-

plex mechanical behaviours for which the compressive behavior is sti�er than the tensile behavior
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(Fig. 13a, dashed line). A pure bending simulation has then been performed for wire specimens of

radius Rext = 0.25 mm. The theoretical variations of the reference neutral surface position y0 with

respect to curvature Cp and the associated pure bending momentM bend
0 have been computed using

equations 23 and 24. The obtained pure bending moment {M bend
0 (Cp)} and associated neutral

surface relative position
y0(Cp)
R have been plotted in Fig. 13b and c, respectively.

3.2.1. Functions basis choice

As for the torsion case, linear splines have been chosen to compose the functions basis {Sk}.

At each iteration c, the re�ning method established in the shear case has been applied to de�ne

a splines basis {Sk} for which the approximated bending moment results {M bend approx
O,c (Cp)} cor-

rectly �t the simulated bending moment function {M bend
O (Cp)}; the splines basis {Sk} is chosen so

that the di�erence {M bend approx
O,c (Cp)} − {M bend

O (Cp)} is less than an arbitrarily chosen threshold

of 0.1 Nmm for each curvature Cp.

The compressive function f compc identi�ed after convergence and the associated neutral �ber

position {y0,c(Cp)} are presented in �gure 14 a and b, respectively. The convergence criterion

(Eq. 35) has been here veri�ed at the eighth iteration (c = 8 and δ = 10−3) and the splines basis

is composed of 6 non-evenly spaced linear splines. The �nal splines basis repartition has been

summarized by representing the connection points as square markers directly on the compressive

functions f compc ; the identi�ed functions f compc are piecewise linear due to the linear splines basis

choice.

As a result, the identi�ed compressive function f compc almost overlaps the reference functions;

the obtained result is judged satisfactory. A smaller error could have been obtained by requiring a

smaller error {M bend approx
O,c (Cp)} − {M bend

O (Cp)} while choosing the splines basis {Sk}.

The neutral surface position {y0,c(Cp)} is also correctly identi�ed. For curvature values lower

than 20 m−1, the neutral surface position {y0,c(Cp)} estimation is more sensitive to errors on the

identi�ed compression function. The constant value of the neutral �ber position {y0,c(Cp)} for

curvatures lower than 20 m−1 is due both to the use of a linear splines basis and to the linear

behavior of the material for strain lower than 0.5%.

As a conclusion, these results con�rm the method ability to properly identify the compres-

sive function f comp and neutral surface position {y0(Cp)} using both the material tensile func-

tion σtenszz (εtenszz ) and the bending moment M bend
0 (Cp) as input data. As for the torsion case, the

functions basis choice is decisive in the identi�cation quality but a validation of the chosen basis

can be performed by verifying that the di�erence {M bend approx
O,c (Cp)}− {M bend

O (Cp)} is lower than

a user-chosen value.
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3.2.2. Noise impact:

While analyzing bending, two signals are used as input data: the tensile function σtenszz (εtenszz )

and the bending moment {M bend
0 (Cp)}. In this section, it has been chosen to analyze only the

impact of the noise on the bending moment {M bend
0 (Cp)}. For illustration purpose, the noise has

been simulated as a normally distributed Gaussian noise of standard deviation σnoise = 0.64 Nmm

(i.e. a standard deviation of 8% of the maximal bending moment in case(1)).

A noise copy {N1} has been added to the input bending moment {M bend
0 (Cp)}. The noiseless

and noisy moments (
{
M bend

0

}
and

{
M bend

0 }+ {N1

}
, respectively) are presented Fig. 15a. The

reference bending moment {M bend
0 (Cp)} is visually well approximated by the identi�ed bending

moment {M bend approx
0 (Cp)}. As expected, the identi�ed compressive function f compN1

and neutral

surface position {y0N1
(Cp)} are di�erent from the results obtained in noiseless condition (f comp0 and

{y0(Cp)}, respectively, Fig. 15b and c), illustrates the bending moment noise/bias e�ect during an

identi�cation. Considering the noise level applied to the bending moment
{
M bend

0 }+ {N1

}
, these

results are considered satisfactory.

An approximated model to predict the e�ect of the speci�c noise copy {N1} on the identi�cation

has been proposed in section 2.2.3. The di�erence between the compressive function identi�ed in

noisy and noiseless condition (f compN1
− f comp0 ) has been compared with the identi�cation analytical

error predicted thanks to equations 29 and 36 (Fig. 16). A small di�erence is observed between the

prediction of analytical and numerical error induced by the noise copy N1: this di�erence is due to

the fact that the noise e�ect on the identi�ed neutral surface position {y0(Cp)} has been neglected

to provide equation 36. The error prediction induced by the noise copy N1 on the compressive

function f compN1
− f comp0 is yet considered excellent.

While analyzing real experimental data, the speci�c noise copy {N1} and reference functions

are obviously unknown. Nevertheless, simulating di�erent random noise copies {Nj} , j ∈ [1; J ] and

using equations 36 and 29 provides a family of error functions {δM bend
0 Nj
} and {δf compNj

}, j ∈ [1; J ].

The standard-deviations of these error families have then been computed to estimate the identi�-

cation error-bar functions
(
errorbarsM = ±2 Std(δM bend

0 Nj
)
)
and

(
errorbarsf = ±2 Std(δf compNj

)
)
.

The error-bar functions have been plotted on both sides of the reference function as gray areas

(Fig. 15a and b): the identi�ed compressive function f compN1
is contained into the computed error-

bars
(
errorbars = ±2 Std(δf compNj

)
)
. This result thus validates the proposed method to a posteriori

compute error-bars during bending analysis using equation 36.

Eventually, exactly as for the torsion case, the error-bar functions (i) are proportional to the

Gaussian noise standard-deviation σnoise (Eq. 36), (ii) increase with the compressive strain εcompzz

and (iii) depend on the chosen splines basis {Sk} (not presented here for concision sake).
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These results con�rm the ability of the method to identify the neutral surface position {y0(Cp)}

and the stress-strain function under compressive load f comp using uni-axial tensile and noisy pure

bending test results.

3.2.3. Di�erence between experimental and theoretical specimen geometry:

As for torsion tests, the identi�cation method robustness is dependent on the knowledge of the

specimen section geometry S. In this work, only cylindrical specimen sections have been studied.

Using a diameter Dapprox di�erent from the real specimen diameter Dtrue during the identi�cation

process will induce identi�cation errors (Eq. 23 and 24). The identi�cation robustness to this

geometrical parameter has been be compared while analyzing linear or more complex mechanical

behavior.

Linear mechanical behavior:

For a linear material behavior symmetrical in tension and compression, estimating the com-

pression function f comp is equivalent to identify the material Young modulus E. Classically,

the relation between the Young modulus E, the bending moment M bend
0 and the curvature C

simply writes (Eq. 24):

E =
M bend

0

C

64

πD4
(41)

The identi�ed Young modulus Eapprox is thus similar in bending and torsion cases and simply

write:

Eapprox =
( Dtrue

Dapprox

)4
E (42)

The conclusions are similar as for the shear modulus G identi�cation.

Complex mechanical behavior:

For a complex material behavior, a simple relative error equation cannot be derived from

Eq. 24; the method robustness has been analyzed numerically by identifying the compressive

function f comp on the simulated data for erroneous diameters Dapprox from a range of 95

to 105% of the real specimen diameter Dtrue.

The identi�ed compressive function f comp and neutral surface relative position {y0(Cp)} have

been presented in Fig. 17a and b, respectively. As expected, the section Dapprox strongly

a�ects both the identi�ed functions f comp and neutral surface relative position {y0(Cp)}; a

diameter Dapprox smaller than the real specimen diameter Dtrue induces a general increase

of the identi�ed function f comp to obtain the required bending moment
{
M bend

0 (Cp)
}
. The

error on the measured diameter Dapprox yet induces greater error than in the torsion case:

an error as small as +1% on the diameter Dapprox induces an error of about −2% on the
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identi�ed neutral position and of about −10% on the identi�ed functions f comp. This error

is greater than the 4% error predicted in the identi�cation of the Young modulus E for

linear mechanical behavior (Eq. 42). In fact, in equation 41, the Young modulus is identi�ed

assuming symmetrical compressive and tensile behavior, whereas in the proposed method, the

tensile function f tens is de�ned through a tensile test: only the compressive function f comp

is identi�ed to obtain the required bending moment
{
M bend

0

}
. This phenomenon explains

the greater error obtained with the proposed method compared to the results predicted by

equation 42.

This result underlines the method identi�cation sensibility to the specimen section geometry S;

its dimensions should be experimentally estimated with great care. Once the other parameters have

been chosen, additional error-bars should be computed by estimating the compressive function f comp

boundary using the experimental measurement tolerance on the specimen section S.

4. Conclusion

An original method to identify the shear-stress shear-strain function from experimental torsion

tests has been thoroughly presented. This method has been extended to identify the stress-strain

function under compressive load using experimental uni-axial tensile and pure bending tests as

input data. Using numerically simulated results of torsion and bending experiments, the method

has been proved able to identify the afore-mentioned stress-strain functions in various con�gura-

tions. The identi�cation robustness analyze proved to be equivalent to the method proposed in [11]

when dealing with torsion tests. Moreover, the proposed method identi�cation quality is mainly

dependent on three parameters:

1. The functions basis {Sk} which is chosen to described the sought function. A criterion is

provided to a posterori validate the functions basis choice. A re�ning method can be applied

to obtain a satisfactory functions basis {Sk}.

2. The experimental noise. A method is provided to a posterori estimate the identi�cation error-

bars induced by experimental noise using a noise model. The method proves to be very robust

to noise.

3. The knowledge of the specimen section geometry. This parameter should be experimentally

determined with great care. Additional error-bars should be computed by estimating the

sought functions using the minimum and maximum of the specimen section geometry as

input parameters.

In future work, the presented method will be applied to experimental data and to analyze shear

and compressive behavior of NiTi materials.
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Figure 1: General notation schematic: specimen section S and associated stress �eld σyz .

Rext

Figure 2: Torsion schematic: shear strain �eld repartition γ.

M
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Figure 3: Pure bending schematic: a) Loading con�guration in the bending plane Pl, b) Stress �eld repartition σzz .
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Figure 4: Flowchart used to identify the compressive function fcomp.
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Figure 5: Simulated data: (a) Chosen stress-strain function under shear load, (b) Corresponding simulated torsion
test (r = 0.25 mm).
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Figure 6: (a) Used linear splines basis: {Sk} k ∈ [1, 5] (dashed line) and associated re�ned basis {Sk} k ∈ [1, 8]
(continuous line), (b) Associated normalized Uk functions for each linear splines basis.
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Figure 7: Identi�ed results using two di�erent linear splines basis Sk: (a) Identi�ed moment {Mtors approx
0 (αp)},

(b) Identi�ed function fshearapprox.
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N1

Figure 8: (a) Noiseless and noisy input signal {Mtors
0 (Cp)}. Associated approximation {Mtors approx

0 (αp)} and error-
bar associated to this noise level (left scale) and identi�cation relative error (right scale), (b) Reference function τ(γ)
and corresponding identi�ed functions in noisy and noiseless conditions fshear0 and fshearN1

(left scale). Relative error

between solutions identi�ed in noisy and noiseless conditions (right scale).
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Figure 9: Error-bar functions 2Std(δfshearNj
) computed for di�erent base spline families K ∈ [5, 7, 9, 13] and

calculated for noise standard deviation σnoise = 1 Nmm.
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Figure 10: Identi�cation errors induced by error on the specimen diameter: a) Identi�ed shear function fshear, b)
Identi�cation relative errors between the identi�ed functions fshear and the input shear function τ(γ).
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a)

b)

Figure 11: Identi�ed results using the method presented in [11]: �ltering using cut-o� pulsations wc = 0.05 and

0.15 rad s−1 (a) Identi�ed moment {Mtors approx
0 (αp)}, (b) Identi�ed function fshear approx.

Figure 12: Error-bar functions 2Std(δfshearNj
) computed using the method presented in [11] for di�erent cut-o�

pulsation wc for a noise standard deviation σnoise = 1 Nmm.
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Figure 13: (a) Reference stress-strain function under uni-axial asymmetrical compressive and tensile behaviors
(b) corresponding simulated pure bending moment {Mbend

0 (Cp)}, (c) corresponding neutral surface relative posi-
tion {y0(Cp)}/Rext.
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Figure 14: a) Identi�ed stress-strain compression functions fcomp, b) Identi�ed neutral surface relative posi-
tion {y0(Cp)}/Rext.
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Figure 15: Identi�cation robustness to noise on noisy bending moment: (a) Noiseless and noisy input signal

({Mbend
0 (Cp)} and {Mbend

0 } + {N1}, respectively), identi�ed bending moment {Mbend approx
0 (Cp)} and error-bar

associated to this noise level, (b) Reference compression function σcomp
zz , corresponding identi�ed function identi�ed

in noiseless and noisy conditions (fcomp
0 and fcomp

N1
, respectively) and error-bar associated to this noise level, (c) Ref-

erence neutral surface relative position {y0(Cp)}/Rext and corresponding identi�ed functions in noisy and noiseless
conditions.
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Figure 16: Comparison between predicted and numerical error on the identi�ed function fcomp
N1

induced by the noise

copy {N1}.

Figure 17: Error induced by error on the specimen diameter: a) Identi�ed law fcomp, b) Identi�ed neutral surface
relative position {y0(Cp)}/Rext.
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