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Some materials are provided as wire or other slender geometries and are commonly used as mechanical parts, especially in medical applications. If slender geometries are well adapted to quasi-static tensile tests, such geometries cannot be properly tested under shear and compressive loads. The shear and compressive stress-strain curves nevertheless remain of major interest to engineers and designers. This paper proves and illustrates that material shear and compressive stress-strain curves can eciently be extracted from torsion and bending tests on thin wires, even in noisy situations.

The method is rst presented to analyze torsion tests. This method is then developed and adapted to extract the material compressive stress-strain curve from both pure bending and uni-axial tensile tests.

Introduction

Experimentally assessing the mechanical behavior of materials is essential since it allows to properly design mechanical parts and to model their behavior through constitutive equations. The results of these experimental tests are often synthesized as a set of stress-strain curves under elementary loads such as shear and uni-axial tensile and compressive loads.

These curves present various shapes over dierent loading ranges depending on the studied materials. In addition, compressive and tensile load behaviors are not always symmetrical (magnesium [START_REF] Sitar | Numerical and experimental analysis of elasticplastic pure bending and springback of beams of asymmetric cross-sections[END_REF], NiTi Alloys [START_REF] Orgéas | Stress-induced martensitic transformation of a alloy in isothermal shear, tension and compression[END_REF], etc), which underlines the necessity of experimental characterizations to assess all these behaviors. Dierent mechanical setups have been designed to experimentally identify these sought stressstrain curves. On one hand, classical setups attempt to induce uniform stress state in the tested material (e.g. uni-axial tensile, uni-axial compressive [START_REF] Orgéas | Stress-induced martensitic transformation of a alloy in isothermal shear, tension and compression[END_REF] or pure shear tests [START_REF] Manach | Shear and tensile thermomechanical behavior of near equiatomic niti alloy[END_REF]). These tests are particularly convenient as they straightforwardly provide the desired stress-strain relation. They may yet present experimental diculties: some material display strain localization (Lüders bands [START_REF] Louche | Thermal and dissipative eects accompanying Lüders band propagation[END_REF][START_REF] Favier | Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti50.8 at.% Ni thin tube under tension. Investigation via temperature and strain elds measurements[END_REF]) when loaded under tension. From an other point of view, obtaining the compressive behavior of material has always proved challenging as compressive tests are subjected to buckling [START_REF] Timoshenko | Theory of Elastic Stability[END_REF][START_REF] Kyriakides | Bifurcation and localization instabilities in cylindrical shells under bendingI[END_REF]. This phenomenon particularly restrains the mechanical characterization of materials provided in the shape of slender specimens such as thin tubes, wires or sheets. For many geometry and materials, reaching a satisfying compression load range is thus dicult. Standard compression methods generally require using specic anti-buckling setups inducing friction during the tests (example and short review in [START_REF] Zhou | A Novel Testing Method for uni-axial Compression of Thin-Sheet Magnesium Alloys[END_REF][START_REF] Orgéas | Stress-induced martensitic transformation of a alloy in isothermal shear, tension and compression[END_REF]). However, such setups remain ill adapted to experimentally deal with thin wires or thin walled tubes.

On the other hand, samples can be more easily tested under non uniform stress loadings. In this work, stress loadings such as [START_REF] Lou | Hardening evolution of AZ31B Mg sheet[END_REF] torsion and (2) pure bending have been studied. The aforementioned stress-strain relations are then contained into the obtained experimental data but are yet not straightforwardly provided. Knowing the applied loading, inverse problems have to be solved to identify parameters of chosen constitutive equations. These equations unfortunately only approximately describe the true material behavior and hence aect the identication of the sought stress-strain relations. Extracting information from complex stress loading thus keeps being an active research eld.

(1) Concerning torsion test, literature already documents dierent methods to extract non linear shear stress-strain relationships from torsion test in the large shear strain range [START_REF] Wu | The Shear Stress-Strain Curve Determination from Torsion Test in the Large Strain Range[END_REF][START_REF] Yang | Interpretation of torsional shear results for nonlinear stressstrain relationship[END_REF] for circular cross section specimens. In particular, Yang et al. [START_REF] Yang | Interpretation of torsional shear results for nonlinear stressstrain relationship[END_REF] proposes an ecient method to identify the shear stress-strain curves from torsion tests. These calculations are based on Fourier analysis and are equivalent to the use of a low-pass lter of cut-o pulsation w c to separate high frequency noise from the experimental data [START_REF] Wu | The Shear Stress-Strain Curve Determination from Torsion Test in the Large Strain Range[END_REF][START_REF] Li | Dierentiation of Noisy Experimental Data for Interpretation of Nonlinear Stress-Strain Behavior[END_REF]. In this work, it has been chosen to use a chosen function basis to describe the sought non-linear shear stress-strain curves in torsion. A global mean-square approach is used to perform this identication while ltering out the experimental noise. The identied shear stress-strain curves and noise sensitivity of these two methods will be shortly compared in section 3.1.

(2) Concerning pure bending tests, experimental data contain information about the tensile and compressive material behavior and associated asymmetry, which would be of interest to extract.

Yet, to the author knowledge, no attempt has yet been published to directly extract stress-strain relationship from such data. In fact, researches about pure bending behavior are still undergoing, but usually try to predict the bending behavior assuming models (elasto-plastic strain-hardening model [START_REF] Sitar | Numerical and experimental analysis of elasticplastic pure bending and springback of beams of asymmetric cross-sections[END_REF][START_REF] Baragetti | A Theoretical Study on Nonlinear Bending of Wires[END_REF], non-linear models tacking into account loading-unloading cycles [START_REF] Sun | Complex unloading behavior: Nature of the deformation and its consistent constitutive representation[END_REF][START_REF] Orgeas | Application of the Beam Theory to Model the Pseudoelastic and Ferroelastic Bending of SMA Beams[END_REF], taking into account material inhomogeneity [START_REF] Nie | Closed-form solutions for elastoplastic pure bending of a curved beam with material inhomogeneity[END_REF], predicting ultimate pure bending [START_REF] Shahin | A new model based on evolutionary computing for predicting ultimate pure bending of steel circular tubes[END_REF], etc.). Fewer works propose method to extract information from bending test or are interested in information such as the hardening parameters during cyclic loading [1921]. These predictions yet usually assume specic material models and tension-compression symmetrical behavior which is not true for all materials. Direct extraction of stress-strain curves has thus not been published. This gap in literature is probably due to (i) the lack of experimental mean to reach large curvature ranges and (ii) to the fact that extracting the elementary stress-strain curves from pure bending data is highly challenging: the extraction robustness depends on the input data quality, the presence of bending experimental noise/bias, the knowledge of specimen section geometry and variations during the test, the curvature identication, etc. Obstacle (i) has been progressively overcame thanks to the recent development of new experimental bending setups (thin plates [START_REF] Arnold | A pure bending machine to identify the mechanical behaviour of thin sheets[END_REF][START_REF] Muñoz-Guijosa | Simple Testing System for Pure Bending Tests with Large Deections[END_REF], few millimeter diameter rods [START_REF] Reedlunn | Tension, compression, and bending of superelastic shape memory alloy tubes[END_REF][START_REF] Hoefnagels | Proceedings of the 2011 Annual Conference on Experimental and Applied Mechanics, ch. A miniaturized contactless pure-bending device for in-situ SEM failure analysis[END_REF], cylindrical shells [START_REF] Kyriakides | Bifurcation and localization instabilities in cylindrical shells under bendingI[END_REF]). More recently, the setup developed in [START_REF] Antherieu | Principle and Experimental Validation of a new Apparatus Allowing Large Deformation in Pure Bending: Application to thin Wire[END_REF] provided an ecient experimental system to obtain pure bending measurements on thin wires or tubes over large curvature ranges (curvature radii from innite to about 2.5 mm for wires of diameter less than 1 mm). The obstacle (ii) is tackled in the present paper; solutions to the many associated challenges are proposed and evaluated. This paper thus proposes an original method to extract material elementary stress-strain relations from either torsion (section 2.1) or pure bending tests (section 2.2). This study has been restricted to a thorough analyze of the proposed method performances on simulated experiments to evaluate its noise robustness and sensibility to the various parameters described in obstacle (ii) (section 3). Application of this method to analyze real experimental data will be published in further work so as not to overly lengthen this paper.

Method

From a general point of view, during torsion or pure bending of a wire, the specimen circular cross-section S is loaded by the dierent components of the tensor stress eld σ(M) (Fig. 1), where σ(M) is the Cauchy stress tensor at any point M of the cross-section S. The overall resulting force -→ R and moment --→ M O in the cross-section S can be simply written:

- → R = S σ(M) -→ u z dS (1) 
--→

M O = S --→ OM ∧ (σ(M) -→ u z )dS (2) 
where -→ u z is the unit vector orthogonal to the cross-section S, and dS is an elementary surface area element. The point O is the point of section S where the moment --→ M O is estimated.

In this paper, overall resulting force -→ R and moment --→ M O have been simulated either during torsion (section 3.1) or pure bending tests (section 3.2). The aim of this work is to extract from these tests the material local shear and compressive stress-strain behaviour contained into the Cauchy stress tensor σ(M).

Torsion test

Method overview

Torsion is a loading conguration where (i) a specimen (here a wire) is twisted along its principal axis A by a torque ---→ M tors O (Fig. 2) and (ii) the overall resulting force -→ R is zero. In this paper, notations referring to torsion loading conditions has been labeled as X tors . In torsion around -→ u z (Fig. 2), for circular cross-section specimens (tubes or rods), the local Cauchy stress tensor can be expressed in the frame ( -→ u r , -→ u θ , -→ z ) as:

σ(M) =     0 0 0 0 0 τ (γ) 0 τ (γ) 0     (M, -→ ur, -→ u θ , - → z ) (3) 
where τ is the local shear stress and γ the local shear strain. Assuming a planar cross-section remains planar during the torsion test and that a radius line remains a line [START_REF] Wack | The torsion of a tube (or a rod): General cylindrical kinematics and some axial deformation and ratchet measurements[END_REF][START_REF] Murnaghan | Finite deformations of an elastic solid[END_REF], the local shear strain γ can be written [START_REF] Murnaghan | Finite deformations of an elastic solid[END_REF]:

γ = θ L r = αr ( 4 
)
where θ is the relative rotation between the specimen tips, L is the specimen length and r is the distance between the wire center and any point M of the cross-section S (Fig. 2).The angle α is the relative rotation per specimen length. Equations 1 and 2 can thus be simplied into:

---→ R tors = S τ (γ) -→ u θ dS = - → 0 (5) ---→ M tors O = S r -→ u r ∧ τ (γ) -→ u θ dS = S rτ (γ)dS -→ u z (6) 
During torsion experiments, a set of P experimental torque values with respect to the relative rotation {M tors O (α p )}, p ∈ [1; P ] is provided. The aim of this method is to identify the shear stress function τ (γ) from these experimental data.

As an overview, the true shear stress function τ (γ) has been approximated by an analytical shear stress function f shear (γ). This sought function f shear is directly related to its associated analytical torque function M tors approx O (Eq. 6). The function f shear and torque function M tors approx O are thus sought so as to minimize the function Φ tors dened in the least mean square sense as:

Φ tors = P p=1 M tors O (α p ) -M tors approx O (α p ) 2 (7) 

Method details

More specically, the shear stress function f shear has been written as a linear combination of K elementary functions S k , k ∈ [1; K] (e.g. polynomial, spline,etc.) so that:

f shear (γ) = K k=1 q k S k (γ) = S 1 (γ) • • • S K (γ)            q 1 . . . q K            (8) 
where q k are the K real coecients to be identied. These K unknown coecients q k compose the column matrix {q k }; the K elementary functions S k compose the function row matrix S 1 (γ) 

M tors approx O (α p ) = K k=1 q k S rS k (γ)dS (9) 
= K k=1 q k U k (α p ) = U 1 (α p ) • • • U K (α p )            q 1 . . . q K            (10) 
where the K functions U k (α p ), k ∈ [1; K] are dened as:

U k (α p ) = S rS k (γ)dS with γ = α p r (11) 
Using Eq. 9, the function φ tors (Eq. 7) to be minimized thus eventually writes:

Φ tors (q k ) = P p=1 M tors O (α p ) - K k=1 q k U k α p 2 (12) 
An additional constraint can also be written as the shear strain is zero when the specimen is not loaded:

f shear (γ = 0) = K k=1 q k S k (γ = 0) = S k (γ = 0) {q k } = 0 (13) 
where S k (γ = 0) is a K element row matrix.

Identifying the mechanical behaviour under shear load f shear thus consists in solving the corresponding problem P tors by nding the unknown column matrix {q k } that minimizes function Φ tors (Eq. 12) while respecting the constraint dened by Eq. 13:

P tors min q k Φ tors (q k ) u. c. S k (γ = 0) {q k } = 0 (14) 
The corresponding Lagrangian L tors of the problem P tors writes [START_REF] Sokolniko | Mathematics of Physics and Modern Engineering[END_REF]:

L tors = Φ tors (q k ) -λ K k=1 q k S k (γ = 0) -0 ( 15 
)
where λ is the Lagrange multiplier related to the constraint.

From a practical point of view, the unknown column matrix {q k } can simply be obtained by solving the linear system written [START_REF] Sokolniko | Mathematics of Physics and Modern Engineering[END_REF]:

H Ltors      {q k } λ      =      {M tors O (α p )} 0      (16) 
where H Ltors is the corresponding bordered Hessian (P + 1) × (P + 1) matrix written:

H Ltors =    [U] t [U] {S k (γ = 0)} S k (γ = 0) 0    (17) 
where the notation X t stand for the matrix transposition. The P × K matrix [U] is computed by estimating the function row matrix U 1 (α p ) 

M tors approx O (α p ) =          U 1 α 1 U 2 α 1 • • • U K α 1 U 1 α 2 U 2 α 2 • • • U K α 2 . . . . . . . . . U 1 α P • • • • • • U K α P                     q 1 . . . q K            = [U] {q k } (18) 
Once the column matrix {q k } is identied solving equation 16, the approximated shear stress function f shear (γ) can be computed using equation 8.

The method analytical identication robustness to experimental noise and bias is shortly studied in the next section.

Error analyze

Identication errors between the real function τ (γ) and the sought shear stress function f shear can be due to dierent factors:

• Elementary functions basis {S k } (k ∈ [1; K]) inadequacy: the chosen elementary functions basis {S k } may not be rich enough to properly describe the real material behavior τ (γ).

The error induced by this inadequacy can be reduced by increasing the functions basis richness, for example by increasing the number K of elementary functions S k . Such an increase will also unfortunately increase the identication sensitivity to noise and a trade-o should be found (see Section 

H Ltors      {δq k } δλ      =      {∆M tors O } 0      (20) 
It should be underlined here that this system is independent of the real function τ (γ) and • Specimen section geometry: the function f shear is identied by integrating the elementary functions {S k } (k ∈ [1; K]) over the specimen section S (Eq. 11). Computing these functions requires thus to assume the specimen section geometry; dierences between the experimental and theoretical specimen section will impact the identied function f shear .

The method results and robustness have been analyzed while dealing with numerical torsion results in section 3.1. Moreover, a short comparison of the noise-robustness of this method and the method proposed by [START_REF] Yang | Interpretation of torsional shear results for nonlinear stressstrain relationship[END_REF] has been proposed.

Pure bending test

Method overview

The method previously presented to analyze torsion tests has been extended to analyze pure bending tests. For concision sake, only the main steps are presented here as the method has been thoroughly described to deal with torsion test in section 2.1.

Pure bending is a loading conguration where the specimen is a wire bent in one of its plane of symmetry P l by two opposite, yet equal, couples

----→ M bend O = ±M bend O -→ u x , where -→ u x is orthogonal to
the plane of symmetry P l (Fig. 3,a). In this paper, notations referring to pure bending conditions have been labeled X bend . In this conguration:

• the convex specimen part is loaded in tension;

• the concave specimen part is loaded in compression;

• the neutral surface contains bers that are not subjected to any tensile or compressive stress;

the neutral axis is dened by the intersection between the neutral surface and the plane of symmetry P l. The specimen neutral surface is located at a distance y 0 from the median surface and its position may change during the test depending on the applied loading and material tensile/compression asymmetry.

The theoretical stress-strain repartition during such a loading is available in literature for homogeneous linear materials [START_REF] Timoshenko | Theory of Elasticity[END_REF] or heterogeneous materials [START_REF] Dryden | Bending of inhomogeneous curved bars[END_REF][START_REF] Lekhnitskii | On the bending of a plane inhomogenbous curved beam[END_REF]. In this work, the specimen material is supposed homogeneous and no constitutive equations are formulated. Given Bernoulli displacement eld hypotheses, the component ε zz of the Biot strain tensor in the specimen simply writes [START_REF] Timoshenko | Theory of Elasticity[END_REF]:

ε zz = (y -y 0 )(C -C 0 ) (21) 
where C 0 and C are the specimen initial and current curvature, respectively. The parameter y represents the distance between the median surface and any point M of the section S. In this work, the dierent elds and values above and under the neutral surface position y 0 have been denoted X tens and X comp , respectively.

In case of pure bending around -→ u x , the overall resulting force ---→ R bend is zero and, neglecting the component of stress σ yy [START_REF] Timoshenko | Theory of Elasticity[END_REF], the corresponding Cauchy stress tensor eld σ(M) can be simplied in the frame ( -→ u x , -→ u y , -→ u z ) as:

σ(M) =     0 0 0 0 0 0 0 0 σ zz (ε zz )     (M, -→ ux, -→ uy, -→ uz) (22) 
Using this stress eld σ zz , equations 1 and 2 can be simplied and written as scalar equations while dissociating the tensile and compressive contributions above and under the neutral surface in section S such as:

R bend = Stens σ tens zz (ε tens zz )dS + Scomp σ comp zz (ε comp zz )dS = 0 (23) 
M bend O = Stens yσ tens zz (ε tens zz )dS + Scomp yσ comp zz (ε comp zz )dS (24) 
During pure bending experiments, using the setup presented in [START_REF] Antherieu | Principle and Experimental Validation of a new Apparatus Allowing Large Deformation in Pure Bending: Application to thin Wire[END_REF], a set of P experimental 

For a circular cross-section, equations and 25 and 21 imply that the neutral surface position y 0 is zero and the surfaces S tens and S comp are symmetrical. Equation 24 can thus be simplied into:

M bend O = 2 Stens yσ tens zz (ε tens zz )dS (26) 
Equations 25 and 26 are very similar to equations 5 and 6; adapting the previous method to analyze bending tests is straightforward in such a situation.

• In the case in which the specimen material tensile and compressive behavior are not symmetrical, equations 23 and 24 cannot be simplied as previously. An experimental measurement of the tensile behaviour function σ tens zz (ε tens zz ) is thus required.

The method described in section 2.1 has been adapted as an iterative process to identify both 

Φ bend c = P p=1 M bend O C p -M bend approx O,c C p 2 (27) 

Method details

The iterative method has been summarized as a owchart in Fig 4 and is detailed hereafter:

Initialization c = 0:
Initially, the neutral ber position is assumed to remain at the specimen medium line during the whole test:

If c = 0, ∀p ∈ [1, P ], {y 0,c (C p )} = {0} (28) 
Iteration c (c ≥ 1):

As when analyzing the torsion tests, the function

σ comp zz (ε comp zz
) is approximated by an analytical functions f comp c at each iteration c:

f comp c (ε comp zz ) = K k=1 q c k S k (ε comp zz ) = S 1 (ε comp zz ) • • • S K (ε comp zz )            q c 1 . . . q c K            (29) 
where f comp c is the function to be identied during iteration c. The functions basis

{S k }, k ∈ [1; K]
is chosen and dened in a very similar way as for the torsion case (Eq. 8, adapted to bending).

During iteration c, the aim is to identify the column matrix {q c k } dening the function f comp c as a better approximation than during the previous iteration (function f comp c-1 ) and the associated neutral ber position {y 0,c (C p )} during the test.

Step 1Determination of the coecients {q c k } and function f comp c Using this basis and equations 24 and 29, the associated analytical bending function M bend approx O,c

simply writes:

M bend approx O,c (C p ) = Stens yσ tens zz ε tens zz dS + K k=1 q c k U k (C p ) (30) 
where the functions {U k }, k ∈ [1; K] are dened in a very similar way as to the torsion case (Eq. 11, adapted to bending) using the elementary functions basis in Eq. 30 can be numerically computed since the integration sections S tens and S comp have been dened through the neutral surface position y 0,c-1(Cp) during the previous iteration or initialization. The function σ tens zz (ε tens zz ) is known thanks to a previously performed tensile test and the strain eld ε tens zz can be estimated in the section S using Eq. 21.

{S k }, k ∈ [1; K].
Using Eq. 30, the function Φ bend c (Eq. 27) to be minimized during iteration c eventually writes:

Φ bend c (q c k ) = P p=1   M bend O C p - Stens yσ tens zz ε tens zz )dS - K k=1 q c k U k (C p )   2 (31) 
An additional constraint can then be written as the strain should be zero when the specimen is not loaded:

f comp (ε comp zz = 0) = K k=1 q c k S k (ε comp zz = 0) = S k (ε comp zz = 0) {q c k } = 0 (32) 
The bending problem P bend is similar to the torsion problem P tors . This problem is solved using the same method, i.e. by solving the linear system [START_REF] Sokolniko | Mathematics of Physics and Modern Engineering[END_REF]:

H L bend      {q c k } λ      =        M bend O C p - Stens yσ tens zz ε tens zz )dS 0        (33) 
where H L bend is dened similarly as for the torsion case (Eq. 17 and 18 using the elementary functions basis dened in the bending case).

Solving this system provides the unknown column matrix {q c k } minimizing the function Φ bend c (Eq. 31) and respecting the constraint provided by equation 32.

The solution column matrix {q c k } can be used to compute the new approximated function f comp 

In this equation and for iteration c, only the neutral surface position {y 0,c (C p )} separating the two integrated sections S tens and S comp is unknown. The position of the neutral surface {y 0,c (C p )} can be estimated by applying a bisection method at any measurement curvature C p so that Eq. 34 is fullled.

Step 3Termination criterion Iteration process ends when the dierence between two successively identied compressive func-

tions (f comp c-1 and f comp c
) is considered negligible, i.e. when the following termination criterion is veried:

max f comp c -f comp c-1 f comp c ≤ δ ( 35 
)
where δ is a user chosen value. If the criterion dened by Eq. 35 is veried, f comp c and its associated neutral surface position {y 0,c (C p )} are considered to be the sought stress-strain function under compressive load. If the termination criterion is not veried, an additional iteration c + 1 is performed, starting at Step 1.

Error analyze

As for the torsion test, the identication error origins are similar (inadequacy of the chosen functions basis, experimental noise and erroneous specimen section). In particular: the experimen- 

H L bend      {δq k } δλ      =      ∆M bend O 0      (36) 
As for the torsion case, this system is independent of the real function σ tens zz (ε tens zz ) and depends only on the elementary chosen functions basis contained in H L bend and on the bending moment noise/bias ∆M bend O

. By simply assuming a noise model, this equation can be used a posteriori to estimate the identication error-bars.

Validation

In order to assess the method eciency and quantify the identication errors, numerical torsion and pure bending simulations have been analyzed. These simulations were performed using stress-strain functions used as references; the identied relationships have been thus straightforwardly compared with the reference functions to assess the identication accuracy and robustness.

Numerical torsion

A shear stress-shear strain function τ (γ) has been created so as to simulate a complex mechanical behaviour (Fig. 5a). In particular, this law has been created so as to mimic NiTi alloy mechanical behavior which is of particular interest to the authors [START_REF] Favier | Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti50.8 at.% Ni thin tube under tension. Investigation via temperature and strain elds measurements[END_REF]. Using this function and a cylindrical specimen (R ext = 0.25 mm, Fig. 2), a torsion test has been simulated (Eq. 6). This simulation provided here P = 180 values of the moment with respect to the relative rotation {M tors O (α p )} for this material behavior (Fig. 5b). These simulated data {M tors O (α p )} have been used to analyze the impact of three main parameters on the identication quality:

1. the choice of the elementary functions basis

{S k } (k ∈ [1; K]),
2. the noise on experimental signal, 3. error on the specimen geometry.

Eventually, the method proposed by Yang in [START_REF] Yang | Interpretation of torsional shear results for nonlinear stressstrain relationship[END_REF] has been applied to the same simulation so as to compare the methods identication performances.

Functions basis choice

In this work and for illustration purpose, linear spline functions have been chosen to compose the functions basis S k (results could also have been generated using cubic splines, polynomials or a dierent kind of functions basis). A rst splines basis {S k } composed of K = 5 linear evenly spaced splines has been rst arbitrarily chosen (Fig. 6a, dashed line). The associated normalized functions basis {U k } are also illustrated (Fig. 6b, dashed line, Eq. 11).

The method presented in section 2.1 has been applied with this basis (Fig. 7a andb the associated identied shear stress-shear strain function f shear also crudely approximates function τ (γ) (Fig. 7b). This result underlines the choice importance of the functions basis {S k } and {U k }.

This basis choice can be modied until a satisfactory dierence between the identied and simu- These results underline (i) the identication method ability, (ii) the functions basis choice decisiveness, (iii) a criterion existence to validate a posteriori the splines basis choice and (iv) the possibility to apply a specic rening method to obtain a satisfactory splines basis {S k }.

Noise impact:

The identication method robustness to noise has been tested by adding a noise/bias copy {∆M tors 0 } to the simulated torsion moment {M tors O (α p )}. This robustness analysis has been performed using the second splines basis previously described (Fig. 6a the relative error between the results identied in noisy and noiseless condition is here in a range of ±7% (Fig. 8a, right scale).

The associated identied shear stress function f shear N1 also presents additional error compared to the result obtained in noiseless conditions f shear 0 (Fig. 8b). The relative error between the results identied in noisy and noiseless condition is here in a range of ±7% (Fig. 8b, right scale).

These results are considered excellent considering that the chosen noise standard deviation is 6%

of the maximal torsion moment. It should yet also be mentioned here that the noise impact also depends on the number of measurement P (here, P = 180) contained in the input signal {M tors 0 + N 1 }.

The identication error on torsion torque and shear function due to the noise copy {N 1 } This error column matrix is then injected into Eq. 8 and 9 to provide the identication error. Using this method, the errors are perfectly predicted; this prediction has not been presented in a specic gure for concision sake but will be presented while analyzing identication on bending tests.

While analyzing real experimental data, the specic noise copy/bias {N 1 } and reference functions are obviously unknown. Nevertheless, simulating dierent random noise copies {N j } , j ∈ [1; J] Important features to be underlined here are that the error-bar functions errorbars f and errorbars M (i) are proportional to the Gaussian noise standard-deviation σ noise (Eq. 20), (ii) increase with the loading level (twist angle rate α and shear strain γ respectively) and (iii) depend on the chosen splines basis.

This last point can be illustrated by predicting the shear error-bar function errorbars f = 2 Std(δf shear

Nj

) for dierent evenly spaced linear splines basis families and for a standard deviation σ noise = 1 N mm (Fig. 9). The identication noise sensitivity increases with the number of spline K in the family; the noise ltering ability of a chosen functions basis decreases with the basis richness, which is a classical result. A trade-o should thus be found: the functions basis {S k } should be chosen rich enough so as the experimental torsion moment M tors O is properly tted, and simple enough so as to reduce the noise impact on the identication of f shear .

Dierence between experimental and theoretical specimen geometry:

The identication quality is also dependent on the knowledge of the specimen section geometry S.

In this work, only wire specimens have been studied. Measuring a diameter D approx dierent from the real specimen diameter D true and using it during the identication process will induce identication errors (Eq. 6). The identication robustness to this geometrical parameter has been studied and compared with the results obtained while identifying shear moduli G on linear materials behaviour.

Linear mechanical behavior:

For a linear material behavior, estimating the shear function f shear is equivalent to identify the material shear modulus G. Classically, the relation between the shear modulus G, the torsion torque and the relative rotation α is simply (Eq. 6):

G = M tors 0 α 32 πD 4 (37)
The identied shear modulus G approx using an erroneous measured diameter D approx would thus simply write:

G approx = D true D approx 4 G (38) 
This equation indicates that an error as small as +2.5% on the diameter measurement D approx induces an error of -10% on the identied shear modulus G approx . Similar conclusion is expected while analyzing complex mechanical behavior.

Complex mechanical behavior:

For complex material behavior, as previously simulated (Fig. 5a andb, cylindrical specimen, D true = 0.5 mm), a simple relative error equation cannot be derived from Eq. 6; the method robustness has been analyzed numerically. The shear function f shear has thus been identied on the simulated data for erroneous diameters D approx from a range of 90 to 110%

of the real specimen diameter D true . The functions basis to perform this analysis has been chosen identical to the second spline basis previously described (Fig. 6a andb, continuous line).

The identication results are presented in Fig. 10a. As expected, the chosen diameter D approx aects non linearly the identied shear functions f shear . The overall function shape is yet considered satisfactory. As for the linear case, an overestimated diameter D approx leads to underestimate the identied shear function f shear (Fig. 10a andb). Reciprocally, an underestimated diameter D approx leads to overestimate the identied shear function f shear .

These identication errors are of the same magnitude order than while analyzing linear materials: about -10% for an error on the diameter D approx of +2.5%.

As a rough estimation, obtaining an error of less than ±1% on the identied shear function f shear would thus require to estimate the specimen diameter with a precision of ±0.25%. This result underlines the method sensibility to the specimen geometry; its dimensions should be experimentally estimated with great care. Once the other parameters have been chosen, additional error-bars should also be computed by estimating the shear function f shear boundaries using the diameter experimental measurement tolerance on the specimen section S.

3.1.4. Method feature comparison with [START_REF] Yang | Interpretation of torsional shear results for nonlinear stressstrain relationship[END_REF]:

The method proposed by Yang et al in [START_REF] Yang | Interpretation of torsional shear results for nonlinear stressstrain relationship[END_REF] also aims at providing the shear function f shear from torsion tests. To compare the two methods identication and noise robustness abilities, the previous tests have been performed using Yang's method on the simulated torsion moment {M tors O (α p )}: the function f shear has been identied in noiseless and noisy conditions. Only the main results have been presented for concision sake.

To put it in a nutshell, Yang identify the shear stress-strain curve by expressing equation 6 in the form:

f shear = 3M tors 0 + α dM tors 0 dα 2πR 3 ext (39)
where R ext is the wire external radius. To compute the shear function f shear , equation 39 requires the calculus of the torque derivative versus the relative rotation dM tors 0 dα .

This calculus is performed using a trick to create a periodical function using the experimental torque M tors 0 . This periodical function is then approximated and dierentiated using a ltering function basis designed using Fourier analysis theory. This approximation is equivalent to ap- In particular, the error-bar function obtained for w c = 0.10 rad s -1 should be compared to the spline basis composed of K = 9 linear splines both chosen so that the dierence max({|M tors approx O (α p ) -M tors O (α p )|}) is smaller that the threshold 0.1 N mm (gures 9 and 12): the identication noise robustness for the two method is similar.

Intermediary conclusion:

These results conrm the method ability to identify the shear stress-shear strain functions from noisy numerical torsion test. The functions basis {S k } should be iteratively rened until the obtained error {M tors approx O (α p )} -{M tors O (α p )} is small enough. The user should also be aware that rening the functions basis {S k } increases the overall identication noise sensitivity. This noise sensitivity can be estimated a posteriori by estimating the identication errors by assuming an experimental noise/bias model. Special care should also be taken to properly measure the specimen section S dimension; two dierent identications should be performed using the section measurement tolerance interval.

Numerical pure bending

The method features and robustness have also been studied in the case of pure bending.

Stress-strain functions under tensile and compressive load were created so as to simulate complex mechanical behaviours for which the compressive behavior is stier than the tensile behavior have been plotted in Fig. 13b andc, respectively.

Functions basis choice

As for the torsion case, linear splines have been chosen to compose the functions basis {S k }.

At each iteration c, the rening method established in the shear case has been applied to dene ) . This result thus validates the proposed method to a posteriori compute error-bars during bending analysis using equation 36.

Eventually, exactly as for the torsion case, the error-bar functions (i) are proportional to the Gaussian noise standard-deviation σ noise (Eq. 36), (ii) increase with the compressive strain comp zz and (iii) depend on the chosen splines basis {S k } (not presented here for concision sake).

These results conrm the ability of the method to identify the neutral surface position {y 0 (C p )} and the stress-strain function under compressive load f comp using uni-axial tensile and noisy pure bending test results.

Dierence between experimental and theoretical specimen geometry:

As for torsion tests, the identication method robustness is dependent on the knowledge of the specimen section geometry S. In this work, only cylindrical specimen sections have been studied.

Using a diameter D approx dierent from the real specimen diameter D true during the identication process will induce identication errors (Eq. 23 and 24). The identication robustness to this geometrical parameter has been be compared while analyzing linear or more complex mechanical behavior.

Linear mechanical behavior:

For a linear material behavior symmetrical in tension and compression, estimating the compression function f comp is equivalent to identify the material Young modulus E. Classically, the relation between the Young modulus E, the bending moment M bend 0 and the curvature C simply writes (Eq. 24):

E = M bend 0 C 64 πD 4 (41) 
The identied Young modulus E approx is thus similar in bending and torsion cases and simply write:

E approx = D true D approx 4 E (42) 
The conclusions are similar as for the shear modulus G identication.

Complex mechanical behavior:

For a complex material behavior, a simple relative error equation cannot be derived from Eq. 24; the method robustness has been analyzed numerically by identifying the compressive function f comp on the simulated data for erroneous diameters D approx from a range of 95 to 105% of the real specimen diameter D true .

The identied compressive function f comp and neutral surface relative position {y 0 (C p )} have been presented in Fig. 17a andb, respectively. As expected, the section D approx strongly aects both the identied functions f comp and neutral surface relative position {y 0 (C p )}; a diameter D approx smaller than the real specimen diameter D true induces a general increase of the identied function f comp to obtain the required bending moment M bend 0 (C p ) . The error on the measured diameter D approx yet induces greater error than in the torsion case:

an error as small as +1% on the diameter D approx induces an error of about -2% on the identied neutral position and of about -10% on the identied functions f comp . This error is greater than the 4% error predicted in the identication of the Young modulus E for linear mechanical behavior (Eq. 42). In fact, in equation 41, the Young modulus is identied assuming symmetrical compressive and tensile behavior, whereas in the proposed method, the tensile function f tens is dened through a tensile test: only the compressive function f comp is identied to obtain the required bending moment M bend 0 . This phenomenon explains the greater error obtained with the proposed method compared to the results predicted by equation 42.

This result underlines the method identication sensibility to the specimen section geometry S; its dimensions should be experimentally estimated with great care. Once the other parameters have been chosen, additional error-bars should be computed by estimating the compressive function f comp boundary using the experimental measurement tolerance on the specimen section S.

Conclusion

An original method to identify the shear-stress shear-strain function from experimental torsion tests has been thoroughly presented. This method has been extended to identify the stress-strain function under compressive load using experimental uni-axial tensile and pure bending tests as input data. Using numerically simulated results of torsion and bending experiments, the method has been proved able to identify the afore-mentioned stress-strain functions in various congurations. The identication robustness analyze proved to be equivalent to the method proposed in [START_REF] Yang | Interpretation of torsional shear results for nonlinear stressstrain relationship[END_REF] when dealing with torsion tests. Moreover, the proposed method identication quality is mainly dependent on three parameters:

1. The functions basis {S k } which is chosen to described the sought function. A criterion is provided to a posterori validate the functions basis choice. A rening method can be applied to obtain a satisfactory functions basis {S k }.

2. The experimental noise. A method is provided to a posterori estimate the identication errorbars induced by experimental noise using a noise model. The method proves to be very robust to noise.

3. The knowledge of the specimen section geometry. This parameter should be experimentally determined with great care. Additional error-bars should be computed by estimating the sought functions using the minimum and maximum of the specimen section geometry as input parameters.

In future work, the presented method will be applied to experimental data and to analyze shear and compressive behavior of NiTi materials. ) computed using the method presented in [START_REF] Yang | Interpretation of torsional shear results for nonlinear stressstrain relationship[END_REF] for dierent cut-o pulsation wc for a noise standard deviation σ noise = 1 N mm. 

  depends only on the elementary chosen functions basis contained into H Ltors and of the experimental torque error or bias {∆M tors O }. This equation can thus be used a posteriori to estimate identication error-bars on the results: assuming a bias or noise model allows to estimate inuence of the torque experimental noise/bias {∆M tors O } on the identied relation f shear .

•

  bending moment with respect to curvature M bend O (C p ) , p ∈ [1; P ] is provided. The aim of the method is to identify both the function σ comp zz (ε comp zz ) and the variation of the neutral surface position {y 0 (C p )} during the test using equations 23 and 24. In the case in which the specimen material tensile and compressive behavior are symmetrical, a unique stress-strain relation σ tens zz (ε tens zz ) = -σ comp zz (-ε tens zz ) is sought. Equation 23 can be simplied into: R bend = Stens σ tens zz (ε tens zz )dS -Scomp σ tens zz (-ε tens zz )dS = 0

  the function σ comp zz (ε comp zz ) and the variation of the neutral surface position {y 0 (C p )} during the test using equations 23 and 24. As a summary, during each iteration c, the function σ comp zz is approximated by an analytical compression function f comp c . This analytical compression function f comp c is directly related to an analytical bending function M bend approx O,c (Eq. 24) and is searched so as to minimize the function Φ bend c dened in the least mean square sense as:

  The integrand Stens yσ tens zz (ε tens zz )dS and each function U k (C p ) composing the bending function M bend approx O,c

c

  and the approximated bending moment {M bend approx O,c (C p )} (Eq. 29 and 30, respectively). If the approximated bending moment {M bend approx O,c (C p )} is judged too dierent from the experimental bending moment {M bend O,c (C p )}, a new spline elementary functions basis {S k }, k ∈ [1; K] can be dened and Step 1 is updated. Step 2Determination of neutral ber position {y 0,c (C p )} Using the new approximated function f comp c , equation 23 can be written for each measured curvature C p : R bend (C p ) =

  lated torsion moments {M tors approx O (α p ) -M tors O (α p )} is obtained. Here, the splines basis support has been rened locally and iteratively until the observed dierence max({|M tors approx O (α p ) -moments visually overlap (Fig. 7a, continuous line). This second splines basis {S k }, composed of K = 8 linear splines not evenly spaced, and associated functions {U k } resulting of this iterative process are presented in Fig. 6a and b (continuous line). With this new basis, the identied shear stress-shear strain function f shear is judged satisfactory (Fig. 7b, dashed line).

}, {M tors 0 + N 1 }and {M tors approx 0 }}

 010 and b, continuous line). For illustration purpose, the noise has simply been simulated as a normally distributed Gaussian noise, written {N 1 }, of standard deviation σ noise = 1 N mm (i.e. a standard deviation of 6% of the maximal torsion moment).The noiseless, noisy input torsion moment and identied moment ({M tors 0 , respectively) are presented Fig.8a. Due to the noise copy {N 1 }, the identied unknown column matrix {q k N1 } and identied moment {M tors approx 0 N1} are dierent from the unknown column matrix {q k0 } and moment {M tors approx 0 identied in noiseless conditions;

  the noise copy {N 1 } into Eq. 20 to compute the error column matrix {δq k N1 }.

provides a family of error functions {δM tors 0

 0 Nj } and {δf shear Nj }, j ∈ [1; J]. The Standard-deviations (Std) of these error families have then been computed to simulate the identication error-bar functions errorbars M = ±2 Std(δM tors 0 Nj ) and errorbars f = ±2 Std(δf shear Nj ) . These error-bar functions have been plotted on both sides of the reference functions as gray areas in Fig. 8a and b. The functions M tors approx 0 N1 and f shear N1 , identied on noisy signal, are contained into the envelopes thus created, emphasizing the method prediction validity: it is thus possible to quantify a posteriori the eect of noise on the identication results by assuming a noise model representing the experimental noise.

} and {f shear approx 0 }

 0 plying to the periodical function a low-pass lter of cut-o pulsation w c[START_REF] Li | Dierentiation of Noisy Experimental Data for Interpretation of Nonlinear Stress-Strain Behavior[END_REF], removing thus the high frequency harmonics mainly attributed to noise. The approximated function M tors approx 0 and associated derivative dM tors approx 0 dα are then reconstructed so as to compute the shear function f shear approx using equation 39. The main parameter impacting the identication quality with Yang's method is thus the chosen cut-o pulsation w c which should be adjusted depending on the analyzed signal richness and the noise frequency content. The inuence of this parameter is illustrated hereafter in exactly the same layout as previously. Function basis choice : similarly as previously with the number of splines K in the spline basis, the chosen cut-o pulsation w c aects the approximation basis richness. It is thus obvious that the approximated torque and shear functions {M tors approx O are dierent from the simulated functions {M tors O } and f shear even if the identication is performed in noiseless conditions (gure 11a) and b), respectively). These results are comparable with those obtained for the presented method in gure 7. To allow a fare comparison of the method results, the cut-o pulsation w c has been increased until the observed difference max({|M tors approx O (α p ) -M tors O (α p )|}) is less than the previously arbitrarily chosen threshold of 0.1 N mm; this criterion has been satised here for a cut-o pulsation w c = 0.10 rad s -1 . Noise impact : due to the noise in the data, the functions identied in noisy and noiseless situation are dierent. Thanks to the superposition theorem applied to equation 39 and to the ltering function basis, the error δf shear N1 {∆M tors O } represents the torque moment noise/bias and matrix F depends on the chosen ltering function basis. The matrix F thus depends on the cut-o pulsation w c but is independent on the material behavior. As previously, a Gaussian noise model has been assumed to simulate the torque moment noise {∆M tors O }. Dierent random noise copies {N j } , j ∈ [1; J] of standard deviation σ noise = 1 N mm (i.e. a standard deviation of 6% of the maximal torsion moment) are thus computed. The associated family of error functions δf shear Nj , j ∈ [1; J] have then been estimated using equation 40. The shear error-bar functions errorbars f = 2 Std(δf shear Nj ) can thus be plotted for dierent cut-o pulsation values (gure 12). The obtained results are similar in both methods (see gure 9): (1) the error-bar on the identied shear function increases with the shear strain γ and (2) increasing the cut-o pulsation w c , which is equivalent to increasing the richness of the function basis, increases the noise sensitivity.

(

  Fig. 13a, dashed line). A pure bending simulation has then been performed for wire specimens of radius R ext = 0.25 mm. The theoretical variations of the reference neutral surface position y 0 with respect to curvature C p and the associated pure bending moment M bend 0 have been computed using equations 23 and 24. The obtained pure bending moment {M bend 0 (C p )} and associated neutral surface relative position y0(Cp) R

a

  splines basis {S k } for which the approximated bending moment results {M bend approx O,c (C p )} correctly t the simulated bending moment function {M bend O (C p )}; the splines basis {S k } is chosen so that the dierence {M bend approx O,c (C p )} -{M bend O (C p )} is less than an arbitrarily chosen threshold of 0.1 N mm for each curvature C p . The compressive function f comp c identied after convergence and the associated neutral ber position {y 0,c (C p )} are presented in gure 14 a and b, respectively. The convergence criterion (Eq. 35) has been here veried at the eighth iteration (c = 8 and δ = 10 -3 ) and the splines basis is composed of 6 non-evenly spaced linear splines. The nal splines basis repartition has been summarized by representing the connection points as square markers directly on the compressive functions f comp c ; the identied functions f comp c are piecewise linear due to the linear splines basis choice. As a result, the identied compressive function f comp c almost overlaps the reference functions; the obtained result is judged satisfactory. A smaller error could have been obtained by requiring a smaller error {M bend approx O,c (C p )} -{M bend O (C p )} while choosing the splines basis {S k }.The neutral surface position {y 0,c (C p )} is also correctly identied. For curvature values lower than 20 m -1 , the neutral surface position {y 0,c (C p )} estimation is more sensitive to errors on the identied compression function. The constant value of the neutral ber position {y 0,c (C p )} for curvatures lower than 20 m -1 is due both to the use of a linear splines basis and to the linear behavior of the material for strain lower than 0.5%. As a conclusion, these results conrm the method ability to properly identify the compressive function f comp and neutral surface position {y 0 (C p )} using both the material tensile function σ tens zz (ε tens zz ) and the bending moment M bend 0 (C p ) as input data. As for the torsion case, the functions basis choice is decisive in the identication quality but a validation of the chosen basis can be performed by verifying that the dierence {M bend approx O,c (C p )} -{M bend O (C p )} is lower than a user-chosen value.

3. 2 . 2 .M bend 0 }-f comp 0 )

 2200 Noise impact: While analyzing bending, two signals are used as input data: the tensile function σ tens zz (ε tens zz ) and the bending moment {M bend 0 (C p )}. In this section, it has been chosen to analyze only the impact of the noise on the bending moment {M bend 0 (C p )}. For illustration purpose, the noise has been simulated as a normally distributed Gaussian noise of standard deviation σ noise = 0.64 N mm (i.e. a standard deviation of 8% of the maximal bending moment in case(1)). A noise copy {N 1 } has been added to the input bending moment {M bend 0 (C p )}. The noiseless and noisy moments ( M bend 0 and + {N 1 , respectively) are presented Fig. 15a. The reference bending moment {M bend 0 (C p )} is visually well approximated by the identied bending moment {M bend approx 0 (C p )}. As expected, the identied compressive function f comp N1 and neutral surface position {y 0N1 (C p )} are dierent from the results obtained in noiseless condition (f comp 0 and {y 0 (C p )}, respectively, Fig. 15b and c), illustrates the bending moment noise/bias eect during an identication. Considering the noise level applied to the bending moment M bend 0 } + {N 1 , these results are considered satisfactory.An approximated model to predict the eect of the specic noise copy {N 1 } on the identication has been proposed in section 2.2.3. The dierence between the compressive function identied in noisy and noiseless condition (f comp N1 has been compared with the identication analytical error predicted thanks to equations 29 and 36 (Fig.16). A small dierence is observed between the prediction of analytical and numerical error induced by the noise copy N 1 : this dierence is due to the fact that the noise eect on the identied neutral surface position {y 0 (C p )} has been neglectedto provide equation 36. The error prediction induced by the noise copy N 1 on the compressivefunction f comp N1 -f comp 0 is yet considered excellent.While analyzing real experimental data, the specic noise copy {N 1 } and reference functions are obviously unknown. Nevertheless, simulating dierent random noise copies {N j } , j ∈ [1; J] and using equations 36 and 29 provides a family of error functions {δM bend 0 Nj } and {δf comp Nj }, j ∈ [1; J]. The standard-deviations of these error families have then been computed to estimate the identication error-bar functions errorbars M = ±2 Std(δM bend 0 Nj ) and errorbars f = ±2 Std(δf comp Nj ) . The error-bar functions have been plotted on both sides of the reference function as gray areas (Fig. 15a and b): the identied compressive function f comp N1 is contained into the computed errorbars errorbars = ±2 Std(δf comp Nj
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 123 Figure 1: General notation schematic: specimen section S and associated stress eld σyz.
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 4 Figure 4: Flowchart used to identify the compressive function f comp .
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 5 Figure 5: Simulated data: (a) Chosen stress-strain function under shear load, (b) Corresponding simulated torsion test (r = 0.25 mm).
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 6 Figure 6: (a) Used linear splines basis: {S k } k ∈ [1, 5] (dashed line) and associated rened basis {S k } k ∈ [1, 8] (continuous line), (b) Associated normalized U k functions for each linear splines basis.
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 7 Figure 7: Identied results using two dierent linear splines basis S k : (a) Identied moment {M tors approx 0
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 9 Figure 9: Error-bar functions 2Std(δf shear N j) computed for dierent base spline families K ∈[START_REF] Manach | Shear and tensile thermomechanical behavior of near equiatomic niti alloy[END_REF][START_REF] Favier | Homogeneous and heterogeneous deformation mechanisms in an austenitic polycrystalline Ti50.8 at.% Ni thin tube under tension. Investigation via temperature and strain elds measurements[END_REF][START_REF] Kyriakides | Bifurcation and localization instabilities in cylindrical shells under bendingI[END_REF][START_REF] Sitar | Numerical and experimental analysis of elasticplastic pure bending and springback of beams of asymmetric cross-sections[END_REF] and calculated for noise standard deviation σ noise = 1 N mm.
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 1011 Figure 10: Identication errors induced by error on the specimen diameter: a) Identied shear function f shear , b) Identication relative errors between the identied functions f shear and the input shear function τ (γ).
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 12 Figure 12: Error-bar functions 2Std(δf shear N j
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 13 Figure 13: (a) Reference stress-strain function under uni-axial asymmetrical compressive and tensile behaviors (b) corresponding simulated pure bending moment {M bend 0 (Cp)}, (c) corresponding neutral surface relative position {y 0 (Cp)}/Rext.
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 14 Figure 14: a) Identied stress-strain compression functions f comp , b) Identied neutral surface relative position {y 0 (Cp)}/Rext.
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 16 Figure 16: Comparison between predicted and numerical error on the identied function f comp 1 induced by the noise copy {N 1 }.

Figure 17 :

 17 Figure 17: Error induced by error on the specimen diameter: a) Identied law f comp , b) Identied neutral surface relative position {y 0 (Cp)}/Rext.

  • • • U K (α p ) (Eqs. 10 and 11) at the dierent measurement relative angles α p ; the P × K matrix [U] represents the P equations system coupling the

	approximated torques values M tors approx O	(α p ) and column matrix {q k } (Eq. 10):

  This noise will induce errors {δq k } on the identied values {q k } that will be added to the solution column matrix {q k0 } identied in noiseless conditions. Using Eq. 16 in noisy and noiseless conditions, this error {δq k } can be simply estimated by solving the system:

		3.1). The functions basis quality can yet be a posteriori analyzed by
	studying the eventual dierence between the experimental and approximated torque (M	tors O
	and M tors approx O	, respectively).	
	• Experimental bias and noise: the experimentally measured torques M tors meas O	α p
	unavoidably contain bias and noise. An experimental measurement can thus be seen as the
	sum of the real values M tors O	α p and the experimental torque error or bias {∆M tors O } so
	that:			
		M tors meas O	α p = M tors O	α p + ∆M tors O	(19)

  is unsatisfactory. It is thus obvious that the functions basis {U k } is unadapted to correctly approximate the simulated data {M tors O (α p )}. As expected,

		, dashed
	line). As a result, the simulated moment-twist results {M tors O (α p )} are crudely approximated by
	the identied function {M tors approx O	(α p )} obtained with this rst splines basis; the observed dif-
	ference {M tors approx	

O (α p ) -M tors O (α p )}
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