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Abstract: Bioluminescence imaging has shown great potential for studying and monitoring
disease progression in small animal pre-clinical imaging. However, absolute bioluminescence
source recovery through tomographic multi-wavelength measurements is often hindered through
the lack of quantitative accuracy and suffers from both poor localisation and quantitative recovery.
In this work a method to incorporate a permissible region strategy through not only a priori
location (permissible region) but also based on a model of light propagation and hence light
sensitivity is developed and tested using both simulations and experimental data. Reconstructions
on two different numerical models (a simple slab, and the digital version of a heterogeneous
mouse) shows an improvement of localisation and recovery of intensity (around 25 % for the slab
model and around 10 % for the digital mouse model). This strategy is also used with experimental
data from a phantom gel and which demonstrated an improved recovered tomographic image.
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1. Introduction.

Bioluminescence imaging (BLI), as applied in molecular imaging, has gained interest over the last

two decades. Coding genes for bioluminescent protein provides specific tools to study biological

processes directly in vivo [1] such as detection of cancer cells and evaluation of treatment;

imaging of T cell migration; or tracking the delivery of therapeutic genes in tumours. The

interest in such methods resides in the fact that the biological interactions are monitored directly

within a living organism, which provides a better understanding of the complex interactions

occurring in vivo, thus allowing each animal to act as its own control. BLI also offers the

possibility of 3D tomographic reconstruction of the light sources inside the living sample. Due

to the absence of external light sources, contrarily to techniques based on fluorescence, and

localised sparse distribution of light sources, BLI has very little parasitic background light. This

makes BLI very sensitive, provided that the emitted light is intense enough to be detected at

the external boundary using highly sensitive cameras, such as cooled Charged Coupled Devices

(CCD). As objects of studies are living organisms, which are strongly scattering, light levels in

BLI experiments, typically in the 500 nm - 650 nm range, are low and, as a result, only sources

at the surface or very shallow within the sample (less than a few mm) can be localised and

quantified without difficulty. However, for deeper sources, tomographic reconstruction to obtain

an accurate localisation and intensity is difficult.

To perform a bioluminesence tomographic reconstruction (BLT), a model (discrete and finite

or analytical) is needed to allow model-based optimisation and parameter recovery. Numerical

models typically consist of a set of nodes that describes the geometry and the optical properties

(absorption, scattering and refractive index) of the studied sample. To each node is also associated

a bioluminescence source intensity that can be written as a vector x. The image taken by the

CCD of the light distribution constitutes surface data that can be written as a vector y. Using light

propagation models in complex media [2, 3], it is possible to relate x and y with a linear system

of equations that can be written as Jx=y, where the matrix J contains the physics of the light

propagation through the studied sample, given an accurate knowledge of its optical properties as

a function of x. J is usually referred to as the Jacobian (or weight or sensitivity) matrix and the

aim of a BLT reconstruction is to find x knowing J, which is calculated or approximated; and

y, which is given by experimental measurements. These problems are usually underdetermined

since the number of measurements (typically around a few hundreds to a few thousands) is much

lower than the number of unknowns (typically around a few tens of thousands). In addition, the

strong correlations between measurements, mainly due to the strong light scattering by biological



tissues, reinforce the undetermined nature of the system.

Various strategies have been developed to improve the accuracy of BLT reconstructions,

consisting of either experimental or computational methods, or a combination. Experimental

methods are, for example, the use of spectrally resolved data to improve depth accuracy and

error in intensity [4] or the combination of bioluminescent data with other imaging modalities

such as MRI [5, 6] or CT [6]. Computational strategies can act on the model used (radiative

transfer equation or diffuse approximation) [7, 8], take advantage of the usual sparsity of BLT

sources [9–11], define a permissible region (PR) or a combination of these approaches. There

are various permissible region strategies, for example, Cong et al. [12] which sets to 0 all the

source terms outside a specific region and Feng et al. [13] which uses an iterative process to

make the permissible region iteratively smaller.

These permissible region strategies have shown to improve recovery of bioluminescent sources.

However, the definition of the permissible region does not rely on specific criteria. The aim of this

work is to propose a new way of defining a permissible region using characteristics of the model

and information about the source provided by another imaging method: ultrasound imaging.

This novel strategy is implemented for BLT reconstruction problem in NIRFAST [14,15], which

is an open source software package designed for optical molecular imaging in scattering media.

Currently, NIRFAST uses a Compressive Sensing Conjugate Gradient (CSCG) approach [11]

to find solutions to BLT problems. In this work it is demonstrated that to incorporate a data and

model driven permissible region approach by defining a PR based on optical and ultrasound

measurement as well as characteristics of the model, provides a more quantitatively accurate

source recovery. In addition, the use of both optical and ultrasound data provides a better 3D

localisation of the source.

2. Theory

Typical permissible source region strategies limit the size of the reconstructed volume along

only two dimensions as the depth of the source cannot be estimated using the CCD image.

However, by using ultrasound imaging, it is possible to estimate the depth of the source to center

the permissible region more accurately. The size of the permissible source region can be set by

optimising the model for inversion. This is demonstrated to be crucial as small sensitivity values

are greatly amplified by the inversion process as compared to high values resulting in amplified

noise and loss of accuracy. Therefore, this work proposes to truncate the Jacobian describing the

model into a sub-Jacobian with a smaller dynamic range retaining only the nodes relevant to the

problem. This truncation is equivalent to assuming that the intensity of the light emitted by the

nodes outside the truncated volume is 0. The definition of the permissible region for a specific

dynamic range d is defined as:

1. The coordinates (x0, y0, z0) of the source are determined using ultrasound imaging.

2. The closest node to (x0, y0, z0) is chosen as the reference node, its sensitivity is s0

3. Given a model with N nodes (numbered 1 to N), the list of nodes of interest (NOI) is

{i ∈ [1; N] : si ∈
[

s0√
d

; s0

√
d
]

}, where si is the sensitivity of node i. The (total) sensitivity

on node n is then defined as sn =
∑M

j=1 Jj,n where Jj,n is the value of the Jacobian for

the j th measurement on node n, and M is the number of measurements.

The list of NOI is then used to truncate J, which is then used together with the CSCG solver

(detailed in [11]). By limiting the dynamic range of the system, the permissible region is confined

in all three dimensions, especially along the z-axis, which corresponds to the depth of the source.

This approach also reduces the number of degrees of freedom of the algorithm which yields a

more accurate recovered intensity, while removing noise amplification of lower sensitivity nodes.



This proposed ultrasound guided reconstruction assumes that the bioluminescent source has a

contrast in ultrasound imaging or related techniques (e. g. elastography).

3. Methods.

To investigate the performance of the proposed algorithm, two sets of studies are presented. This

is firstly carried out using simulations, to demonstrate the benefits of the proposed reconstruction

strategy, followed by an application of the proposed reconstruction strategy to real experimental

data taken on a phantom with a commercial bioluminescent imaging system (IVIS TM system).

3.1. Simulation methodology.

The simulation work was carried out on MATLABTM using the NIRFAST software package.

The simulations were performed in two steps:

1. Nodes of the studied mesh within the source region were defined as bioluminescent sources

and the forward solver of NIRFAST was used to calculate the data that would typically be

recorded during a real in vivo bioluminescent experiment using 5 different wavelengths in

the red region of the optical spectrum (600 nm, 610 nm, 620 nm, 630 nm and 640 nm).

2. The calculated forward model data are then used as an input for reconstructions using

three different methods:

Name Description Name in Figures

Whole mesh reconstruction Reconstruction using all the nodes of the

model

Whole Mesh

Large Permissible region re-

construction

Reconstructionusing a large permissible re-

gion limited only on two dimension. No

depth limits

Large PR

US guided and model

driven reconstruction

Reconstruction using a permissible region

with the centre defined using ultrasound

imaging and the size determined by the dy-

namic range of the sensitivity matrix

US Guided PR

Table 1: Reconstruction methods compared in this study.

The forward model data are corrupted with noise, which is assumed to be a normally distributed

Gaussian noise with a typical level for BLT experiment (SNR = 20 dB). After the reconstruction,

the recovered tomographic image by each method is compared visually to the expected image,

which is known, as well as, using a number of metrics described in section 3.2. The reconstruction

using each different method is run 100 times using different Gaussian noise data. From every

reconstruction, the mean value and standard deviation of each defined metric has been calculated

and presented.

This simulation work is carried out on two types of model. The first is a homogeneous slab-

shaped mesh (see Fig. 1a) with the same optical properties as muscle tissue [16], as shown in

table 2. A set of detectors is positioned on the top side z = 20 mm. The x and y positions of the

detectors correspond to a 30 mm × 30 mm square grid having a 0.75 mm pitch. This results in

a total of 1681 detectors. The second mesh is the Digimouse model [17, 18], which is a digital

version of a mouse with organ segmentation. The optical properties of the different organs have

been set according to [16]. On the left back of the animal, a set of 1324 detector points is placed

to record the forward model data as shown by Fig. 1b.



Dimension (x × y × z) 40 mm × 40 mm × 20 mm

Node distance 0.5 mm

Total number of nodes 58509

Chromophore list Water, Oxyhaemoglobin and Deoxyhaemoglobin

Refractive index 1.33

Scatter amplitude 0.14

Scatter power 2.82

Table 2: Geometrical and optical properties of the slab mesh.
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Fig. 1: Geometry of the meshes used in the simlations. (a) Slab mesh, (b) Digimouse mesh. The

dashed line represents the cross-section used in Fig 6.

3.2. Metrics.

The performance of the proposed ultrasound guided reconstruction is evaluated using three

metrics: the Volume Ratio (VR), the DICE similarity coefficient (DICE) and the Mean Square

Error (MSE) [19]:

V R =
|ROI |
|tROI |



DICE =
2|ROI ∩ tROI |
|ROI | + |tROI |

MSE =
1

N

N
∑

i=1

(xi − x0i)2

where ROI represents the reconstructed source nodes, tROI are the true source nodes, xi and

x0i are the intensity values on the reconstructed nodes and the true image nodes respectively.

The | · | operator indicates the physical volume occupied by the corresponding set of nodes. The

reconstructed source nodes are identified as the nodes having a value greater than the median

nodal value. This ensures that nodes with very high reconstructed intensities do not influence

the threshold, which would occur if it was defined as half the maximum. However, since the

modelled source is small – only a few nodes compared to the ten thousands of the mesh – there

are a large number of nodes with a 0 value which will bias the median. Therefore the median is

calculated on a set of nodes that have a value greater than 1 % of the expected value. In addition

to these metrics, the reconstruction methods are also visually evaluated and compared.

The VR compares the reconstructed source volume to the true source volume, therefore it

should be as close to 1 as possible. However, a value of 1 does not guarantee a good reconstruc-

tion as the reconstructed source could be of the same volume but at a different position. The

DICE coefficient complements VR by comparing the volume of the intersection between the

reconstructed and the true source and, similar as the value of the VR, should ideally be equal to

1. These first two metrics evaluate only geometrical similarities, hence the use of the MSE as a

third metric to evaluate the accuracy of reconstruction in terms of absolute recovered intensity.

3.3. Phantom preparation and experiments.

For the phantom experiment, a 70 mm × 40 mm × 20 mm (x × y × z) slab of agar gel was

used. It had embedded polystyrene microspheres to have reduced scattering coefficient around

µ
′
s = 5 cm−1 (lower than the usual value for biological tissue). No absorbers were added so

the absorption is the natural absorption of water, agar and polystyrene (µa ≈ 0.0004 cm−1).

In this phantom, a small hole at z = 5 mm has been made in order to embed a small light

source. The source is a plastic tube made of Fluorinated Ethylene Propylene (FEP) filled with a

chemiluminescent solution having a peak emission wavelength of 640 nm (FWHM = 60 nm).

The tube has an inner diameter of 2 mm and a length of 5 mm.

After placing the light source in the gel, it is imaged using an IVISTM system at 5 wavelengths

(620 nm, 640 nm, 660 nm, 680 nm and 700 nm). Since the source has been placed at z = 5 mm,

images have been taken on both sides (z = 0 mm and z = 20 mm) to have data for two different

depths. Finally, ultrasound images of the phantom have been taken to have a better localisation

of the light source. This was done using a Verasonics system (Vantage 128) equipped with an

ultrasound probe (Verasonics L11-4v) working at a central frequency of 6.25 MHz.

Finally, the data acquired by the IVISTM system are used together with a numeric model

for image recovery. The model used for the reconstruction of the experimental data has been

generated using NIRFAST meshing algorithm [15]. It is a slab mesh with the same physical

dimension as the gel: 70 mm × 40 mm × 20 mm. A 50 mm × 30 mm grid of detector points with

a 1 mm pitch has been placed on the surface z = 20 mm (total 1581 detector points). Then

data recorded with the system are mapped onto this set of detectors before being used for the

reconstruction.

4. Results.

4.1. Simulation on slab model.

The first simulated model is a slab as represented in Fig. 1a, with the geometrical properties

detailed in Tab. 2. In bioluminescence imaging, when a light source is deep inside the tissue,



usually deeper than 10 mm, the intensity and position is difficult to recover. Therefore, sources

at depth of d = 15 mm and at position x = 0 and y = 0 are studied. In every simulation

presented, the source is a cylinder with a radius of r = 1.5 mm and a length of h = 5 mm. The

intensity of the source is set as arbitrary units of 10, which means that every node that is tagged

as a source emits an intensity of 10.

First, the quality of reconstruction versus the dynamic range of the Jacobian matrix is studied.

Reconstructions of a source 15 mm deep in the sample using various values of the dynamic range

have been performed. The variation of the defined metrics vs. the dynamic range are shown in

Fig. 2. The plots of the DICE and MSE show that the optimal values of the dynamic range lie
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Fig. 2: Metrics vs. dynamic range for the guided reconstruction of a source 15 mm deep in the

slab mesh.

between 1.5 and 3 (as a comparison the dynamic range of the sensitivity matrix for the entire

model is around 5300). Indeed, if the dynamic range is too small, the permissible region will

be small also, such that the nodes inside the true source are excluded from the reconstruction.

Conversely, when the dynamic range is too large, too many nodes with different sensitivity are

included resulting in a less stable and accurate result as shown in Fig. 2. This demonstrates that

the dynamic range must not be chosen to be as small as possible since one has to make sure

that the permissible region is large enough to contain the bioluminescent source. As the idea is

to use ultrasound imaging to estimate the position of the source, its size can also be estimated

using the same method.

In order to compare the model driven approach and the two other reconstruction methods (as

described in Tab. 1), a value of 3 has been chosen for the dynamic range. This value, at the

upper end of the optimal value, has been chosen to act as the worst case scenario where the

optimal dynamic range cannot be determined. Indeed, in a real BLT experiment, the information

about the source location are not known so the VR, DICE and MSE cannot be estimated. The

reconstructions for one realisation of the noise using the three different methods is shown in Fig.

3a. In this representation of the XZ plane at y = 0, the green dashed line is the limit of the

permissible region and the red solid line is the limit of the true bioluminescent source (it is not

perfectly circular because of the non-uniform distance between mesh nodes). It is demonstrated

that the reconstructed intensity is better localised using the guided reconstruction, especially

in the vertical axis. This was expected since the algorithm works only on a permissible region
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Fig. 3: Reconstruction of a source 15 mm deep inside a slab mesh.

around the real position of the source that is restricted along the vertical dimension. The other, and

more interesting point to notice, is the value of the reconstructed intensity. The bioluminescent

intensity reconstructed with the guided algorithm is closer to the true value of the intensity than

the intensity reconstructed using the whole mesh or the large permissible region. These absolute

recovered intensities are quantified using the metrics as shown in Fig. 3b.

In Fig. 3b each bar represents the value of each metric for each reconstruction method

averaged over 100 different instances of noise added data. The standard deviation is shown in

the corresponding error bar. Both the results for VR and DICE are closer to 1 using the guided

reconstruction, which illustrate a more accurate localisation of the source. Moreover, the lower

MSE reflects a better accuracy of the guided reconstruction approach. This first simulation

on a simple model shows promising results, demonstrating that guiding the reconstruction is

improving both the geometry and, more importantly, quantitative accuracy.

The benefits of the proposed approach can also be seen with simulation at shallower depth, but

with multiple sources. In this series of simulations on the slab model, two 6 mm-deep sources

spaced by 4 mm, 6 mm or 8 mm have been placed in the model. Again, it is demonstrated by

Fig. 4 that the guided reconstruction performs better especially in the 6 mm-spacing and 8 mm-

spacing cases. It is particularly illustrated by the 1D profiles for z = 14 mm (position of the

source on the z-axis) in Fig. 5. The contrast of the two sources is much higher in both cases

using the guided reconstruction than the other conventional methods.



Reconstruction of 2 sources 4 mm away from each other 

Whole mesh reconstruction

-20-1001020

x (mm)

0

10

20

z 
(m

m
)

0

2

4

6

Large PR reconstruction

-20-1001020

x (mm)

0

10

20

z 
(m

m
)

0

2

4

6

US Guided PR reconstruction (dynamic range = 2.5)

-20-1001020

x (mm)

0

10

20

z 
(m

m
)

0

2

4

6

(a) Visual example of the recon-

struction of 2 6 mm deep sources

separated by 4 mm inside a slab

mesh.
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Reconstruction of 2 sources 8 mm away from each other 
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mesh.

Fig. 4: Visual example of the reconstruction of 2 6 mm deep sources separated by different

distances. (Top) Whole mesh, (Middle) Large PR, (Bottom) US Guided PR.
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rated by 8 mm.

Fig. 5: 1D profile at z = 14 mm of the reconstruction of 2 6 mm deep sources separated by

different distances.

4.2. Simulation on Digimouse model.

Further investigations were carried out using a more realistic model: the Digimouse mesh

represented on Fig. 1b. This time, the source is a sphere with a radius of r = 1.5 mm, placed

under the skin at a depth of either 7.2 mm or 9 mm. As before, the reconstructions are run 100

times using different realisations of Gaussian noise. The chosen dynamic range for the guided



reconstruction is 3, whereas for comparison, the dynamic range of the sensitivity of the whole

mesh is approximately 20000.
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Fig. 6: Visual comparison of three reconstruction method for a source two different depth in the

Digimouse mesh. (Top) Whole mesh, (Middle) Large PR, (Bottom) US Guided PR.

The three reconstruction methods for one realisation of the noise in the XZ plane situated at

y = yS (where yS is the y coordinate of the center of the source, orange line on Fig. 1b) for

the 7.2 mm deep source is shown in Fig. 6a, whereas, Fig. 6b is the same for the 9 mm deep

source. In these images, the red dotted line is the external outline of the model in the chosen

plane, the green dashed line is the limit of the permissible region and the red solid line is the

limit of the true bioluminescent source. Whether the source is 7.2 mm or 9 mm under the skin,

the whole mesh reconstruction and the large permissible region reconstruction produce a large

dispersed source that could even be interpreted as 2 separate sources. Conversely, the guided

reconstruction offers a more localised recovered source. Also, same as with the slab mesh, the

reconstructed intensity is closer to the true intensity. This is confirmed by the value of the metrics



showed in Fig. 7, which shows a VR and DICE value closer to 1 as well as a lower MSE for the

US guided reconstruction.
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(b) Reconstruction of source at depth 9 mm

Fig. 7: Metrics of three reconstruction methods for a source two different depth in the Digimouse

mesh.

4.3. Phantom study.

Finally, the proposed guided reconstruction has been compared with conventional reconstruction

using the whole model on experimental data taken on a scattering phantom using a commercial

BLT system (IVISTM). In this experimental case, the intensity and optical properties of the

source are not known accurately enough to be able to calculate the metrics. Therefore only

qualitative visual comparison on the reconstructed images are provided and discussed.

In addition to measuring optical bioluminescence data, the gel was also scanned using an

ultrasound probe in order to obtain the position of the source. An XZ slice of the gel acquired

using ultrasound imaging is represented in Fig. 8. On this image, the vertical axis has been

shifted so that the edge of the gel is positioned at z = 0. The chemiluminescent source produces

an intense echo, mainly due to the plastic tube encapsulating the solution, which can be easily

identified. The position of the center of the source is at z = 15.5 mm, therefore the depth used

to generate the permissible region will be zPR = 4.5 mm or zPR = 15.5 mm depending on

which set of data are used for reconstruction.

In these reconstructions, a value of the dynamic range of 2 has been used for the guided

reconstruction. The choice of a smaller dynamic range was motivated by the fact that the

dynamic range of the whole Jacobian is smaller (510 against 5300 for the slab mesh and 20000

for the Digimouse mesh), due to a lower absorption coefficient (the gel is mostly water). The first

set of data used for the reconstruction are the data acquired for a depth of 5 mm. Figure 9 shows

the XZ plane (top) and YZ plane (bottom) for the reconstruction of the source using the guided

method (9a) and using the whole mesh (9b). As in previous example, the green dashed line is

the limit of the permissible region. The red crosses correspond to the position of the detectors

on the surface of the mesh. Both reconstructions have located the source at the correct position.

Nevertheless, the source reconstructed using the guided reconstruction appears to have a size

closer to the size of the true source as compared to the source reconstructed using the whole
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Fig. 8: Ultrasound image of the experimental gel.
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(a) Reconstruction using an US guided PR.
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(b) Reconstruction using the whole mesh.

Fig. 9: Visual comparison of two reconstruction methods for a source 4.5 mm deep in the

experimental phantom. (Top) XZ Plane, (Bottom) XY Plane.

mesh.

The size of the reconstructed source has been measured in all cases. It has been estimated

by taking the Full Width at Half Maximum (FWHM) of profiles along x and y axes, the

results are compiled in Tab. 3. In both cases, shallow source and deep source, the error on the

estimation of the source size is much smaller using the US guided permissible region than when

reconstructing using the whole mesh. In addition, it is worth noticing that in the case of the

deep source (d = 15.5 mm), the reconstruction using the whole mesh recovers a source at a

shallower depth than expected. In contrast, the source reconstructed using the permissible region

(Fig. 10a) is closer to the true position of the source as driven by the choice of the permissible

region centred around the correct depth given by the ultrasound image.
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(a) Reconstruction using an US guided PR.
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(b) Reconstruction using the whole mesh.

Fig. 10: Visual comparison of two reconstruction method for a source 15.5 mm deep in the

experimental phantom. (Top) XZ Plane, (Bottom) XY Plane.

5 mm-deep source 15 mm-deep source

Original dimension dx = 2 mm dx = 2 mm

dy = 5 mm dy = 5 mm

FWHM Whole reconstruction dx = 4.4 mm dx = 11.8 mm

dy = 6 mm dy = 10 mm

FWHM US Guided reconstruction dx = 1.8 mm dx = 4.5 mm

dy = 4 mm dy = 6 mm

Table 3: Reconstructed source dimension.

5. Discussion

The proposed reconstruction method, defining a permissible region guided by ultrasound and

driven by the reduction of the dynamic range of the sensitivity matrix, shows a more stable and

quantitatively accurate recovery of a bioluminescent source in BLT. The numeric simulations (the

ultrasoundwas simulated by the knowledgeof the position of the source) showed an improvement

of the quantitative accuracy of the 3D bioluminescent tomography of approximately 25 % and

10 % for slab model and the Digimouse model respectively. The reconstructions on experimental

data from a phantom gel showed that using this strategy provided a more accurate localisation

of a light source deep inside the tissue (deeper than a cm) than a simple reconstruction on the

whole mesh. In addition, a significant improvement of the recovered size of the source has been

observed.

The choice of the dynamic range is important since it controls the size of the reconstructed

volume. In practice, it is not possible to determine an optimal dynamic range by estimating

metrics such as VR, DICE and MSE, therefore the value of the dynamic range has to be chosen

manually keeping in mind several considerations. The criterion used to choose the correct value

can be formulated using several factors: choosing the smallest dynamic range so that the source

is contained within the permissible region with a good confidence. The necessary dynamic range

could be estimated using knowledge of the potential size of the source and an examination of the



ultrasound images. However, in certain cases this approach of limiting the dynamic range of the

system is not always possible. For example, when the source has an elongated shape that spans

a region with a very large dynamic range, or if the sample presents multiple sources dispersed

over a region with a large dynamic range.

Using ultrasound imaging as a guide for the reconstruction was motivated by several factors.

First, ultrasound is commonly used for biomedical applications because of the high compatibility

with in vivo experiment and its non-invasive nature. Second, ultrasound equipment is relatively

cheap and compact, which makes it easy to integrate in an optical setup. However, as a result, this

strategy is limited to bioluminescent studies involving sources having a contrast in ultrasound

imaging or other related techniques such as elastography. However, this is not limiting since

ultrasound can be used to observe most major organs and many different kinds of tumours.

6. Conclusion

This study showed a significant improvement of the accuracy of the evaluation of the light

level of an embedded source using BLT (up to 25 % in certain cases). In practice, as the

light level of bioluminescent sources is linked to the amount of tagged cells, improving the

accuracy has a meaningful biological significance. It leads to a better evaluation of the number

of monitored cells, which, in turn, leads to a refinement of biological processes monitoring and

a reduction of the number of animals used. The interest of this strategy is in the definition of

the permissible region. The reconstructed volume is defined based on physical characteristics

of the sample – the position of the source given by ultrasound imaging –, and characteristics of

the model – dynamic range of the sensitivity matrix to stabilise the reconstruction process. The

combination of bioluminescence tomography with ultrasound imaging, has great potential for

extension into a wide range of non-invasive small animal imaging studies. In the experimental

results presented here, the two imaging processes were performed at different times. However,

in future experiments, performing both imaging approaches simultaneously would be beneficial,

especially during in vivo experiments. Data provided by ultrasound could be used to further

improve the BLT reconstruction by adapting the digital model with size and location of different

organs for example.

More generally, as many imaging techniques are now available it is crucial to investigate how

to couple them to improve quantity and accuracy of the information about the studied system.

This is especially true in the case of biological studies involving cohorts of animals in order to

refine results while reducing animal use.
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