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Résumé — Comparaison de deux stratégies temps réel prédictives pour la gestion d’énergie
optimale d’un véhicule électrique hybride — La présence d’au moins deux sources de puissance
alternatives dans un véhicule électrique hybride pose le problème de la détermination du partage de
puissance entre celles-ci. Le partage optimal tient compte de la demande du conducteur et mène à une
consommation de carburant minimale. Cet article présente deux stratégies qui donnent une solution à
ce problème d’optimisation en utilisant des informations prédictives concernant les conditions de la
voie dans un horizon temporel futur limité. Les aspects importants en ce qui concerne l’optimalité du
partage de puissance déterminé et l’applicabilité en temps réel des algorithmes sont aussi abordés.

Abstract — Comparison of Two Real-Time Predictive Strategies for the Optimal Energy Manage-
ment of a Hybrid Electric Vehicle —The presence of at least two alternative power sources in a HEV
poses the problem of determining the optimal power split among them for a given driver’s request in
order to achieve a minimum fuel consumption. This article will introduce two strategies capable of
solving this optimisation problem both relying on predictive information about the driving conditions
within a limited future time horizon. The important aspects of optimality of the determined power split
and the real-time applicability of the algorithms are addressed.
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INTRODUCTION

Rising fuel prices and the tightened emission legislation
have led to an increasing effort in improving the fuel effi-
ciency of automotive vehicles. One possible solution which
has drawn much attention during the last few years is the
hybridisation of the conventional powertrain. Adding an
appropriate second source of power to the Internal Combus-
tion Engine (ICE) together with an energy storage device
adds an additional degree of freedom to the operation strat-
egy of the vehicle since the propulsion energy can be deliv-
ered by the single traction unit or the combination of them
most appropriate for the current driving conditions. The
hybridisation solution currently favoured is the combination
of an ICE, one or possibly more electric machines (EM)
and a battery of high capacity leading to a Hybrid Electric
Vehicle (HEV).

The determination of the optimal power split among the
ICE and the electric machines is the key issue for achieving
a high fuel economy. The optimality can thereby be quanti-
fied as the minimum fuel consumption over the current drive
cycle observing a charge sustaining operation of the vehicle
whereby in general neither the duration nor the exact load
profile of the drive cycle are known in advance. This article
will assume that, as current research focusses on appropriate
sensor technology and telematics, the vehicle’s velocity and
the road slope can be predicted over a limited future time
segment. This consequently leads to a receding horizon
control problem which consists of finding the optimal power
split trajectory that minimises the fuel consumption for the
predicted drive conditions. Thereby only the current optimal
power split is applied and the calculations are repeated in the
next time step using updated predictions and system states.
The resulting constrained nonlinear optimisation problem
in each time step is difficult to solve in real-time. Sev-
eral solutions have been proposed in the literature among
them the development of customised dynamic programming
schemes [1, 2] and the application of a local optimisation
strategy based on the concept of weighting the consumption
of fuel energy against the use of electrical energy by means
of an equivalence factor [3-5]. The latter concept converts
the constraint of charge sustainment over the drive cycle into
the problem of a correctly chosen equivalence factor.

The work presented in this paper focuses on the aspect
of real-time applicability of an optimal energy management
strategy. Despite the customised numerical schemes and
problem reformulations which led to significant improve-
ments in terms of computing time, previous solutions still
suffer from the nonlinearity of the optimisation problem
that has to be solved iteratively. This paper shows that,
rather than focusing on improved numerical algorithms, a
suitable approximation of the minimisation problem and the
underlying vehicle model enables an explicit solution with a
significantly reduced computational burden. In a first step

it is demonstrated how the well-known Adaptive Equiva-
lence concept benefits from this system approximation due
to the efficient explicit calculation of the charge sustaining
equivalence factor. In a second step it is shown how the
original nonlinear optimisation problem, which up to now
has been solved by time-consuming dynamic programming
techniques, reduces to a mixed integer quadratically con-
strained linear program which enables a fast direct solution.
A comparison exhibits the superiority of the latter approach
in terms of optimality.

1 SYSTEM MODELLING

The proposed optimal energy management strategies are
examined exemplarily for (but are not limited to) the rear-
wheel driven parallel hybrid drivetrain structure displayed in
Figure 1. In order to provide the capability of pure electrical
propulsion, the ICE can be disconnected from the drivetrain
by a clutch.

1.1 Nonlinear Quasistatic Model

The system model has been developed according to the well-
known quasistatic approach [6]. Thereby the dynamics of
the system are inverted and the torque required at the wheels
Twh and the angular velocity of the rear axle ωwh can be
calculated as

ωwh =
v

rwh(v)
(1)

Twh = rwh(v)
(
ρ

2
A f cdv

2 + fr(v)mg cosα + mg sinα
)

+
Jtot

rwh(v)
dv
dt

(2)

for a given vehicle speed v and a known road slope α. The
vehicle parameters are the frontal area A f , the drag coeffi-
cient cd, the rolling resistance coefficient fr , the vehicle mass
m, the wheel radius rwh and the total vehicle inertia Jtot. The
angular velocityωin and the torque request Tin at the gearbox
input are then given by

ωin = ωwhi0(g) (3)

Tin =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Twh + Tloss(ωwh, g)
i0(g)η(g)

, Twh + Tloss ≥ 0

Twh + Tloss(ωwh, g)
i0(g)

η(g) , Twh + Tloss < 0

(4)

where Tloss denominates additional losses caused by fric-
tion, i0 the total transmission ratio and η the total trans-
mission efficiency from the gearbox input to the rear
wheels. The corresponding gear g can be calculated using
the specified shift schedules of the automatic gearbox.



R Beck et al. / Real-Time Predictive Optimal Energy Management of a HEV 637

ω Twh wh,

ω Twh wh,

TEM

ω Tin in,

ω TICE ICE,

I

Figure 1

System architecture.

The torque request Tin has to be satisfied by the ICE and
the EM yielding

Tin = TEM + TICE (5)

The fuel consumption of the engine

ṁ f = fm f (TICE , ωICE ) (6)

is given by the engine map where ωICE is equal to ωin if the
clutch is closed and zero otherwise. The electrical power
delivered or consumed by EM

Pel = fPel(TEM , ωin) (7)

can also be extracted from a corresponding map. The battery
is modelled as a voltage source with an open circuit voltage
U0(ξ) and an inner resistance Ri(ξ) both depending on the
state of charge (SOC) ξ of the battery. This leads to the
current

I =
U0(ξ) − √

U0(ξ)2 − 4PelRi(ξ)

2Ri(ξ)
(8)

of the electric circuit. The evolution of the state of charge is
given by

ξ̇ = − I
Qmax

(9)

with the maximum capacity Qmax of the battery.

1.2 Approximate Quasistatic Model

Equations (1)-(9) yield a nonlinear dynamic system (with
only one state ξ) which leads to a computationally demand-
ing nonlinear dynamic program if the fuel optimal split
between TICE and TEM is to be found [1, 2]. The key point
in reducing this computational complexity in order to ensure
real-time capability is to approximate the nonlinear model
in an appropriate way that allows the application of fast and
efficient optimisation schemes, which will be demonstrated
in the following.

It is known that the fuel consumption increases almost
linearly with an increasing torque request at a fixed angular
velocity ωICE yielding the approximation

fm f (TICE , ωICE ) ≈ a0(ωICE )sICE + a1(ωICE )TICE (10)

with

sICE =

{
1, ICE on

0, ICE off
(11)

Figure 2 depicts this behaviour exemplarily for the engine
used for the simulations described in this article. Since
a0 � 0, this approximation captures the main feature of
a decreasing specific fuel consumption with an increasing
engine torque.

Since the battery is usually operated within tight SOC
limits due to durability considerations, the effect of ξ in (8)

Figure 2

Approximation of the fuel map.
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Figure 3

Approximation of the battery current.

is negligible. Furthermore the losses encountered in the
electric circuit are roughly quadratic in TEM at a constant
angular speed leading to

ξ̇ ≈ b0(ωin) + b1(ωin)TEM + b2(ωin)T 2
EM (12)

The quality of this approximation is shown in Figure 3 for
the electrical components used for the simulation studies.

Equations (5), (10)-(12) now describe a simple dynamic
system which depends quadratically on the input TEM

(or TICE alternatively). Tin andωin are known system param-
eters that can be directly calculated from v and α.

2 OPTIMAL ENERGY MANAGEMENT

With the assumption that at the current time k a prediction
v(·|k) = (v(k|k) . . . v(k + N|k))T of the future vehicle speed
together with a prediction α(·|k) of the road slope is avail-
able for the next N time steps, the aim for a fuel efficient
power split for the predicted driving conditions can be for-
mulated as

T opt
EM(·|k) = argmin

TEM (·|k)

N∑
i=0

ΔTsṁ f (k + i|k) (13)

s.t. (1)-(9)

TEM,min(·|k) ≤ TEM(·|k) ≤ TEM,max(·|k) (14)

ξ(k + N + 1|k) = ξ(k) +
N∑

i=0

ΔTsξ̇(k + i|k) ≥ ξ0 (15)

with the sampling interval ΔTs and the reference SOC ξ0.
The minimum and maximum permissible torques of the

electric machine (14) can be calculated observing the ICE,
EM and battery limits. Inequality (15) ensures the charge
sustaining operation of the HEV. Although ξ is allowed to
vary throughout the operation of the vehicle, (15) guarantees
that the final SOC at the end of the prediction horizon, which
is possibly the end of the complete drive cycle, is at least
ξ0, whereby ξ0 is an optimal SOC around which the battery
shall be operated. Usually (15) will be an active constraint at
the optimal solution. Only if pure electric propulsion within
the horizon is possible, e.g. due to long downhill parts or
a high initial ξ(k), T opt

EM(·|k) will not be affected by (15).
Additional SOC constraints ξmin and ξmax which of course
have to be observed at every time instant are omitted here
for simplicity, since they can be fulfilled implicitly through
the choice of the horizon length N.

Only the first element of the calculated optimal trajectory
T opt

EM(·|k) is applied to the drivetrain and the optimisation is
repeated in the next sampling instant with updated predic-
tions and an updated system state ξ(k) yielding a receding
horizon control strategy.

It is worth noticing that the optimisation variables
TEM(·|k) are merely coupled through inequality (15), since a
certain torque TEM(k+ i|k) at time k+ i neither has an impact
on the fuel consumption nor on the torque constraint (14) at
any other time instant.

2.1 Adaptive Equivalence Strategy

For the sake of simplicity in the following (.)(k + i|k) will
be abbreviated by (.)i. The property of the optimisation
problem mentioned above can be exploited by reformulating
(13)-(15) to

T opt
EM(·|k) = argmin

TEM (·|k)

N∑
i=0

ΔTs(γṁ f ,i − ξ̇i) (16)

s.t. (1)-(9), (14)

Thereby all optimisation variables are decoupled and the
compliance of (15) is left to a correctly chosen equivalence
factor γ > 0 which weights the consumption of fuel energy
against the usage of electrical energy. Therefore only the
local minimisation

T opt
EM(k|k) = argmin

TEM (k|k)
(γṁ f (k|k) − ξ̇(k|k)) (17)

s.t. (1)-(9)

TEM,min(k|k) ≤ TEM(k|k) ≤ TEM,max(k|k) (18)

has to be performed which decreases the computational bur-
den significantly.

It has been shown in [4] that the choice of a correct
constant γopt leads to the global optimal solution observ-
ing charge sustainment. Unfortunately γopt depends on
the actual drive cycle which is not completely known in
advance. In addition the control law obtained with (17), (18)
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is very sensitive to γopt. Thus it seems appropriate to choose
a variable equivalence factor γ(k) that is evaluated online
based on past or predicted driving conditions, thereby intro-
ducing feedback into the control law [3, 5].

The online calculation of γ can still be computionally
demanding if the nonlinear system description is used, a
problem that can be solved by updating the equivalence fac-
tor at a slower rate than T opt

EM(k|k) [5]. Using the approxima-
tions (10)-(12) and the assumption of a constant γ through-
out the horizon N, the optimal input trajectory T opt

EM(·|k) can
easily be calculated solving a mixed integer quadratic pro-
gram with only one continuous optimisation variable T opt

EM,i

and one decision variable sopt
ICE,i for each time instant k + i.

Ignoring the torque constraints imposed by (18) the mini-
mum of the quadratic cost function J defined by (17) at k+ i
is found at

T opt
EM,i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− 1

2b2,i
(γa1,i + b1,i), si = 1

Tin,i, si = 0

(19)

leading to an optimal cost function

Jopt
i =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
b2

1,i

4b2,i
+ γ

(
a0,i +

a1,ib1,i

2b2,i

)
+ γ2

a2
1,i

4b2,i
, si = 1

−b1,iTin,i − b2,iT 2
in,i − γa1,iTin,i, si = 0

(20)

depending on si. The optimum is then given by the torque

T opt
EM,i = argmin(Jopt

i |si=0, J
opt
i |si=1) (21)

From (19) and (21) it follows that T opt
EM,i is piecewise

linear but discontinuous in γ if the quadratic equation
Jopt

i |si=0 = Jopt
i |si=1, that determines the points of disconti-

nuity, has positive real roots. Additionally there exist a
minimum and a maximum γ for each time step k + i which
limit T opt

EM,i|si=1 to the torque constraints (18). From these
considerations and approximation (12) it can be concluded
that, as the torque T opt

EM,i at each instant k+i is a discontinuous
piecewise linear function of γ, the SOC at the end of the pre-
diction horizon ξN+1 is a discontinuous piecewise quadratic
function of γ. The switching points of this function can be
easily assessed based on the above considerations, a detailed
description is omitted though. The optimal current equiva-
lence factor γopt(k) can then be calculated by

γopt(k) = argmax
γ(k)

γ (22)

s.t.

γ > 0 (23)

ξN+1 ≥ ξ0 (24)

which can efficiently be done due to the quadratic depen-
dance of ξN+1 on γ. If the maximisation problem (22)-(24)

is not feasible, no charge sustaining operation is possible.
T opt

EM(k|k) should then be TEM,min(k|k). If, on the other hand,
pure electric driving observing charge sustainment is pos-
sible, 1

γopt(k) = 0 and T opt
EM(k|k) = TEM,max(k|k). Otherwise

T opt
EM(k|k) can be calculated from (18)-(21) using γopt(k).

2.2 MI-QCLP Strategy

The approximation of the nonlinear system dynamics offers
the opportunity to directly solve the minimisation problem
(13)-(15) without using the modification introduced by the
equivalence factor. Inserting (10)-(12) and (5) leads to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

T opt
EM(·|k)

sopt
ICE (·|k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = argmin
TEM (·|k)
sICE (·|k)

( f T TEM(·|k)
+gT sICE (·|k))

(25)

s.t.

TEM,min(·|k) ≤ TEM (·|k) ≤ TEM,max(·|k) (26)(
Tin,i − TEM,i

) · (sICE,i − 1) = 0 ∀i (27)

TEM(·|k)T A TEM(·|k) + bT TEM(·|k) ≥ Δξdes (28)

with

f = −ΔTs
[
a1(ωin,0) . . .a1(ωin,N)

]T (29)

g = ΔTs
[
a0(ωin,0) . . .a0(ωin,N)

]T (30)

A = ΔTs diag
(
b2(ωin,0) . . .b2(ωin,N)

)
(31)

b = ΔTs
[
b1(ωin,0) . . .b1(ωin,N)

]T (32)

Δξdes = ξ0 − ξ(k) − 1T c (33)

c = ΔTs
[
b0(ωin,0) . . .b0(ωin,N)

]T (34)

This mixed integer quadratically constrained linear pro-
gram (MI-QCLP) can be solved efficiently due to the spe-
cific problem structure. For a fixed sICE (·|k) the solu-
tion of the resulting QCLP-subproblem is calculated using
an active set strategy. First it must be checked whether
(28) constrains the optimal solution. If pure electric driv-
ing does not violate (28), the optimal solution is clearly
T opt

EM(·|k) = TEM,max(·|k). Otherwise the optimum lies on
the constraint imposed by (28). In this case the solution is
given by

T opt
EM(·|k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
2 A−1

S unc
(λ fS unc − bS unc), T opt

EM,i ∈ S unc

TEM,con,S con(·|k), T opt
EM,i ∈ S con

(35)

with the inverse lagrange multiplier

λ = +

√√
4Δξdes,S unc + bT

S unc
A−1

S unc
bS unc

f T
S unc

A−1
S unc

fS unc

(36)

The optimal sets S con of optimisation variables T opt
EM,i

which are constrained by (26) and (27) and S unc of the
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remaining free optimisation variables can be found starting
with S con only containing those variables T opt

EM,i fixed by (27)
due to sICE,i = 0 and then successively calculating the opti-
mal solution according to (35) and (36) and shifting the vari-
ables T opt

EM,i that violate (26) from S unc to S con until T opt
EM(·|k)

is feasible. The expressions (.)S unc refer to the matrices and
vectors (.) where the entries corresponding to the optimi-
sation variables not contained in S unc have been removed.
Consequently Δξdes,S unc is calculated by

Δξdes,S unc = ξ0 − ξ(k) − 1T cS unc (37)

TEM,con,i is given by TEM,min,i, TEM,max,i or Tin,i depending on
the respective active constraint (Equations 26, 27).

If 4Δξdes,S unc + bT
S unc

A−1
S unc

bS unc < 0 for a given sICE (·|k),

the λ calculated by (36) is complex (1). In this case no charge
sustaining solution can be found and the optimal solution is

T opt
EM(·|k) = TEM,min(·|k), T opt

EM,i ∈ S unc (38)

The outer mixed integer optimisation problem of finding
the optimal sopt

ICE (·|k) can be solved quickly by modifying
sICE (·|k) in a way that eliminates primarily low ICE torque
requests resulting from T opt

EM(·|k) for a given sICE (·|k).

2.3 Correlation of the Two Strategies

The two strategies are closely related to each other. Given
an optimal solution sopt

ICE (·|k) of the outer mixed integer opti-
misation and omitting the torque constraints at this point for

(1) A complex-valued λ indicates that the optimisation problem (25)-(28)
has no feasible solution for the chosen sICE (·|k).

simplicity, the resulting optimisation problem for the MI-
QCLP algorithm is given by

T opt
EM(·|k) = argmin

TEM (·|k)

N∑
i=0

ΔTsṁ f ,i (39)

s.t.
N∑

i=0

ΔTsξ̇i − Δξdes ≥ 0 (40)

The corresponding Lagrangian

L =
N∑

i=0

ΔTs(ṁ f ,i − μξ̇i) + μΔξdes (41)

is minimised by T opt
EM (·|k) and the corresponding lagrange

multiplier μopt given by λ−1 according to (36). It is obvious
that minimising (41) with respect to TEM(·|k) is equivalent
to minimising (16) for a constant γ = μ−1. Since γopt(k) is
also derived from inequality (40), for the same fixed sopt

ICE (·|k)
both algorithms yield the same result and

γopt(k) = λ (42)

holds. The different results obtained with both strategies
therefore originate from a different solution of the outer
mixed integer optimisation problem. While the Adaptive
Equivalence approach bases its decision sopt

ICE,i on the value
of the Lagrangian at the specific time step k + i (Equa-
tions 20, 21) without considering other time steps within the
prediction horizon, the MI-QCLP algorithm finds sopt

ICE (·|k)
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on behalf of global considerations. This leads to the expec-
tation, that the MI-QCLP strategy outperforms the Adaptive
Equivalence strategy.

3 SIMULATION RESULTS

The components chosen for the simulation study are a 5-
speed automatic gearbox, a conventional gasoline engine,
a strong permanent magnet synchronous electric machine
which allows pure electric driving and a NiMH-battery pack.
In order to check the performance of the developed algo-
rithms, perfect predictive information regarding the vehicle
speed and the road slope was assumed. The algorithms were
tested in the New European Drive Cycle (NEDC) and the
more realistic HYZEM cycle with a sampling rate of 1 sec
using (1)-(9) as the nonlinear vehicle model. The simula-
tions were conducted using MATLAB/Simulink. The SOC
at the beginning of the cycle and the reference SOC were
chosen to ξstart = ξ0 = 0.7.

3.1 Adaptive Equivalence Strategy

Figures 4 and 5 show the results obtained for the NEDC and
the HYZEM cycle with the Adaptive Equivalence strategy
using a prediction horizon of N = 100. The final SOC’s are
ξend,NEDC = 0.7005 and ξend,HYZEM = 0.7007 respectively
which indicates that the adaptive equivalence factor γ is
well-determined. The operating points of the ICE exhibit the
good performance of the energy management strategy since
the low-efficiency regions at low engine loads are omitted.

3.2 MI-QCLP Strategy

Figures 6 and 7 show the results for the two drive cycles
obtained with the MI-QCLP strategy using a prediction hori-
zon of N = 100. Although the optimal SOC-trajectories
differ from the results calculated with the Adaptive Equiv-
alence strategy, the general behaviour is similar. The ICE
only operates at high efficiencies and the operation is charge
sustaining (ξend,NEDC = 0.6951 and ξend,HYZEM = 0.6996
respectively).

3.3 Optimality of the Real-Time Strategies

In order to assess the optimality of the developed algorithms,
the results obtained must be compared to the global opti-
mal solution, which can be calculated offline for the nonlin-
ear system model and a given drive cycle (1)-(9) using the
Dynamic Programming (DP) technique.

Figures 8 and 9 compare the global minimal fuel con-
sumption for the NEDC and the HYZEM cycle with the fuel
consumptions realised using the two real-time strategies for
varying prediction horizons. It can be concluded that the
developed algorithms work very well despite the approxima-
tions used, whereby the MI-QCLP algorithm yields better
results than the Adaptive Equivalence strategy. It should
be expected that the obtained fuel consumptions decrease
with an increasing prediction horizon since the exploitation
of additional information should improve the result. This is
indeed the case for the NEDC, nevertheless Figure 9 indi-
cates that the choice of very large horizons deteriorates the
results. This is probably caused by the integrating correla-
tion between ξN+1 and approximation (12) which leads to an
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Fuel consumption of the Real-time strategies compared to the
global minimum for the NEDC.
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Fuel consumption of the Real-time strategies compared to the
global minimum for the HYZEM cycle.

increased approximation error for ξN+1 for large horizons N.
Horizons of N = 100 . . .200 seem a reasonable choice for
a good performance. With N = 100 the MI-QCLP strategy
yields a fuel consumption that is within 3.1% of the global
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Turnaround times of the Real-time strategies for the HYZEM
cycle.

minimum for the NEDC and within 1.1% for the HYZEM
cycle.

3.4 Real-time Capability

Both strategies have been implemented and tested with a
horizon of N = 100 for the more realistic HYZEM cycle on
a 2.6 GHz dspace RCP real-time hardware. The turnaround
times needed for the calculation of the optimal solution at
a given time instant are displayed in Figure 10. The maxi-
mum turnaround time for the MI-QCLP algorithm is 182 µs.
For the Adaptive Equivalence strategy 453 µs are achieved.
These results indicate that the MI-QCLP algorithm is nearly
2.5 times faster than the Adaptive Equivalence strategy
which results from the more time-consuming search for the
optimal γ(k) according to (22)-(24). Nevertheless, consider-
ing a sampling time of 10 msec for the energy management
controller, both algorithms are real-time applicable even on
significantly more limited controller hardware.

CONCLUSION

This paper presented two different strategies for the optimal
energy management of a HEV. Both algorithms incorporate
information about future drive conditions for a limited time
horizon. Emphasis has been placed on the real-time capabil-
ity of the operation strategies which allows their implemen-
tation in a vehicle. This property could be achieved for both
algorithms using an appropriate approximate model of the
drivetrain together with adequate objective functions which
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have led to optimisation problems that can be efficiently
solved.

Both strategies have been tested in two different drive
cycles and the achieved fuel consumptions were compared
to the global minimum found by a Dynamic Program. It
could be demonstrated that both strategies achieve very good
results that lie within a few percent of the true optimum
despite the approximate model. It could also be concluded
that a direct minimisation of the fuel consumption observing
the charge sustainment constraint explicitly outperforms the
strategy which relies on an appropriate weighting of fuel and
electric energy both regarding the achieved fuel consump-
tions and the computational effort.

Up to this point the simulations have been carried out
using perfect predictive information which obviously can
not be provided in reality. Therefore future investigations
will focus on the deterioration of the results obtained by
the energy management algorithms through imprecise pre-
dictive information. Due to the receding horizon strategy
and the averaging nature of (15) a certain robustness can be
expected which has to be validated through further simula-
tions and real drive tests.
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