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Résumé — Changement d’échelle en réservoirs fracturés et HT-décomposition selon les lignes
de courant pour un écoulement compositionnel — Nous présentons deux approches destinées à
accélérer les simulations de réservoirs. La première approche concerne le calcul de la perméabilité
équivalente des milieux fracturés. Le problème basique d’un changement d’échelle qui concerne la
formulation des conditions aux limites pour le probléme cellulaire, est résolu à l’aide d’une décom-
position du champ global de pression en deux composantes, dont une peut être négligée, tandis que la
deuxième est calculée analytiquement. De plus, nous avons développé une méthode rapide de résolution
du problème cellulaire qui est basée sur la séparation de la contribution des fractures et de la matrice.
Cette méthode amène à des solutions analytiques.
La deuxième approche est consacrée à des simulations streamline pour un écoulement compositionnel.
L’efficacité de toute simulation streamline dans le cas compositionnel est réduite à cause de l’absence
de solutions rapides analytiques des problèmes 1D d’écoulement dans ce cas. Nous avons développé un
nouveau modèle asymptotique compositionnel qui assure la séparation totale de la thermodynamique
et de l’hydrodynamique et aboutit à des solutions analytiques ou mi-analytiques selon les lignes de
courant.

Abstract — Upscaling Fractured Media and Streamline HT-Splitting in Compositional Reservoir
Simulation — We present two approaches devoted to speeding up reservoir simulations. The first
approach deals with permeability upscaling for fractured media. The basic problem of any upscaling
procedure, which consists of how to formulate the boundary-value conditions for a cell problem, is
solved by the method of splitting the global pressure field into two components in such a way that one
component may be neglected, while the second one may be calculated in the analytical way. In addition
to this, we have developed a new fast method of solution to the cell problem, which is based on splitting
the contribution of fractures and a tight matrix.
The second approach is devoted to streamline simulations for a compositional flow. The low efficiency
of any streamline simulation in this case is reduced due to the lack of fast analytical solutions to 1D
flow problems. We suggest a new asymptotic compositional flow model which ensures a total splitting
between the thermo- and hydrodynamics. As a result, such a splitting leads to an analytical or semi-
analytical solution for the multicomponent flow problem along the streamlines.
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INTRODUCTION: UPSCALING THE IRREGULAR FIELDS
IN TRUE RESERVOIRS

In the present paper we discuss two approaches leading
to speeding up numerical reservoir simulations. The first
approach concerns the methods of upscaling the permeabil-
ity field, while the second approach deals with the stream-
line simulation technique. These two approaches are pre-
sented in two sections of the present paper.

About the Problem of Upscaling

In the first section, we examine the classical problem of the
upscaling theory. A geological model of a heterogeneous
porous reservoir consists of fine-scale cells forming a dis-
crete permeability field. This reservoir is then covered by a
numerical hydrodynamic grid of a scale much larger than the
geological grid, but much smaller than the overall reservoir
size. Approximately, a hydrodynamic cell is of the order of
a semi-distance between two wells or even smaller. Such
a scale will be called the mesoscale. We need to average
the permeability field within each hydrodynamic cell, which
constitutes the classic problem of upscaling. Therefore, the
objective is to transform a permeability field defined on a
fine-grid scale into a coarser grid imposed by a numerical
flow simulator.

A problem of upscaling, being based on averaging proce-
dures, is related homogenization theory [1-3]. At the same
time, upscaling is different from homogenization. Homog-
enization provides the averaged permeability of a repre-
sentative elementary volume (REV), which is an intrinsic
medium fragment, while upscaling has the objective the
averaged permeability of a medium fragment (a hydrody-
namic cell) imposed by exterior factors. The result of
homogenization is called “effective permeability’’, while
upscaling yields “equivalent permeability’’. In contrast
to effective permeability, equivalent permeability is not an
intrinsic medium property and depends on the hydrody-
namic grid size and form, as well as on the boundary condi-
tions of the cell.

All the methods of calculating equivalent permeability
consist of using the so-called cell problem resulting from
the homogenization theory, but imposing different boundary
conditions than those used for an effective permeability. A
classic cell problem for effective permeability is formulated
as a PDE with periodic boundary conditions for some aux-
iliary functions. For equivalent permeability, the boundary
conditions for the cell problem are a priori unknown as they
depend on the overall pressure field. Due to this, the equiv-
alent permeability is not strictly defined. It is clear that this
value should be determined in such a way that the consec-
utive hydrodynamic simulations would be equivalent to the
reality, which is, however, not a constructive mathematical

definition. Due to this uncertainty in the boundary-value
conditions, all the methods of the equivalent permeability
calculation should be considered as approximated with an
uncertain degree of the error committed.

In the first part of Section 1 we present the method of
the analytical boundary. It permits one to solve analytically
the single-phase problem for the global pressure in a homo-
geneous medium by the complex potential method. These
data are used to formulate the boundary conditions for each
cell problem. The obtained cell problems with non-periodic
boundary conditions are then analyzed in the second part of
Section 1 in order to develop a fast method of solution for
a fractured medium. We have developed a new fast analyt-
ical method based on the fundamental property of double
porosity media.

About the Streamline Technique
and Compositional Flow

In Section 2 we analyze a streamline method able to simulate
the compositional flow.

The basic advantage of a streamline simulation consists
of using analytical 1D solutions to the flow problems along
the streamlines. Unfortunately, for a compositional flow
the analytical solutions do not exist even in a 1D version.
We note that a compositional model consists of N equations
of mass balance for each component, two equations of the
phase state and N + 2 equations of phase equilibria relating
the chemical potentials of each component in both phases,
phase pressures and phase temperatures. Usually such a
model represents a high-order non-linear transcendent equa-
tion system which may only be solved numerically using
various iteration procedures. In the scope of these itera-
tion procedures, the thermodynamic non-linear high-order
subsystem, which should be solved at each space point and
in each time instant, frequently consumes a major part of
the CPU. Unfortunately, this highly cumbrous part remains
invariable whatever the space dimension for the hydrody-
namic equations. These circumstances highly complicate
the problem solution and do not ensure the efficiency of a
compositional streamline simulator.

We propose an effective solution to this problem by split-
ting the thermodynamic and the hydrodynamic parts along
the streamlines. This result is obtained due to some asymp-
totic properties of the gas-liquid flow, in particular to a high
difference between phase mobilities. Due to such a splitting,
we obtain an effective semi-analytical solution to the two-
phase compositional problem along streamlines. To obtain
the analytical solutions for the hydrodynamic part, we have
developed a special singular perturbation method based on
matching the asymptotic expansions obtained for different
space subdomains. To calculate compositional flow along
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each streamline it is then sufficient to simulate the thermo-
dynamic part once and to insert the obtained thermodynamic
functions into the analytical hydrodynamic solution.

1 SEMI-ANALYTICAL UPSCALING
FOR A HETEROGENEOUS PERMEABILITY FIELD

We suggest two approaches which are devoted to upscaling
the permeability of a fractured medium: the first one (the
analytical boundary method) concerns the global improve-
ment in the definition of the boundary-value conditions to
the cell problem which defines the equivalent permeabil-
ity. The second one (splitting the matrix-fracture contri-
bution) concerns the effective solution to this cell problem.
Both these questions are the key points of the upscaling
procedure.

1.1 Method of the Analytical Boundary

As mentioned, the definition of the equivalent permeability
may be done in terms of a boundary-value problem for an
intermediate function (“the cell function’’). This function
is almost equivalent to that which results from the homog-
enization theory, but with undefined boundary-value con-
ditions for the cell problem. The definition of the most
boundary-value conditions for the cell problem is the first
point solved in the present section.

The basic principle for imposing the boundary-value con-
ditions comes from the definition of the equivalent perme-
ability: the boundary conditions must keep the true average
flow in the considered hydrodynamic cell.

1.1.1 Splitting the Perturbation Fields

In a true oil-gas reservoir with no preferential flow direction
the global pressure field may be presented at any time as
the superposition of a mean field (constant in space) and
a fluctuation field, caused by various external and internal
perturbations. The external perturbations are caused by the
discrete system of wells, while the internal perturbations
are caused by the medium heterogeneity. For the upscal-
ing problem, the physical origin of the perturbations has no
great significance; however, another classification of various
perturbations can be much more important.

Such a decomposition, which says that all perturbations
cause the fluctuations without influencing the macroscale
flow, is only valid on the scale of the total reservoir. On the
scale of a numerical hydrodynamic cell, which is called the
mesoscale and is of the order of a semi-distance between two
wells or even smaller, some fluctuations may now produce
an oriented flow. For instance, the perturbations caused by
the wells certainly determine the mean flow direction within

a hydrodynamic cell. Due to this, the pressure field for a
hydrodynamic cell can be split into two fields:

P(x, y) = Pdir(x, y) + P′mes(y) (1)

where Pdir(x, y) is the directional component of the pressure
field, which is caused by the perturbations which determine
an oriented average flow within the cell. The term P′mes is
the fluctuating component of the perturbation field which
causes the mesoscale pressure fluctuations within the cell
without determining any oriented average flow. To under-
line the difference between the scales we have introduced
the macroscale space coordinate, x, for the overall reservoir
and the local (mesoscale) coordinate, y, for the examined
cell, normalized in such a way that the cell length equals 1
in terms of y.

Our idea consists of the following:
- we propose to use only the directional component of the

pressure field, Pdir(x, y), to formulate the boundary-value
conditions for the cell problem;

- we suggest applying analytical methods to calculate the
directional field for the overall reservoir;

- we affirm that the fluctuating component, P′mes, can be
neglected.

Indeed, let us examine the physical meaning of the direc-
tional and fluctuating components. An oriented flow in a cell
is caused, in major part, by the system of wells. The fluc-
tuating component is generated by medium heterogeneities
of any scale: macroscopic, mesoscopic and microscopic. At
the same time, a macroscopic heterogeneity can also influ-
ence the average flow in the cell and thus contribute to the
directional component. This is, for instance, the case when
a macroscale barrier passes near to or across the examined
cell. Another object which can significantly influence the
average flow direction is the hydraulic macrofracture made
near a well. As to the natural macroscale fractures not con-
nected to the wells, they do not significantly deviate the flow,
but only accelerate it.

As the objective of the upscaling problem is to obtain the
average parameters of the flow, the boundary-value condi-
tions of a cell must be formulated in such a way that the aver-
age flow in this cell corresponds to the true flow. From this
point of view only the directional component of the pressure
field is significant for imposing the boundary-value condi-
tions, while the fluctuating component P′mes, which does not
influence the average flow, can be neglected.

So, to formulate the boundary-value conditions it is suffi-
cient to calculate the flow problem for the overall reservoir
by only taking into account the system of wells, macrofrac-
tures linked to wells, and impermeable barriers. All the
other heterogeneities can be ignored. Such a problem in a
2D case for a linear (or linearized) steady-state (or quasi-
steady-state) flow equation has analytical solutions. The
calculated global directional pressure field, Pdir(x, y), will
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Figure 1

An example of a reservoir perturbed by the wells and the
medium heterogeneities.

Figure 2

Perturbations determining the directional pressure field.

Figure 3

Analytical solution to the directional component of the pres-
sure field.

only be used to formulate the boundary-value conditions for
the cell problem for each hydrodynamic cell.

1.1.2 Example of Analytical Calculation of a Directional
Component of the Pressure Field

Let us examine the reservoir presented in Figure 1.
According to the suggested method, the directional pres-

sure field corresponds to the perturbation system in a homo-
geneous reservoir, shown in Figure 2.

The solution to the steady-state problem for the pressure
field in such a medium may be obtained by applying the
complex potential method:

Pdir = P0+
µQ f r

4πk
ln

∣∣∣∣∣∣∣∣∣
x−xB

f r+

√(
x−xA

f r

)2
+

(
y−yA

f r

)2

x−xA
f r+

√(
x−xB

f r

)2
+

(
y−yB

f r

)2

∣∣∣∣∣∣∣∣∣
+
µ

k

N∑
i=1

Qwi

8π
ln

[
(x − xwi)2 + (y − ywi)2

]

where N is the number of wells, and P0 is the pressure at
infinity. The results of simulation based on this equation are
shown in Figure 3.

Using these relationships we obtain an analytical formula
for the boundary pressure for any hydrodynamic cell.

1.2 Effective Permeability Calculation by the SFMC
Method

The second part of the suggested approach is devoted to
resolving the cell problem. For a fractured-porous medium
we use the basic natural property of such systems: a high
difference between the fracture and matrix permeability:

ω ≡ 〈K〉matrix

〈K〉fracture
� 1 (2)

where the angular brackets mean a simple average.
Using this property, we have developed the method of

Splitting the Fracture-Matrix Contributions (SFMC) which
consists of the following:
- The contributions of fractures and matrix are split, using

the asymptotic properties of a fractured medium.
- The problem of fracture contribution is solved analyti-

cally (by the stream configuration method).
- The problem of matrix contribution, being secondary, is

solved approximately.

1.2.1 General Definition of Equivalent Permeability

Let Y={−1/2<yi<1/2, i = 1, 2, 3} be the examined hydro-
dynamic cell, where yi=xi/ε are the local coordinates. We
assume that the fractures are filled with a porous medium
of a high permeability. So we are dealing with a double
porosity medium.

The equivalent absolute permeability, K̂ik, is determined
using the result of two-scale homogenization:

K̂ik =

〈
K(y)

∂Ψk

∂yi

〉
(3)

through a family of cell functions, Ψk(y), k=1, 2, 3, which
are the solutions to the following cell problems

∂

∂yi

(
K(y)

∂Ψk

∂yi

)
= 0, y ∈ Y (4)
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Instead of using the periodic boundary conditions for the
cell problem (4) as in the case of effective permeability, we
use the analytical boundary conditions determined in the
precedent section:

Ψk

∣∣∣∣∣
∂Y
=

p − 〈p〉
∆pk

+ yk (5)

Herein, 〈p〉 is the average value of the pressure over the unit
cell, and ∆pk is the pressure drop in the cell:

∆pk=ε

(∣∣∣∣∣∂ 〈p〉∂x1

∣∣∣∣∣ +
∣∣∣∣∣∂ 〈p〉∂x2

∣∣∣∣∣ +
∣∣∣∣∣∂ 〈p〉∂x3

∣∣∣∣∣
)/

sign

(
∂ 〈p〉
∂xk

)
(6)

If there is no local pressure drop along axis xk, i.e.
∂ 〈p〉 /∂xk=0, then the periodic conditions must be used for
the cell function Ψk − yk.

1.2.2 Splitting for a Fractured Medium

Using property (2), we can represent the equivalent perme-
ability as a sum of fractures and matrix contributions sepa-
rately:

K̂ik = K̂(0)
ik + ωK̂(1)

ik (7)

where K̂(0)
ik is the contribution of the fractures only, and K̂(1)

ik
is the contribution of the matrix and of a secondary flow in
the fractures:

K̂(0)
ik =

∫
Yf

K
∂Ψ

f
k0

∂yi
dV

K̂(1)
ik =

∫
Yf

K
∂Ψ

f
k1

∂yi
dV +

∫
Ym

K
∂Ψm

k0

∂yi
dV

(8)

The numerical tests show that the contribution of frac-
tures is dominating and, thus, should be calculated exactly.
Due to the secondary role of the matrix, the second term in
(7) can be calculated in an approximate way:

K̂(1) = 〈Kmatrix〉 (9)

1.2.3 Fracture Contribution

To calculate the fracture contribution, we have to solve the
following cell problem:

∂

∂yi

K(y)
∂Ψ

f
k0

∂yi

 = 0, y ∈ Y f

Ψ
f
k0 = a given function at the boundary

(10)

This problem can be solved in an analytical way based
on the fact that a thin fracture represents a true streamline.
Hence the flow in each fracture is almost mono-dimensional:

Ψ
f (i)
k0 = θ

(i)
k η + γ

(i)
k , k = 1, 2; i = 1, ..,Nsegm (11)

Herein, η is the coordinate along the i-th fracture segment,
Y (i); Nsegm is the number of non-intersecting fracture seg-
ments.

This gives us a representation of global flow as a system
of streamlines and an explicit representation of the solution
along each streamline. By using the Kirchoff conservation
law and the continuity conditions in the vertices, cell prob-
lem (10) is then reduced to searching for the coefficients θ(i)

k

and γ(i)
k from a system of linear algebraic equations:

Ax = b (12)

The number of equations is equal to a double number of
non-intersecting fracture segments.

The existence of the solution was analyzed. We have
revealed that the method can formally lead to an overde-
termined system, i.e. the number of equations is greater than
the number of variables. We have strictly proved that the
excessive equations are not independent, so the rank of
matrix A is always equal to the number of variables. Thus,
the problem is well posed.

1.2.4 Matrix Contribution

The contribution of the matrix to the equivalent permeability
may be calculated in an approximate way, as this contribu-
tion is a secondary effect relative to the role of fractures.

According to our numerical experiments the matrix con-
tribution can be simply approximated by the arithmetic
mean value:

K̂(1)
ik ≈ 〈Kmatrix〉δik

This estimation can be improved by taking into account
the fluctuations within the matrix only, if we consider the
matrix permeability field as low heterogeneous. Then the
stochastic averaging yields a corrector term of the order of a
square of variance.

1.2.5 Numerical Calculations

The numerical algorithm used to calculate the equivalent
permeability of a fractured medium is as follows:
1. Definition of the input data:

– number of fractures, Nfr;
– center positions (x(i)

c , y
(i)
c );

– fracture orientations, α(i);
– fracture lengths, l(i);
– fracture apertures, h(i);
– fracture permeabilities, K(i).

2. Automatic graph fragmentation:
– construction of the fracture network graph;
– construction of the set of non-intersected segments.

3. Automatic construction of the matrix A;
4. Solution to the linear system.
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Figure 4

A cell of fractured medium.

Figure 5

Method of bordering.

To illustrate the SFMC method, we present a numerical
test. The fractured unit cell is depicted in Figure 4.

Along with this, we calculated the equivalent permeabil-
ity (3) by a fine-grid simulation applied to the direct cell
problem. For the discretization of this problem we used the
finite element method with a grid refinement around each
fracture segment. The results of simulations are:

K̂ik =

32.3 1.1

1.1 6

 , system of 3678 equations (13)

and by the SFMC method:

K̂ik =

 31.4 1.08

1.08 5.7

 , system of 82 equations (14)

These two methods yield the same result for the equiva-
lent permeability, but the number of equations used and the
used CPU is highly different.

1.2.6 SFMC Method with Bordering

The suggested method can be improved by combination
with the bordering method. In order to reduce the error
introduced by approximate boundary conditions, we pro-
pose displacing the boundary as far as possible from the
examined cell. This means that the cell problem will be ana-
lyzed within a domain which will include the hydrodynamic
cell and all the neighboring cells.

The simulations we made show a low improvement in the
equivalent permeability. This confirms implicitly the quan-
titative correctness and stability of the analytical boundary
method suggested in the present paper.

2 HT-SPLITTING FOR COMPOSITIONAL FLOW

We consider an abstract mixture consisting of N chemical
species (“components’’) able to form two various thermo-
dynamic phases separated by an interface from one another.

No chemical reactions are analyzed, but each component
may be dissolved in both phases. In various thermodynamic
conditions, the dissolution degree is variable, which deter-
mines a permanent mass exchange in components between
two phases. Such a system is frequently called composi-
tional.

2.1 Limit Compositional Model for Contrast Properties

The limit compositional model which corresponds to con-
trast phase mobilities and fast stabilizing relaxation pro-
cesses was obtained in [13]:

0 = div
(
ψg grad p

)
(15a)[

∂ϕ(N)

∂τ
− c(N)

g

∂ϕ

∂τ

]
=
ω

ε
∆c(N)div

(
ψl grad p

)
(15b)

+
1
ε
ψg grad

(
c(N)
g

)
grad p

0 = grad p

grad c(k)
g

∆c(k)
− grad c(N)

g

∆c(N)

 , k = 1,N − 2 (15c)

The operations div and grad are performed in dimensionless
space coordinates; other definitions are the following:

p ≡ P
∆P

, ϕ ≡ φρ

〈φ〉 ρ0
g

, ϕ(k) ≡ φρ(k)

〈φ〉 ρ0
g

ψi ≡
Ψiki(s)µ0

i

〈K〉 ρ0
i

=
Kρiµ

0
i

〈K〉 ρ0
i µi

, (i=g, l), τ ≡ t/t∗

t∗ ≡ L2µ0
g 〈φ〉

〈K〉∆P
, ω ≡ ρ0

l µ
0
g

ρ0
gµ

0
l

, ε ≡ t∗

t∗
(16)

Here superscript “k’’ refers to the k-th chemical component
(k=1,...,N), and indexes g and l to gas and liquid; φ is the
porosity; c(k)

g or c(k)
l is the mass concentration of the k-th

component in gas or liquid [kg/kg], and ∆c(k) = c(k)
l − c(k)

g ; s
is the volume saturation of pores by liquid; ρg and ρl are the
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phase densities; ρ(k) is the partial density of the component
k; kg and kl are the relative permeabilities; µ is the phase
viscosity; K is the absolute permeability; P is the phase
pressures; Ψ(k)

i is the mobility of component k in phase i:
Ψ

(k)
i ≡ Kkiρic

(k)
i /µi.

Parameter t∗ is called the global reservoir relaxation time
and is equal to the time of propagation of the perturbation
caused by a pressure variation, ∆P. Parameter ε is then the
ratio of perturbation propagation time to the external process
time t∗. Parameter ω is the ratio of the liquid mobility to the
gas mobility.

This model is called semi-stationary and can be math-
ematically derived as an asymptotic procedure based on
the small value of the stabilization time regarding the
macroscale process time, ε→0. In other words, the semi-
stationary model can actually be derived as a large-time
limit of the compositional model but only if a supplementary
parameter of a gas-condensate system is taken into account.
This second parameter respects a major property of any gas-
condensate system — a much higher mobility of the gaseous
phase than that of liquid, ω→0.

2.2 Streamline Splitting the Thermodynamics
and Hydrodynamics

The last N−2 equations (15c) play the basic role in deriving
the split thermodynamic model. This sub system may be
reduced to time-independent and space-independent differ-
ential equations along the streamlines:

dΦ(k)

dp
=

1
∆c(k)

dc(k)
g

dp
− 1
∆c(N)

dc(N)
g

dp
= 0, k = 1,N − 2 (17)

where
dc(k)

g

dp
≡ ∂c(k)

g

∂p
+

N−2∑
q=1

∂c(k)
g

∂c(q)
g

∂c(q)
g

∂p

This means that the full derivative with respect to pres-
sure along a fixed streamline is zero. We thus obtained a
system of ordinary differential equations which has a ther-
modynamic character, as the time and the space variables
are not explicitly present in it. This constitutes a principle
of HT-splitting (H-hydrodynamics, T-thermodynamics).

2.2.1 Split Thermodynamic Model

Let us unite the basic thermodynamic relations [12] and the
limit thermodynamic differential equations (17).

Equilibrium equations for chemical potentials:

ν(k)
g

(
p,

{
c(q)
g

}N

q=1

)
= ν(k)

l

(
p,

{
c(q)

l

}N

q=1

)
, 1,N (18a)

Equations of phase state:

ρg = ρg

(
p,

{
c(q)
g

}N

q=1

)
, ρl = ρl

(
p,

{
c(k)

l

}N

q=1

)
(18b)

Concentration normalization:
N∑

k=1

c(k)
g = 1,

N∑
k=1

c(k)
l = 1 (19a)

Variation of the total composition in an open system:

dΦ(k)

dp
=

1
∆c(k)

dc(k)
g

dp
=

1
∆c(N)

dc(N)
g

dp
, k = 1,N − 2 (19b)

where the form of the chemical potential functions ν(k)
i (p, ...)

is given.
2N+2 equations (18) contain 2N+3 variables: c(k)

g , c(k)
l , p,

ρg and ρl. The system is closed if the pressure is given. In
this case, this system determines all the concentrations and
phase densities as the functions of pressure. Due to this the
model is characterized as monovariant.

System (18) represents a limit thermodynamic model for
the compositional mixture moving in porous medium. This
system is totally independent of the hydrodynamic sub-
system. At the same time, this model is valid only along
the streamlines. The differential thermodynamic equa-
tions (19b) are uniform for any streamline, but the boundary
condition for them may be different for various streamlines.

In conclusion, we note that the last N−2 equations (15) in
the total limit compositional model (15) are transformed into
thermodynamic equations (19b) which no longer contain the
space and the time variables.

2.2.2 Split Hydrodynamic Model

The problem of gas-condensate flow in terms of the semi-
stationary model has the following form:

1
r
∂

∂r

(
rψgkg

∂p
∂r

)
= 0 (20a)

ρϕl
∂s
∂τ
+ ρϕl s

∂ζ(N)
l

∂τ
+ ϕg(1 − s)

∂ζ(N)
g

∂τ
=

ω

ε

1
r
∂

∂r

(
rψlkl

∂p
∂r

)
+

1
ε
ψgkg

∂p
∂r

∂ζ(N)
g

∂r
(20b)

with the initial and boundary-value conditions:

s|τ=0 = s0 (20c)

p|r=1 = p∗(τ) (20d)

rψgkg
∂p
∂r

∣∣∣∣∣
r=rw
=
εq(τ)

2
(20e)

where pressure, p∗(τ), and the flow rate, q(τ), are given
functions.

Here the functions ζ(k)
g and ζ(k)

l are called the component
neutralities and defined as:

dζ(k)
l ≡

1
∆c(k)

dc(k)
l , dζ(k)

g ≡
1
∆c(k)

dc(k)
g (21)
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Thus, the total limit compositional model is split into two
sub systems of a different origin:

- a closed thermodynamic subsystem (18), which deter-
mines all the thermodynamic variables as the functions of
pressure along the streamlines;

- a hydrodynamic subsystem (20) consisting of two equa-
tions: Equation (20a) describing the spacial pressure field,
and Equation (20b) describing the saturation transport; the
coefficients of this sub system depend on thermodynamic
variables and may then be calculated by using the solution
to the thermodynamic subsystem.

2.3 Asymptotic Solution along a Streamline

The split hydrodynamic part reduced to two differential
equations may be solved analytically in the case of a 1D
flow along streamlines. The method of solution is based on
the boundary layer phenomena arising in this system.

2.3.1 Boundary Layer Phenomenon

The problem of gas-liquid compositional flow is character-
ized by the appearance of a logarithmic fractional-power
boundary layer in the domain, which determines a non-
trivial saturation behavior. This boundary layer arises in the
vicinity of a source or a fracture and is caused by the con-
trast phase mobilities. This means that the ratio between the
liquid and gas mobilities is a small parameter,ω. Due to this
the solution can be constructed in the form of an asymptotic
expansion with respect to ω. This leads to various asymp-
totic expansions in various zones. We then develop a singu-
lar perturbation method based on matching the asymptotic
expansions in these zones.

2.3.2 Asymptotic Solution in the Differential Form

Using the singular perturbation method, we obtained the
asymptotic solutions in each zone. The pressure field is
invariant with respect to the boundary-value transformation
and has the forms:

p (r, τ; ε, ω) = p∗(τ) + εp11(r, τ) (22)

Here 
∂p11

∂r
=

q(τ)
2rψg∗kg∗

p11|r=1 = 0

(23)

Exterior expansion for saturation

The exterior asymptotic solution for the saturation has the
form:

s = s∗ + εsex
1 (24)

Function sex
1 is obtained from the exterior problem:

∂sex
1

∂τ
+ A∗sex

1 =
f1∗
r2
− f2∗ ln r (25)

with the initial condition: sex
1 |τ=0 = 0.

Herein,

f1∗ ≡
q2(τ)ζ(N)′

gp∗
4ρϕl∗ψg∗kg∗

f2∗ ≡ 1
2

s∗ζ(N)′
lp∗ + (1−s∗)

ϕg∗ζ(N)′
gp∗

ρϕl∗

 d
dτ

(
q(τ)
ψg∗kg∗

)

+
1
2

s∗ζ(N)′′
lp∗ + (1−s∗)

ϕgζ(N)′
gp

ρϕl


′

p∗

 q(τ)
ψg∗kg∗

dp∗
dτ

Let us note that here and after index “∗’’ means the value
at the domain boundary.

Interior expansion
The relative permeabilities define the structure of the inte-

rior expansion. The main property of the relative perme-
ability which significantly influences the structure of the
solution and the asymptotic expansions is the behavior in
the vicinity of the end-point. According to the percolation
theory, in this zone permeability behaves as a power-value
function of saturation and has a zero derivative. Therefore
the following non-linear relative permeabilities are valid:

kl(s) =

{
0, s ≤ sr,
γ(s − sr)β, s > sr, γ = const

(26)

where sr is the end-point which corresponds to the maximal
immobile condensate saturation.

The relative permeability for gas has the form:

kg(s) = 1 − as − O(s2), a = const (27)

Finally, the interior asymptotic solution is:

s = s∗ +
(
ε

ω

) 1
β

sin
1 (28)

Function sin
1 is obtained from the interior problem:

∂sin
1

∂τ
+ A∗sin

1 +C∗
∆2

r

∂sin
1

∂r
=

f1∗∆2

r2
(29)

where

A =

ζ(N)′
lp − ϕgζ

(N)′
gp

ρϕl

 ∂p
∂τ
, C = − ψlk′l (s)

2ρϕlψgkg

The characteristic size of the boundary layer:

∆ = ε
β−1
2β ω

1
2β (30)
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TABLE 1

Mixture composition

2.3.3 Numerical Simulation of the Asymptotic Solution

We shall construct the total asymptotic solutions to the com-
plex multicomponent gas-condensate flow. Let us consider
a 9-component mixture, presented in Table 1. The mixture
contains light, heavy and neutral components. We consider
a gas-condensate reservoir at the initial pressure 325 bars
and the temperature 90◦C.

A simulator has been developed using the Fortran lan-
guage, based on the suggested split asymptotic solution for
the depletion of any multicomponent gas-condensate reser-
voir. The next figure shows the results of simulation for the
pressure field.

After the initial perturbation the pressure field is fast sta-
bilizing, while remaining a quasi-stationary function. In
contrast, the saturation field does not reach any stationary
limit and increases with time. The saturations leads to vari-
ous asymptotic expansions in the characteristic regions with
respect to the perturbation parameter and the contrast mobil-
ity parameter. Let us use the logarithmic scale for saturation
to show such characteristic regions of the fluid displacement
mechanism better: Figure 7 for t = 300 days.

As seen, the asymptotic analytical solutions based on
the semi-stationary model provide a very fast and adequate
description of the reservoir flow. To obtain the same results
with the help of the full compositional model, we need much
more time for simulation. The ratio of the simulation time
for the asymptotic simulator and ECLIPSE is 1:1500. The
examined problem takes 2 days of simulation when treated
by the full compositional simulator ECLIPSE, whereas the
asymptotic simulator takes less then 2 minutes for the same
case. This is due to the fact that all the coefficients of
the asymptotic diferential equation describing the saturation
evolution depend on the boundary pressure only. So this
means that the thermodynamic part should be calculated
only at the exterior boundary of the domain. Moreover,
in the boundary conditions, the fluid behaves usually as a
closed thermodynamic system with no flow. Such behavior
may be effectively described by a classic thermodynamic
model.
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Figure 6

Pressure behavior: a) upper plot for t = 300 days; b) lower plot
for t = 1500 days.
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Saturation behavior: a) Eclipse solution (dotted curve); b)
asymptotic solution (solid curve).

Figure 8

Mechanism of fluid displacement near the fracture.
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The other result obtained by using the asymptotic solu-
tions is presented in Figure 8. This is the compositional
flow to a fracture calculated using the streamline technique
and HT-splitting. We constructed a rather arbitrary field of
streamlines oriented to the fracture, by assuming that the
fracture plays the role of a discharge, and the streamlines are
steady-state. At the boundary of the domain we assumed a
constant pressure (or quasi-stationary). The boundary satu-
ration and fluid composition where calculated by using the
classic PVT model. For an arbitrary streamline we reformu-
lated the compositional flow model in cartesian coordinates.
In the real reservoir pressure remains quasi-stationary rela-
tive to saturation, after the short period of stabilization. Due
to this the pressure maps can be calculated by the iterative
approach using deviation of the estimation.

CONCLUSION

The presented approaches are devoted to hastening reservoir
simulation. The first one deals with improving the method
of upscaling the permeability field. The second approach is
devoted to model compositional flow using the streamline
method.

In the section devoted to uspcaling, we suggested two
methods:
- a method enabling us to formulate the boundary-value

conditions for the cell problem,
- an analytical method of solution for the cell problem for

a fractured medium.
In the section dealing with the streamline technique, we

developed an asymptotic compositional flow model which
ensures a splitting between the thermo- and hydrodynamics.
As a result, such a splitting leads to an analytical or semi-
analytical solution for the multicomponent flow problem
along streamlines.
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