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A B S T R A C T

This paper is intended to test the capacity of a simple model based on fracture mechanics concepts to predict the
ultimate strength of notched hybrid carbon and glass fibers woven-ply reinforced PolyEther Ether Ketone (PEEK)
thermoplastic (TP) quasi-isotropic (QI) laminates under different temperature conditions. In such materials,
translaminar failure is the primary failure mode driven by the breakage of 0° and 45° oriented fibers in tension as
well as the formation of kink-band in compression. Single-Edge-Notched Bending (SENB), Open-Hole-Tensile
(OHT) and Open-Hole-Compression (OHC) specimens have been conducted at room temperature (RT) and at a
temperature higher than the glass transition temperature (Tg). The Critical Damage Growth model derived from
the Average Stress Criterion and Linear Elastic Fracture Mechanics (LEFM) have been applied to open-hole
specimens to determine the critical damage zone from which the fracture toughness in tension (0° and 45° fibers
breakage) KIc

tension and in compression (kink-band formation) KIc
comp. are estimated. In Single Edge Notched

Bending (SENB) specimens experience simultaneous tension/compression. From the estimation of KIc
tension and

KIc
comp., the ultimate strength of SENB specimens can be predicted. LEFM equations combined with the critical

fracture toughness in tension give relatively accurate results, suggesting that failure is driven by fibers bundles
breakage in tension.

1. Introduction

The design of composites structures with high gradient of stresses
has been extensively studied over the past fifty years. So far, there is no
clear cut answer regarding the failure criteria of laminated composites
as they may experience many failure modes (matrix cracking, fiber/
matrix debonding, fiber breakage, delamination) which may interact
and complicate the study of damage growth within the laminates' layers
but also between the layers. Thus, many analytical techniques ranging
from complex numerical methods to simplified semi empirical fracture
models have been proposed in the literature to predict the ultimate
strength of composite structures [1]. Among the semi empirical ap
proaches simple to implement [2 11], most of them deal with tension
or compression loadings. The most commonly used criteria are Point
Stress Criterion (PSC) and Average Stress Criterion (ASC) initially de
veloped by Whitney and Nuismer [10,11]. These criteria have been
successfully applied to composites by many authors [1,9,12,13]. Simi
larly, Waddoups et al. assumed the existence of damaged (inherent

flaw) regions whose size c is modelled as a through crack of constant
length developing at the edges of the hole in the transverse direction
[4,14]. Bowie et al. applied this model to isotropic and homogeneous
materials [15]. Based on an effective crack growth model [16], Bel
monte developed a Critical Damage Growth model for evaluating the
residual strength of open hole composite laminates [5]. This model is
physically meaningful, as it only requires the knowledge of the strength
of the unnotched laminates and an estimate of the mode I critical
fracture toughness of the laminate. Early in the sixties Wu showed that
the concepts of fracture mechanics developed for isotropic materials
can be applied to unidirectional composite materials provided a few
conditions are fulfilled such as the orientation of the notch with respect
to the orthotropic axis. In addition, the stress intensity factors of or
thotropic materials must be consistent with the isotropic case in stress
distribution and in crack displacement modes [17]. According to
Waddoups et al., the damage state of the material in the region of in
tense macroscopic stresses is unknown due to material heterogeneity
[14]. However, the material's fracture toughness is assumed constant
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Where vc represents the critical Crack Closing Displacement (CCD)
also known as the crack overlap displacement δc which is associated
with the formation of the kink band during the fiber rotation (see
Fig. 4b). Assuming that fibers rotation φ complies with the rotation of a
rigid perfectly plastic body under a compressive remote stress σremote,
the critical crack overlap displacement δc is equal to the kink band
width.

1.4. Objectives of the study

Based on LEFM equations, this study deals with the ultimate
strength of Single Edge Notched Bending specimens consisting of
carbon/glass/PEEK thermoplastic hybrid laminated composites. In
quasi isotropic laminates, failure is expected to be driven by the
breakage of 0° and 45° oriented fibers bundles in tension as well as the
formation of kink band in compression. The influence of temperature
on matrix ductility and fracture toughness is examined. In order to
predict the ultimate strength of SENB specimens experiencing both
tensile and compressive failure, it is necessary to evaluate the mode I
critical fracture toughness in tension KIc

tension and in compression KIc
comp.

whose values can be computed from the combined application of the
Average Stress Criterion and LEFM equations.

2. Materials, specimens and tests procedure

2.1. Materials

The laminated plates obtained by thermo compression are made up
of carbon (Tenax® E HTA40 3K) PEEK 5HS woven plies prepregs and
glass PEEK prepregs (see Table 1). The consolidated laminates consist
of 14 inner carbon PEEK plies and two outer glass PEEK plies [31,32].
In addition, the carbon and glass fiber fabrics are balanced in the warp
and weft directions. The stacking sequence of laminates is quasi iso
tropic: [(0/90)G,[(0/90),( ± 45)]3,(0/90)]s (with G index for glass fi

bers ply). The average thickness of laminates is about 4.5 mm.

2.2. Specimens

The test specimens were cut by water jet from 600×600mm2

plates. The machining of the single edge notches in SENB specimens

(see Fig. 5a) was done by means of a precision endless diamond wire
saw whose radius is 0.085mm. The initial notch length to specimen
width ratio a/w ranges from 0.2 to 0.5. In OHT and OHC specimens (see
Fig. 5b), central circular holes were drilled by means of a diamond tool
(drill bit), which is known to minimise damage near the hole [33].
Specimens have different ratio d w/ (ranging from 0.1 to 0.4) of the hole
diameter over the specimen width.

2.3. Methods and experimental set up

2.3.1. Thermo mechanical testing
Open hole tensile, compressive and bending tests were performed

using a 100 kN capacity load cell of a MTS 810 servo hydraulic testing
machine in displacement controlled mode and with a temperature
control system. Mechanical tests were applied to notched specimens at
Room Temperature (RT) and 150 °C. The studied composite material
being considered for applications in aeronautics (e.g. engine's nacelle),
it can be used up to 150 °C > Tg of C/PEEK (=143 °C), as detailed in

Fig. 4. (a) Evaluation of GIc from the evolution of the tensile stress along with crack closing displacement (b) Kinematics of fiber microbuckling in fiber-reinforced
polymer composites.

Table 1
A few properties of woven carbon and glass fibers reinforced PEEK elementary
ply at RT.

Carbon/PEEK Glass/PEEK

Ex (GPa) 60 22
Ey (GPa) 60 20
Gxy (GPa) 4.8 6.55

0.04 0.04
Tensile strength (warp) (MPa) 963 1172
Compressive strength (warp) (MPa) 725 1103
Nominal ply thickness (mm) 0.31 0.25
Tg (°C) 143 143

Fig. 5. Geometries of test specimens.



Ref. [34]. The tensile mechanical properties were determined according
to the European standards EN 6035 [35]. The mechanical properties of
C/PEEK and G/PEEK elementary plies are specified in Table 1 [31].

2.3.2. Full field measurements
A two dimensional Digital Image Correlation (DIC) technique was

used to measure full field displacements in notched laminates [36].
During thermomechanical loading, a high speed monochromic camera
Phantom Miro M310 records digital images at full resolution
(1280×800 pixels), and at a rate of 3200 frames per second. The
Green Lagrange strain fields were obtained by means of the VIC 2D
correlation software (provided by the company Correlated Solutions).
In the present work, full field measurements will be applied to SENB
specimens (with a ratio a/w = 0.3) to evaluate the equivalent crack
lengths associated with tension and compression atension and acomp. re
spectively (cf. section 1.2).

3. Results and discussion

3.1. Tensile and compressive macroscopic thermo mechanical responses

For both testing conditions, unnotched laminates are characterized
by an elastic behavior until failure in tension [32], and a slightly elastic
plastic behavior in compression. Based on the standards introduced in
section 2.1, the mechanical properties in tension and compression of
unnotched CG/PEEK quasi isotropic laminates can be determined de
pending on testing temperature (see Table 2). It appears that tem
perature has moderate influence (about −10%) on longitudinal stiff
ness, ultimate strength σunnotched

u and strain at failure in tension. In
compression, the influence of temperature is particularly significant on
the ultimate compressive strength and the strain at failure (about
−25%). From the macroscopic response standpoint, OHT specimens
also exhibit elastic brittle behavior at both test temperatures [32].
Temperature influences both macroscopic mechanical response and
properties of open hole specimens due to local softening of the PEEK
matrix at high temperature. As ratio d w/ increases, the residual strength
decreases by 30 50% suggesting that the stress concentration due to the
hole significantly influences its strength. Indeed, the hole sensitivity
(indicated in % on Fig. 6) represents the decrease in the ultimate
strength of OHT specimens with respect to the notch insensitive case
(computed from the net section and the ultimate strength of the un
notched specimens). It appears to be virtually the same at both tem
peratures. It therefore suggests that the effect of stress concentration is
temperature independent in CG/PEEK quasi isotropic laminates whose
mechanical tensile response is fiber dominated.

Under compressive loading, as was observed in unnotched speci
mens, the behavior of OHC specimens is elastic with noticeable plastic
deformation due to the formation of local plastic kink band as further
detailed in the next section (see Fig. 7). A ratio =d w/ 0.4 was specifi
cally chosen to promote the breakage of 0° fibers bundles and to avoid a
macroscopic buckling. For both temperatures, the residual strength in
Open Hole specimens is 65% lower than the one observed in unnotched
specimens subjected to compression. The influence of the stress con
centration being the same on the residual compressive strength, it tends
to prove that the hole sensitivity is not temperature dependent though
the local ductility of the PEEK matrix is significantly enhanced at

temperature higher than its Tg. However, the effect of a temperature
increase is significant on both macroscopic mechanical response and
properties of OHC specimens as a temperature increase promotes the
formation of plastic kink bands at high temperature.

3.2. Tensile and compressive failure behavior in open hole specimens

Before estimating the influence of matrix ductility on fracture
toughness in tension and in compression, it seems relevant to in
vestigate the effect of a temperature increase on the failure mechanisms
in Open Hole specimens. In unnotched quasi isotropic laminates sub
jected to tensile loadings, the mechanical load is primarily (about 73%)
borne by the 0° fibers bundles [4] hence justifying a low temperature
dependence of the mechanical response. In compression, the specific
damage mechanisms associated with compressive loading (local mi
crobuckling, formation of a plastic kink band) results from the locally
ductile behavior of the PEEK matrix which is enhanced by a tempera
ture increase. In open hole specimens, temperature does not influence
the hole sensitivity in tension and compression though the failure me
chanisms are different. In OHT specimens, the mode I translaminar
failure is the primary failure mode. It results from the breakage of fibers
bundles in 0° and 45° oriented plies as well as the pull out of 45° fibers
bundles in the 45° oriented plies (see Fig. 8). X Rays tomographic ob
servations show that the 0° and 45° oriented plies have different con
tribution to the fracture behavior of quasi isotropic CG/PEEK laminates
(see Fig. 9). A translaminar crack can be observed in 0° plies (see
Fig. 9a) suggesting the catastrophic failure of 0° fiber bundles initiated
from the stress concentration in the vicinity of the hole (see Fig. 9c). In
45° oriented plies, the fracture surface reveals that splitting

Table 2
Mechanical properties in tension and compression of unnotched CG/PEEK quasi-isotropic laminates depending on testing temperature.

Tension Compression

Ex (GPa) σx
u(MPa) εx

u (%) Ex (GPa) σx
u (MPa) εx

u (%)

RT 52.57 ± 0.58 784 ± 22 1.52 ± 0.04 49.25 ± 0.50 573 ± 13 1.75 ± 0.07
150 °C 48.30 ± 1.16 664 ± 29 1.33 ± 0.08 47.75 ± 1.20 434 ± 22 1.36 ± 0.04

Table 3
Mechanical properties of the equivalent orthotropic material – Quasi-isotropic
CG/PEEK laminates.

Ex (GPa) Ey (GPa) Gxy (GPa) νxy CI ( −GPa 1)

RT 49.58 49.58 15.76 0.289 0.0215
150 °C 45.55 45.55 14.48 0.266 0.0236

Fig. 6. Influence of temperature on the residual strength of Open-Hole-Tensile
laminates.

B. Vieille et al.



(longitudinal intralaminar matrix cracking) occurs in the 45° fibers
bundles located in the overstressed region near the hole (see Fig. 9b).
Further from the hole edge, 45° broken fibers can be observed as well as
45° fibers pull out along the edges. The onset of translaminar failure
occurs when the stress intensity factor in tension reaches its critical
value KIc

tension for which both 0° and 45° oriented plies seem to have a
specific contribution to the macroscopic translaminar crack (see Fig. 8).
Indeed, fracture surface is characterized by the breakage of 0° fiber

bundles in 0° plies, whereas it is associated with the breakage of 45°
fibers in 45° plies, suggesting that the translaminar cracks follow dif
ferent paths depending on fibers bundles orientation.

In OHC specimens, the microscopic observations of the specimen's
edges show that the fracture mechanisms are very different depending
on the testing temperature. At RT, the breakage of 0° fibers and dela
mination are the primary failure modes (see Fig. 10a). They ultimately
come along with the crushing of 0° fibers on the outer surfaces of the
laminates. A zoom on the damage area reveals that there is no sig
nificant micro buckling, but also confirms that failure is driven by the
breakage of 0° fibers bundles (see Fig. 11a). At 150 °C, the formation of
macroscopic plastic kink band is the primary failure mode (see
Figs. 10b and 11b). As indicated in section 3.1, the softening and the
ductile behavior of the PEEK matrix is exacerbated at T > Tg. Such
behaviors facilitate the initiation of micro buckling at the ply level,
resulting in the formation of plastic kink bands. As pointed out in
section 1.4, the kink band growth depends on two competing me
chanisms. Hole sensitivity being temperature independent in OHC
specimens, it suggests that the kink band growth is primarily driven by
the critical stress intensity factor in compression KIc

comp.. From the pre
sent analysis, it is therefore utmost important to evaluate KIc

tension and
KIc

comp. at both test temperatures to quantify the energy dissipated during
fracture.

Fig. 7. Mechanical response of Open-Hole specimens with different ratio d w/ subjected to compression: (a) RT – (b) 150 °C.

Fig. 8. Microscopic observations of Open-Hole specimens ( =d w/ 0.3) subjected
to tension.

Fig. 9. Tomographic observations of Open-Hole specimens (d w =/ 0.3) subjected to tension. 



3.3. Estimation of the critical fracture toughness in tension KIc
tension and in

compression KIc
comp.

The Crack Growth Damage model introduced in section 1.4 can be
applied either to Open Hole Tensile (OHT) or to Open Hole Compres
sive (OHC) specimens [3 5] in order to compute the fracture toughness
associated with the translaminar failure of 0° fibers in tension (fibers
breakage) KIc

tension and in compression (kink band formation) KIc
comp..

The main difficulty primarily consists of determining the length of the
critical damage zone c near the hole depending on the stress con
centration (hence the hole diameter) in both cases.

In OHT specimens, the damage zone length c obtained from the
Average Stress Criterion (see section 1.4) linearly increases as the ratio
d w/ increases (see Fig. 12). The standard deviation is relatively low at
both temperatures. Compared with the values computed at RT, the

fracture toughness in tension is about 10% lower at 150 °C (see Table 4
and Table 5), which is consistent with the influence of temperature on
the ultimate tensile strength discussed in section 3.2.

In OHC specimens, the idea proposed by Budiansky [28,29] was to
calculate the width of the kink band w (in mm) from the properties of

Fig. 10. Front and edge views microscopic observations of Open-Hole-
Compression specimens: (a) RT – (b) 150 °C.

Fig. 11. Zoom on the damage regions of Open-Hole-Compression specimens: (a) RT – (b) 150 °C.

Fig. 12. Influence of temperature on the damage zone length and the fracture
toughness in tension KIc

tension from OHT specimens with different ratio.d w/

Table 4
Estimation of the mode I fracture toughness in tension from Open-Hole CG/
PEEK laminates at RT.

d w/ σx
u(MPa) Damage

zone length
c (mm)

F c(1 ) F c( )2 KIc
tension

(MPa. m )

Mean

valueKIc
tension

(MPa. m )

0 784 ± 22 0
0.1 460 ± 8 1.27 1.26 1.01 37.16 41.13 ± 2.84
0.2 362 ± 13 2.23 1.30 1.04 41.07
0.3 304 ± 3 3.13 1.32 1.09 43.49
0.4 244 ± 4 4.04 1.33 1.17 42.79

Table 5
Estimation of the mode I fracture toughness in tension from Open-Hole CG/
PEEK laminates at 150 °C.

d w/ σx
u(MPa) Damage

zone length
c (mm)

F c( )1 F c( )2 KIc
tension

(MPa. m )

Mean

valueKIc
tension

(MPa. m )

0 664 ± 29 0
0.1 440 ± 10 1.78 1.19 1.02 39.72 37.76 ± 2.28
0.2 345 ± 3 2.14 1.31 1.04 38.66
0.3 284 ± 6 2.55 1.40 1.07 38.15
0.4 225 ± 4 2.69 1.50 1.11 34.49



both the constitutive elements and the unidirectional fiber reinforced
matrix composite (see Fig. 4b):

⎜ ⎟= = ⎛
⎝

⎞
⎠

w v
πd V E

τ
2

4 2c
f f f

y

1/3

(16)

df is the fiber diameter, Vf is the fiber volume fraction, Ef is the fiber
elastic modulus and τy is the in plane shear yield stress of the uni
directional fiber reinforced matrix composite (see Table 6). From the
computation of the mode I critical strain energy release GIc

comp. by Eq.
(13), it is therefore possible to determine the kink band toughness
KIc

comp. (see Table 7) for an orthotropic plate under plane stress condi
tions according to Eq. (5). The values obtained from the Budiansky
approach are similar to the ones computed from the CDG model in
troduced in section 1.4 (see Table 8). However the agreement between
the values seems to be better at 150 °C as the formation of kink band is
the primary failure mode contrary to what is observed at RT as dis
cussed in section 3.2. This failure mechanism could also explain the
decrease (about 20%) of KIc

comp. as temperature increases.

3.4. Fracture behavior of SENB specimens

The influence of temperature on the residual strength is limited
except for a ratio =a w/ 0.5 for which a temperature increase con
tributes to a 20% increase of the bending strength (see Table 9). The
influence of stress concentration on the residual strength (indicated in
% on Fig. 13) is lower at high temperatures with a maximum decrease
of 35 56% with respect to the notch insensitive case. Contrary to what
was observed in OHT specimens, it also suggests that notch sensitivity
is temperature dependent in SENB specimens, probably due to the
contribution of compressive failure (the formation ok kink band is
temperature dependent) to the failure in bending [32].

Based on a Digital Image Correlation analysis, the longitudinal
strain distribution at the surface of SENB specimens can be computed
from the Vic2D software. It appears that the upper part of specimens is
subjected to compression whereas the lower part is subjected to tension
(see Fig. 14). In addition, a tomographic observation of the 0° plies
reveals a local crushing of laminates’ upper edges in the contact area
with upper cylinder. As a w/ ratio increases (typically from a w/ =0.3),
the stress concentration factor Kt increases as well (see Fig. 13), and
promotes a translaminar failure dominated by the tensile breakage of 0°
carbon fibers. No visible damage can be observed on upper edges of
these specimens as the bending stress is lower than the crushing stress
[32]. As introduced in section 1.2, atension and acomp. are the equivalent
crack lengths associated with tension and compression respectively (see
Fig. 14), illustrating that SENB specimens experience both tensile and

Table 6
Features and properties of carbon-fibers reinforced PEEK laminates.

Fiber diameter df (μm) Fibers volume fraction Vf Fiber's Young modulus Ef (GPa) Compressive strength σx
u(MPa) Compressive modulus Ex(GPa)

RT 7 0.5 230 716 59.4
150 °C 7 0.5 230 542 57.6

Table 7
Estimation of the kink-band width from the Budiansky micromechanics ap-
proach applied to orthotropic C/PEEK laminates subjected to compressive
loading at RT and 150 °C.

τy(MPa) Kink-band width w (μm) KIc
comp. (MPa. m )

RT 112 44 30.59
150 °C 58 55 29.24

Table 8
Estimation of the mode I fracture toughness in compression from Open-Hole
CG/PEEK laminates at RT and 150 °C.

d w/ σx
u(MPa) Kink-band

length c (mm)
KIc

comp. (MPa. m )

RT Crack Growth
Damage model

0 573 ± 13 0
0.4 197 ± 3 2.65 35.08

Budiansky 30.59
150 °C Crack Growth

Damage model
0 434 ± 22 0
0.4 153 ± 7 2.89 27.25

Budiansky 29.24

Table 9
Prediction of the ultimate strength of quasi-isotropic CG/PEEK laminates subjected to three points bending at RT – Computation from the mode I critical fracture
toughness in tension at RT and 150 °C.

F a w( / ) RT 150°C Influence of T° on σx
u exp.

σx
uexp. (MPa) σremote

u predicted (MPa) σx
uexp. (MPa) σremote

u predicted (MPa)

0 731 ± 5 598 ± 14
0.1 1.01 632 ± 6 595 ( 6%) 562 ± 6 546 ( 3%) 12%
0.2 1.03 486 ± 10 429 ( 13%) 472 ± 19 394 ( 19%) 2%
0.3 1.05 377 ± 10 331 ( 14%) 361 ± 5 304 ( 19%) 4%
0.4 1.18 269 ± 6 254 ( 6%) 274 ± 2 233 ( 17%) +2%
0.5 1.42 162 ± 8 189 (+14%) 193 ± 4 174 ( 11%) +19%

Fig. 13. Evolution of the residual strength and the stress concentration factor in
SENB specimens: influence of temperature and initial ratio.a w/

B. Vieille et al.



compressive failure. Finally, based on the estimation KIc
tension and KIc

comp.

computed in section 3.3, the ultimate strength of SENB specimens σremote
u

can be predicted from Eq. (4) with a relatively good accuracy in com
parison with the results obtained from the critical fracture toughness in
compression (see Table 9 and Fig. 15).

4. Conclusions

In the framework of the Linear Elastic Fracture Mechanics, the main
purpose of this work was to predict the ultimate strength of Single
Edge Notch Bending quasi isotropic laminates consisting of hybrid
carbon/glass/PEEK thermoplastic composites intended to be used in
aeronautics in high temperature service conditions (T > Tg). The main
conclusions are summarized as follows:

• Translaminar failure is the primary failure mode in SENB specimens
which experience simultaneous tensile and compressive quasi brittle
failures. At both test temperatures, failure is driven by the breakage
of 0° and 45° oriented fibers in tension as well as the formation of
kink bands in compression.

• Compressive failure being primarily matrix dominated (hence tem
perature dependent), failure in bending (hence the corresponding
fracture toughness) is modified by a temperature increase.

• A simple model derived from fracture mechanics concepts combined
with a critical damage zone (determined from the Average Stress
Criterion) has been implemented. It was applied to quantify the
critical fracture toughness in tension KIc

tension and in compression
KIc

comp. based on experimental data obtained from Open Hole Tensile
and Compressive tests conducted at room temperature and 150 °C

Fig. 14. Evolution of the longitudinal Green-Lagrange strain distribution and the translaminar crack in SENB specimens at 150 °C (a/w = 0.3): (a) macroscopic
mechanical response – (b) tomographic observation of the 0° fibers plies

Fig. 15. Comparison of the predicted and experimental residual strengths of SENB specimens with different ratio a w/ : (a) from KIc
tension – (b) from.KIc

comp.

B. Vieille et al.



(T > Tg).

• The ultimate strength of TP thermoplastic composites structures is
simply predicted with a relatively good accuracy from the critical
fracture toughness in tension and compression.

The present study is expected to be a contribution towards the de
sign of high performance TP laminates for aeronautical applications
under high temperature conditions.
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