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Résumé. Due à la présence de compagnons orbitaux, les planètes et étoiles sont généralement soumises à des
forçages orbitaux harmoniques, comme les marées ou la précession. Ces forçages déforment les enveloppes fluides
en ellipsöıdes et peuvent générer des instabilités, comme l’instabilité elliptique. Dans le régime non linéaire, ces
instabilités peuvent entretenir une turbulence d’ondes et générer des champs magnétiques dynamos. Cependant,
elles ont été étudiées (numériquement et expérimentalement) uniquement pour des paramètres physiques très
éloignés des valeurs géophysiques et astrophysiques. Nous proposons une nouvelle approche numérique, valide
dans la limite des faibles déformations et des faibles diffusions. Nous avons implémenté cette méthode dans deux
codes numériques spectraux, linéaires et non linéaires. Nous reportons les premiers résultats obtenus pour le
forçage de marée, que nous comparons aux résultats de la littérature. Cette approche permet d’envisager l’avenir
de faire des simulations numériques directes plus réalistes des écoulements générés par les forçages orbitaux en
géométrie faiblement déformée.

Abstract. Celestial fluid bodies (e.g. planets, stars), orbited by gravitational companions, undergo harmonic
orbital forcings, such as tides or precession. These orbital forcings deform fluid bodies into ellipsoids and generate
fluid instabilities, e.g. the elliptical instability. The nonlinear outcome of these instabilities can sustain a wave
turbulence regime and drive self-sustained, dynamo magnetic fields. However, orbitally driven instabilities have
only been studied in the achievable range of parameters (i.e. large deformations and overestimated diffusive effects)
that is far from the expected regime in geo and astrophysics. We advocate the use of an alternative numerical
method to simulate fluid instabilities (i) in weakly deformed non-axisymmetric domains and (ii) in the weak
diffusive regime. We have implemented this method within two spectral codes, devoted to linear and nonlinear
computations. We report preliminary results benchmarked against the tidal forcing. This method paves the way
for more realistic numerical simulations of orbitally driven flows in weakly deformed fluid containers.

1 Introduction

Celestial fluid bodies often undergo orbital (i.e. tidal) harmonic forcings (e.g. tides, precession, libration),
due to the presence of orbital companions. These forcings deform fluid bodies into ellipsoids at first order.
The ellipsoidal deformation generates a pressure torque at the fluid boundary, which overcomes the viscous
coupling in the limit of vanishing viscosity in geo and astrophysics. This strongly affects the dynamics of
fluid layers. Orbital forcing could also sustain dynamo magnetic fields, as confirmed by proof-of-concept
numerical simulations [3,24,17]. However, numerical simulations of flows in deformed fluid containers
are difficult to carry out. Indeed, spherical containers are much easier to handle numerically than non-
spherical ones. Thus, numerical codes based on local methods, that can handled deformed geometries, have
been used. Finite-volume codes have been developed [4,21], as well as finite-element codes in spheroidal
geometry [25,26]. However, the latter authors considered only stress-free boundary conditions, which
can lead to difficulties with angular momentum conservation and to spurious behaviours in axisymmetric
geometries [9]. Simulations have also been carried out by using the Nek5000 code [6], based on the spectral
element method. Pseudo-spectral codes, relying on spectral Galerkin expansions in certain directions, may
be of interest. Indeed, local codes are generally less efficient than spectral codes, that benefit from (i)
the spectral convergence and (ii) a fast spectral transform to (generally) perform simulations with values
of dimensionless numbers closer to the astrophysical values. A self-consistent spectral method should be
based on ellipsoidal harmonics. Considering the effectiveness of spectral decompositions based on spherical
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harmonics [18], we may naively expect to obtain a generalisation in ellipsoidal domains. Unfortunately, a
straightforward extension is impossible [15]. Other spectral methods have been proposed [14,20,11], but
none of them deal with non-axisymmetric deformed containers.

We aim at presenting an innovative method, that can be implemented in any spherical spectral code,
to study the dynamics of orbitally driven flows in weakly deformed, non-axisymmetric rigid containers.
The paper is divided as follows. In §2, we introduce the physical model we are interested in and then
we present the foundations of our method than can be implemented in spherical geometry. Then in §3,
we benchmark our method on a test case (the elliptical instability). Finally, §4 ends the paper with a
conclusion and draws some research perspectives.

2 Formulation of the problem

2.1 Mathematical modelling

We describe an idealised model of orbitally driven flows, suitable for fluid mechanics’ studies, that mimics
the astrophysical problem. We consider a Newtonian, incompressible fluid of homogeneous density ρ∗ and
uniform kinematic viscosity ν. The fluid is enclosed within a triaxial ellipsoidal container, rotating with
the angular velocity Ω(t) in the inertial frame. Ellipsoidal semi-axes (a, b, c) are steady in the frame
rotating with Ω(t), defined in the following as the body frame. In this frame, the ellipsoidal boundary is
given by (x/a)2 + (y/b)2 + (z/c)2 = 1. We denote β0 = |a2 − b2|/(a2 + b2) ≥ 0 the equatorial ellipticity
and Ωs the typical fluid angular velocity. We choose a typical length R∗ as length scale, Ω−1

s as time
scale and R∗Ωs as velocity scale. For the sake of concision, the dimensionless variables are noted as their
dimensional counterparts. The dimensionless, incompressible, governing equations for the velocity field v
are in the body frame

∂v

∂t
+ (v · ∇)v + 2 Ω(t)× v = −∇P + Ek∇2v + r × dΩ

dt
, ∇ · v = 0, v · n = 0, (1)

where n is the unit outward vector normal to the ellipsoidal boundary, P a dimensionless reduced pressure
term and Ek = ν/(ΩsR

2
∗) the Ekman number (based on the fluid angular velocity). Equations (1) contain

the idealised physics to model the hydrodynamics of orbitally driven flows. They can be completed to
take into account buoyancy effects and magnetic fields if necessary [24].

2.2 The new method

We propose an innovative method, inspired by astrophysical studies [5], to solve equations (1) in weakly
deformed spherical containers. We assume that the fluid domain is subjected to a tidal potential, expressed
in the inertial frame by the gravitational potential Ψt. The latter potential is proportional to solid spherical
harmonics rlY ml (θ, ϕ), in which (r, θ, ϕ) are the spherical coordinates centred on the centre-of-mass of
the fluid body and Y ml (θ, ϕ) is the spherical harmonic of degree l and azimuthal order −l ≤ m ≤ l.
Note that the fluid boundary is exactly ellipsoidal if the tidal potential is any linear combination of tidal
components of degree l = 2. Then, we assume that the fluid is enclosed within a spherical domain that
mimics a stellar or planetary envelope. Thus, the tidal potential drives a radial flow at the boundary,
i.e. v · n = F (Ψt) where F is a known function [16]. This radial flow is an inhomogeneous boundary
condition, that is asymptotically valid in the limit of small deformations (e.g. β0 � 1) and vanishing
viscosities (Ek → 0).

Full equations (1) can be solved by converting the influx from the radial flow into a body force, see
p.76 of [8]. We determine a particular potential ’non-wavelike’ solution vp, having the properties

∇ · vp = 0, ∇× vp = 0 and vp · n = F (Ψt). (2)

Then, by setting v = vp + ṽ, the ’wavelike’ flow ṽ is solution of equations (1) by adding a body force
in the right-hand side. This decomposition is known as the the non-wavelike/wavelike decomposition in
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astrophysics [16]. This method has been validated to compute (linear and nonlinear) tidally forced waves
of small wavelength [16,5]. The method is a priori not directly suited to seek the leading order, forced
response of the fluid cavity to the orbital forcing. Indeed, this forced flow is a physically large-scale flow
U , which is sensitive to the boundary shape. However, in the particular case of the tidal component
Ψt ∝ r2Y 0

2 , associated with an orbital companion moving around the host fluid body on a circular orbit,
the particular (dimensionless) flow vp reduces to

U(r) = (1− Ω0) [−(1 + β0) y x̂ + (1− β0)x ŷ] , (3)

with r = (x, y, z)T the position vector in the body frame and (x̂, ŷ, ẑ) the unit Cartesian vectors. It turns
out that this is the exact ellipsoidal basic flow in ellipsoids, solution of equations (1) with the orbital
angular velocity Ω = (0, 0,Ω0)T .

The above discussion suggests that we can split the total velocity field v as a basic flow U , that is
an exact solution of equations (1) in a deformed (e.g. ellipsoidal) fluid domain, and a perturbation u,
solution of the nonlinear equations in a spherical domain

∂u

∂t
+ (u · ∇)u + 2 Ω(t)× u = −∇p+ Ek∇2u− (u · ∇)U − (U · ∇)u, ∇ · u = 0, (4)

where p is the reduced pressure. This assumption should be valid in the limit of (i) small deformations
(e.g. β0 � 1), such that the deformed fluid domain tends to a sphere, and (ii) vanishing viscosities
(Ek → 0), such that perturbations of high spatial complexity (i.e. of small wavelength, that are barely
sensitive to the fluid boundary) are triggered. Then, equations (1) are supplemented by viscous stress-free
conditions at spherical boundaries

u · n = 0, n×
[
n ·
(
∇u + (∇u)T

)]
= 0, (5)

that are often assumed to be valid for the velocity field in astrophysics. We further impose a zero angular
momentum condition for u. Coupled with conditions (5), this is equivalent to fix a non-zero constant
angular momentum and stress-free conditions on the total velocity field U + u. Thus, we assume that
the angular momentum of the fluid is only carried on by the basic flow U . In ellipsoids, only large-scale
flows, that are linear in Cartesian space coordinates, have a non-zero angular momentum [10]. These
flows are filtered out within our framework. However, this assumption is a priori justified because they
are generally not the preferred unstable modes for geo and astrophysical parameters [1,22].

3 Test case: the elliptical instability

3.1 Linear, inviscid stability analysis

We investigate the linear, inviscid hydrodynamic stability of the tidal basic flow (3). This flow is prone
to the elliptical instability [12], i.e. a nonlinear parametric instability coupling two inertial waves of the
fluid with the basic ’elliptical’ wave flow. The elliptical instability can be studied with a local stability
analysis [22]. The largest inviscid growth rate σ can be obtained analytically in the limit β0 � 1. It reads

σ

|1− Ω0|
= max

θ0

1

4

√
(1 + cos θ0)

4
β2

0 − 4
[
2− 4

(
1 + Ω̃0

)
cos θ0

]2
, (6)

with Ω̃0 = Ω0/(1−Ω0) and 0 ≤ θ0 ≤ π an adjustable parameter chosen to maximise σ. In the asymptotic
limit β0 → 0, the elliptical instability only exists in the allowable range −1 ≤ Ω0 ≤ 3. However, formula
(6) shows that the elliptical instability is actually excited on a wider allowable range for finite values of
β0, as a result of geometric detuning effects (hidden in the optimisation over θ0). The elliptical instability
actually exists in the orbital range (β0 + 1)/(β0 − 1) ≤ Ω0 ≤ 3.

The emphasis is here to compare formula (6) with theoretical stability results obtained by assuming
spherical perturbations. We have extended the SIREN code [22], to handle arbitrary spherical pertur-
bations superimposed of the elliptical flow (3). We outline here the method [23,22]. The only (minor)
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(a) Global analysis (n = 10) (b) Local formula (6)

Figure 1. Areas of instability of the tidal flow (3) in the (β0,Ω0) plane. Resolution in the parameter space is
2002. Colour map shows σ/β0. Ellipsoidal semi-axes a =

√
1 + β0, b =

√
1− β0 in formula (3) and spherical

perturbations (a = b = c = 1). Grey dashed line Ω0 = (1 + β0)/(1 − β0) is the lower bound of the unstable
zone. White areas are (marginally) stable areas.

modification is that we handle flow perturbations bounded within a container with a different ellipticity
than the ellipticity of the ’basic’ container, in which basic flow (3) is an exact solution of equations (1).
We project the velocity perturbation onto an exact polynomial Galerkin basis, expressed in Cartesian
coordinates {x, y, z}, of maximum degree n. This basis is made of polynomial elements {pi(r)} , which
are divergenceless (∇·pi = 0) and satisfy the impermeability boundary condition (pi ·n = 0) at the outer
spherical boundary. For a given maximum degree n, the number of basis elements is n(n+ 1)(2n+ 7)/6
[22]. Then, we seek flow perturbations upon the tidally driven flow (3) as a linear combination of poly-
nomial elements, i.e. u =

∑
i αi pi with {αi} modal coefficients. This expansion leads to a generalised

eigenvalue problem, that is solved by using standard numerical methods. We obtain the largest growth
rate σ of the instability, that is a monotonic increasing function of n. Therefore, this method gives only
sufficient conditions for instability for a given degree n, and the growth rate converges to its maximum
value when n→∞.

We compare, in figure 1, formula (6) and our results computed with the modified SIREN code for the
degree n = 10. We find that the two stability maps are globally in good agreement. First, instabilities
in (a) exist only in areas in which they are expected from formula (6). Second, the largest growth rate
of spherical perturbations in (a) is identical to the one obtained in (b), that is an upper bond for the
inviscid growth rate of the elliptical instability in ellipsoids [22]. Then, one point is worthy of comment.
We have shown only the orbital range −3 ≤ Ω0 ≤ 0, which is representative of the worst possible range
for the validity of the method. Indeed, large-scale vigorous modes (e.g. spin-over modes n = 1) can be
strongly excited in the range −0.5 ≤ Ω0 ≤ 0, even when β0 � 1 [1,22]. This is no longer true outside of
this range, in particular when 0 ≤ Ω0 ≤ 3 [1,22]. We find that the growth rates are slightly increased (at
most by a factor two) when −0.5 ≤ Ω0 ≤ 0, due to the presence of these large-scale (spherical) modes
that are not modelled by the local analysis. However, outside of this range, the growth rates σ obtained
by considering spherical perturbations are quantitatively in excellent agreement with local formula (6).
Therefore, this comparison validates our method on the linear regime of the instability, at least in the
physically relevant range of parameters.

3.2 Numerical simulations

We now benchmark the nonlinear regime of the elliptical instability, by using direct numerical simulations.
Governing equations (4) are solved with the open source, parallel code XSHELLS [19,24]. It uses second
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Figure 2. Nonlinear simulations performed with the XSHELLS code. (a) Reynolds number Re as a function of
the equatorial ellipticity β0. Solid line is the scaling Re ∝ β0. (b) Three-dimensional snapshot of the velocity
magntitude |u| in the fluid domain. β0 = 0.08. The fluid rotation axis is along the Z axis.

order finite differences in radius and a spectral spherical harmonic expansion [18]. The time-stepping
scheme is of second order in time, and treats the diffusive terms implicitly, while the nonlinear and
Coriolis terms are handled explicitly. We have extended the XSHELLS code to handle arbitrary steady
basic flows U(r). All simulations were performed at Ω0 = 0 and Ek = 10−4, for several values of the
equatorial ellipticity β0 � 1. The spatial discretisation uses Nr = 224 radial points, lmax = 128 spherical
harmonic degrees and mmax = 64 azimuthal wave numbers. We made sure that our simulations are
numerically converged by varying the spatial resolution.

To quantify the nonlinear outcome of the instability, we compute the kinetic energies

E(u) =

∫
V

|u|2

2
dV and E(U) =

∫
V

|U |2

2
dV, (7)

with V = 4π/3 the dimensionless volume of the sphere. Then, we compute the Reynolds number of the
nonlinear flow u as Re = Ro/Ek, with Ro =

√
E(u)/E(U) the Rossby number. In figure 2 (a) we

show that the evolution of Re as β0 varies. The nonlinear regime of the instability is well captured in
our simulations. Indeed, Re scales as β0 [7] and the saturated energy level is in good agreement with
published global simulations [24], yielding Re/β0 ∼ 104. Saturated flows, that are symmetric with respect
to the equatorial plane, can be predominantly columnar (i.e. aligned with and almost invariant along the
axis of rotation) [2] or three-dimensional, possibly due to nonlinearly interacting waves [13]. The latter
nonlinear regime is illustrated in figure 2 (b).

4 Conclusion and perspectives

We have proposed a new method to perform spectral simulations of orbitally (i.e. tidally) driven flows
in weakly deformed spherical containers, that are idealised models of celestial fluid bodies subjected
to harmonic orbital forcings. We have implemented this method within two available codes, namely the
(linear) stability code SIREN [22] and the (nonlinear) spherical code XSHELLS [19,24]. To benchmark our
approach, we have considered tidal flows and obtained a quite good agreement with previously published
results. These preliminary results pave the way for more realistic future numerical simulations, as outlined
in figure 3. On one hand, DNS in true ellipsoids are limited to moderate values Ek ≥ 10−5 and β0 ≥ 10−2

[6,7,17]. On the other hand, DNS performed with the XSHELLS code can use Ekman numbers as small
as Ek = 10−7 [19], that are closer to the expected values of celestial fluid bodies. Therefore, smaller
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Figure 3. Typical values of the Ekman number Ek and of the equatorial ellipticity β0 = |a2 − b2|/|a2 + b2| of
direct numerical simulations (DNS), laboratory experiments and celestial fluid bodies. Laboratory experiments and
DNS usng local methods in ellipsoids are limited to moderate values of Ek, typically Ek ≥ 10−5. Because of this
overestimated diffusion, the fluid boundary must be over-deformed to have a pressure torque that overcomes the
viscous torque. DNS using spherical codes but mimicking weakly deformed containers can alleviate this problem
to reach smaller values of Ek and β0 (red arrow).

values of Ek (and so of β0) than the ones we have used in this paper (β0 ≥ 2 × 10−2, Ek = 10−4) are
within reach. We will carry out new simulations in a more physically relevant range of parameters in a
near future.
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