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Abstract
Using Natural Steganography (NS), a cover raw image

acquired at sensitivity ISO1 is transformed into a stego im-
age whose statistical distribution is similar to a cover image
acquired at sensitivity ISO2 > ISO1. This paper proposes
such an embedding scheme for color sensors in the JPEG
domain, extending thus the prior art proposed for the pixel
domain and the JPEG domain for monochrome sensors.
We first show that color sensors generate strong intra-block
and inter-block dependencies between DCT coefficients and
that theses dependencies are due to the demosaicking step
in the development process. Capturing theses dependencies
using an empirical covariance matrix, we propose a pseudo-
embedding algorithm on greyscale JPEG images which uses
up to four sub-lattices and 64 lattices to embed information
while preserving the estimated correlations among DCT co-
efficients. We then compute an approximation of the av-
erage embedding rate w.r.t. the JPEG quality factor and
evaluate the empirical security of the proposed scheme for
linear and non-linear demosaicking schemes. Our experi-
ments show that we can achieve high capacity (around 2 bit
per nzAC) with a high empirical security (PE ' 30% using
DCTR at QF 95).

Introduction
The class of model-based (MB) steganographic

schemes, such as [13, 14], is a rational source of inspira-
tion for secure steganography since the goal is to embed
a payload while matching a statistical model. In the MB
method introduced by Sallee [13], the embedding is done in
order to preserve the underlying generalized Cauchy distri-
bution of each DCT coefficient. In MiPOD [14], the goal is
to minimize the statistical distortion of residuals modeled
in the pixel domain using a Gaussian distribution.

Natural Steganography (NS) is a another class of
model-based embedding schemes which embeds a stego
signal that mimics the statistical properties of the cam-
era shot noise. NS embeds a payload by adding noise (a
stego signal) to an image acquired at ISO1 to make it
look like the image was acquired at a larger ISO sensitivity
ISO2 > ISO1. This approach has been shown to achieve
both high capacity and statistical undetectability as long as
the embedder is able to correctly model the added noise.
The high security of NS schemes is also due to the fact
that NS uses side-information at the embedder [2]. How-
ever, contrary to other schemes relying on side information

such as SI-Uniward [9] or other side-informed implementa-
tions [6], the embedding capacity of NS is only limited by
the gap between the two ISO sensitivities.1

In the spatial domain, implementations of NS have
been proposed for monochrome sensors, which do not per-
form demosaicking, with development processes that apply
quantization, gamma correction [2], and downsampling [3].
In the JPEG domain, our recent work [5] highlighted that
models that only consider first-order marginal statistics
(histograms) work well for monochrome sensors but the
embedding is very detectable for color sensors.

This problem is addressed in this paper by first mod-
eling dependencies among 3×3×64 DCT coefficients from
3 blocks×3 blocks by estimating the covariance matrix of
DCT coefficients of shot noise of a given power. Then
using four different sublattices and computing conditional
probabilities by modeling the dependencies with a multi-
variate Gaussian distribution, we are able to compute the
embedding probability associated with each DCT coeffi-
cient. This probability will be later transformed into costs
and used with syndrome-trellis codes (STCs) [7] to perform
practical embedding in the greyscale domain.

Preliminaries
Throughout this paper, we use capital letters for ran-

dom variables and the corresponding lower-case symbols
for their realizations. Matrices are typed in upper-case
and vectors in lower-case boldface font. Matrix transpose
will be denoted with a superscript “t”.

We distinguish between three forms of steganographic
embedding: (classical) embedding, simulated-embedding
and pseudo-embedding. By an embedding scheme, we un-
derstand a practical embedding algorithm that embeds a
given payload in a cover.

In simulated-embedding, the embedding changes are
simulated according to a given selection channel – the prob-
ability π(k) of modifying the sample in the cover at loca-
tion k. For simulated embedding, practical embedding can
be realized using multilayered STCs [7] based on costs di-
rectly computed from the set of embedding probabilities
π(k), but is often not implemented to reduce the imple-
mentation time. We call this output simulated-stego or

1It should be pointed out that NS needs the RAW, unde-
veloped image while previous side-informed steganography only
uses a higher quality version of the cover, the so-called precover.
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simu-stego for brevity.
Finally, pseudo-embedding means that the practical

embedding is not possible with the proposed implemen-
tation, but that the output of the algorithm, that we call a
pseudo-stego, is statistically distributed as the stego image.

Pseudo-embedding at the photo-site level
We first recall how to generate a pseudo-stego signal

and how to perform pseudo-embedding on RAW image
photo-sites.

The embedding relies on the principle that the shot
noise values perturbing the photo-sites of a CCD or CMOS
sensor are assumed to be independent realizations of ran-
dom variables Ni,j that follow the heteroscedastic noise
model

N
(1)
i,j ∼N (0,a1µi,j + b1), (1)

where µi,j is the noiseless photo-site value at photo-site i, j,
while (ai, b1) are a pair of constants that only depend on
the ISO1 sensitivity and the specific sensor. The acquired
photo-site sample x(1)

i,j is thus a realization

x
(1)
i,j = µi,j +n

(1)
i,j (2)

of a Gaussian variable

X
(1)
i,j ∼N (µi,j ,a1µi,j + b1). (3)

Similarly, at ISO2 the realization is distributed as
X

(2)
i,j ∼ N (µi,j ,a2µi,j + b2). However, we can also write

the photo-site value of a stego image acquired at ISO2 as

yi,j = x
(1)
i,j +si,j , (4)

where Si,j is a random variable independent of the cover
and representing the stego signal necessary to mimic the
image captured at ISO2. It is distributed as

Si,j ∼N (0,(a2−a1)µi,j + b2− b1). (5)

The photo-site of the stego image is distributed as

Yi,j ∼N (µi,j ,a1µi,j + b1 + (a2−a1)µi,j + b2− b1).

Assuming that the observed photo-site is close to its ex-
pectation, i.e., µi,j ≈ x

(1)
i,j , we obtain

Yi,j ∼X
(2)
i,j . (6)

Equation (6) shows that the distribution of a stego
image pixel is the same as the distribution of a cover pixel
acquired at ISO2. Equation (4) is the pseudo-embedding
operation, which enables us to generate pseudo-stego con-
tent at the photo-site level.

Practically, the distribution of the stego signal in the
continuous domain takes into account the statistical model
of the shot noise estimated for two ISO settings, ISO1 and

ISO2, using the procedure described in [2]. The work pre-
sented in [3, 2] shows that for monochrome sensors, this
model in the spatial domain can be used to derive the dis-
tribution of the stego signal in the spatial domain after
quantization, gamma correction, and image downsampling
using bilinear kernels. We next study the properties of
the acquisition noise after the Discrete Cosine Transform
(DCT).

Pseudo-embedding at the DCT level
We now explain the basic development pipeline shown

in Figure 1 that enables us to generate pseudo-stego images
in the JPEG domain. It consists of the following steps:

• Using (4), a pseudo-stego image y is generated in the
RAW domain.

• y first goes through the demosaicking algorithm to
generate a vector yd. Here, we use popular algorithms
implemented by LibRaw [1], such as the bilinear inter-
polation, VNG, DCB, and AAHD. To preserve infor-
mation, the resulting image is sampled at 16 bits per
channel and stored, for example, in the TIFF format.

• Because we target embedding in grayscale images, we
then convert the color image into a grayscale image
by computing the luminance:

yl = 0.299yr + 0.587yg + 0.114yb, (7)

where yr, yg, and yb denote, respectively, the red,
green, and blue components (without loss of general-
ity we assume here that there is no color correction).

• The DCT transform is then computed on 8×8 blocks:

yt = DCT(yl). (8)

• Finally, the DCT coefficients are quantized using
quantization tables to generate a set of JPEG co-
efficients yq. We use standard quantization tables
parametrized by the JPEG Quality Factor (QF).

• Quantized coefficients yq are stored in a JPEG con-
tainer to generate a pseudo-stego image in the JPEG
format.

Modeling DCT coefficients
Rationale

In [5], the stego signal in the JPEG domain was mod-
eled as a set of independent modifications of each DCT
mode in the stego image. Practically, we used Monte-Carlo
simulations and 300 pseudo-stego images to blindly esti-
mate the empirical histogram of the stego signal for each
mode, and showed that the empirical security was high for
monochrome sensors but low for color sensors (particularly
for high JPEG QF), which was due to the fact that we did
not take into account dependencies between DCT coeffi-
cients during embedding.

Consequently, in the current paper we first analyze the
dependencies between DCT coefficients within one block
but also between blocks. In the development pipeline pro-
posed in Figure 1, dependencies between DCT modes can
only be introduced during the demosaicking process since
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Figure 1: Development of a pseudo-stego in the JPEG domain.

pseudo-embedding at the photo-site level and luminance
computation are both pixel-wise operations. Since most
demosaicking algorithms only involve a small window,2
we consider only the dependencies between neighboring
blocks.

In order to perform NS in the JPEG domain, we also
need to specify the joint distribution of the stego signal in
the DCT domain.

If we assume that the demosaicking operation is linear,
and since the stego signal at the photo-site level is Gaus-
sian, the stego-signal st at the DCT level is distributed as a
Multivariate Gaussian Distribution (MGD) St ∼N (m,Σ),
where m ∈ R9×64 and Σ ∈ R(9×64)×(9×64) represent the
mean and the covariance matrix of the MGD that models
the dependencies among all 9×64 DCT coefficients from a
local 3 block×3 block neighborhood.

If the demosaicking operation is non-linear, we hope
that the distribution will be close enough to a Gaussian to
guarantee practical security. This issue is investigated in
the Results section of this paper.

Covariance matrix estimation
In order to estimate the empirical mean m and the

covariance matrix Σ without explicitly knowing the devel-
opment pipeline, the following experiment has been con-
ducted:

• A constant RAW image with all photo-site values 212

is first generated. Note that the maximum value of
each photo-site for the sensors considered in this paper
is 214. The values are multiplied by 4 to be encoded
with two bytes.

• A stego signal s at the photo-site level associated for
a given pair of parameters (a,b) is added to the RAW
image to simulate embedding. The resulting RAW im-
age is stationary and can be used to estimate statistics
in the developed domain.

• We develop the image using the development pipeline
shown in Figure 1 to compute a vector of DCT coef-
ficients yt.

• A set of No observations are generated by extracting
24× 24 non-overlapping patches from the same de-
veloped image in order to gather 3×3 JPEG blocks.
Note that since the image is stationary, can do not
need generate several pseudo-stego images but instead
we gather observations from the same developed im-
age.

• The covariance matrix Σ of dimension 576× 576 is
finally computed from these observations. In order to
get an accurate estimation of the covariance matrix,
we used No = 6×104 observations.

2Usually a 3 × 3 window.

Covariance matrix analysis
The covariance matrix Σ and the mean m have

been computed for one color sensor (E1 action cam
camera, CMOS) and one monochrome sensor (Leica M
Monochrome Type 230 camera). A subset of the covari-
ance matrix, computed on only four adjacent blocks, is
illustrated for both sensors in Figure (2a) and Figure (2b),
respectively. The scan order for the four 8×8 DCT blocks
consists of a scan by rows within each block and a blockwise
scan across the four blocks as shown in Figure (2d).

Note that while the covariance matrix of a
monochrome sensor is diagonal, it exhibits many correla-
tions between coefficients for the color sensor. This ex-
plains the negative result reported in [5] and the need to
take into account dependencies between DCT coefficients
for color sensors.

By observing Figure (2a) together with the scan order
depicted in Figure (2c) and the decomposition of the ma-
trix into different types in Figure (2d), we can decompose
the entire covariance matrix into four types of matrices of
size 64× 64: one intra-block matrix and three inter-block
matrices:

• Intra-block 8×8 covariance matrices ΣI capture the
correlations between DCT coefficients of the same
block. They are located on the diagonal of the co-
variance matrix Σ. Note that DCT coefficients can
be both positively and negatively correlated.

• Horizontal inter-block covariance matrices of type Σ→
or Σ← hold correlations between horizontal blocks.

• Vertical inter-block covariance matrices capture cor-
relations between vertical blocks. They can be of type
Σ↑ or Σ↓.

• Diagonal inter-block covariance matrices capture cor-
relations between diagonal blocks. They can be of
type Σ↗, Σ↙,Σ↘, or Σ↖.

Note that with a crude examination of the covariance ma-
trix, one might expect that Σ↗ = Σ↙ = Σ↘ = Σ↖ = 0,
since theses blocks share only a few pixels in the cor-
ners, and that these matrices exhibit symmetries, such as
Σt
↗= Σ↙. Both conclusions are, however, generally incor-

rect, which can be explained using, for example, bilinear
demosaicking. For this case, inspect Figure (3) showing
the locations of photo-sites that are used to predict pixel
values within one block for bilinear demosaicking. Notice,
for example, that the photo-sites involved in the interpola-
tion process are different between for the right neighboring
block and the left. Additionally, the correlations involved
on the NorthEast and SouthWest neighboring blocks are
more important than on the NorthWest and SouthEast
neighboring blocks.

3
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(d)
Figure 2: (a) 256× 256 covariance matrix of DCT coef-
ficients of a color sensor and bilinear demosaicking (dif-
ferent sub-matrices are presented), (b) of a monochrome
sensor. The values have been thresholded to the range
[−6000,6000] for visualization purposes. (c): scan order
by block and coefficients. (d): types of sub-matrices rep-
resenting the nine covariance matrices introduced in the
text.

Why these correlations happen?
As seen in the previous section, inter-block correla-

tions between DCT coefficients are caused by demosaick-
ing, which averages adjacent photo-site values to interpo-
late the missing color values and thus creates correlations
between neighboring pixels and neighboring JPEG blocks.

The intra covariance matrices ΣI exhibit patterns in-
duced by the demosaicking algorithm itself (see Figure (2)).
Next, we analyze those inter-blocks correlations that ap-
peared to be consistent across various demosaicking meth-
ods. Figure (4) depicts for the DCT mode (1,0) the loca-
tions and correlations of the DCT modes in neighboring
blocks. Based on this observation, we can draw several
important remarks linked to the notions of frequential con-
sistency and spatial continuity:

• The most significant correlations correspond to the

Figure 3: Locations of photo-sites (dark colors) used to pre-
dict pixel values within one block using bilinear demosaick-
ing. Diagonal blocks are correlated either through common
photosites belonging to horizontal or vertical blocks (red
and blue photosite on the upper left and lower right cor-
ners) or through photosites belonging to the central block
(red and blue photosite on the upper right and lower left
corners or green photosite on the upper left and lower right
corners).

surrounding vertical and horizontal blocks. As ex-
plained in the previous section, this is due to the num-
ber of neighboring photo-sites involved in the interpo-
lation process.

• The largest correlations are for the same vertical or
horizontal frequency due to frequential consistency be-
tween adjacent blocks.

• The sign of the correlations represents the preserva-
tion of continuity between blocks in order to guarantee
spatial continuity. For example, alternating signs are
due to the topology of the modes. For mode (1,0), all
modes (i,0) have a white top line but the bottom line
alternates between white and black w.r.t. i.
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Figure 4: Analysis of the covariance matrix after bilinear
demosaicking: Intra and Inter-block dependencies for mode
(1,0) of the central block (in blue): positively correlated
blocks are in blue and negatively correlated blocks in red.

Figure (5) shows the arrangement of the most corre-
lated blocks based on the estimated covariance matrix after
bilinear demosaicking. We can see that these arrangements
preserve both frequential consistency and continuity.
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(a) (1,0) (b) (0,1) (c) (0,5) (d) (1,1)
Figure 5: Different arrangements of most correlated modes
in the 4-connected pixels for different modes for bilinear
demosaicking.

Relationship with previous art
It is worth pointing out that using joint or conditional

probability distributions among frequency domain pairs of
coefficients during embedding has recently been proposed
to improve the empirical security of JPEG steganography.
Li et al. [11] define a joint distortion function for JPEG
steganography to improve the empirical security of UERD
and J-UNIWARD against GFR and DCTR by using block
boundary constraints during embedding. Their idea relies
on the principle of block boundary continuity (BBC) in
frequency domain (DCT).

In order to preserve pair block realizations, the authors
used simultaneous modifications on inter-block neighbors.
A +1 on the DCT mode would imply a +1 on the horizon-
tally connected neighboring blocks and a −1 on the verti-
cally connected neighboring blocks. This allowed them to
be more consistent with block boundary dependencies. By
using the dependencies exhibited in the covariances matri-
ces, we can show that BBC assumptions are a specific case
of how to use our estimated covariance matrix for embed-
ding.

Regarding steganalysis, in JRM [10] the authors pro-
posed features built using “unions of submodels formed as
joint distributions of DCT coefficients from their frequency
and spatial neighborhoods” and thus make a classifier able
to take into account a wide range of statistical dependen-
cies. The authors also showed that the strongest depen-
dencies among DCT coefficients are those within the same
block and those between the closest neighboring blocks,
confirming our analysis of the covariance matrix.

Embedding algorithm (simulated)
This section presents the whole embedding algorithm,

which relies on lattice decomposition, scaling the covari-
ance matrix Σ, and sampling from MGD conditioned by
the already sampled neighborhood. Each step is detailed
below.

Decomposition into lattices
The embedding has to take into account three facts:

1. Intra-block dependencies within each 8×8 block.
2. Inter-block dependencies between one block, its four

horizontal and diagonal neighbors and possibly its
four diagonal neighbors.

3. Independence of blocks that are not neighbors.

Argument (1) means that we practically have to use 64
sublattices to perform embedding in one DCT block and

(2) and (3) mean that we need a maximum of four lat-
tices {Λ1,Λ2,Λ3,Λ4} to perform embedding on each DCT
block while respecting the correlations exhibited by the
estimated covariance matrix. The different lattices are il-
lustrated in Figure 7 together with the neighboring blocks
that are used to generate the stego signal. If we consider
that diagonal blocks can be generated independently, then
it is possible to use only three lattices. We are going to
describe the implementation for four lattices but an imple-
mentation using three lattices can be proposed by consider-
ing, respectively, Λ2 and Λ3 as Λ3 and Λ4 of the four-lattice
implementation.

Covariance scaling
The sampling mechanism uses the estimated covari-

ance matrix Σ described in the previous section, which is
computed for a stationary image with µ= 212.

For blocks of arbitrary photo-site values, we assume
that Σ is scaled w.r.t. these values, and, consequently, we
avoid estimating Σ for each block. This assumption is,
to some extent, valid as we shall see in the the “Results”
section. It is motivated by the fact that our development
pipeline is mostly linear. The covariance matrix associated
with each block is consequently Σ′ = γΣ, where γ repre-
sents the scaling factor given by:

γ= 0.2992(ax̄r + b) +0.5872(ax̄g + b) +0.1142(ax̄b+ b)
(0.2992 + 0.5872 + 0.1142)(a212 + b)

,

(9)

where x̄r, x̄g, and x̄b represent, respectively, the average
photo-site value of the red, green, and blue component of
the block that is sampled.

Simulated embedding on DCT blocks
We derive an embedding mechanism performing sim-

ulated embedding in the DCT domain and not directly
in the JPEG domain (i.e., on quantized DCT coefficients).
This due to computational reasons since it is faster to sam-
ple a joint-distribution on one DCT block than to sample
individually on each JPEG coefficient. Indeed, the lat-
ter necessitates computing 64 conditional distributions and
discretizing them. However, the approximation of the em-
bedded payload presented in the next section shows that
practical embedding is possible. Figure 6 shows the differ-
ences between our implementation and practical and sim-
ulated embedding, the simu-stego image is generated by
modifying DCT coefficients of the cover image.

Consequently, the embedding scheme directly gener-
ates the stego-signal on DCT blocks, i.e., on vectors of 64
DCT coefficients, by sampling according to a MGD and by
taking into account the already sampled coefficients on the
neighboring blocks. The computation of the conditional
MGD is done using the covariance matrix computed for
each block Σ′ and the Schur complement of the covariance
matrix Σ′ (see [12]).

In our experiments, we have directly sampled a whole
8× 8 DCT block Bi from the conditional distribution
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neighborhood used to compute conditional probabilities.

N (0,γΣk) where γ is the scaling factor computed in (9)
and Σk, k ∈ {1,2,3,4}, are 64× 64 covariance matrices
computed differently for each lattice Λk.

For Λ1, Σ1 is the covariance matrix of a DCT block
(B(1)

i ∼N (0,γΣ1)) where Σ1 are the first 64×64 elements
of Σ.

For Λ2, Λ3, and Λ4, respectively, we compute the con-
ditional joint distributions conditioned w.r.t. the previ-
ously sampled blocks in the neighborhood (see also Fig-
ure 7):

B(2)
i |B

↖
i ,B

↗
i ,B

↘
i ,B

↙
i ∼ N (mi,γiΣ2), (10)

B(3)
i |B

←
i ,B

→
i ,B

↓
i ,B
↑
i ∼ N (mi,γiΣ3), (11)

B(4)
i |B

←
i ,B

→
i ,B

↓
i ,B
↑
i ,

B↖i ,B
↗
i ,B

↘
i ,B

↙
i ∼ N (mi,γiΣ4),

(12)

where mi denotes the expectation computed w.r.t. the
previoulsy sampled blocks. Note that a practical embed-
ding will also rely on computing the conditional probabil-
ities on a fine grid of 64 lattices (one for each DCT coef-
ficient of the JPEG block) with STCs using q-ary embed-
dings whose costs are computed from the quantized prob-
ability distributions as executed in [2].

Embedding capacity
The overall purpose of this section is to estimate the

average payload size after embedding for different JPEG
quality factors. Since the variance of the stego signal re-
lies on the photo-site value (cf (5)), the embedded message
size is consequently different for each cover. Using optimal
coding, or close to optimal codes such as the STCs [7], we

can show that the payload size is close to the entropy re-
lated to the embedding change probabilities of each JPEG
coefficient.

The different elements involved in the computation of
the entropy are summarized in Figure 8, and are listed
below :

1. Computation of the marginal conditional distribution
p(Ci | Ci−1, . . . ,C1) w.r.t. the already sampled co-
efficients [ci−1, . . . , c1] and the covariance matrix Σ
associated with each lattice.

2. Discretization of the conditional distribution to con-
vert the pdf into a pmf πi(k) = Pr[Si = k].

3. Computation of the discrete entropy Hπi =
−
∑
k πi(k) log2πi(k).

4. Summation of the entropies computed for each coeffi-
cient.

We now detail each of these steps.

Sampling

pdf to pmf EntropyConditional
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Figure 8: Elements needed to compute the average capac-
ity.

Conditional distribution
With a MGD on i random variables of expectation

µ = [µ1, . . . ,µi]T and covariance matrix

Σ =
[

Σ(1:i−1)(1:i−1) Σ(1:i−1)i
Σi(1:i−1) Σii

]
,

the conditional probability p(Ci |Ci−1, . . . ,C1) is Gaussian
and distributed as N (µ̄i, Σ̄i) with :

µ̄i = µi+Σi(1:i−1)Σ
−1
(1:i−1)(1:i−1)(c−m), (13)

and,

Σ̄i = Σii−Σi(1:i−1)Σ
−1
(1:i−1)(1:i−1)Σ(1:i−1)i, (14)

for c = [c1, . . . , ci−1]T and m = [µ1, . . . ,µi−1]T .
It is important to notice that in order to compute

(µ̄i, Σ̄i) we need to have sampled already coefficients from
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other lattices or from the same block. For example, to
compute the distribution of the last DCT coefficient of a
block belonging to the 4th lattice, the dependencies be-
tween blocks of different lattices imply to have already
sampled 12 blocks of Λ1, 6 blocks of Λ2 and 4 blocks of
Λ3 together with 63 coefficients of the current block. Fig-
ure 9 shows the locations of the different blocks.
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Figure 9: JPEG blocks, associated with their lattice, in-
volved in the computation of the capacity for a block be-
longing to Λ4.

Computation of the probability mass function
The stego signal is quantized by the JPEG coding

algorithm, thus the conditioned probability density func-
tions must be converted into a probability mass function
that takes into account the quantization table associated
with a given quality factor. We denote here qi the dis-
crete quantized version the real valued random variable
(Ci | Ci−1, . . . ,C1) , qi is a discretized Gaussian random
variable with probability mass function :

Pr(qi = [µi] +k) = Pr(uk <Ci/Q≤ uk+1),
=
∫ uk+1
uk

1√
2πσ2

i

exp− (x−µi)2

2σ2
i

dx,

= 1
2 erf

(
uk+1−µi√

2σi

)
− 1

2 erf
(
uk−µi√

2σi

)
,

(15)

where µ = µ′/Q and σ = σ′/Q for parameters µ′ and σ′

before quantization associated with a quantization step Q,
and uk = [µi] +k−0.5.

Computation of the entropy
Given the alphabet A= [−K,. . . ,0, . . .K], the entropy

is directly related to the (2K+ 1)-ary alphabet. We per-
form a truncation of the pmf in order to match the length
of the (2K+ 1)-ary alphabet and denote πi(k) the proba-
bility for the ith coefficient to add k to the DCT coefficient.
According to the number of symbols and to the probability
mass function, the probability that for the ith coefficient
the stego signal produce +k on the coefficient is normalized
as :

πi(k) = Pr(qi = [µi] +k)∑
l∈A

Pr(ql = [µi] + l)
. (16)

Thus the entropy associated with the steganographic
signal for the ith coefficient can be written as follows :

H(K, i) =−
K∑

k=−K

πi(k) log2πi(k). (17)

Results
We evaluate in this section the capacity of the pro-

posed scheme, its practical security, and the impact of the
demosaicking algorithms and the alphabet size.

We used a switch from sensitivity ISO 100 to ISO 200
from one CMOS sensor from the Z CAM E1 action cam-
era as in [5]. If the demosaicking scheme is not explicitly
mentioned, bilinear interpolation is used.

Capacity
The tests presented have been conducted for an aver-

age photo-site value of 212 for a 14 bit sampling. We first
study the impact of the conditioning on the entropy and
the lattice index.

Figure 10 shows the evolution of the capacity in
bits/nzAC for each lattice and different alphabet size at
QF 95. It is important to notice that there is almost no
gain beyond pentary embedding (K = 2) and that condi-
tioning w.r.t. the 8 neighboring blocks (Λ4) decreases the
entropy by about 20% w.r.t. considering only intra-block
dependencies (Λ1). If the impact of using four lattices on
the embedding rate is small, we shall notice in the next
section that the impact of dealing with inter-block depen-
dencies in terms of practical security is important.
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Figure 10: Embedding capacity as a function ofK, QF=95,
bilinear demosaicking.

Figure 11 presents the impact of the JPEG QF on the
theoretical embedding rate for a range of QFs between 75
and 100, we also compare independent embedding which,
the approach proposed in [5], which is equivalent to use a
diagonal covariance matrix, with the 4 lattices implemen-
tation. The embedding rate stays large even for low qual-
ity factors because we measure it in bits per non-zero AC
DCT coefficient. It is also interesting to notice that taking
into account correlations between coefficients reduces the
capacity from 0.8 bits/nzAC at QF 95 to 2 bits/nzAC at
QF 75 while increasing also the practical security (see next
section).
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Figure 11: Embedding capacity as a function of QF for
K = 3, bilinear demosaicking.

Practical security
To assess the empirical security of the proposed

scheme, the stego images were generated from cover im-
ages captured at ISO1 = 100 while our embedding strives
to mimic the statistical properties of images captured at
ISO2 = 200. Steganalysis was performed using the DCTR
features [8] and the low complexity linear classifier [4] with
the threshold set to minimize the total classification er-
ror probability under equal priors, PE = minPFA

1
2 (PFA +

PMD), with PFA and PMD standing for the false-alarm and
missed-detection rates, respectively.

For SI-UNIWARD, the embedding rate is set to its
maximum, i.e., 1 bit per nzAC coefficient.

The results are shown in Table 1. Our implemen-
tation using lattice embedding increases the practical se-
curity w.r.t. embedding where the dependencies between
blocks and between coefficients (respectively denoted “In-
tro only” and “Independent embedding” in the table) are
not taken into account. The difference between using ei-
ther 3 or 4 lattices, i.e. considering or not that diagonal
blocks can be processed independently, also appears to be
important.

Additionally, we show that the practical security of
the scheme decreases with increasing JPEG quality fac-
tor. This is due to the fact that the generation of the
stego signal is still distinguishable from the sensor noise as
high quality JPEG compression preserves more complex
properties of covers. The adopted scaling of the covariance
matrix w.r.t. the RGB components (see (9)) also proba-
bly contributes to increased statistical detectability. The
comparison with SI-UNIWARD shows that this classical
embedding strategy is more detectable and has a smaller
embedding rate.

Non-linear demosaicking algorithms
One advantage of the covariance matrix estimation

over explicit calculus is that we can blindly extract the co-
variance matrices for any demosaicking scheme, including
development processes that are not publicly known. In this
experiment, we evaluate the practical security for three de-
mosaicking processes that are not linear (VNG, DCB, and
AAHD). Note that the stego signal is generally not follow-
ing a MGD for non-linear demosaicking. Table 2 presents

the impact of the demosaicking step on detectability. De-
pending on the process, the detectability varies quite sig-
nificantly, e.g., compare the classifier errors for AAHD and
VNG.

Interestingly, when we compare the detectability with
the statistical distribution of DCT modes (see Figure (12)),
we can see that for demosaicking schemes with high de-
tectability, such as AAHD, the empirical histogram and
the Gaussian distribution with same mean and variance
have very different distributions. On the contrary, VNG,
which increases the detectability only slightly over Bilinear
demosaicking, is associated with an empirical histogram
thatis close to the Gaussian distribution. Consequently,
one drawback of the proposed approach is that it cannot be
used with demosaicking algorithms that have strong non-
linearities with the exception of low QFs.
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Figure 12: Practical histogram of mode (7,0) vs. Gaussian
distribution for two different demosaicking algorithms.

Impact of the alphabet size
The impact of the alphabet size K is now measured in

terms of practical security. Table (3) presents the results
w.r.t the JPEG QF for the proposed implementation. No-
tice that using only ternary embedding makes the scheme
very detectable for QF 95. In fact, this setup required hep-
tary embedding to offer detectability comparable to that of
an infinite alphabet. On the contrary, ternary embedding
is already sufficient for QF 75.

Conclusions and perspectives
To conclude, we first have to mention that even if NS

in the JPEG domain may sound attractive from the the
capacity and the security point of view, its practical im-
plementation is not straightforward. As described in this
paper, in order to deal with the dependencies between DCT
coefficients, we need to use 4× 64 lattices. Furthermore,
embedding in each lattice requires computing costs from
the embedding change probabilities given by (15). Note
that these probabilities are also computed considering em-
bedding changes performed on other lattices in order to
take into account the MGD. This combination of mecha-
nisms is of course implementable, but the computational
complexity may be excessive since the complexity of com-
puting the conditional distribution increases as the com-
plexity of the Cholesky decomposition of the covariance
matrix, i.e., as O(n3) where n≤ 8×64.

However, we claim that there are interesting lessons to
learn from this study. First, we have shown that embed-
ding in images originating from a color sensor needs more
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PE (%) / Pseudo 4 Lattices 3 Lattices Intra Independent SI-Uniward,
JPEG QF embed. embedding embedding only embedding [5]

95 41.1 30.3 17.6 0.8 0.5 9.57
85 41.4 39.8 36.6 13.1 10.8 7.52
75 43.0 40.4 40.2 30.2 27.0 0.032

Table 1: Empirical security (PE in %) for different quality factors and embedding strategies on E1Base with bilinear
demoisaicking. DCTR features combined with regularized linear classifier are used for steganalysis.

QF / PE in % Bilinear VNG DCB AAHD
95 30.3 22.7 4.5 3.4
85 39.8 36.9 32.6 25.4
75 40.4 40.9 39.8 35.7

Table 2: Practical security for different demosaicking algo-
rithms (MGD model, 4 lattices).

QF /
K = 1 K = 2 K = 3

PE in %
95 2.8 / 3.5 19.3 / 23.6 29.5 / 39.3
85 39.8 39.8 39.8
75 40.4 40.4 40.4

Table 3: Practical security w.r.t. alphabet size K.Right
and left values are respectively for 4-lattice embedding and
pseudo-embedding when values differ. For QF 85 and QF
75, the 2 implementation give identical results.

sophisticated strategies than for a monochrome sensor. Ad-
ditionally, we have shown here that if the correlations be-
tween DCT coefficients are not taken into account, this
can have an important impact on practical detectability.
The need to take into account dependencies has also been
reported by others both in the pixel and JPEG domains.
Thus, we believe that our analysis will be important for de-
velopment more realistic synchronization strategies in the
future.

Another interesting conclusion is that the demosaick-
ing algorithm creates a statistical fingerprint that needs to
be modeled correctly in order to preserve undetectability.
If the demosaicking does not preserve the Gaussianity of
the stego signal in the DCT domain, our approach becomes
more detectable since the embedding scheme is unable to
fit the correct distribution.

Finally, we wish to stress for practical use that NS in
JPEG domain for low JPEG quality factors enjoys higher
security independently of the alphabet size (ternary is suf-
ficient) or of the demosaicking algorithm.
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