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Abstract. Borehole tiltmeters are widely used to continuously record small surface deformation of reservoirs and 

volcanoes. Because these instruments display unknown long-term drift, only short-term tilt signal can be used for 

monitoring purpose.  We propose a method to invert long-term time series of tilt data induced by strain variations 

at depth. The assumption that tiltmeter drift is linear over time is on its own insufficient to remove the drift and 

uniquely determine the deformation source parameters. To overcome this problem, we first invert the data with no 

constrain on the drift to obtain one particular solution among all admissible. Then, using the linearity of the forward 

model, we use the statistical properties of the drift distributions to restore the uniqueness of the solution. We 

illustrate our approach with four synthetic cases simulating volume changes of a reservoir. We demonstrate the 

efficiency of our method and show that the accuracy of estimated volume variation dramatically improves if low 

drift tiltmeters are used. 
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1 Introduction 

The deformation of the Earth’s surface reflects anthropogenic, tectonic and volcanic processes at depth (e.g., fault 

slip and/or mass transport) transmitted to the surface through the mechanical properties of the crust. To capture 

this ground deformation different geodetic instruments and techniques can be used. For instance, Global 

Navigation Satellite System (GNSS), Interferometric synthetic-aperture radar (InSAR) and levelling surveys 

commonly monitor millimetric motions of the ground. Complementary to these, tiltmeters locally measure the 

horizontal derivative of the vertical motion (hereafter denoted as tilt measurement) in one or two directions. These 

sensitive instruments are suitable for recording small deformations (Goulty, 1976; Agnew, 1986) that would be 
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beyond the resolution limit of other techniques. Unfortunately, these instruments are drifting with time, with drift 

rate amplitudes depending on instrument type, making these instruments often unusable for revealing slow 

deformation processes. 

Among the different kind of tiltmeters that have been developed (Agnew, 1986), long-base tiltmeters such as 

water-tube devices are sensitive to the rotation of a horizontal line with respect to the geoid and therefore measure 

the horizontal derivative of the vertical motion. Instead, vertical tiltmeters (pendulums) detect the rotation of a 

vertical line, therefore measuring the vertical derivatives of the horizontal component of motion. Near the free 

surface of the Earth, these two instruments essentially record the same signal. Nevertheless, due to shear 

deformation at depth, these signals may be different (Harrison, 1976). Vertical tiltmeters are generally installed 

close to the free surface in boreholes between 10 and 50 m depth (Jahr et al., 2006) which is relatively shallow 

compared to the depths of the usual strain sources for volcanoes, geological and geothermal reservoirs, which are 

usually larger than 1000 m. In such a case, a free surface condition can be assumed and the long-base and short-

base tiltmeters should measure the same rotation. Water-tube tiltmeters (10-500 m) are intrinsically stable due to 

the length of the sensor. To minimize subsurface effects, they are usually installed in deep tunnels therefore 

displaying residual drifts as low as 0. 1 µrad/yr (e.g. Boudin et al., 2008). By contrast, short-base tiltmeters are 

usually installed in boreholes and display higher drift rates of 1-100 µrad/y (Jahr et al., 2006, Chawah et al., 2015). 

Despite borehole tiltmeters are deployed as networks in volcanoes and geological reservoirs (e.g. Gambino et al. 

2014), their potential is far from being fully exploited partly because such tiltmeters are drifting in a completely 

unconstrained way, intrinsically to each instrument. In addition to drift, tiltmeters also display a time dependent 

noise that can be of various nature, such as environmental (e.g. Goulty, 1976; Gambino et al., 2014) or instrumental 

(Wu et al., 2015). The environmental noise is mostly induced by hydraulic loading, temperature effect or pressure 

gradient. These unwanted signals can be lowered when tiltmeters are installed in deep boreholes, to attenuate the 

amplitude of the noise. 

Although the resolution of borehole tiltmeters is as high as 1-5 nrad, tilt data are generally considered only during 

a short period of time due to the long-term drift and the noise. Indeed, to monitor long-term reservoir extraction or 

magmatic chamber inflation/deflation, tilt time series with low drift and signal-to-noise ratio are essential (Kohl 

& Levine, 1993; Wyatt et al., 1982). Previous studies (Ishii et al., 2001; Jahr et al., 2006) applied linear regression 

in tilt time series to remove the effect of linear trend that can be attributed undiscriminatingly to the sum of 

instrumental drift and physical processes. In this study, we propose to automatically separate the instrumental drift 

from the source signal through the solution of an inverse problem. To overcome the non-uniqueness of the solution, 

we developed a methodology to simultaneously estimate tiltmeters drift as well as strain source parameters from 
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tilt series. We illustrate our approach with synthetic cases simulating ground deformation induced by a Mogi-type 

source (Mogi, 1958) whose volume varies over 11 months. 

 

2. Tilt data parametrization 

We consider a ground deformation signal recorded by N tiltmeters in both x and y directions directions. For each 

instrument, the observed tilt 𝑑𝑜
⃗⃗⃗⃗ (𝑡) is the sum of the signal produced by the source 𝑑𝑠

⃗⃗⃗⃗ (𝑡), an instrumental drift 

𝑑𝑑
⃗⃗ ⃗⃗  (𝑡) and a cumulative noise 𝑐𝑛⃗⃗⃗⃗ (𝑡) as defined by Eq. (1): 

𝑑𝑜
⃗⃗⃗⃗ (𝑡) = 𝑑𝑠

⃗⃗⃗⃗ (𝑡) + 𝑑𝑑
⃗⃗ ⃗⃗  (𝑡)  + 𝑐𝑛⃗⃗⃗⃗ (𝑡) ,  (1) 

Similarly to gravimeters, the tilt drift can be due to numerous external and internal factors, making its estimation 

challenging. For spring-based gravimeters, this drift is usually found linear over a few days (Merlet et al., 2008) 

while an exponential models better the drift associated to supraconducting gravimeters for records longer than 10 

years (Van Camp & Francis, 2007). The determination of tiltmeters drift is much more difficult because of the 

lack of reference instrument or absolute system measurement, but some experiments report linear long term drift 

over several months of recordings (Sakata & Sato, 1986). Thus, we assume for each instrument that the drift is 

linear in time such as 𝑑𝑑
⃗⃗ ⃗⃗  (𝑡) = 𝑎  ∙ 𝑡   where 𝑎  is a constant drift rate vector (𝑎𝑥, 𝑎𝑦) representing the slope of the 

drift and 𝑡 is the time elapsed since the beginning of recording. Because the tilt measurement is relative, we assume 

that the drift is zero at the beginning of observation. The number of unknown drift parameters associated to the 

problem is therefore 2N. 

In the following, we consider that the source strain 𝑑𝑠
⃗⃗⃗⃗ (𝑡) depends linearly of the source parameter at depth. Strictly 

speaking, this is obviously not valid in most cases. Nevertheless, such an approximation is considered as reasonable 

and is widely used in many geophysical domains. For instance, the use of Green functions is widespread for 

modeling ground deformation induced by dislocation at depth (Okada’s model) or volume changes of a deep 

reservoir (Mogi or McTigue models). For one source, the time varying deformation captured by the tiltmeters can 

be written as a product of a known coefficient vector 𝛼  and a continuous time function corresponding to a strain 

source parameter 𝑝(𝑡) defined by Eq. (2): 

𝑑𝑠
⃗⃗⃗⃗ (𝑡) = 𝛼 ∙ 𝑝(𝑡) ,  (2) 

where 𝛼  is called the deformation model parameter and represent the contribution of a unit source parameter to 

the signal recorded by each tiltmeter.  Therefore, larger components in 𝛼  hold for instruments close to the source 
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indicating a higher sensitivity with respect to the source. Combining Eqs.1 and 2, it becomes obvious that an 

infinite number of pairs involving 𝑝(𝑡) and N drift rate vectors 𝑎   produce the same signal 𝑑𝑜
⃗⃗⃗⃗ (𝑡). Therefore, 

inverting the tilt data yields to a non-unique solution. Instead of converging towards a single global minimum with 

one set of parameters, the inversion process tends to a family of admissible combinations of parameters, all 

explaining the data equally well. Eventually, Eq. (3)  provides an admissible solution :  

𝑑𝑎
⃗⃗ ⃗⃗  (𝑡) = 𝛼  𝑝𝑎(𝑡) + 𝑎𝑎⃗⃗⃗⃗  𝑡 = 𝛼   𝑝∗(𝑡) +  𝑎∗⃗⃗⃗⃗   𝑡 ,  (3) 

where the subscript a expresses any of all admissible scenarios provided by the optimization, one of them being 

the desired scenario denoted by the exponent *. We use the statistical properties of the tilt parameters to recover 

the desired scenario, that is the closest admissible solution to the target. 

3. Optimization problem 

3.1 Global optimization 

We discretized the strain source parameter function 𝑝(𝑡) over M time steps, leading to a vector of length M. The 

total number of unknowns is therefore 2N + M, while the number of observations is 2N ∙ M . We follow a classical 

scheme of optimization to invert our tilt data to find an admissible set of both 𝑝𝑎 and 𝑎𝑎⃗⃗⃗⃗  . The free parameters are 

set to an admissible initial guess with no other a-priori knowledge. This initial set of parameters provides a first 

model 𝑑𝑚
⃗⃗ ⃗⃗  ⃗ using the constitutive Eqs. 1 and 2. Then, they are compared to the observations 𝑑𝑜

⃗⃗⃗⃗  through a functional 

denoted  𝐽. The stopping criteria is based on a target minimum value for the functional to be reached within given 

maximum number of iterations. Global optimization is necessary since we have no information on the convexity 

of the cost function and several local minima may be present.We apply a multi-criteria global optimization 

algorithm (Ivorra et al., 2013) which aims at improving the initial condition for classical gradient-based methods 

(Mohammadi & Pironneau, 2009). 

To build the global functional, we first compare for the N tiltmeters the model prediction 𝑑𝑚
⃗⃗ ⃗⃗  ⃗  to the observations 

𝑑𝑜
⃗⃗⃗⃗  at a given time 𝑡𝑖 . We use a weighted Euclidian norm as defined by Eq. (4): 

𝐹𝑖 = 𝐷𝑖
⃗⃗  ⃗

𝑡
Σ𝑖

−1𝐷𝑖
⃗⃗  ⃗ ,  (4) 

where Σ𝑖  is the covariance error matrix of each measurement and 𝐷𝑖
⃗⃗  ⃗ = 𝑑𝑜

⃗⃗⃗⃗ (𝑡𝑖) − 𝑑𝑚
⃗⃗ ⃗⃗  ⃗(𝑡𝑖). In order to construct a 

functional assembling the M time steps, we integrate 𝐹𝑖 over time using a piecewise linear approximation between 
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𝑡𝑖 and 𝑡𝑖+1. Therefore, the global functional gathering all observations and the corresponding models can be written 

as Eq. (5): 

𝐽 =  
1

𝑡𝑀+1−𝑡1
∑  

1

2
 [𝐹𝑖 + 𝐹𝑖+1][𝑡𝑖+1 − 𝑡𝑖]

𝑀−1
𝑖=1  ,  (5) 

The optimization is assumed to be successful whenever this functional is lower than the data uncertainties or while 

reaching the target minimum value, providing one optimal set (among an inifinite number of others) of 𝑝 and 𝑎  

fitting at best the measurements. 

3.2 The non-uniqueness problem 

At the end of the optimization, we obtain one set of admissible parameters  𝑝𝑎  and 𝑎𝑎⃗⃗⃗⃗  that predicts tilt 

measurements 𝑑𝑎
⃗⃗ ⃗⃗   close to our observations 𝑑𝑜

⃗⃗⃗⃗  . The residual tilt is defined by the difference between the 

admissible dataset and the observations over the M time steps: 

𝑅𝑀𝑆𝑡𝑖𝑙𝑡 = (
∑ ‖�⃗⃗� 𝑖‖

2𝑀
𝑖=1

𝑀
)
1/2

 ,  (6) 

This residual can be due to the noise 𝑐𝑛⃗⃗⃗⃗  embedded in the observations but also to some lack of convergence of the 

minimization process. Due to non-uniqueness, this admissible set of parameters provides a strain source history 

and a set of drift rates that can greatly differ from the target solution. Starting from the admissible solution (𝑝𝑎 ; 

𝑎𝑎⃗⃗⃗⃗  ) and Eq. 3, the desired solution ( 𝑝∗;  𝑎∗⃗⃗⃗⃗  ) must satisfy: 

𝑎∗⃗⃗⃗⃗ = 𝑎𝑎⃗⃗⃗⃗ − 𝑅 𝛼  ,  (7a) 

𝑝∗ = 𝑝𝑎 + 𝑅∗ 𝑡 ,  (7b) 

where 𝑅 =  
𝑝∗−𝑝𝑎

𝑡
 is a correction coefficient to be estimated. When varying 𝑅, we get admissible distributions of 

𝑎  and 𝑝 . Having no indication on the strain source history 𝑝(𝑡) , we cannot use Eq. 7b to infer a suitable value for 

𝑅. By constrast, Eq. 7a contains a-priori information concerning the source model (N components of 𝛼  ) and the 

drift parameters (N values of 𝑎  ). Because 𝛼  and 𝑎  datasets represent respectively the source effect (dependent to 

the instrument position with respect to source position) and the instrument properties, they must be statistically 

independent. Therefore, the value of 𝑅 in Eq. 7b  must be chosen to provide a desired solution 𝑎∗⃗⃗⃗⃗  displaying a lack 

of correlation with 𝛼 . Hence, the enforcement of 𝑐𝑜𝑣(𝑎∗⃗⃗⃗⃗ , 𝛼 ) = 0 leads to the following solution: 
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𝑅 =  
𝑐𝑜𝑣(𝑎𝑎⃗⃗ ⃗⃗  ⃗,�⃗⃗� )

𝑣𝑎𝑟(�⃗⃗� )
 ,  (8) 

meaning that 𝑅 is the coefficient of the linear regression adusting 𝑎𝑎⃗⃗⃗⃗   as a function of 𝛼 . Using  an example of the 

time inflation of a buried volumetric source at depth, we show how our methodology leads to recover both the 

actual drift rates and volumetric source history. 

4. Application to reservoir modeling 

4.1 Forward model 

The above optimization problem requires a linear relation between the source parameters and the observation. 

Therefore, this class of problem covers numerous elastic solutions (either analytical or numerical) used for 

reservoir modeling (Segall, 2010). Among them, the so-called Mogi model is the simplest and probably the most 

widely used analytical solution for a pressurized point source in a homogeneous elastic half-space (Mogi, 1958). 

The Mogi source is defined by its radius 𝑅, centered at a depth 𝑧𝑠  beneath the free surface at 𝑧 = 0, 𝑧 being 

counted positive upwards. A uniform internal pressure 𝑃 is applied to the boundary of the spherical source. The 

volumetric change associated with the deformation is given by ∆𝑉 =
𝜋

𝜇
 𝑃𝑅3 with 𝜇 being the shear modulus. The 

system is described by four variables, including the cartesian coordinates of the point source 𝑥𝑠⃗⃗  ⃗ = (𝑥𝑠 , 𝑦𝑠, 𝑧𝑠) and 

the volumetric change (∆𝑉) that plays the role of the parameter 𝑝 in the optimization problem (section 3 above). 

The Mogi model predicts 3-D surface deformation �⃗� = (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧) at a given observation point 𝑥 = (𝑥, 𝑦, 0). The 

ground tilt vector is given by the horizontal derivatives of the vertical displacement 𝑢𝑧 = (𝑥, 𝑦). The tilt 𝑑𝑠
⃗⃗⃗⃗  is 

therefore the slope of 𝑢𝑧, considering that tilt vectors are pointing in direction of decreasing vertical displacements. 

Therefore, 𝑑𝑠
⃗⃗⃗⃗ = −∇�⃗⃗� 𝑧 (�⃗⃗� 𝑧 being the vector made of the uz of all the tiltmeters at the time considered) and the tilt 

vector associated to a source is expressed by the following expressions: 

𝑑 𝑠 = 𝛼  ∆𝑉 ,  (9a) 

𝛼 =
3(1−𝜈)

𝜋

−𝑧𝑠 ∙ 𝑟

(𝑧𝑠
2+𝑟2)3/2  �⃗�  ,  (9b) 

where 𝜈 is the Poisson ratio (chosen to be 0.25), 𝑟 the horizontal distance √(𝑥𝑠 − 𝑥)2 + (𝑦𝑠 − 𝑦)2 between the 

source point and the observation point and �⃗�  the unit vector pointing from the source to the observation point. 

Even if all four variables (𝑥𝑠, 𝑦𝑠 , 𝑧𝑠, ∆𝑉) can be considered as optimization parameters, we choose to fix the position 

of the source and to only seek for the volumetric changes over time. 
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Fig. 1 Synthetic tilt produced by volumetric changes of a spherical source with an added drift of 2.4 µrad/yr and a Brownian 

noise, during 11 months of the experiment. a) Screenshot of the vertical displacement 𝑢𝑧 (color scale) and tilt signal (black 

arrows) induced by a volumetric variation at 𝑡=7 (∆𝑉 = 250 000 m3, red star on b) of a spherical source (yellow cross). b) 

Evolution of the targeted volumetric changes over one year c) Typical random walk noise associated to the tilt over 11 months 

d) Synthetic tilt signal with drift and noise in x-direction for one tiltmeter (green cross on Fig. 1a) 
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4.2 Synthetic data 

In addition to the tilt component induced by the source (Eq. 9a-b), we add to the synthetic signal some random 

tiltmeter drift and tiltmeter noise to generate 11 months of observations. We present hereafter the results of four 

different synthetic configurations involving different levels of drift and noise. Each tiltmeter is assumed to have a 

randomly chosen drift rate for both components using a uniform probability density function. In order to choose 

the range of probability for drift rates, we use values of available instruments: commercial borehole tiltmeters from 

Halliburton display a drift of 20-60 µrad/yr (Eric Davis, Pinnacle, personnal communication). According to this 

information, we use a distribution bounded by ±48 µrad/yr. Chawah et al. (2015) presented the prototype of a low 

drifting borehole tiltmeter displaying an apparent drift of 0.25 µrad over 2 months (±2.4 µrad/yr) and we use this 

value to define low drift distribution. Using these two values of drift rates, we aim at studying the behaviour of the 

optimization scheme to retrieve the instrumental and source parameters. Besides drift, we either consider no noise 

in the data (Cases 1a and 2a, see table 1) or, to be more realistic, we introduce Brownian noise in tilt data (Cases 

1b and 2b). We assign a standard deviation of the short term tilt measurements of 𝜎𝑠ℎ𝑜𝑟𝑡 = 5 nrads and assume 

that a Brownian noise is leading to a maximum standard deviation 𝜎𝑚𝑎𝑥  at the end of the experiment. Given the 

lack of knowledge about noise for the borehole tiltmeters cited above, we arbitrarily set the maximum standard 

deviation to 180 nrads after one year of experiment. The tilt covariance matrix is therefore built using the maximum 

standard deviation for both components of each tiltmeter (Kasdin, 1995): 

𝜎 = 𝜎𝑠ℎ𝑜𝑟𝑡𝑇
𝐴/4 ,  (10) 

where 𝑇 is the number of iterations for each data sample required to reach 𝜎𝑚𝑎𝑥  after 11 months and 𝐴 is the type 

of noise (i.e. 𝐴 = 0 for White noise and 𝐴 = 2 for Brownian noise). We estimate 𝑇 to 1440 using Eq. (10) for the 

specified values of 𝜎𝑠ℎ𝑜𝑟𝑡 and 𝜎𝑚𝑎𝑥 . The deformation is produced by a spherical source embedded in an elastic 

medium at 1500 m deep and centered in a 10x10 km observation domain. The induced deformation is recorded by 

50 tiltmeters randomly distributed (Fig. 1a). Synthetic data are monthly down-sampled to decrease the time size 

of the problem (M=12), corresponding to monthly time-intervals volume variations (Fig. 1b). The volume change 

is set to zero during the first 2 months, then increases linearly to 250 000 m3 the next 5 months and finally goes 

back to zero after 2 months. The vertical deformation induced by the volume variation of the source is therefore 

maximum at 𝑡 = 7 months. The corresponding synthetic ground deformation signal at this time is shown for case 

1b (low drift instrument and noise of 180 nrad, Fig. 1c). An example of daily time series for x-component of the 

tilt is shown Fig. 1d for the instrument marked with a green cross on Fig. 1a. 
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4.3 Results 

The configurations and results of the four experiments previously described are summarized in Table 1. After the 

optimization process, we converge towards an admissible solution with a set of parameters, ∆𝑉𝑎 and 𝑎𝑎⃗⃗⃗⃗  giving the 

lowest residual between synthetic and modelled data, as provided by the RMS value that integrates time series 

over the whole time period. Table 1 shows a coherent relation between instrumental properties (drift and level of 

noise) and 𝑅𝑀𝑆𝑡𝑖𝑙𝑡 . Indeed, the tilt residual only increases when adding noise to the data (cases 1b and 2b) but not 

when the level of drift increases (cases 2a and 2b). The standard deviation associated to the drift values from the 

optimization (𝑆𝐷𝑜) is significantly higher than the target one (𝑆𝐷𝑡) for cases 1a and b while for cases 2a and b, the 

standard deviations are scarcely different. This latter result is due to the initial large value of 𝑆𝐷𝑡 . This standard 

deviation is directly linked to the uniform distribution chosen to create drift associated to the synthetic tilt data. 

The inversion process provides a fairly homogeneous tilt residual over time for the whole set of tiltmeters (Fig. 

2a). Also, the spatial distribution of the residual values between synthetic and modelled tilt vectors shows a lack 

of spatial trend for both amplitude and azimuth (Fig. 2b). 

 

 Test 1a 1b 2a 2b 

Configuration 

Drift (µrad/yr) ±2.4 ±2.4 ±48 ±48 

𝑆𝐷𝑡  (µrad/yr) 1.92 1.92 38.61 38.61 

Noise (µrad/yr) 0 0.18 0 0.18 

Optimization 

 

𝑅𝑀𝑆𝑡𝑖𝑙𝑡  (nrad) 0.59 46.7 3.05 48.2 

𝑆𝐷𝑜  (µrad/yr) 9.40 5.60 38.75 38.58 

Flow rate trend 𝑉0̇  

(103 m3/yr) 
2.14 2.03 -181 -182 

𝑆𝐷𝑟  (µrad/yr) 1.92 1.94 38.37 38.41 

Flow rate uncertainty 

𝛿�̇�  (103 m3/yr) 
14.1 14.2 280 281 

Volume resolution 𝛿𝑉  (m3) 6 490 32 506 

 
Table 1 Configurations and results of the combination of global optimization and flow correction for four synthetic cases (1a-

b and 2a-b). The standard deviation associated to drift rate 𝑆𝐷𝑡  is given for the synthetic values of drift for cases 1 and 2. The 

𝑅𝑀𝑆𝑡𝑖𝑙𝑡  describes the mean residual in tilt measurements for all instruments over time. After the inversion, the standard 

deviation 𝑆𝐷𝑜 associated to the admissible values of drift rate is calculated for each case. The flow rate trend 𝑉0̇ represents the 

average slope of ∆𝑉 over the two first months and the two last months. The final standard deviation 𝑆𝐷𝑟 associated to the drift 
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is estimated after the flow correction. The flow rate uncertainty 𝛿�̇�  and the volume resolution 𝛿𝑉 are provided according Eqs. 

(11a-b)  

 

 

Fig. 2 Residual tilt provided by optimization for case 1b. a) Time evolution of the norm of the residual tilt vectors for all 

instruments. Red crosses correspond to residual shown in b. b) Tilt residual pattern at t=7 month (black arrows) superimposed 

to the uplift model (solid isovalues). The position of the spherical source is represented by a yellow cross. 

 

This admissible optimal solution is only one particular solution of the family associated to Eq. 3. Because no 

constrain is applied at this stage on the relation between 𝛼  (which expresses the dependency of ground 

measurements on their relative spatial distribution with respect to source location) and drift parameters 𝑎𝑎⃗⃗⃗⃗ , a clear 

correlation pattern occurs between these two quantities (Fig. 3). At the end of the inversion process, this correlation 

results in a volume variation history reflecting part of the instrumental drift (green dashed line in Fig. 4a). In order 

to cancel this trend which is caused by the non-uniqueness of the inverse problem, we enforce the lack of 

correlation between the deformation model parameters 𝛼  and the desired drift parameters 𝑎∗⃗⃗⃗⃗  by inserting the result 

of Eq. (8) in Eq. (7a). As a result, the components of 𝑎∗⃗⃗⃗⃗  display a variance similar to the one associated to the 

target drift coefficients (Fig. 3). In addition, there is an excellent agreement between the desired and target drift 

values with a residual value of 0.04 µrad/yr for case 1a (Figure 3a), 0.19 µrad/yr for case 1b (Figure 3b) and 4.19 
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µrad/yr for cases 2a and b (Figure 3c-d). Because this value is slightly smaller than the trend of the synthetic 

Brownian noise for cases 1a and b (that is in average equal to 0.2 µrad/yr, see Eq. (10) and Fig. 1c), we can 

conclude that the optimization process retrieves the sum of both deterministic and stochastic linear trends. Once 

the correction factor 𝑅 is determined, it can be used in Eq. (7b) to obtain the desired volume change ∆𝑉∗. However, 

for cases 2a and b, the linear trend introduced by the instrumental drift is largely greater than the linear trend of 

the synthetic Brownian noise resulting in a lower precision of drift determination. In such configuration, we do 

not fully retrieve the linear trend of the instrumental drift due to the higher variance associated to the target drift 

values. For cases 1a and b, sets of drift values obtained after the flow correction have standard deviation (𝑆𝐷𝑟) 

markedly equal to the target variance, while for case 2a and b, they slightly differ but remain closed to the expected 

standard deviation.  

 

Fig. 3 Relation between all components (x-y) of drift rate 𝑎𝑎⃗⃗⃗⃗  and model coefficients 𝛼  for all 4 cases of Table 1: a) case 1a, b) 

case 1b, c) case 2a and d) case 2b. Note the change in vertical scale between a-b and c-d. Black dots refer to the components 

of 𝑎𝑎⃗⃗⃗⃗  that display a clear correlation with 𝛼  components. After a linear correction using the value of 𝑅 provided by Eq. 8, the 
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components of  𝑎∗⃗⃗⃗⃗  are decorrelated with 𝛼  components. Target coefficients (blue crosses) are retrieved with a precision of 0.04  

µrad/yr fo case 1a, 0.19 µrad/yr.for 1b and 4.19 µrad/yr for cases 2a and b 

 

Because the target volume change after 11 months is zero, the flow trend rate 𝑉0̇ between initial and final values 

of ∆𝑉∗ should be zero. Therefore, the modelled value of 𝑉0̇ in Table 1 provides some insight about the precision 

of instrumental drift determination. Unsurprisingly, low drift tiltmeters retrieve precisely the final target volume 

(Table 1 and Fig. 4a). Similar values of 𝑉0̇ provided by experiments 1a and b (respectively 2a and b) are due to 

identical set of the drift coefficients used for these experiments. Beyond these particular solutions, one needs to 

provide a statistical bound of the solution uncertainty. Two kinds of estimates are needed (1) the volumetric flow 

rate resolution 𝛿�̇� (i.e. the accuracy of the linear component of the solution along time) (2) the instantaneous 

volume resolution 𝛿𝑉. The former quantity is associated to the Eq. 7a and to the precision of determination of 𝑅. 

The latter term 𝛿𝑉is linked to Eq. 9a and to the precision of the determination of 𝑑𝑠
⃗⃗⃗⃗  that depends in turn from 

𝑅𝑀𝑆𝑡𝑖𝑙𝑡 . Because of the linear character of these equations, uncertainties on  𝛿�̇� and 𝛿𝑉 associated respectively to 

𝑅 and ∆𝑉 are given by the following relations: 

𝛿�̇�  = 𝑅𝑀𝑆𝑎∗ (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)⁄  ,    (11a) 

𝛿𝑉  = 𝑅𝑀𝑆𝑡𝑖𝑙𝑡 (𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛)⁄  ,  (11b) 

where 𝑅𝑀𝑆𝑎∗ is the residual drift rate computed over all components of 𝑎∗⃗⃗⃗⃗ , 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 being the minimum 

and maximum values over all components of 𝛼 . The computation of these values in Table 1 indicates that the target 

volume solution is adequately covered by this a-posteriori uncertainty computation of 𝛿𝑅. Finally, we check by 

removing the trend associated to targeted and modelled evolutions that the residual volume of the solution over 

time is bounded by a-posteriori uncertainty 𝛿𝑉, that is of 490 m3 for case 1b (Fig. 4b). 
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Fig. 4 Evolution of volume variation ∆𝑉 along time for case 1b a) comparison of target volume variation (grey dotted line), 

modeled volume variation before and after flow correction (green dashed and black solid line), upper and lower modeled 

volume variation at 2- uncertainties (blue and red dashed lines); b) residual volume equal to the difference between target and 

modeled volume with the linear trend removed for both solutions 

 

5. Discussion 

This two-step optimization approach allows for estimating the strain source change in a reservoir monitored by 

subsurface tiltmeters displaying a compound of linear drift but also coloured noise. First, the resolution of the 

inverse problem with no constrain imposed on the drift rate leads to a family of solutions displaying an even 
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adjustment to the data. The quality of the adjustment is directly linked to the amount of non-linear noise generated 

(or recorded) by the tiltmeters and does not involve the drift rate. Afterwards, the uniqueness of the solution 

(volume change and drift rate) is enforced by minimizing the correlation between deformation model parameters 

𝛼  (that represents the sensitivity of the tiltmeters to volumetric change at depth) and drift parameters 𝑎  (that should 

be independent from source parameters). For this second step, the precision of volumetric change retrieval is 

directly linked to the average magnitude of drift. For the amount of deformation considered here (a maximum tilt 

of 15 µrad) over a 11-months duration, low drift tiltmeters (2.4 µrad/yr) allow for precise recovery of the trend of 

the volumetric solution with an uncertainty rate of 14 000 m3/yr for a depth source of 1500 m. By contrast, the 

target solution is poorly retrieved if moderate drift tiltmeters are considered. This experiment shows the interest 

for installing low drifting instruments if small amplitude signals are recorded and long term deformation is sought. 

On the contrary, a signal significantly larger than the drift signal (e.g. for large volcanic events) will be detected 

by moderately drifting tiltmeters. We also show that the instantaneous volume uncertainty is linked to the 

amplitude of Brownian noise associated to the tiltmeters but does not depend on average drift rate amplitude. 

Therefore, our approach provides a relation between the quality of the tiltmeters (in term of linear drift and noise) 

and the precision of strain source retrieval for a given network configuration. As far as long-term monitoring is 

concerned, the value of the short-term standard deviation of the tiltmeter (𝜎𝑠ℎ𝑜𝑟𝑡 in Eq. 10) presents little interest 

and must be completed by a quantification about the linear drift rate of the sensor as well as the magnitude of its 

time-dependent noise. 

To our knowledge, no method was previously available to mathematically separate tiltmeters drift from the surface 

deformation associated to a deep strain source over a monitoring time ranging from months to years. We overcome 

two difficulties: (1) the relatively large number of free parameters associated to both tiltmeters drift rates and a 

long strain source history and (2) the lack of a-priori knowledge on drift rates parameters distribution. At this stage, 

we found that splitting the minimisation step in the inversion problem and the retrieval of the drift parameters 

enforcing uniqueness makes the problem easy to adapt to different optimization strategies. We noticed however 

that this two-step method could be replaced by a global formulation. Indeed, removing the correlation between 

source and drift parameters inside the minimization algorithm can also be achieved by looking for drift parameters 

having the lowest variance. This multi-criteria problem can be solved introducing, for instance, a weighted 

functional linear combination of the model-data misfit and the drift parameters variance. 
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6. Conclusion 

In the study, we present a methodology to automatically determine the instrumental drift component of tilt data in 

order to address the challenge of long-term reservoir monitoring. The following generic key features can be 

retained: 

1. The approach is usable for any forward model involving a linear relation between source parameter (typically 

volume change) and surface deformation (tilt or strain). Therefore, all small strain elastic formulations involving 

non-spherical sources (Segall, 2010), opening dislocations (Okada, 1992), or even inhomogeneous distributions 

of the medium properties (Masterlark et al., 2016) are suitable. 

2. Our methodology relies on the assumption of the independence between source parameters and drift parameters. 

The enforcement of this statistical property provides a way for determining confidence intervals of parameters. 

This first study suggests that only low drift tiltmeters (ie, lower than a few µrad/yr) are useful for long term geodetic 

monitoring without additional geodetic measurements like GNSS or InSAR. 

3. Instrumental drift and noise can be extracted from the residual signal of a network of tiltmeters. Although we 

have chosen a low level of noise compared to instrumental drift, this study demonstrates that tilt residual critically 

depends on the non-linear instrumental behaviour. In addition, the analysis of tilt network residual using 

approaches developed for GNSS time analysis (Williams, 2003) may bring insight on long-term correlated noise 

of borehole tiltmeters that is poorly known so far. 

4. The methodology could be extended to account for other geodetic measurements like GNSS times series, InSAR 

and leveling in order to perform a model-data fusion to characterize deep reservoir deformation (e.g. Xu et al., 

2009; Wang et al., 2002). In this case, a multi-criteria functional would combine all geodetic measurements with 

their relative weights and error covariance as well as an estimation of the correlation between drift and source 

parameters. 

Our inverse methodology combined with the low drifting tiltmeters should pave the way for long-term tilt 

monitoring of concentrated or distributed sources of strain at depth, notably for geothermal areas, oil & gas 

reservoirs and volcanoes. Widely used in volcanic monitoring (e.g. Anderson et al., 2010; Anderson et al., 2015; 

Ferro et al., 2011; Gambino et al., 2014; Narváez Medina et al., 2017; Peltier et al., 2009; Poland et al., 2014; 

Ricco et al., 2018), borehole tiltmeters are commonly used to determine the source location and its associated 

volume variation. Yet, considering long-term time series of tiltmeters could improve other geodetic studies (e.g. 

GNSS or InSAR) that are usually conducted to follow the slow strain processes occurring on volcanoes (e.g. 

gravitational collapse of Mount Etna’s flank, Urlaub et al., 2018). Additionally, tilt networks are valuable to 

monitor hydraulic fracturing performed to increase permeability of non-conventional reservoir (Astakhov et al., 



16 

 

2012; Fisher & Warpinski, 2011; Warpinski, 2014; Wright et al., 1998; Wright et al., 1997). In particular, 

Warpinski (2014) described the current and future uses that tiltmeters network can provide when used in 

unconventional operating conditions. This includes: 1) mapping fracture’s network (Wright et al., 1998; Wright et 

al., 1997; Zhou et al., 2015), 2) orthogonal and horizontal fractures identification, 3) refracturation processes and 

4) fracture’s network evolution during fracking processes. Because the ground deformation induced by a single 

frack is so small (tens of nanometers, Astakhov et al., 2012), only tiltmeters and strainmeters can measure it. The 

exploitation of a reservoir involves several stages of hydraulic fracturation before resource extraction, inducing a 

long-term evolution of volume variations (up to 2-3 years). Therefore, it is mandatory to extract the instrumental 

drift from the data to monitor this deformation. Combined to InSAR studies, this would also permit to properly 

identify volumes that are stimulated and drained. Finally, geodetic studies have highlighted significant surface 

deformations for various geothermal reservoirs principally measured by InSAR (e.g. Ali et al., 2016; Eneva et al., 

2012; Falorni et al., 2011; Heimlich et al., 2015; Vasco et al., 2002; Vasco et al., 2013) but also using tiltmeters 

(Vasco et al., 2002a). Modelling experiments of Im et al. (2017) show that observed surface subsidence may largely 

result from thermal contraction but also from slow slip reactivation. Because of its long-term stability and its low 

cost, InSAR data are commonly used to monitor geothermal fields. To the contrary, tilt observations provide a 

dense temporal sampling associated to a high sensitivity. A key issue is therefore to remove instrumental drift from 

long term tilt series to overcome the issue of long term stability of tiltmeter.  Therefore, coupling InSAR and tilt 

data in the inversion would lead to a reservoir evolution including small transient events only detectable by high 

resolution tiltmeters. 
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