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Abstract

This survey paper overviews a large core of research results produced
by the authors in the past decade about reset controllers for linear
and nonlinear plants. The corresponding feedback laws generalize
classical dynamic controllers because of the interplay of mixed contin-
uous/discrete dynamics. The obtained closed-loop system falls then
within the category of hybrid dynamical systems, with the specific
feature that the hybrid nature arises from the nature of the controller,
rather than the nature of the plant, which is purely continuous-time.
Due to this fact, the presented results focus on performance and
stability notions that prioritize continuous-time evolution as compared
to the discrete-time one. Dwell-time logics are indeed enforced on
solutions, to ensure that the continuous evolution of solutions is
complete (no Zeno solutions occur).

After presenting a historical motivation and an overview of
the results on this topic in Part I, several results on stability
and performance analysis and on control design for general linear
continuous-time plants are developed in Part II. These results are
developed by exploiting the well established formalism for nonlinear
hybrid dynamical systems introduced by Andy Teel and co-authors
around 2004. With this formalism, by ensuring sufficient regularity of
the reset controller dynamics, we ensure robustness of stability with
respect to small disturbances and uncertainties together with suitable
continuity of solutions, generally regarded as well-posedness of the
hybrid closed loop. Throughout Part II, we provide several simulation
studies showing that reset control strategies may allow to attain better
performance with respect to the optimal ones obtained by classical
continuous-time controllers.

Finally, In Part III we focus on planar systems, that is reset closed
loops involving a one dimensional linear plant and a one dimensional re-
set controller. For this simple interconnection interesting stability con-
ditions can be drawn and relevant extensions addressing the reference
tracking problem are introduced, illustrating them on a few relevant
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case studies emerging in the automotive field.
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Part I

Background



1
Introduction

1.1 Historical overview

Reset controllers were proposed for the first time more than 50 years
ago by Clegg [1958], with the aim at providing more flexibility in lin-
ear controller designs and at potentially removing fundamental perfor-
mance limitations of linear controllers. The first systematic designs for
reset controllers were reported in the 1970’s by Krishnan and Horowitz
[1974], Horowitz and Rosenbaum [1975] and there has been a renewed
interest in this class of systems in the late 1990’s with Beker et al.
[1999b,a, 2001b, 2004], Chait and Hollot [2002], Chen et al. [2000a,b,
2001], Haddad et al. [2000], Hollot et al. [1997, 2001], Hu et al. [1997],
Zheng et al. [2000].

More specifically, a reset controller is a linear controller whose out-
put is reset to zero whenever its input and output satisfy an appro-
priate algebraic relationship. For instance, in Beker et al. [2004] and
the references cited therein, a class of reset controllers was considered
where the output of the controller is reset to zero whenever its input
is equal to zero. The Clegg integrator introduced in Clegg [1958] acts
like a linear integrator whenever its input and output have the same
sign and it resets its output to zero otherwise (see Section 1.2). Con-
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1.1. Historical overview 5

sequently, its describing function has the same magnitude plot as the
linear integrator but it has 51.9◦ less phase lag. This feature of the Clegg
integrator was used for the first time in Krishnan and Horowitz [1974]
to provide a systematic procedure for controller design exploiting this
device. Subsequently, a new reset device called the First Order Reset
Element (FORE) was introduced in Horowitz and Rosenbaum [1975],
essentially generalizing the Clegg integrator’s base linear dynamics by
also allowing for a nonzero real pole. Horowitz and Rosenbaum [1975]
also proposed a design procedure consisting of two steps. First, a non-
reset part of the controller was designed to achieve all design specifi-
cations except for the overshoot. Then, in the second step, the pole
of the FORE was selected to reduce the overshoot. It was illustrated
through examples and simulations that the controller in the first step
of the procedure could indeed be designed with lower phase margin,
which provided more design flexibility. A nice account of these results
and their relation to more recent developments in reset control is given
in Chait and Hollot [2002].

The first example that clearly illustrated the advantages of reset
over linear controllers was presented in Beker et al. [2001a] where a
reset controller was designed to achieve design specifications that are
impossible to achieve by any linear controller (see also Feuer et al.
[1997]). Indeed, for linear plants including an integral action, if the de-
sired rise time is sufficiently small, then the output must overshoot with
any linear controller. However, a reset controller is designed in Beker
et al. [2001a] that overcomes this fundamental performance limitation
of linear controllers. To date, this appears to be the only real situation
where reset designs have been shown to outperform the best possible
classical design, nevertheless, practical experience reveals that desir-
able closed-loop behavior is obtained when suitably embedding resets
in otherwise continuous-time control devices. Examples of such experi-
ences can be found, e.g., in the experimental applications reported in
Zheng et al. [2007], Fernandez et al. [2008], Wu et al. [2007], Li et al.
[2009], Bakkeheim et al. [2008], Guo et al. [2009], Panni et al. [2014],
Cordioli et al. [2015], Zheng et al. [2000], Carrasco and Baños [2012],
Li et al. [2011], Vidal and Baños [2010], Villaverde et al. [2011]. The
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difficulty in proving rigorous statements with reset systems was due to
the lack of suitable stability and performance analysis tools for systems
whose solutions may experience instantaneous jumps (this is the case
for an integrator reset to zero).

From a theoretical viewpoint, first attempts to rigorously analyze
stability of reset systems with Clegg integrators can be found in Hu
et al. [1997], Hollot et al. [1997]. In particular, an integral quadratic
constraint was proposed in Hollot et al. [1997] to analyze stability of
a class of reset systems. However, the proposed condition was conser-
vative as it was independent of reset times. BIBO stability analysis
of reset systems consisting of a second order plant and a FORE was
conducted in Chen et al. [2001] (see also Chen et al. [2000b]). The
proofs are based on an explicit characterization of reset times which
are proved to be equidistant under mild conditions. Using this fact,
the authors prove asymptotic and BIBO stability of the reset system
via the discrete-time model of the system that describes the system
at reset times only. However, the same approach could not be used to
analyze higher order reset systems. Stability analysis of general reset
systems can be found in Beker et al. [2004] (see also Hollot et al. [2001],
Chen et al. [2000a]) where Lyapunov based conditions for asymptotic
stability were presented and computable conditions for quadratic sta-
bility based on linear matrix inequalities (LMIs) were given. Moreover,
in Beker et al. [2004], BIBO stability of general reset systems was ob-
tained as a consequence of quadratic stability and an internal model
principle was proved for reference tracking and disturbance rejection.

In the last decade, perhaps triggered by the inspiring work of Beker
et al. [2004], a significant renewed interest in Lyapunov-based analy-
sis and synthesis for reset systems has been witnessed by the scientific
community. This survey paper reports on a research strand that started
around 2005, motivated by the results in Beker et al. [2004], wherein
some recent stability and performance analysis tools for hybrid dy-
namical systems have been brought to bear into the framework of reset
control systems. While many alternative and relevant approaches have
been developed during the last decade (a selection of them is briefly
overviewed in the following Section 1.5), we specifically concentrate
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here on a research strand that emerged from the hybrid Lyapunov
theory proposed in Goebel et al. [2012]. Some important differences
between what is reported here and alternative approaches is discussed
in the next sections, which explain the spirit of our approach to reset
control. To this end, we need to somewhat come back to the very ori-
gins of reset control and take a close look at the analog circuit proposed
by J.C. Clegg in 1958, which is discussed in the next section.

1.2 The Clegg integrator circuit

In 1958, J.C. Clegg published a paper (Clegg [1958]) where he pro-
posed a modification to the existing analog control schemes to reduce
the phase lag induced by a linear integrator. The relevance of Clegg’s
work was mostly targeted to analog control, because digital control sys-
tems were still non-existent in the late 1950’s, nevertheless, follow-up
works considered digital versions of the scheme proposed by Clegg. Let
us here consider the analog device proposed by Clegg and derive the
corresponding equations.

C

R vC
e xc

Figure 1.1: A linear analog integrator.

In the ideal case of using infinite gain operational amplifiers, it is
well known that a linear integrator can be implemented using a resistor
on the input path and a capacitor on the feedback path of the circuit, as
represented in Figure 1.1. The corresponding input/output relation of
the linear integrator can be written in the time domain as ẋc = − 1

RC e,
where we use xc for the integrator output, to resemble the fact that the
integrator state is the state of a feedback controller from the tracking
error e.

The modification proposed by Clegg corresponds to the scheme of
Figure 1.2 (which is reported here from Clegg [1958] with a sign in-
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C

R

e

C

R vC1

vC2

Rd xc

-

-

Figure 1.2: The “Clegg integrator”.

version at the output, for convenience of exposition). We describe the
Clegg integrator dynamics assuming that Rd � R and disregarding
the forward-bias voltage drop across the diodes, leading to the follow-
ing ideal relationships between voltage and current across capacitors,
resistors and diodes:

iC(t) = C
dvC(t)
dt

iR(t) = vR(t)/R

iD(t) =
{

+∞, if vD(t) > 0,
0 if vD(t) ≤ 0.

First note that by the infinite gain assumption of the operational
amplifier, the input voltages (marked by gray dots on the figure) are
always zero. Then, the two capacitors’ voltages satisfy vC1(t) ≤ 0 and
vC2(t) ≥ 0 for all times (otherwise the infinite current flowing in the
diodes would instantaneously discharge the capacitor). Moreover, when
e(t) < 0, regardless of the preceding voltage stored in the upper capaci-
tor, the current flowing in the two diodes and through the upper Rd will
(almost) instantaneously impose vC1(t) = 0. However, when e(t) ≥ 0,
the upper circuit will correspond to the linear integrator because the
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diodes will both be open (being subjected to a non-positive voltage).
Similarly for the lower circuit, if e(t) > 0, we will have vC2(t) = 0
and if u(t) ≤ 0 the circuit will integrate. Since, as commented above,
vC1(t) ≤ 0 and vC2(t) ≥ 0 for all times, given xc(t) := −vC1(t)−vC2(t),
the integrating and reset conditions for both circuits can be written as
the following hybrid dynamics ẋc = 1

RC
e, is allowed when xce ≥ 0,

x+
c = 0, is allowed when xce ≤ 0,

(1.1)

where we insist on the fact that the situation e(t) = 0 leads to an
undetermined behavior of the circuit mostly dependent on the effect of
unmodeled noise and uncertainties. In this model, we use the shorthand
notation ẋ for d

dtx(t, j) and x+ for x(t, j + 1) which will be formally
defined later on in the survey. The strategy that we prefer to adopt for
handling such undetermined cases is to allow for multiple solutions to
the dynamics (1.1) thereby considering in our model all the possible
scenarios. See the discussion given later in Remark 1.1.

One way to understand the hybrid model (1.1) for the Clegg inte-
grator is to call its first equation the “flow” equation and its second
equation the “jump” equation. The two conditions at the right hand
side become then the “flow” condition and the “jump” condition. At
any time, a solution to the hybrid system (1.1) may then flow or jump
depending on whether its value at that time belongs to the so-called
“jump set” (namely, the set of states for which the jump condition is
true) or it belongs to the “flow set”. In case both conditions are true,
then the solution will be free to choose whether flowing or jumping,
thereby establishing a peculiar non-uniqueness feature.

Further insight on equation (1.1) can be gained by observing that
e and xc can never have opposite signs. Indeed, if e ≥ 0, then v+

C2 = 0,
and since vC1 ≤ 0 for all times, exc ≥ 0. Similarly for the case e ≤ 0.
On the other hand, whenever e 6= 0, there will always be one circuit
integrating (the upper one if e > 0 and the lower one if e < 0) and
the other circuit will be forced to be at zero. For illustrative purposes,
Figure 1.3 represents the Clegg integrator state (solid curve) when the
input e is selected as a sine wave with unit frequency (dashed curve).
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Figure 1.3: Response of the Clegg integrator (solid) to a sine input (dashed).

Note that xc and e always have the same sign.
One way to interpret the dynamics (1.1) is to regard it as a linear

filter with a pole at the origin embedded with a special resetting rule
dependent on the value of the input and output of the filter at each
time. This interpretation is the starting point for the FORE general-
ization discussed in the next section.

1.3 Modelling issues with reset control

The model (1.1) derived in the previous section for the hybrid dy-
namics can be easily generalized to the following dynamics, where the
eigenvalue associated to the continuous dynamics is not necessarily at
zero: {

ẋc = acxc + bce, is allowed when xce ≥ 0,
x+
c = 0, is allowed when xce ≤ 0, (1.2)

the model of the Clegg integrator corresponding to ac = 0 and bc = 1
RC .

The generalized dynamical system (1.2) was introduced in Horowitz
and Rosenbaum [1975] and therein called First Order Reset Element
(FORE). In Horowitz and Rosenbaum [1975] and follow-up works, this
generalization was meant for stable filters (namely ac ≤ 0), but it will
be emphasized in this survey that this is not a necessary assumption
and indeed unstable selections (ac > 0) lead sometimes to desirable
aggressive control actions.

It should be acknowledged that models (1.1) and (1.2) do not corre-
spond to the models originally developed from the 1960s. Indeed, while
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FF

xc

e

F

J

J

JF

xc

e

F

Figure 1.4: The jump (grey) and flow (striped) sets for the model (1.3) (left), and
original model (1.2) (right) proposed by Clegg.

Clegg’s discussion in Clegg [1958] well referred to the dynamical behav-
ior of his analog circuit as a circuit resetting to zero whenever input
and output had opposite signs, his qualitative description incorporated
the following observation:

“Whenever the input voltage e passes through zero from
either direction, the output voltage is quickly dropped to
zero.”

This sentence propagated into the follow-up work of Horowitz and co-
authors, who never really wrote down equations but only described in
words this behavior specifying resetting the controller state to zero at
zero-crossings of the input. Much later in the 1990s, Hollot and co-
authors (see, e.g., Chait and Hollot [2002], Beker et al. [2004] and ref-
erences therein), and then also Baños and co-authors (see, e.g., Baños
and Barreiro [2011] and references therein) reported the following dy-
namical description of the Clegg mechanism:{

ẋc = acxc + bce, if e 6= 0,
x+
c = 0, if e = 0. (1.3)

The modified hybrid dynamics (1.3) was then used as the base-
line hybrid reset control mechanism implemented in the control logic
of modern digital control systems. Somehow the nice and intrinsic ro-
bustness properties of the analog circuit proposed by Clegg got lost
along the route towards digitalization of modern feedback control. In
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particular, dynamics (1.3) no longer describes the behavior of the cir-
cuit in Figure 1.2 for ac = 0 because solutions to (1.3) starting from
xc 6= 0 and exc < 0 do not lead to an instantaneous reset to zero of
the controller state xc. In particular, dynamics (1.3) is associated to
resetting in a so-called “thin set”, as opposed to dynamics (1.2) (and
the behavior of Clegg’s circuit) where resets are enforced in half of the
input-output space of the controller. This difference is well highlighted
in Figure 1.4 where the e axis has been reversed in anticipation for neg-
ative error feedback interconnection of the FORE with a linear plant.
In Figure 1.4 the sets enabling continuous flow of solutions are denoted
by F (the “flow set”) and the sets enabling discrete jump of solutions
are denoted by J (the “jump set”). Figure 1.4 also shows the possi-
ble different evolutions of two solutions starting from the same initial
conditions, for the two dynamics.

1.4 Using thin jump sets: existence of solutions and robust-
ness

The model (1.2) for the first order reset element (FORE) was first
introduced in Nešić et al. [2005], Zaccarian et al. [2005], where the
hybrid dynamical systems formalism of Goebel et al. [2009, 2012] has
been employed for the first time for representing the peculiar evolutions
of reset control systems whose state (notably, the controller state) may
be integrated following a differential equation during the continuous-
time flow phase, or may be reset to zero following a discrete update
law at the jump times.

er y
P

d

xc

-

Clegg

Figure 1.5: A Clegg integrator in error feedback interconnection with a linear plant.

The useful features of model (1.2) have been first characterized in



1.4. Using thin jump sets: existence of solutions and robustness 13

Nešić et al. [2005], Zaccarian et al. [2005], and are worth summarizing
here, with specific reference to the typical scenario of a Clegg integrator
(or a more general FORE) interconnected in error feedback with a
linear continuous-time plant P, as represented in Figure 1.5. When
focusing on stabilization only (that is, r = 0), the general dynamics
arising from using this model may be well represented by using the
notation in Goebel et al. [2009, 2012], and corresponds to the following
closed loop involving the overall state x := [ xpxc ], with xp being the state
of the plant P:{

ẋ = Ax+Bd is allowed when x ∈ F
x+ = Gx is allowed when x ∈ J ,

(1.4)

where A, G and B are suitable constant matrices and the jump and
flow sets correspond to the following symmetric cones, defined on the
basis of an output equation y = Cyx, and already shown at the right
of Figure 1.4 (remember that we are looking at a negative feedback
interconnection that motivates reversing the horizontal axis)

F :=

(xp, xc) :
[
xc
y

]> [0 1
1 0

] [
xc
y

]
≤ 0

 ,
J :=

(xp, xc) :
[
xc
y

]> [0 1
1 0

] [
xc
y

]
≥ 0

 .
(1.5)

The overall dynamics (1.4), (1.5) falls into the larger class of homoge-
neous hybrid systems (see, e.g., Goebel and Teel [2010], Tuna and Teel
[2006]), and will be the modeling framework adopted in this survey.
We emphasize that the jump and flow sets defined in (1.5) are closed.
This condition is necessary for the theoretical developments in [Goebel
et al., 2012, Ch. 7] to apply. Those results (which have also been used
in Nešić et al. [2005], Zaccarian et al. [2005] and later works) allow us
to establish existence of solutions from any initial conditions (there-
fore, some type of well posedness of the hybrid dynamics) in addition
to suitable robustness properties of asymptotic stability of the origin
for the error dynamics of the closed loop represented in Figure 1.5.

Remark 1.1. (Uniqueness of solutions) Note that asking that the sets
F and J be closed implies that there are some regions of the state



14 Introduction

space belonging to both sets. Therefore, solutions may jump or flow in
these regions, so that the solutions to the arising reset linear systems
may be non unique. Non uniqueness becomes a necessary notion when
wanting to establish robust results for the reset system, as a matter of
fact, when the feedback system is affected by (arbitrarily small) noise,
the state could be pushed in several different directions and different
solutions may correspond to different noise selections. These and other
robustness issues are addressed and solved in the hybrid framework
that we adopt here and in the stability results that we will rely on in
this survey. y

We emphasize now that the desirable existence and robustness prop-
erties highlighted above for the adopted modeling framework, are not
guaranteed, in general, whenever relying on the alternative model (1.3).
When using that model, and using the notation of some recent papers,
the closed loop in Figure 1.5 may be represented by the equations{

ẋ = Ax+Bd, if x 6∈ M
x+ = Gx, if x ∈M ,

(1.6)

whereM := {x : Cyx = 0, and (I −G)x 6= 0} (recall that we defined
y = Cyx).

Model (1.6), which is based on (1.3), is actually used in a large
number of results that can be found in the literature (see Bupp et al.
[2000], Chait and Hollot [2002], Beker et al. [2004], Baños and Bar-
reiro [2011], Barreiro et al. [2014], Ghaffari et al. [2014] just to cite
a few) but is associated to some subtle issues related to existence of
solutions. In particular, the following observation was already made
in Nešić et al. [2005] regarding [Beker et al., 2004, Theorem 1], which
establishes asymptotic stability of the origin under suitable Lyapunov
conditions. Consider however the reset system (1.6) with d = 0 and
A =

[
−1 0 0
0 −1 −1
0 1 −1

]
, G =

[ 1 0 0
0 1 0
0 0 0

]
, Cy = [ 1 0 0 ]. Then it is not clear

how to define solutions for an initial condition satisfying Cyx0 = 0,
(I − G)x0 = 0. Indeed, in that case x0 6∈ M and the reset is not pos-
sible at the initial time, which means that the dynamics can only be
governed by the flow equation (1.6) for small t ≥ 0. Moreover, integrat-
ing the differential equation (1.6) from the same initial condition yields
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Cyx(t) = 0 for all t and (I − G)x(t) = [ 0 0 x3(t) ]>, which is initially
zero but is nonzero for all small t (thus x(t) ∈ M for t > 0 and thus
flowing from the initial condition is not possible). Note that the condi-
tions of [Beker et al., 2004, Theorem 1] hold for this example by simply
selecting V (x) = |x|2, which yields V̇ = −2V and ∆V ≤ 0. However
the established stability conditions hold for a system that does not
guarantee existence of solutions from some initial conditions.

Due to the reasons above, and due to the lack of guarantee of ro-
bustness of asymptotic stability, we will restrict our attention to the
formalism in (1.4), (1.5) and will establish robust properties via the
Lyapunov tools of Goebel et al. [2012].

Remark 1.2. It should be further emphasized that in the model (1.6)
resets are only possible on the hyperplane Cyx = 0 (as long as some
flow has occurred since the last reset), whereas in our model (1.4), (1.5)
resets are enforced on a sector J . As a consequence, solutions to model
(1.6) flow also in regions of the state space where our model does not al-
low flowing solutions. The consequence of this fact is that when wanting
to use Lyapunov tools to prove asymptotic or exponential stability of
the origin, using (1.6) it is necessary to impose a “decrease along flows”
condition in almost all the state space, which then implies, by conti-
nuity, that this condition holds everywhere. Instead, with our model,
and using the Lyapunov tools of Goebel et al. [2012], we only need to
impose the “decrease along flows” condition in half of the state space
(well understood from Figure 1.4) and this leads to less conservative
conditions. In particular, even for just a Clegg integrator connected to
an integrator plant P = 1

s (this is the system considered in Beker et al.
[2001a], corresponding to A =

[ 0 1
−1 0

]
) the model (1.6) cannot lead to a

strict Lyapunov function proving asymptotic stability of the origin. We
will show in the next chapters that desirable stability properties can be
shown with model (1.4), (1.5) even in cases when the continuous-time
linear dynamics associated to matrix A is exponentially unstable, be-
cause the stabilization is obtained by way of the resetting mechanism.
This peculiar feature of stabilizing a plant by way of exponentially di-
verging inputs, that are eventually reset to some value leads to desirable
and aggressive control actions, is well illustrated by the simulations and
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experimental studies reported in the last part of this survey. y

1.5 An overview of recent reset systems results

In the previous section we clarified that this survey paper is focused
on robust reset systems, arising from the use of model (1.1) and the
arising closed-loop representation (1.4), (1.5).

This modeling framework has been used in a range of recent papers
to address various analysis and design questions for reset systems. Lya-
punov like conditions for L2 stability and exponential stability of reset
systems have been presented in Nešić et al. [2008b]. Our conditions in-
volve locally Lipschitz Lyapunov functions as opposed to continuously
differentiable ones considered in Beker et al. [2004]. This allowed us
to consider piecewise quadratic Lyapunov functions in verifying expo-
nential or L2 stability of reset systems (see Zaccarian et al. [2011]).
Some explicit Lyapunov functions have been computed in Zaccarian
et al. [2006], while the properties of reset set-point stabilizers and nec-
essary and sufficient conditions for exponential and L2 stability have
been reported, respectively, in Zaccarian et al. [2007] and Nešić et al.
[2008a]. LMI-based approaches for the H2 performance analysis and
L2 performance analysis of reset control systems have been proposed,
respectively, in Witvoet et al. [2007] and Aangenent et al. [2008] (see
also Aangenent et al. [2010]). Solution to the H∞ design problem has
been provided in Fichera et al. [2013]. Loquen et al. [2007] addressed
the presence of input saturation in reset systems while Tarbouriech
et al. [2011] suggested anti-windup actions to manage input saturation
effects. Finally, Loquen et al. [2008] studied stability of reset systems
in the presence of nonzero reference signals.

Nevertheless, there are several recent additional results in the lit-
erature, following somewhat different routes, but indicating that reset
control is yet an active research field attracting much scientific interest.
One route is devoted to strategies where the reset actions are triggered
at fixed time instants, often periodic. Stability and L2 -gain properties
have been addressed in Heemels et al. [2016] and discrete-time trigger-
ing conditions have been provided in Guo et al. [2012]. Nearly-periodic
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situations have been considered in Hetel et al. [2013]. More recently,
van Loon et al. [2017] proposed frequency-domain tools for stability
analysis of reset control system, with the objective to attract interest
of industrials for reset control strategies. In Zhao and Hua [2017], a
generalized first-order reset element (GFORE) has been studied.

Another route is dedicated to reset observers, as suggested in Paesa
et al. [2011, 2012], Zhao and Wang [2014]. Presence of time-varying
delays has been addressed in Baños and Barreiro [2009], Barreiro and
Baños [2010], Davó et al. [2017], and application to networked control
system has been suggested in Baños et al. [2014a]. Finally, reset logics
for improving the performance of high-gain observers have been studied
in Andrieu et al. [2016].

The main stream of studies relative to reset control systems has
been considering interconnection of reset compensators with linear
plants. There exist however a few works that explored the interconnec-
tion of reset control systems with nonlinear plants. A passivity-based
approach has been proposed in Carrasco et al. [2010]. Passivation-based
arguments are also used in Forni et al. [2011]. Stability analysis for non-
linear systems involving some resetting action at fixed time instants was
also provided in Rios et al. [2017].



2
A first planar closed loop

2.1 Hybrid representation for solutions

Before even addressing the problem of characterizing useful properties
of the solutions to reset linear systems (such as the Clegg integra-
tor (1.1)), it is mandatory to adopt a mathematical representation for
such solutions, which is capable of guaranteeing fundamental proper-
ties, such as existence of solutions for all times and perhaps robustness
of the stability results.

A first step in this direction corresponds to suitably defining the
domain of solutions for the reset system. In particular, the domain of
solutions xc to the Clegg integrator of Figure 1.2 will be taken to be
the Cartesian product of two domains: one, denoted by t, keeping track
of the elapsed ordinary continuous time and the other one, denoted by
j, related to the number of jumps that occurred since the initial hybrid
time (t0, j0) = (0, 0). This type of mathematical framework for hybrid
systems was introduced in Goebel et al. [2004] and has been first used
in Nešić et al. [2005], Zaccarian et al. [2005] in the context of reset
control systems.

According to the notion of solutions commented above, the Clegg

18
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integrator dynamics (1.1) can be written as ẋc(t, j) = 1
RC

e(t), is allowed when xc(t, j)e(t) ≥ 0,
xc(t, j + 1) = 0, is allowed when xc(t, j)e(t) ≤ 0,

(2.1)

where xc(t, j) represents the state of the Clegg integrator at time t, also
considering that j resets have occurred before time t. Note that with
this notation, if tj represents the time at which the j-th reset occurred,
then xc(tj , j − 1) represents the integrator value before the jump and
xc(tj , j) represents the integrator value after the jump. With this idea
in mind, one realizes that the domain of a solution is a suitable subset
of R≥0 × Z≥0 wherein continuous and discrete-time directions (t, j)
never evolve backwards. Upon deciding whether jumping or flowing,
each solution will then select its suitable domain.
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Figure 2.1: Response of Figure 1.3 in a hybrid domain.

In particular, according to the hybrid systems framework of Goebel
et al. [2009, 2012], and as represented at the left of Figure 2.1, a hybrid
time domain is defined as a subset of [0,∞)×Z≥0, given as a union of
finitely or infinitely many intervals [ti, ti+1] × {i} where the numbers
0 = t0, t1, . . . , form a finite or infinite nondecreasing sequence and
t1, t2, . . . are called “jump times”. The last interval is allowed to be of
the form [ti, T ) with T finite or T = +∞. As an example, Figure 2.1
represents the same response shown in Figure 1.3 with this notion of
solution. The dashed horizontal lines in the right subfigure represent
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the jump times tj (here corresponding to t1 = 2.2, t2 = 6.15 and
t3 = 9.6) and the red lines in both plots are the hybrid domain of the
solution xc. Throughout the rest of the paper we will always use the
shorthand notation ẋ for ẋ(t, j) and x+ for x(t, j + 1).

Following a similar generalization, we realize that we may represent
dynamics (1.4) as a hybrid dynamical system, under the assumption
that d is a locally integrable signal (even though in most cases a piece-
wise continuous selection should be enough). Under these mild assump-
tions on d, to guarantee existence of solutions (see Goebel et al. [2009,
2012]), it is sufficient to assume that F and J are closed sets (this is
the case, for example, if one selects them as the symmetric cones in
(1.5)). Then a solution x(·, ·) of the hybrid system (1.4), or its shortcut
representation given by

ẋ = Ax+Bdd, x ∈ F (2.2a)
x+ = Gx, x ∈ J , (2.2b)

is a function defined on the hybrid time domain dom(x) such that:
(i) for all j and almost all t such that (t, j) ∈ dom(x), we have

x(t, j) ∈ F , and ẋ(t, j) = Ax(t, j) +Bdd(t),

(ii) for all (t, j) ∈ dom(x) such that (t, j + 1) ∈ dom(x) we have

x(t, j) ∈ J and x(t, j + 1) = Gx(t, j).

Note that, following the well established notation in Goebel et al.
[2012], we dropped the sentence “is allowed when” from equations (1.4)
to obtain the compact notation in (2.2).

We may now be more precise about some notation that has been
already used in the previous paragraphs. We call equation (2.2a) the
“flow” equation and equation (2.2b) the “jump” equation. The two con-
ditions at the right are the “flow” condition and the “jump” condition.
The solution to the hybrid system will then flow or jump depending
on whether its value at that time belongs to the so-called “jump set”
(namely, the set of states and inputs for which the jump condition is
true) or it belongs to the “flow set” or even both. Note that if an ini-
tial state belongs to both sets then both flows and jumps are allowed,
which may lead to non-unique solutions.
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While the example treated in this chapter has linear flow and jump
maps, therefore is well described by the homogeneous dynamics (2.2),
the solution concept introduced above also applies to a nonlinear gen-
eralization of the hybrid dynamics, corresponding to{

ẋ = f(x, d), x ∈ F
x+ = g(x), x ∈ J ,

(2.3)

for some selection of the closed sets F and J . This type of generaliza-
tion will be useful in Chapter 3.

2.2 A motivating example

To introduce and motivate the structure of this survey, it is useful to
consider the simplest possible example of reset control system, which
has been the subject of several studies, including the one in Beker
et al. [2001a]: the case of a Clegg integrator controlling a linear plant
corresponding to a single integrator, in negative error feedback. This
is essentially the control scheme of Figure 1.5 with P = 1

s . In state-
space form, which is necessary for suitably describing the nonlinear
reset phenomenon, the plant dynamics is described by the differential
equation ẏ = xc, where xc is the output of the Clegg integrator in
(2.1). Considering the simplest possible case of RC = 1 in the Clegg
dynamics, for a constant reference r, the feedback interconnection is
well described in error coordinates x := (xp, xc) := (y − r, xc) as

ẋ =
[

0 1
−1 0

]
x, x ∈ F = {(xp, xc) : xpxc ≤ 0}

x+ =
[
1 0
0 0

]
x, x ∈ J = {(xp, xc) : xpxc ≥ 0} ,

(2.4)

where the flow and jump sets F and J exactly correspond to the two
half planes represented at the left of Figure 2.3 (see also the right of
Figure 1.4). The flow equation in (2.4) represents the integrator nature
of both plant and controller, and the minus sign in the (2, 1) entry
of matrix A is motivated by the negative feedback interconnection.
The jump equation, instead, captures the fact that xp does not change
across jumps, whereas xc is reset to zero.
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The solutions of the closed loop (2.4) exhibit a peculiar behav-
ior. Whenever they evolve in the second and fourth quadrant, they
move along circles (because the continuous dynamics is governed by
two complex conjugate eigenvalues at ±i). It is quite straightforward
to conclude that these flowing solutions spin in the clockwise direction
in the (xp, xc) plane as shown at the left of Figure 2.3. When they reach
the vertical axis, since they cannot flow outside F , they are forced to
jump and this jump instantaneously resets them to zero. From zero,
solutions may jump or flow, but regardless of their favorite (discrete
or continuous) evolution, they are forced to remain in zero, which is
an equilibrium, despite the peculiar non-uniqueness of solutions char-
acterizing it.
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Figure 2.2: Plant output response for the motivating example, starting from
xc(0, 0) = 0 and xp(0, 0) = 1.

Figure 2.2 shows (see the bold line) a possible solution of (2.4)
starting from (xp(0, 0), xc(0, 0)) = (1, 0) and compares it to the solution
of a purely continuous-time dynamics ẋ =

[ 0 1
−1 0

]
x where the controller

is never reset to zero. The domain of the hybrid solution is projected on
the t direction to simplify the comparison to the continuous solution.
The specific blue solution that we show here decides to flow indefinitely
so that it can be regarded as an eventually continuous solution (it
only performs one jump). While the blue solution is unique in the first
portion of its time domain, until the jump time t1 = π (this is the
time when xp reaches zero), its evolution is only one among infinitely
many others after this time, because from x(t1, 1) = (0, 0), solutions
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may jump or flow at each one of the following hybrid time.
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Figure 2.3: Phase-plane and hybrid representation of a solution of (2.4).

The left of Figure 2.3 shows the phase plane representation of the
solution in Figure 2.2 and of all the possible other ones, because once
they reach the origin they all remain there in the future (continuous or
discrete, or both) evolution. The right of Figure 2.3 shows the xp com-
ponent of one of the possible solutions, together with its time domain.
That specific solution is eventually discrete and performs an infinite
number of jumps never flowing again after reaching the origin.

Despite the non-uniqueness of solutions at the origin, it is rather
intuitive to imagine that the following property of solutions should hold
for the closed loop (2.4). The origin is globally exponentially stable for
system (2.4), in the sense that there exist constants m, ` > 0 such
that given any initial condition x(0, 0) = (xp0, xc0) ∈ R2 all solutions x
satisfy

|x(t, j)| ≤ me−`(t+j)|x(0, 0)|, for all (t, j) ∈ dom(x). (2.5)

When using hybrid tools to address reset control systems, it should
be recognized that these control systems are generally designed for
a continuous-time plant. Therefore, the continuous-time evolution of
the solution is somewhat more important due to its physical meaning.
Because of this reason, in this survey we will soon concentrate on alter-
native t-related definitions of exponential convergence corresponding to
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modifying the bound above as follows:

|x(t, j)| ≤ me−`t|x(0, 0)|, for all (t, j) ∈ dom(x). (2.6)

Clearly this bound is weaker than the previous one, but well represents
certain stability and performance specifications that emerge in reset
control systems.

A further reason emphasizing the suitability of t-related bounds is
that we will eventually augment reset control systems with so-called
dwell-time, or temporal regularization constraints (see Chapter 4 and
the subsequent ones) whose goal is to rule out solutions that stop flow-
ing (such as the one represented at the right of Figure 2.3). With a
dwell-time logic in place, it is possible to show that there exists ρ > 0
such that all hybrid times (t, j) in the domain of a solutions satisfy
t ≥ ρ(j − 1). Due to this fact, the hybrid exponential bound (2.5) and
its t-restriction (2.6) become equivalent. Following the paradigm behind
transforming (2.5) into (2.6) we will discuss in this survey t-decay rates
and t-L2 gains for reset control systems with temporal regularization.

2.3 An overview of this survey

The tools introduced in this paper will illustrate the methods for prov-
ing the above exponential stability property for this specific example
and also for some suitable generalizations of it. Below we discuss a
point of view about the organization of the paper, stemming from cer-
tain considerations involving the elementary closed loop described in
the previous section.

The survey is divided in three parts, the first one being an introduc-
tory part completed by this chapter. The second part deals with non-
planar reset systems and comprises four chapter covering several reset
rules that may be used to augment high-order controllers for plants of
any order. The second part of the book reports on a nontrivial gen-
eralization of the basic mechanisms emerging in Clegg integrators and
First Order Reset Elements (FORE). We come back to those simpler
ideas addressing a very simple class of SISO control systems with scalar
plants and a scalar FORE in the third part of the survey. Despite the
simplicity of such planar reset systems, interesting conclusions can be
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drawn and some experimental validations of the advantages arising
from the use of reset controllers are also reported. We provide extra
comments on the contents of each chapter in the remaining part of this
section.

Chapter 3. The reset mechanism well represented in Figure 2.3 can
be generalized to nonlinear continuous-time control systems with re-
set loops, is also the source for the design method later presented
in Chapter 6. In particular, notice that a (Lyapunov-like) function
V (x) non increasing along flowing solutions of (2.4), corresponds to
V (xp, xc) = |[ xpxc ]|2. For this function, one can check that the mini-
mizer φ(xp) = argminxc V (xp, xc) = 0, and it is possible to introduce
the function Vp(xp) := V (xp, φ(xp)) = |xp|2, corresponding to the fu-
ture value of V (x+) if one decided to impose a jump of xc to φ(xp).
Then the selection of F and J is well understood in (2.4), as the sets
from which (respectively) the function Vp is nonincreasing and non-
decreasing along solutions. A strict version of this reset mechanism is
proposed in Chapter 6.

Chapter 4. The illustration in Figure 2.3 of the possible solutions
to (2.4) reveals that one has to expect solutions possibly performing an
infinite number of jumps at the origin, and stopping to flow, thereby
having a bounded domain in the t direction (Zeno phenomenon). This
fact may be problematic when wanting to prioritize flowing within a
description of a continuous-time plant controlled by a reset controller.
Moreover, it creates problems in higher order FORE control systems,
where the origin of the (e, xc) plane may correspond to a whole subspace
of the state space. Then Zeno solutions may emerge, which don’t even
converge to the origin. Due to this fact, and motivated by the need
of using continuous-time Luenberger observers in the reset laws of the
preceding chapter, we introduce and illustrate the concept of temporal
regularization, or dwell-time mechanisms, in Chapter 4.

Chapter 5. Once the dwell-time mechanism has been introduced,
all solutions will be forced to flow indefinitely (namely they have an
unbounded domain in the t direction) and are characterized by isolated
jumps. This fact is a motivation for introducing suitable continuous-
time gains and signal norms and take into account the effect of distur-
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bances acting on reset closed loops. For that scenario, Chapter 5 dis-
cusses ways to construct quadratic and nonquadratic Lyapunov func-
tions that strictly decrease along solutions to (a temporally regularized
version of) dynamics (2.4) and its higher order generalizations. In that
context, the specific dynamics (2.4) constitutes an interesting example
because it can be proven (see the discussion in Section 5.4.3 for details)
that no quadratic Lyapunov function exists that decreases along those
solutions to (2.4), whereas nonquadratic ones can be constructed and
lead to interesting tight performance estimates.

Chapter 6. All of the material presented up to this point of the sur-
vey corresponds to stability and performance analysis tools. Chapter 6
combines the ideas of Chapters 3 and 5 for the design of a reset H∞
plant-order controller for a linear plant.

Chapter 7. We conclude this overview paper by commenting on
a somewhat parallel research direction coming back to the basic SISO
reset mechanism described by (2.4) and its FORE generalizations stem-
ming from (1.2), to derive tight necessary and sufficient stability con-
ditions of planar reset closed loop, under a slightly modified dynamics
that avoids the problem associated to the fact that solutions jumping
from the horizontal line in the left plot of Figure 2.3 (this one belongs
to J as one can inspect from the right of Figure 1.4) do not cause any
change of x, and therefore of any possible Lyapunov function. Such a
modification simplifies the analysis and leads to interesting conditions.
Chapters 8 and 9 also discuss some interesting experimental results
obtained using this FORE control system paradigm.



Part II

Non-planar reset systems



3
Nonlinear extensions of Clegg’s integrator

3.1 A generalization of the FORE reset rule

This part is inspired by Prieur et al. [2013] and exploits basic ideas
on systems with mixed discrete/continuous dynamics, and Lyapunov
theory for such hybrid dynamical systems. The basic idea consists in
starting from an existing closed loop and to reset the controller as
soon as the Lyapunov function is no more decreasing (or at least is
decreasing sufficiently slowly with respect to the nominal decreasing of
the Lyapunov function along the closed loop). This paradigm is useful
not only for limiting the input updating of a control plant (when e.g.
our approach is based on a modification of a given controller), but it
may be also fruitful to update control inputs when the original closed
loop is unstable. This latter case may even lead to better performance
than considering only stabilized closed loop. Let us now proceed with
more specific statement, and consider the following dynamical model
for the plant:

ẋp = fp(xp, u), (3.1)

28
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with xp in Rnp , in feedback interconnection with a (not necessarily
stabilizing) dynamic controller:

ẋc = fc(xc, xp), u = hc(xc, xp), (3.2)

with xc in Rnc . Then defining the closed-loop functions f̄p(xp, xc) =
fp(xp, hc(xc, xp)) and f̄c(xc, xp) = fc(xc, xp), the interconnection be-
tween (3.1) and (3.2) can be described in a compact way as:

ẋ = f(x) := (f̄p(xp, xc), f̄c(xc, xp)) , (3.3)

where x := (xp, xc), f̄p : Rnp × Rnc → Rnp and f̄c : Rnc × Rnp → Rnc .
We assume that fp, fc and hc are such that f̄p and f̄c are continuous
functions satisfying f̄p(0, 0) = 0 and f̄c(0, 0) = 0.

The general objective of this chapter is to design a suitable reset
rule, or jump law, for controller (3.2), and to design a partition of the
state space Rn (where n = np+nc) in two subsets, called flow and jump
sets. The state xc of controller (3.2) endowed with such an additional
logic, is then instantaneously reset according to the jump law whenever
the state belongs to the jump set. This extended scheme, which is
allowed to flow according to (3.3) only if the state belongs to the flow
set, defines a hybrid system. More specifically, the proposed hybrid
augmentation is designed to guarantee the decrease of one or both of
two Lyapunov-like functions: one of them V : Rnp×Rnc → R≥0, defined
on the whole state space, and the other one Vp : Rnp → R≥0 defined
only in the plant state subspace. The functions V and Vp can be selected
to capture some closed-loop stability and performance property (see the
developments in Sections 3.5.1 and 3.5.2 where maximized decay rate
and output overshoot reduction are tackled, respectively). Functions V
and Vp are linked to each other by a function φ : Rnp → Rnc such that
for all (xp, xc) in Rnp × Rnc

V (xp, φ(xp)) ≤ V (xp, xc) , (3.4)

and, in particular, by the relation

Vp(xp) = V (xp, φ(xp)), ∀xp ∈ Rnp . (3.5)

Within the above scenario, we will design flow and jump sets and jump
rules such that the arising hybrid systems guarantee non-increase of V
or Vp, or both of them in two relevant cases:
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(V ) (addressed in Section 3.2.1) where the function V (·, ·) is given
and satisfies suitable conditions guaranteeing the existence 1 of
φ(·) from which Vp(·) can be derived according to (3.5);

(Vp) (addressed in Section 3.2.2) where Vp(·) and φ(·) are given (their
existence resembles an asymptotic controllability assumption),
from which V (·, ·) satisfying (3.4) and (3.5) will be constructed.

Section 3.4 deals with the special case where system (3.3) is linear.
In this case, quadratic versions of V and Vp can be constructed under
reasonably weak properties required for the closed-loop dynamics. The
particularization to the linear case allows to strengthen the nonlinear
results by exploiting the homogeneity property of hybrid systems acting
on cones and obeying linear flow and jump rules. Finally, as a last
contribution of this part, we will show how to design Vp in item (Vp)
to augment linear continuous-time control systems with hybrid loops
that reduce the overshoot of a scalar plant output. In comparison to
previous works, the aim is to design hybrid strategies to guarantee some
asymptotic stability property by enforcing that suitable Lyapunov-like
functions are not increasing along the hybrid solutions.

The arising hybrid closed loop resembles the so-called impulsive sys-
tems, considered e.g. in Haddad et al. [2001]. However the objectives
of Haddad et al. [2001] and of the present part are different. Indeed
an inverse optimal control involving a hybrid nonlinear-non-quadratic
performance functional is developed in Haddad et al. [2001], whereas
here we provide a design method of a hybrid loop (namely the jump
map and the jump/flow sets) to ensure asymptotic stability and non-
increase of suitable scalar functions. Our results are also linked to the
event-triggered control literature (see Anta and Tabuada [2010]) for
stability analysis of networked control systems, where it is necessary
to reduce the number of times when the state is measured by the con-
troller and the actuators are updated. The most important difference
between the results mentioned above and our contribution is that in
those works the resetting value for the state is uniquely associated to

1Here, to keep the discussion simple, it is assumed that V is continuously differ-
entiable and that there exists φ(xp) ∈ argmin

xc∈Rnc

V (xp, xc), which implies (3.4).
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the transmission of a measurement sample, whereas in our results it
depends on the Lyapunov-like functions that should not increase along
solutions.

3.2 Hybrid stabilization with reset loops: nonlinear case

3.2.1 Constructing Vp from V

In this section we consider the closed-loop nonlinear system (3.3) and
a function V of the closed-loop state to address item (V ) defined Sec-
tion 3.1. To this aim, we make the following assumption on the function
V .

Assumption 3.1. The function V : Rn → R≥0 is continuously differ-
entiable and such that there exists a continuous differentiable function
φ : Rnp → Rnc such that

φ(xp) ∈ argminxc∈Rnc V (xp, xc) . (3.6)

Moreover, there exists a class K function α such that, for all xp in Rnp ,
xp 6= 0,

〈∇pV (xp, φ(xp)), f̄p(xp, φ(xp))〉<−α(V (xp, φ(xp)) (3.7)

where ∇pV denotes the gradient of V with respect to its first argument.

Remark 3.1. In Assumption 3.1 we do not impose that (3.3) is
globally asymptotically stable, because (3.7) requires the function V

to be decreasing only in the subset of the state space defined by
(xp, xc) = (xp, φ(xp)). Nevertheless, if system (3.3) is globally asymp-
totically stable, then there exist a function V : Rn → R≥0 and a class
K function α such that 〈∇V (x), f(x)〉 < −α(V (x)) for all x 6= 0,
x = (xp, xc) ∈ Rn, which implies (3.7). Moreover note that in As-
sumption 3.1, it is not required that argminxc∈Rnc V (xp, xc) is a single
valued map, but only that a continuous differentiable selection of this
map does exist. For example, with V (xp, xc) = x4

p + x4
c − x2

px
2
c , we

have argminxc∈Rnc V (xp, xc) = {xp,−xp} which is not a singleton even
though Assumption 3.1 can be satisfied, e.g., with φ(xp) = xp. y
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A natural way to stabilize the closed-loop system (3.3) is to flow
when one (or both) of V and Vp is strictly decreasing and to reset the
xc-component of the state to the value φ(xp) (where strict decrease is
guaranteed by (3.7)) when the function is not decreasing. This leads to
the following hybrid system{

ẋ = f(x), x ∈ F̂ ,

x+ = (x+
p , x

+
c ) = (xp, φ(xp)), x ∈ Ĵ ,

(3.8)

where F̂ ⊂ Rn and Ĵ ⊂ Rn are suitable closed subsets of the state
space such that F̂

⋃
Ĵ = Rn. In particular, F̂ and Ĵ are defined by

suitably combining the following two pairs of sets arising, respectively,
from the knowledge of V and Vp:

F = {x ∈ Rn, 〈∇V (x), f(x)〉 ≤ −ᾱ(V (x))}
J = {x ∈ Rn, 〈∇V (x), f(x)〉 ≥ −ᾱ(V (x))} (3.9)

F̄ = {x ∈ Rn, 〈∇Vp(xp), f̄p(xp, xc)〉≤−ᾱ(Vp(xp))}
J̄ = {x ∈ Rn, 〈∇Vp(xp), f̄p(xp, xc)〉 ≥ −ᾱ(Vp(xp))}

(3.10)

where ᾱ is any class K function such that ᾱ(s) ≤ α(s) for all s ≥ 0
(this will be denoted next by the shortcut notation ᾱ ≤ α).

Theorem 3.1. Consider the closed-loop system (3.3) and a function
V ∈ C1. Assume that there exist functions φ and α satisfying Assump-
tion 3.1. Then for any class K function ᾱ satisfying ᾱ ≤ α the following
holds.

1. If V is positive definite and radially unbounded, then the hybrid
system (3.8), (3.9) with F̂ = F and Ĵ = J is globally asymptot-
ically stable and V is non-increasing along solutions.

2. If Vp, defined in (3.5), is positive definite and radially unbounded,
then the hybrid system (3.8), (3.10) with F̂ = F̄ and Ĵ = J̄ is
such that the plant state xp converges to zero, and Vp is non-
increasing along solutions.

3. If V is positive definite and radially unbounded, then the hybrid
system (3.8), (3.9), (3.10) with F̂ = F

⋂
F̄ and Ĵ = J

⋃
J̄

is globally asymptotically stable and both V and Vp are non-
increasing along solutions.
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Remark 3.2. The three items of Theorem 3.1 address, respectively, the
three goals of guaranteeing suitable stability properties together with
non-increase of V , Vp and both of them. In particular, the flow and
jump sets of the hybrid system (3.8) are defined in Theorem 3.1 from
the knowledge of the Lyapunov-like function V . Note also that the hy-
brid system (3.8), (3.10) with F̂ = F̄ and Ĵ = J̄ characterized at
item 2 may be unstable. In other words, with this selection of the flow
and jump sets, the plant state converges to the origin, although the
state of the controller may diverge (which may complicate the imple-
mentation of the associate controller). In the linear case, this item will
be strengthened under a detectability assumption (see Theorem 3.5
reported later in this chapter). y

Remark 3.3. It can be checked that, due to the assumption on the
regularity of f̄p and f̄c, and on the regularity of φ as considered in
Assumption 3.1, the hybrid system satisfies certain conditions (called
hybrid basic conditions in Goebel and Teel [2006] and Prieur et al.
[2007]). Then the hybrid system (3.8) inherits several good structural
properties (such as existence of solutions and robustness properties).
Moreover, instead of the assumption that the function α is of class K
in Theorem 3.1, it may be assumed a LaSalle-type assumption. More
precisely, using the LaSalle invariance property for hybrid systems (see
e.g. [Goebel et al., 2009, Theorem 23, page 64]), this assumption may
be replaced by: for any solution x of (3.3), if 〈∇V (x), f(x)〉 ≡ 0, then
x ≡ 0. y

Remark 3.4. If the closed-loop system (3.3) is globally asymptotically
stable, then selecting V and α satisfying Assumption 3.1, the sets in
(3.9) correspond to F = Rn and J = ∅, so that the reset systems char-
acterized in items 2 and 3 of Theorem 3.1 coincide. Therefore selecting
the jump and flow sets as in (3.10) a non-increasing property for both
V and Vp, together with GAS is obtained. Note however that as long
as Assumption 3.1 is satisfied, the flow set is never empty because (3.7)
guarantees that after any jump the state belongs to the interior of the
flow set. y
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3.2.2 Constructing V from Vp

In this section we consider the closed-loop nonlinear system (3.3) and a
function Vp of the plant state to address item (Vp) defined in Section 3.1.
To this aim, we make the following assumption on the function Vp.

Assumption 3.2. The function Vp : Rnp → R≥0 is continuously differ-
entiable and radially unbounded and there exist a continuously differ-
entiable function φ : Rnp → Rnc , and a class K function α such that,
for all xp in Rnp , xp 6= 0,

〈∇Vp(xp), f̄p(xp, φ(xp))〉 < −α(Vp(xp)) . (3.11)

Note that, when the xp-equation of the closed-loop system (3.3)
is affine with respect to xc, this condition is related to the asymptotic
controllability to the origin (Artstein [1983]). In this case, a control law
φ can be computed from a Control Lyapunov Function Vp and from the
so-called universal formulas (see Freeman and Kokotović [1996], Lin
and Sontag [1991]).

Assumption 3.2 is sufficient to construct a function V satisfying As-
sumption 3.1 so that the design strategy of the previous section can be
employed. In particular, let M be any symmetric positive semidefinite
matrix2 in Rnc×nc and define V : Rnp × Rnc → R≥0 for all (xp, xc) in
Rnp × Rnc ,

V (x) = Vp(xp) + (xc − φ(xp))>M(xc − φ(xp)) . (3.12)

Note that V is continuously differentiable, and radially unbounded.
Moreover, if φ(0) = 0 and M > 0, then it is a positive definite function
because, for each xp, it is the sum of two positive definite terms, the first
one strictly positive when xp 6= 0 and the second one strictly positive
when xp = 0. The following theorem is a straightforward application
of Theorem 3.1 in light of the Vp and φ given in Assumption 3.2 and of
the V in (3.12). A nonlinear example illustrating the potential behind
the nonlinear design of Theorem 3.1 is given in Section 3.3 below (see
also Prieur et al. [2010]).

2Note that the matrix M may be a function of x. This extra degree of freedom
could be used to perform convenient selections of V .
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Theorem 3.2. Consider the closed-loop system (3.3) and a function
Vp ∈ C1. Assume that there exist functions φ and α satisfying As-
sumption 3.2. Given any symmetric positive semidefinite matrix M ∈
Rnc×nc , the corresponding function V in (3.12), and any class K func-
tion ᾱ satisfying ᾱ ≤ α, the three items of Theorem 3.1 hold.

3.3 A nonlinear control system stabilized by adding a hybrid
loop

Let us illustrate the use of Theorem 3.2 on a nonlinear system satisfying
Assumption 3.2. To do that, after introducing the nonlinear system
under consideration in this section, we will check Assumption 3.2, and
by applying Theorem 3.2, we will see on simulations that the second
item of Theorem 3.1 applies. To simulate the hybrid systems we use
the simulator presented in [Goebel et al., 2009, pages 78-81].

Consider the following plant in R2{
ẋ1 = x2 + x2

1
ẋ2 = u+ x2

1
(3.13)

where (x1, x2) is the plant state and u stands for the control variable
in R. By using a backstepping method (see e.g. Krstić et al. [1995]),
the following controller u : R2 → R defined, for all (x1, x2) in R2, by

u(x1, x2) = −2x1 − 2x2 − 3x2
1 − 2x1(x2 + x2

1) (3.14)

and the positive definite function Vp : R2 → R≥0 defined, for all (x1, x2)
in R2, by

Vp(x1, x2) = 1
2x

2
1 + 1

2(x2 + x1 + x2
1)2

may be computed. Assumption 3.2 holds with α(s) = s
2 , for all s ≥ 0.

To check the attractivity property, let us consider the initial condition
(x1(0, 0), x2(0, 0)) = (10, 10) and let us numerically compute the so-
lution to system (3.13) in closed loop with the controller (3.14). The
time evolution of the x1 and x2-variables, and of the controller u are
depicted on Figure 3.1.

Now let us consider the system (3.13) in closed loop with the con-
troller u = x3 where ẋ3 = x3−x3

1. This nonlinear closed-loop system is
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Figure 3.1: Time evolution of x1 (top), of x2 (middle) for system (3.13) in closed-
loop with the controller (3.14) (down).

unstable (the initial condition (x1(0, 0), x2(0, 0), x3(0, 0)) = (10, 10, 10)
gives a diverging solution). Let us apply Theorem 3.2 with ᾱ = 10−3α.
Consider the hybrid system (3.8), (3.10) with F̂ = F̄ and Ĵ = J̄ . The
shape of the flow set of this hybrid system, intersected with the plane
x3 = 0 is given in Figure 3.2 (due to (3.10), the jump set is the closure
of the complement). Let us numerically compute the solution starting
from the initial condition (x1(0, 0), x2(0, 0), x3(0, 0)) = (10, 10, 10). We
check on Figure 3.3 that the plant state xp-variable is globally asymp-
totically stable. Moreover we note that the x3-variable converges also
to 0 and has some jumps (when it is reset to the value of the controller
(3.14)). The number of jumps depends on the size of J and thus on
the choice of the function ᾱ. By comparing Figures 3.1 and 3.3 we note
that the speed of convergence is improved using the hybrid system
(3.8), (3.10) with F̂ = F̄ and Ĵ = J̄ .

The solutions issuing from different initial conditions are drawn on
Figure 3.4 in the space (x1, x2), and are projected in the space (x1, x3)
in Figure 3.5. The flow set is the convex hull of the set of the blue points
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Figure 3.2: Shape of the flow set, intersected with the plane x3 = 0, of the system
(3.8), (3.10) with F̂ = F̄ and Ĵ = J̄ in the box [−10, 10]× [−10, 10].

on Figure 3.4. The vertical lines are the jumps of the x3-variable. It
can be checked that they converge to the equilibrium (this is the center
of the back ball on both figures).

3.4 Hybrid stabilization with reset loops: linear case

When focusing on linear dynamics, the two items (V ) and (Vp) defined
in Section 3.1 are addressed here. Consider the following linear plant:

ẋp = Apxp +Bpu, (3.15)

with xp ∈ Rnp , in feedback interconnection with a (not necessarily
stabilizing) linear dynamic controller:

ẋc = Acxc +Bcxp, u = Ccxc +Dcxp, (3.16)

with xc ∈ Rnc . The closed loop is described by the following linear
system

ẋ = Ax :=
[
Āp B̄p
B̄c Āc

]
x , (3.17)
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Figure 3.3: Time evolution of x1 (top), of x2 (middle) and of x3 for flow time
between 0 and 3.5 for the system (3.8), (3.10) with F̂ = F̄ and F̂ = J̄ .

where x = (xp, xc) and Āp, B̄p, Āc, and B̄c are matrices of appropriate
dimensions uniquely based on the matrices in (3.15) and (3.16). In the
linear case, it is reasonable to restrict V and Vp to the class of quadratic
functions, φ to the class of linear stabilizers and α and ᾱ to the class of
linear gains. Based on this, the closed-loop function V can be selected
as V (x) = x>Px where P =

[
Pp Ppc
P>pc Pc

]
is a symmetric positive definite

matrix. Then, since ∇cV (xp, xc) = 2(P>pcxp + Pcxc), from the positive
definiteness of P , the critical points of V are the points where V is
minimal. Thus the unique function φ : Rnp → Rnc satisfying (3.4) is
given, for all xp ∈ Rnp , by

φ(xp) = −P−1
c P>pcxp = Kpxp . (3.18)

Moreover, the function Vp : Rnp → R≥0 defined by (3.5) becomes, for
all xp ∈ Rnp ,

Vp(xp) =
[ xp

−P−1
c P>pcxp

]> [ Pp Ppc
? Pc

] [ xp

−P−1
c P>pcxp

]
= x>p (Pp − PpcP−1

c P>pc)xp = x>p P̄pxp . (3.19)
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Figure 3.4: Shape of the flow set (in blue) and of some solutions (in green, red,...),
for the system (3.8), (3.10) with F̂ = F̄ and Ĵ = J̄ . The equilibrium is the center
of the back ball.

Based on (3.18) and (3.19), we get that (3.7) holds as long as there
exists α̃ > 0 such that

He(P̄p(Āp + B̄pKp)) < −α̃P̄p . (3.20)

Thus, given V , if such a α̃ > 0 exists, then Assumption 3.1 is guaran-
teed. Consider now the sets in (3.9) and (3.10). Given any 0 < ¯̃α ≤ α̃

and with the definitions above, after some calculations they become

F = {x ∈ Rn, x>Nx ≤ − ¯̃αx>Px} ,
J = {x ∈ Rn, x>Nx ≥ − ¯̃αx>Px} , (3.21a)

F̄ = {x ∈ Rn, x>Npx ≤ − ¯̃αx>p P̄pxp} ,
J̄ = {x ∈ Rn, x>Npx ≥ − ¯̃αx>p P̄pxp} ,

(3.21b)

where3 N = He
[
PpĀp+PpcB̄c PpcĀc+PpB̄p
P>pcĀp+PcB̄c PcĀc+P>pcB̄p

]
and Np = He

[
P̄pĀp P̄pB̄p

0 0

]
.

3He denotes the Hermitian matrix He(A) = A+A> for any matrix of Rn×n.
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Figure 3.5: Projection to the (x1, x3) plane of the shape of the flow set (in blue),
of some solution (in green, red,...), for the system (3.8), (3.10) with F̂ = F̄ and
Ĵ = J̄ . The equilibrium is the center of the back ball.

With the above definitions, the following corollary particularizes the
results of Theorem 3.1 to the linear case.

Corollary 3.3. Consider the closed-loop system (3.17) and a function
V (x) = x>Px = x>

[
Pp Ppc
P>pc Pc

]
x such that P̄p = Pp−PpcP−1

c P>pc satisfies
(3.20) for some α̃ > 0 and for Kp = −P−1

c P>pc. Then the hybrid system{
ẋ = Ax, x ∈ F̂ ,

x+ = (xp, xc)+ = (xp,Kpxp), x ∈ Ĵ ,
(3.22)

satisfies all the items of Theorem 3.1 with Vp(xp) = x>p P̄pxp and using
the sets in (3.21) with any 0 < ¯̃α ≤ α̃.

Remark 3.5. Let us apply Corollary 3.3 to linear plants in closed loop
with reset controllers (see e.g. Beker et al. [2004], Nešić et al. [2008b]).
Consider the linear plant (3.15) with Ap Hurwitz, Cc = Inc and Dc = 0.
Recalling the notation in (3.17), when closing the loop with (3.16), we
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get Āp = Ap and B̄p = Bp, and thus Āp is Hurwitz. To represent
reset controllers, let us consider Kp = 0. Then there exist a symmetric
positive definite matrix P̄p in Rnp×np and α̃ > 0 such that (3.20) holds.
Applying Corollary 3.3 gives that for each symmetric positive definite
matrix Pc in Rnc×nc , the hybrid system{

ẋ = Ax, x ∈ Fl ,
x+ = (xp, xc)+ = (xp, 0), x ∈ Jl ,

(3.23)

where the flow and the jump sets are defined with Nl = He
[
PpĀp PpB̄p
PcB̄c PcĀc

]
,

and for any ¯̃α ≤ α̃, by

Fl = {x ∈ Rn, x>Nlx ≤ − ¯̃αx>Px}
Jl = {x ∈ Rn, x>Nlx ≥ − ¯̃αx>Px} ,

is globally asymptotically stable and the function Vl defined by Vl(x) =
x>Px, for any x in Rn, and for P = diag(Pp, Pc), is non-increasing. y

Let us now specialize Theorem 3.2 to the linear case. With (3.17),
Assumption 3.2 is satisfied whenever the pair (Āp, B̄p) is stabilizable
and Vp(xp) = x>p P̄pxp, with P̄p > 0, is a Control Lyapunov Function
for (Āp, B̄p). As a matter of fact in that case there exist a static state
feedback matrix Kp and a constant α̃ > 0 such that equation (3.20)
holds, and then equation (3.11) will hold with φ(xp) = Kpxp. In par-
ticular, given P̄p, Kp and α̃ can be computed using a Linear Matrix
Inequality (LMI) solver. Alternatively, under a stabilizability assump-
tion, one can always solve a Generalized EigenValue Problem (GEVP)
and find an optimal pair (P̄p,Kp) maximizing α̃. Based on Vp and
Kp, consider any symmetric positive definite matrix Pc in Rnc×nc . The
function V : Rnp × Rnc → R≥0 in (3.12) can be defined as

V (x) = Vp(xp) + (xc −Kpxp)>Pc(xc −Kpxp)
= x>

[
P̄p+K>p PcKp −K>p Pc
−PcKp Pc

]
x = x>Px.

(3.24)

Since Pc > 0, this function is continuously differentiable, radially un-
bounded and positive definite. Then the following corollary of Theo-
rem 3.2 can be stated.
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Corollary 3.4. Assume that the pair (Āp, B̄p) is stabilizable and that
Vp(x) = x>p P̄pxp is a control Lyapunov function for this pair. Then there
exist α̃ > 0 and Kp satisfying (3.20). Moreover, given any symmetric
positive definite matrix Pc in Rnc×nc and the corresponding function
V defined in (3.24), for any selection of 0 < ¯̃α ≤ α̃, the reset system
(3.22) with the sets in (3.21) satisfies all the items of Theorem 3.1.

Remark 3.6. The global asymptotic stability (GAS) results established
at items 1 and 3 of Theorem 3.1 can be strengthened to global expo-
nential stability (GES) in the case of Corollaries 3.3 and 3.4. Indeed,
the reset system (3.21), (3.22) corresponds to a linear dynamics acting
on conic flow and jump sets and, [Nešić et al., 2011, Theorem 7] can
be applied to conclude that GAS implies GES. y

As already pointed out in Remark 3.2, when selecting F̂ = F̄ and
Ĵ = J̄ , as in item 2 of Theorem 3.1, there is no guarantee that the
state of the controller will converge to zero. This property is instead
guaranteed when using F̂ = F̄

⋂
F and Ĵ = J̄

⋃
J , as in item 3 of

Theorem 3.1. However, in light of Corollary 3.4, it would be desirable to
provide conditions under which using the sets at item 2 of Theorem 3.1
is already sufficient to guarantee that the controller states converge to
zero too. The advantage of this is that one would not need to bother
with the selection of the matrix Pc of Corollary 3.4, because the sets
F̄ and J̄ only depend on Vp and Kp. In the linear case, it turns out to
be sufficient that the controller dynamics is detectable from the output
matrix B̄p. Intuitively, this requirement corresponds to asking that any
nonzero controller evolution will be detected by the plant states so that
a LaSalle result can be applied to show convergence.

Theorem 3.5. Consider any gain Kp such that Āp + B̄pKp is Hurwitz
and a pair P̄p, α̃ satisfying (3.20). Consider any 0 < ¯̃α ≤ α̃ and the
flow and jump sets in (3.21b). If the pair (B̄p, Āc) is detectable, then
the hybrid system at item 2 of Theorem 3.1 is globally exponentially
stable.
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3.5 Examples of linear systems involving hybrid loops

In this section, we rely on the results of Theorem 3.5 to propose a suit-
able jump rule to be incorporated in a linear continuous-time control
system to maximize the decay rate or reduce the plant output overshoot
(see Sections 3.5.1 and 3.5.2, respectively).

3.5.1 Maximizing the decay rate

Consider equation (3.20) and note that it resembles the classical
state-feedback stabilization problem with guaranteed convergence rate,
which is well known to be solvable via a generalized eigenvalue prob-
lem. Given a plant, a possible way to address the search for P̄p, Kp

and α̃ satisfying (3.20) is to impose a bound κM on the size of Kp and
compute the maximum α̃ satisfying (3.20) (or a conservative estimate
of it) while guaranteeing |Kp| ≤ κM . This type of goal is achieved by
solving the following generalized eigenvalue problem:

max
Q̄p=Q̄>p ,α̃,X

α̃, s.t.

Q̄p ≥ I

0 ≤
[
κMI X

X> κMI

]
−α̃Q̄p ≥ He(ĀpQ̄p + B̄pX),

(3.25)

where κM > 0 is given. The optimal solution to (3.25) leads to the gain
Kp = XQ̄−1

p and to P̄p = Q̄−1
p satisfying (3.20) and such that |Kp| ≤

|X||Q−1
p | ≤ κM because the first constraint imposes |Q−1

p | ≤ 1 and the
second constraint imposes |X| ≤ κM . Using this gain, the following
proposition holds (see, for example, Prieur et al. [2011], Fichera [2013])
where it is provided a t-decay rate as introduced later in Definition 5.1:

Proposition 3.1. Consider a symmetric positive matrix Q̄p in Rnp×np ,
a matrix X in Rnc×np and a positive value α̃ satisfying (3.25). Let
Kp = XQ̄−1

p and P̄p = Q̄−1
p . For any selection of 0 < ¯̃α ≤ α̃ and the

flow and jump sets in (3.21b), then

1. for a suitable k > 0, the plant state response satisfies the following
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exponential bound for all (t, j) ∈ dom(x):

|xp(t, j)| ≤ k exp
(
−

¯̃α
2 t
)
|xp(0, 0)|

2. if the pair (B̄p, Āc) is detectable, then the hybrid closed loop is
globally exponentially stable.

The optimization problem in (3.25) can be used to build a curve
providing the maximum decay α̃ achievable with a certain bound κM
on the gain Kp. Then in many practical cases, it might well be that
the optimal α̃ grows unbounded as the bound κM becomes arbitrarily
large. This fact is illustrated in the next example.

Example 3.1. Consider a one-dimensional linear plant connected in
negative feedback with a one-dimensional linear controller:

ẋp = apxp + bpxc

ẋc = acxc − xp,

where we assume bp > 0.
For this example, the solution to (3.25) can be computed explicitly

as a function of κM and corresponds to Kp = −κM , while the optimal
performance is α̃ = −2ap + 2bpκM , achieved with Q̄p = 1 and X =
−κM . It is instructive to study the shape of the jump and flow sets
F̄ and J̄ defined in (3.21b), which are symmetric cones in the plane
(xp, xc). Using, for example, ¯̃α = α̃

2 = −ap + bpκM , the sets in (3.21b)
become

F =
{

(xp, xc) : [ xpxc ]>
[
ap + bpκM bp

bp 0

]
[ xpxc ] ≤ 0

}
, (3.26)

while J is the closure of the complement of F .
According to the results in Proposition 3.1 the hybrid closed-loop

system given by{
ẋp = apxp + bpxc,

ẋc = acxc − xp,
x ∈ F ,{

x+
p = xp,

x+
c = −κMxp,

x ∈ J
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Figure 3.6: Shapes of the flow and jump sets of Example 3.1 using κM = 1 (upper
left) and κM = 2 (upper right). The lower plots show the time histories of the two
trajectories shown on the state space planes.

is globally exponentially stable.
The flow set in (3.26) defines a symmetric cone in the (xp, xc) plane

whose boundaries correspond to the two subspaces {(xp, xc) : xp = 0},
namely the vertical axis, and {(xp, xc) : 2bpxc = −(ap + bpκM )xp},
namely (by the fact that bp > 0 and κM > 0), a line which rotates
clockwise as κM (and, consequently, the guaranteed convergence rate
¯̃α = −ap + bpκM ) increases. An example corresponding to ap = −1,
bp = 1 and κM = 1 is shown in the top left plane of Figure 3.6. In
this case, the flow set (striped area) corresponds to the second and
fourth quadrants and the set xc = Kpxp = −κMxp = −xp, where the
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controller state is reset, (depicted as a bold dashed line) corresponds to
the bisector of the second and fourth quadrant. The top right plane in
the same figure shows how these sets change when increasing the gain
to κM = 2.

Some trajectories are also reported in Figure 3.6, corresponding to
the case ac = 0 which, in the case κM = 1 corresponds to a general-
ized version of the behavior of the so-called Clegg integrator (see Clegg
[1958], Zaccarian et al. [2005]) in negative feedback interconnection
with the plant P = 1

s+1 . The generalization consists in resetting the
Clegg integrator state to the value of the input rather than to zero but
essentially coincides with the original resetting rule where the integra-
tor was supposed to be reset only at zero crossings of the integrator
input (see Clegg [1958], Zaccarian et al. [2005] for details). Note that
in the case κM = 2 reported to the right of Figure 3.6, the horizontal
boundary of the flow set is tilted, reducing the size of the flow set,
and the reset manifold xc = Kpxp is tilted as well, to speed up the
state decay rate. Nevertheless, the vertical boundary corresponding to
{(xp, xc) : xp = 0} remains unchanged thus preserving the peculiarity
that the response exhibits no overshoot. This property arises from the
fact that the function Vp(xp) = x2

p is non-increasing along the solutions.
This fact is further illustrated by a few simulations starting from the
initial conditions (xp(0, 0), xc(0, 0)) = (−1, 0), reported at the bottom
plot of Figure 3.6. In both simulations, the controller state is first reset
to the reset manifold and then exhibits a flow interval until the state
reaches the vertical axis, where the solution is finally reset to zero.

3.5.2 Overshoot reduction

In this section, we rely on the results of Theorem 3.5 to propose a suit-
able jump rule to be incorporated in a linear continuous-time control
system to reduce the plant output overshoot.

Perhaps the first example study where hybrid control systems were
shown to overcome intrinsic limitations of classical linear control was
the one in Beker et al. [2001a], where a reset controller was shown to im-
prove upon linear control in terms of overshoot reduction. If the plant
(3.15) is strictly proper (namely, Dp = 0), a possible way to math-
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ematically formalize the requirement of overshoot reduction in terms
of the Lyapunov functions introduced here is to construct a quadratic
function Vp(xp) := x>p P̄pxp and the stabilizing gain Kp in such a way
that, to a certain extent, Vp(xp) ≈ |y|2. Then achieving non-increase
of Vp via the hybrid loops proposed will induce (almost) no overshoot,
namely |y(t)| is (almost) non-increasing along trajectories.

Finding the above discussed pair (Vp,Kp) can be done, for example,
by writing the dynamics (3.15) in observability canonical form, so that
xp = [ x1

y ] and solving the following LMI eigenvalue problem (y is a
single output):

min
Q̄p=Q̄>p ,ρx,ρy ,X

ρy, s.t. Q̄p =
[
Q1 q1y
q>1y qy

]
> I

0 <
[
κMI X

X> κMI

]
, 0 > He(ĀpQ̄p + B̄pX)

0 ≤
[
ρx 1
1 ρy

]
, ρxI < Q1, qy < 1 + ρy,

(3.27)

where κM > 0 is given. The optimal solution to (3.27) will lead to
the gain Kp = XQ̄−1

p and to P̄p = Q̄−1
p satisfying (3.20) with a small

enough α̃ and such that |Kp| ≤ |X||Q̄−1
p | ≤ κM . Moreover, the bounds

given by the last three constraints should imply that smaller values of
ρy will lead to a function Vp(xp) = x>p Q̄

−1
p xp closer to |y|2.

Proposition 3.2. Consider a sequence of solutions (Q̄kp, ρky , ρkx, Xk)k∈N
to the optimization (3.27) such that ρky → 0 as k →∞. Then, defining

V k
p (xp) = x>p

(
Q̄kp

)−1
xp, we have for each xp, limk→∞ V

k
p (xp) = |y|2,

namely as ρky approaches zero, V k
p (xp) approaches |y|2.

Moreover, given any pair (Q̄p, X) satisfying (3.27), let Kp = XQ̄−1
p

and P̄p = Q̄−1
p . Then for a small enough selection of α̃, equation (3.20)

is satisfied. Moreover, given any selection of 0 < ¯̃α ≤ α̃, the reset
system (3.22) with the flow and jump sets in (3.21b), is such that:

1. the plant state xp converges to zero, and the function Vp(xp) is
non-increasing along solutions;

2. if the pair (B̄p, Āc) is detectable, then the hybrid closed loop is
globally exponentially stable.
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From the point of view of the overshoot reduction, the meaning of
the first statement of Proposition 3.2 is that smaller values of ρy (which
are expected to be achievable as the bound κM on |Kp| is increased)
will guarantee that the function Vp(xp) becomes closer to the squared
value |y|2 of the output. One way to address overshoot elimination is to
guarantee that the function |y|2 itself is not increasing along solutions
(indeed, as soon as y(t) = 0 for some t, then y will remain zero). Since
our hybrid scheme ensures that Vp does not increase along solutions,
then the design in (3.27) leads to an “almost” non overshooting closed
loop as long as ρy is small enough. On the other hand, note that ρy = 0
(namely, total overshoot elimination) cannot be achieved because we
require that Vp be positive definite in our theory.

Just as in the case discussed in Section 3.5.1, the optimization prob-
lem in (3.25) can be used to build a curve providing the overshoot
reduction level ρ−1

y achievable with a certain bound κM on the gain
Kp. Similar to before, it might well be that the optimal ρ−1

y grows
unbounded as the bound κM becomes arbitrarily large.

Example 3.2. We consider an example originally discussed in Beker
et al. [2001a], involving a FORE, whose flow dynamics follow the
continuous-time transfer function 1

s+1 and whose jump rule is to reset
the state to zero whenever the input and the output of the FORE have
opposite signs. This FORE is interconnected in negative unit feedback
with a SISO plant whose transfer function is P = s+1

s(s+0.2) . For this
example, the control system involving the FORE is shown in Beker
et al. [2001a] to behave more desirably than the linear control system
because it has only about 40% overshoot as compared to the linear
closed-loop system, while retaining the rise time of the linear design
(this example was also discussed later in Nešić et al. [2005], Zaccarian
et al. [2011] where the L2 gain properties of the reset closed-loop were
characterized). Here we show that when allowing more general resets
than just the ones induced by the FORE resetting law (which essen-
tially imposes a reset of the controller state to zero when the controller
input and output have opposite signs), arbitrary small overshoot can
be achieved, while retaining the same rise time. To this aim, we use the
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following state-space representation of the linear closed loop:[
Āp B̄p
B̄c Āc

]
=

 −0.6 0.6 −1
−0.4 0.4 1

0 1 −1

 . (3.28)
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Figure 3.7: Curve of the overshoot reduction parameter ρ−1
y as a function of the

bound κM imposed on the gain Kp. The right plot is a zoom of the left one for small
values of κM .

κM P̄p K>p ρ−1
y

0.1
[

0.31315 −0.38064
−0.38064 0.78906

] [ 0.046750
−0.087302

]
0.48451

0.5
[

0.10170 −0.088509
−0.088509 0.99128

] [ 0.055896
−0.49023

]
10.662

1
[

0.049336 −0.045986
−0.045986 0.99778

] [ 0.057423
−0.97424

]
21.179

5
[

0.0097785 −0.0096376
−0.0096376 0.99991

] [ 0.059499
−4.8307

]
103.25

Table 3.1: Values of the matrices P̄p, Kp and ρ−1
y for some selections of κM .

Figure 3.7 shows the overshoot reduction parameter ρ−1
y as a func-

tion of the bound κM imposed on the gain Kp. Note that the curve
has a peculiar shape for small values of κM and then essentially grows
linearly for large values of κM . Table 3.1 reports the values of P̄p, Kp

and ρ−1
y for some selections of κM . Using the values in Table 3.1, we

run several simulations of the closed-loop starting from the initial con-
ditions xp(0, 0) = [1 1]>, resembling the step responses reported in
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Beker et al. [2001a], Nešić et al. [2005], Zaccarian et al. [2011]. In par-
ticular, we implement the hybrid loops arising when using the values
in the table within the scheme proposed in Proposition 3.2. Note that
since in this case the pair (B̄p, Āc) is observable, then according to the
results of Theorem 3.5, the trajectories are all convergent to zero. The
resulting plant input and output responses are shown in Figure 3.8,
where we also show the linear response (thin solid) and the response
obtained with the FORE used in Beker et al. [2001a], Nešić et al. [2005],
Zaccarian et al. [2011] (thin dashed).
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Figure 3.8: Simulation results when using the linear hybrid loops discussed in
Example 3.2. Linear response (thin solid) and response of the FORE closed loop of
Beker et al. [2001a] (thin dashed) compared to the reset responses obtained with
the parameters in Table 3.1 (bold).

The results in Figure 3.8 are indicative of the potential of the pro-
posed approach with the goal of reducing overshoots in linear control
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systems and correspond to trajectories of the reset system (3.22) with
the flow and jump sets in (3.21b), with the parameters in (3.28) and
with the gains Kp in Table 3.1. It should be pointed out that even
though we manage to improve the overshoot reduction as compared to
the FORE resetting strategy proposed in Beker et al. [2001a] (see the
thin dashed curve in Figure 3.8), this last strategy is more appealing
from an implementation viewpoint because it only requires a measure-
ment of the plant output. Conversely, the resetting strategy of the im-
proved bold curves of the figure are obtained using a full measurement
of the plant state.
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Dwell-time logic and observer-based hybrid loops

4.1 Overcoming two drawbacks of the hybrid loops sug-
gested in Chapter 3

The solution concept introduced in Chapter 2 well represents the fact
that every time a solution jumps, there is some forward evolution (in
the discrete-time direction) of the solution that is taken into account
in its hybrid time domain. See for example the hybrid time domain
represented at the left of Figure 2.1, where discrete time j jumps from
0 to 1 at jump time t1, then from 1 to 2 at jump time t2, and similar
for t3.

A possible defective behavior arising in systems with jumps in the
state (such as reset control systems) corresponds to the so-called “Zeno
evolution” experienced by solutions that jump infinitely many times in
a bounded time interval. Such a behavior characterizes a peculiar situa-
tion where the hybrid time domain is unbounded in the jump direction
thereby remaining bounded in the flow direction. While this situation is
well modeled mathematically in Goebel et al. [2012] (see also [Goebel
et al., 2009, page 72]), it is not reasonable to implement a control
system that could generate solutions of this kind because unmodeled
effects may cause the actual solution to exhibit an unpredictable behav-

52
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ior. From a practical viewpoint, the unsuitability of Zeno solutions for
applications is also confirmed by the fact that simulations of systems
that exhibit Zeno solutions cannot be continued after a finite ordinary
time t.

The results presented in Chapter 3 propose hybrid loops that aug-
ment nonlinear continuous-time dynamic controllers for a continuous-
time plant with the property of guaranteeing the non-increase of suit-
able Lyapunov-like functions, together with asymptotic stability of the
origin. In particular, these hybrid loops can be understood as pecu-
liar reset rules for the controller state that are triggered whenever the
closed-loop state enters a specific region. Up to now, there are two
main drawbacks of this approach: 1) the hybrid loops (namely the reset
rules) require knowledge of the full state of the closed loop, to establish
whether it belongs to the jump or to the flow set; 2) some solutions to
the hybrid closed-loop system can experience a Zeno phenomenon, in
particular when the solution approaches the equilibrium while being in
the intersection of the flow and the jump sets (this is the case in Seuret
et al. [2014] when the solution converges to the origin in finite time).

The goal of this chapter is to overcome these two drawbacks for
linear plants when a hybrid state feedback law is given. To overcome
the first drawback, a natural approach is to use an observer, to esti-
mate the plant state, and to use this estimate when closing the hybrid
loop. Such a separation principle only holds locally for nonlinear hybrid
control systems (as established in Teel [2010]), however we succeed to
propose in this chapter a scheme consisting in a hybrid output feedback
controller embedding a Luenberger observer, which recovers asymptot-
ically and globally the original scheme of the previous chapter as the
observation error converges to zero.

The introduction of an observer in the scheme generates a number
of problems arising from the fact that the Zeno solutions occurring at
the origin become non-converging Zeno solutions in the presence of the
observer. To avoid this defective phenomenon, paralleling the results
in Forni et al. [2010], a control scheme has been proposed in Fichera
et al. [2012a] where an arbitrarily small ball centered in the origin is
removed from the jump set, so that, close to the origin, the observer
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is allowed to flow and to drive to zero the observation error. As a
consequence, using the control scheme, the asymptotic stability results
of the previous chapter become practical asymptotic stability results
as it is proved that the solutions to the closed-loop system converge
to this ball. Moreover, since convergence to zero of the plant state is
not guaranteed anymore, Theorem 3.5 could not be recovered, thus
providing a partial result for the output feedback case.

In this chapter a different control scheme is used, and we remove
the defective Zeno solutions by augmenting the control system with
a dwell-time logic which enforces a suitable dwell time between each
pair of consecutive jumps (or resets). To do that, and following the
strategy adopted in Nešić et al. [2005], Zaccarian et al. [2005] and later
works such as Forni et al. [2014], reset control systems can then be
augmented with an extra jump rule which imposes that after any jump
a pre-assigned time interval ρ has to expire before a subsequent jump is
allowed. Each pair of jump times will then be not closer than ρ to each
other (namely, |ti− tj | > ρ for all i 6= j), so that it will be impossible to
have Zeno solutions. This type of rule has been used, e.g., in Johansson
et al. [1999] and was therein called “temporal regularization”. The same
idea was also used in the context of reset systems in [Chen et al.,
2001, §2]. The FORE (1.2) augmented with temporal regularization
corresponds to the following second order hybrid system:{

τ̇ = 1− dz
(
τ
ρ

)
,

ẋc = acxc + bce,
is allowed when xce ≥ 0 or τ ∈ [0, ρ],{

τ+ = 0,
x+
c = 0, is allowed when xce ≤ 0 and τ ∈ [ρ, 2ρ].

(4.1)

where ρ > 0 is the dwell time and dz(·) is the standard unit deadzone.
The stability and performance results that we will report next all re-

fer to reset control systems modified as in (4.1) where ρ is a sufficiently
small positive number. It should be emphasized that this temporal
regularization of reset systems is mandatory even for just running a
simulation. Indeed, simulation packages like Simulink will not be able
to compute the solution forward in time if the temporal regularization
is not implemented in the simulation scheme. As a consequence, tem-
poral regularization is even more important if wanting to implement
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experimentally these reset control systems.
With the modified dynamics (4.1), it is convenient to take a closer

look at the corresponding closed loop with a linear plant, generalizing
dynamics (1.4). In particular, just as in Chapter 2, we may drop the
sentence “is allowed when” from our equations and consider the general
closed loop

{
τ̇ = 1− dz

(
τ
ρ

)
,

ẋ = Ax+Bd,
x ∈ F or τ ∈ [0, ρ], (4.2a){

τ+ = 0,
x+ = Gx,

x ∈ J and τ ∈ [ρ, 2ρ], (4.2b)

where x ∈ Rn, d ∈ Rm and τ ∈ R≥0.
If one selects F and J as the symmetric cones in (1.5) and d is

Lebesgue measurable, a solution ξ(·, ·) := (x(·, ·), τ(·, ·)) of the hybrid
system (4.2) is a function defined on the hybrid time domain dom(ξ) =
dom(x) = dom(τ) such that:
(i) for all j and almost all t such that (t, j) ∈ dom(ξ), we have

(ξ(t, j) ∈ F or τ(t, j) ∈ [0, ρ]) , and
{
ẋ(t, j) = Ax(t, j) +Bd(t),
τ̇(t, j) = 1− dz

(
τ(t,j)
ρ

)
;

(ii) for all (t, j) ∈ dom(ξ) such that (t, j + 1) ∈ dom(ξ) we have

(ξ(t, j) ∈ J and τ(t, j) ∈ [ρ, 2ρ]) , and
{
x(t, j + 1) = Gx(t, j),
τ(t, j + 1) = 0 .

Due to the special structure of system (4.2), and due to temporal regu-
larization which enforces for all (t, j) ∈ dom(ξ), j ≥ 1 that tj+1−tj ≥ ρ,
Zeno solutions cannot occur and complete solutions (namely, solutions
whose time domain is unbounded, or equivalently solutions that evolve
forever) all have an unbounded domain in the t direction (equivalently,
given any complete solution ξ(·, ·), for any t ∈ R≥0, there exists j ∈ Z≥0
such that (t, j) ∈ dom(ξ)).
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4.2 Controller architecture and output feedback stabilization

4.2.1 Controller architecture

According to the problem statement in Chapter 3 restricted to the
linear case, we consider a linear time-invariant plant P, represented by
(3.15) with an output y, namely:

P
{
ẋp = Apxp +Bpu

y = Cpxp +Dpu
(4.3)

with xp ∈ Rnp , u ∈ Rp and y ∈ Rq.

ẋc = Acxc + Bcy

τ̇ = 1− dz
(
τ
ρ

)

u = Ccxc +Dcy

˙̂xp = Aex̂p + Beu + Ly

x̂p

xc, τ

yp u

H
ŷ = Cpx̂p +Dpu

ŷp

Supervisor

(jump map, F , J )

reset x+c , τ
+

Figure 4.1: The proposed control scheme.

For the plant (4.3) we use the controller architecture shown in Fig-
ure 4.1, where the dynamic controller considered in Chapter 3, whose
state is denoted by xc, is augmented with a Luenberger observer, whose
state is denoted by x̂p, with a dwell-time logic whose state is denoted by
τ and with a supervisor enforcing the reset rules induced by the hybrid
loops. In particular, while the linear closed loop between the dynamic
controller and plant (4.3) does not make any use of the observed state,
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the observer state is used by the supervisor to decide when and where
to reset the controller state.

In the next sections we will propose two solutions for the output
feedback extension of the two architectures of Chapter 3 (thereby re-
sulting in four schemes). All of the proposed schemes share the same
flow dynamics which is[ ˙̂xp

ẋc

]
=
[
Ae BeCc
0 Ac

][
x̂p
xc

]
+
[
BeDc + L

Bc

]
y

:= AH

[
x̂p
xc

]
+BHy (4.4a)

u =
[
0 Cc

][ x̂p
xc

]
+Dcy

:= CH

[
x̂p
xc

]
+DHy, (4.4b)

where Ae = Ap − LCp, Be = Bp − LDp and all the other matrices
are design parameters that will be defined later. We assume that the
Luenberger observer gain L and the feedback interconnection of the
plant-controller pair satisfy the following assumption.

Assumption 4.1. The interconnection (4.3)-(4.4) is well-posed, that is,
the matrix (I −DpDc) is non-singular. Moreover, the observer gain L
is such that the matrix Ae = Ap − LCp is Hurwitz.

Remark 4.1. Note that Assumption 4.1 implies that the pair (Cp, Ap)
is detectable. y

To enforce a desirable dwell time between each pair of consecutive
jumps of the hybrid control systems proposed next, we augment the
state of the controller (4.4a), (4.4b) with a timer (or dwell-time logic)
τ ∈ R (see also [Cai et al., 2008, Proposition 1.1]). For the results in
Teel et al. [2013] to be applicable, it will be important that this timer
lies in a compact set. Therefore, instead of simply using τ̇ = 1 for our
timer, we impose the following flow dynamics

τ̇ = 1− dz
(
τ

ρ

)
, (4.4c)



58 Dwell-time logic and observer-based hybrid loops

From (4.4c), it is easy to see that the right-hand side is Lipschitz,
that τ̇ = 1 if τ ∈ [0, ρ] and that the nonnegative interval [0, 2ρ] is
forward invariant. The timer τ will be restricted to the set [0, 2ρ], by
introducing reset to zero at each jump and by terminating any solution
with τ 6∈ [0, 2ρ]. Moreover, the timer will be used to inhibit jumps
whenever τ ∈ [0, ρ).

For later use, after defining the observation error e := xp − x̂p
and the aggregated state x := [x̂>p x>c e>]> ∈ Rn, with n = 2np + nc,
it is useful to rewrite the interconnection (4.3), (4.4) in the following
compact form  ˙̂xp

ẋc
ė

 =

 Āp B̄p Bo
B̄c Āc B̄c
0 0 Ae


 x̂pxc
e

 := Ax (4.5a)

τ̇ = 1− dz
(
τ

ρ

)
(4.5b)

y =
[
C̄p C̄c C̄p

]
x := Cyx, (4.5c)

with  Āp B̄p Bo
B̄c Āc B̄c
C̄p C̄c C̄p

 =

 Ap BpCc LCp
0 Ac 0
0 0 0


+

 BpDc

Bc
I

X [
Cp DpCc Cp

]
,

where X = (I −DpDc)−1 is well defined and Ae is Hurwitz from As-
sumption 4.1.

Remark 4.2. From the cascaded structure of the closed-loop system
(4.5a) and the fact that Ae is Hurwitz, it is evident that ė = ẋp− ˙̂xp =
Aee, namely the observer state x̂p converges exponentially to the plant
state xp, during flow. y

4.2.2 Reset rule replacing xp by x̂p

The first state feedback reset rule proposed in Theorem 3.1 (see also
Corollary 3.3 for the linear case addressed here) hinges upon the avail-
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ability of a Lyapunov-like function (xp, xc) 7→ V (xp, xc) which admits
a sufficiently smooth minimizer φ(xp) = argminxc V (xp, xc) satisfying

V (xp, φ(xp)) ≤ V (xp, xc), ∀xc ∈ Rnc . (4.6)

In particular, when focusing on the linear case and using a quadratic
Lyapunov function V (xp, xc) := [ xpxc ]> P [ xpxc ] := [ xpxc ]>

[
Pp Ppc
P>pc Pc

]
[ xpxc ],

with P = P> > 0, since the minimizer can be explicitly computed as
φ(xp) := −P−1

c P>pcxp, property (4.6) reduces to (see also (3.20))

He(P̄p(Āp + B̄pKp)) < −αP̄p, P̄p = P̄>p > 0, (4.7)

where

P̄p := Pp − PpcP−1
c P>pc, Kp := −P−1

c P>pc, (4.8)

and α ≥ 0 is a scalar design parameter. Note that by standard con-
gruence transformations, constraint (4.7) on the entries of P can be
convexified (as done in Section 3.5.2).

To extend the corresponding construction to the output feedback
case, we make the same assumption here.

Assumption 4.2. The plant P in (4.3), and the matrix P are such that
equation (4.7), with the definitions in (4.8), is satisfied for some α > 0.

Using the definitions in (4.4), we select the hybrid controller of
Figure 4.1 as

[ ˙̂xp
ẋc

]
= AH

[
x̂p
xc

]
+BHy,

τ̇ = 1− dz
(
τ
ρ

)
,

(x̂p, xc) ∈ F or τ ∈ [0, ρ]


[
x̂+
p

x+
c

]
=
[
I 0
Kp 0

][
x̂p
xc

]
,

τ+ = 0,
(x̂p, xc) ∈ J and τ ∈ [ρ, 2ρ] (4.9)

u = CH

[
x̂p
xc

]
+DHy
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with the flow and jump sets chosen as:

F =


[
x̂p
xc

]
:
[
x̂p
xc

]>
N

[
x̂p
xc

]
≤ −α̃

[
x̂p
xc

]>
P

[
x̂p
xc

] ,
(4.10a)

J =


[
x̂p
xc

]
:
[
x̂p
xc

]>
N

[
x̂p
xc

]
≥ −α̃

[
x̂p
xc

]>
P

[
x̂p
xc

] ,
(4.10b)

where 0 < α̃ ≤ α and

N := He
(
P

[
Āp B̄p
B̄c Āc

])
. (4.10c)

Using the compact representation (4.5), the interconnection (4.3)
and (4.9) becomes the following hybrid closed-loop system:{

ẋ = Ax,

τ̇ = 1− dz
(
τ
ρ

)
,

x ∈ (F × Rnp) or τ ∈ [0, ρ]{
x+ = Gx,

τ+ = 0, x ∈ (J × Rnp) and τ ∈ [ρ, 2ρ]

y = Cyx,

(4.11a)

where

G :=

 I 0 0
Kp 0 0
0 0 I

 . (4.11b)

The closed-loop system (4.10), (4.11) generalizes to the output feed-
back case the state-feedback solution whose properties are established
in Corollary 3.3. The following theorem establishes the global exponen-
tial stability of the scheme.

Theorem 4.1. Consider a plant-controller pair (4.3), (4.9) satisfying
Assumption 4.1 and two parameters P , α satisfying Assumption 4.2.
Then there exists ρ∗ > 0 such that for all ρ ∈ (0, ρ∗], the set

A := {0} × [0, 2ρ] ⊂ Rn × R (4.12)

is globally exponentially stable for the closed-loop system (4.11) with
the sets F and J in (4.10).



4.2. Controller architecture and output feedback stabilization 61

We focus now on the second state feedback reset rule proposed
in Theorem 3.2 (see also Corollary 3.4 for the linear case addressed
here). For this second case, the dynamics of the controller (4.11) un-
changes but the jump and flow sets are defined based on a state feed-
back gain Kp ∈ Rp×np for the plant (4.3) and a Lyapunov-like func-
tion which is only nonzero in the direction of the plant states, namely
Vp(xp) := x>p P̄pxp, where P̄p is symmetric and positive definite. Also
for this second case we make the following assumption, corresponding
to Assumption 3.2 for the linear case (see also (3.6)).

Assumption 4.3. The plant P in (4.3) and the matrix pair (P̄p,Kp)
are such that equation (4.7) is satisfied for some α > 0.

Based on the matrix pair (P̄p,Kp) satisfying Assumption 4.3 and
a (typically small) scalar ε > 0, we can now define the jump and flow
sets associated with the second solution and to be used in the dynamics
(4.11):

F =


[
x̂p
xc

]
:
[
x̂p
xc

]>
Np

[
x̂p
xc

]
≤ −α̃x̂>p P̄px̂p − ε|xc|2

 , (4.13a)

J =


[
x̂p
xc

]
:
[
x̂p
xc

]>
Np

[
x̂p
xc

]
≥ −α̃x̂>p P̄px̂p − ε|xc|2

 , (4.13b)

where 0 < α̃ ≤ α and

Np := He
([

P̄pĀp P̄pB̄p
0 0

])
. (4.13c)

The closed-loop system (4.11), (4.13) generalizes to the output feed-
back case the state-feedback solution whose properties are established
in Theorem 3.1 (see also Corollary 3.3). However, an extra term is
added to allow inserting the dwell-time logic in the scheme without
compromising the stability properties established in Chapter 3. Indeed,
while the flow and jump sets in (4.10) coincide with those of Corollary
3.3, it is not true that the flow and jump sets in (4.13) coincide with
those of Corollary 3.4. The difference stands in the term −ε|xc|2 intro-
duced here to provide a sufficient level of robustness. Such a robustness
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is required to tolerate the inevitable perturbations introduced by the
dwell-time logic, which forces the system to flow even though x belongs
to J when the timer τ is too small. Note that the addition of this term
does not restrict the class of systems that we consider, while it may
lead to slightly smaller flow sets.
Although we do not have a formal proof of fragility of the scheme
in Corollary 3.4, we should emphasize that the proofs of stability in
Corollary 3.4 were based on the invariance principle because Lyapunov
arguments only allowed to establish negative semidefiniteness of our
candidate Lyapunov functions. It turns out that the term −ε|xc|2 pro-
vides the missing decrease and significantly simplifies the proof of expo-
nential stability of the state-feedback case here presented. Moreover the
strict decrease arising from this term allows us to introduce the dwell-
time logic without destroying the exponential stability of the closed
loop. It should also be emphasized that the dwell-time parameter ρ∗
established in the next theorem shrinks to zero as ε becomes smaller.
Perhaps, this suggests that the amount of the dwell-time perturba-
tion, that the hybrid closed loop can tolerate, becomes smaller as ε in
(4.13) shrinks to zero. To illustrate the effect of the new term −ε|xc|2
in (4.13), assume without loss of generality that e = 0 (that is xp = x̂p)
and consider the following example

A =
[
Āp B̄p
B̄c Āc

]
=
[
−1 0
1 0

]
, P̄p = 1,

which, regardless of Kp satisfies (4.7) for any α < 1 (because B̄p = 0).
This example does not satisfy the detectability condition in Theo-
rem 3.5 and indeed one can see that setting ε = 0 in (4.13) (thus recov-
ering the scheme of Theorem 3.5) the solutions starting from (xp, xc) =
(0, a) for any a 6= 0 can flow indefinitely so that xc(t, j) = a 6= 0 for all
times, implying no convergence (even with dwell time).
Consider now the sets (4.13) with ε 6= 0 and (xp, xc) = (0, a) 6∈ F
because −ε|xc|2 = −ε|a|2 < 0. Then xc is instantaneously forced to
jump to x+

c = Kpxp = 0, regardless of Kp, and this shows convergence.
In other words, the extra term −ε|xc|2 appearing in (4.13) (combined
with the dwell-time logic) ensures that, upon convergence to zero of
xp, if xc 6= 0, then the controller will eventually be forced to jump (as
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xp gets small enough) and the xc substate will be stabilized by way of
the jumps without the need of the detectability of (B̄p, Āc) required in
Theorem 3.5.

This last result is formalized in the next theorem which establishes
global exponential stability of the scheme.

Theorem 4.2. Consider a plant-controller pair (4.3), (4.9) satisfying
Assumption 4.1 and three parameters P̄p, Kp and α satisfying As-
sumption 4.3. Then, for any ε > 0, there exists ρ∗ > 0 such that for all
ρ ∈ (0, ρ∗], the set A in (4.12) is globally exponentially stable for the
closed-loop system (4.11) with the sets F and J in (4.13).

4.2.3 Enhanced reset rule exploiting y − ŷ

The solution presented in the previous section succeeds in extending
the schemes of Chapter 3 to the output feedback case, but it does not
directly exploit the instantaneous knowledge of the output error y − ŷ
for the selection of the flow and jump sets and the reset rule. We ex-
plore this additional potential here and propose an enhanced scheme
which is expected to behave better during the observer transient. The
two enhanced schemes rely once again on the parameters P , α (respec-
tively, the matrices P̄p, Kp, α) satisfying Assumption 4.2 (respectively,
Assumption 4.3), plus a set of four extra matrices: Ky ∈ Rnc×q used
in the jump rule and Kx ∈ Rnp×q, Kc ∈ Rnc×q, Kη ∈ Rq×q used in
the flow and jump sets definition. The four matrices represent a set of
additional free tuning parameters.

Let us define η := y− ŷ = Cp(xp− x̂p) = Cpe and ζ := [x̂>p x>c η>]>,
the hybrid controller of Figure 4.1 is selected as:

[ ˙̂xp
ẋc

]
= AH

[
x̂p
xc

]
+BHy,

τ̇ = 1− dz
(
τ
ρ

)
,

ζ ∈ Fy or τ ∈ [0, ρ]

(4.14a)
[
x̂+
p

x+
c

]
=
[
I 0
Kp 0

][
x̂p
xc

]
+
[

0
Ky

]
η,

τ+ = 0,
ζ ∈ Jy and τ ∈ [ρ, 2ρ]

(4.14b)
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u = CH

[
x̂p
xc

]
+DHy (4.14c)

with the flow and jump sets selected as

Fy =

ζ :
[
x̂p
xc

]>
(N + α̃P )

[
x̂p
xc

]
≤

 x̂p
xc
η


>  Kx

Kc

Kη

 η
 ,
(4.15a)

Jy =

ζ :
[
x̂p
xc

]>
(N + α̃P )

[
x̂p
xc

]
≥

 x̂p
xc
η


>  Kx

Kc

Kη

 η
 ,
(4.15b)

where 0 < α̃ ≤ α and N and P are selected according to the previous
section. In (4.15) we use the notation Fy and Jy to insist on the fact
that these sets depend on the output y and controller state xc only,
even if these sets are subsets of the full state space.

Using (4.5), the interconnection (4.3), (4.14) becomes the following
hybrid closed-loop system:{

ẋ = Ax,

τ̇ = 1− dz
(
τ
ρ

)
,

ζ ∈ Fy or τ ∈ [0, ρ]{
x+ = Gyx,

τ+ = 0, ζ ∈ Jy and τ ∈ [ρ, 2ρ]

y = Cyx

(4.16a)

where

Gy :=

 I 0 0
Kp 0 KyCp
0 0 I

 . (4.16b)

Once again, the closed-loop system (4.15), (4.16) generalizes to
the output feedback case the state-feedback solution whose properties
are established in Corollary 3.3. The following theorem establishes the
global exponential stability of the scheme.
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Theorem 4.3. Consider a plant-controller pair (4.3), (4.14) satisfying
Assumption 4.1, two parameters P , α satisfying Assumption 4.2 and
four parameters Ky, Kx, Kc, Kη. Then there exists ρ∗ > 0 such that
for all ρ ∈ (0, ρ∗], the set A in (4.12) is globally exponentially stable
for the closed-loop system (4.16) with the sets Fy and Jy in (4.15).

It should be emphasized that Theorem 4.3 only establishes the sta-
bility properties of the output feedback solution proposed here, whereas
it does not highlight its strong relation with the parallel state-feedback
solution of Chapter 3. Such a relation is established in the next propo-
sition. As in Goebel and Teel [2006], we say that two solutions are
(T, J, ε)-close if their graphs are ε-close in the compact hybrid time
domain bounded by (T, J) (see Goebel and Teel [2006] for details).
Moreover, we say that two solutions are ε-close if they are (T, J, ε)-
close for all (T, J) ∈ R≥0 × Z≥0.

Proposition 4.1. Consider the state feedback hybrid closed loop in
Corollary 3.3. There exists ρ∗ > 0 such that for all ρ ∈ (0, ρ∗] the
following hold:

1. any solution of the state feedback hybrid closed loop starting from
(xp(0, 0), xc(0, 0)) = (xp0, xc0), with xp0 6= 0, is also the (xp, xc)-
component of a solution of the output feedback hybrid closed-loop
system (4.15), (4.16) (resp. (4.10), (4.11)) starting from ξ(0, 0) =
(x̂p(0, 0), xc(0, 0), e(0, 0), τ(0, 0)) = (xp0, xc0, 0, τ0) with τ0 ≥ ρ;

2. for each ε > 0, there exists δ > 0 such that the (xp, xc)-
component of any solution to the output feedback hybrid closed-
loop system (4.15), (4.16) (resp. (4.10), (4.11)) starting from
ξ(0, 0) = (x̂p(0, 0), xc(0, 0), e(0, 0), τ(0, 0)) = (xp0, xc0, e0, τ0) with
xp0 6= 0, τ0 ≥ ρ and |e0| ≤ δ|(xp0, xc0)| is ε|(xp0, xc0)|-close to
a solution of the state feedback hybrid closed loop starting from
(xp(0, 0), xc(0, 0)) = (xp0, xc0).

Paralleling the previous section, we focus now on the second state-
feedback reset rule proposed in Theorem 3.1 and we leave once again
the dynamics of the controller (4.16) unchanged but we define different
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jump and flow sets, based on the pair of matrices Kp ∈ Rp×np and
P̄p ∈ Rnp×np , P̄p = P̄>p > 0, satisfying Assumption 4.3. In particular,
the jump and flow sets are defined as:

Fy =

ζ :
[
x̂p
xc

]>(
Np +

[
α̃P̄p 0

0 εI

])[
x̂p
xc

]
≤

 x̂p
xc
η


>  Kx

Kc

Kη

 η
 ,

(4.17a)

Jy =

ζ :
[
x̂p
xc

]>(
Np +

[
α̃P̄p 0

0 εI

])[
x̂p
xc

]
≥

 x̂p
xc
η


>  Kx

Kc

Kη

 η
 ,

(4.17b)

where ε > 0, 0 < α̃ ≤ α and Np and P̄p are selected in the same way
as in the previous section.

The closed-loop system (4.16), (4.17) generalizes to the output feed-
back case the state-feedback solution whose properties are established
in Theorem 3.1 (see also Corollary 3.3). The following theorem estab-
lishes the global exponential stability of the scheme.

Theorem 4.4. Consider a plant-controller pair (4.3), (4.14) satisfying
Assumption 4.1, three parameters P̄p, Kp and α satisfying Assump-
tion 4.3 and five parameters ε > 0, Ky, Kx, Kc, Kη. Then there exists
ρ∗ > 0 such that for all ρ ∈ (0, ρ∗], the set A in (4.12) is globally expo-
nentially stable for the closed-loop system (4.16) with the sets Fy and
Jy in (4.17).

We cannot establish an equivalent statement to Proposition 4.1 with
reference to the scheme (4.16), (4.17) and the linear state-feedback law
of Corollary 3.4. Indeed, as emphasized at the end of Section 4.2.2, the
jump and flow sets considered in Chapter 3 correspond to the ones in
(4.17) with e = 0 and ε = 0. Due to this fact, since we require ε > 0
here, we cannot say that the solutions to (4.16), (4.17) graphically
converge to those of the corresponding state-feedback loops of Chapter
3. Nevertheless, since the system with a small ε > 0 corresponds to a
perturbation of the system with ε = 0, we can state by relying on the
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results of Goebel and Teel [2006] that the arising trajectories can be
made arbitrarily close to those of the state-feedback law of Corollary 3.4
by choosing ε arbitrarily small. Note that the same consideration may
be done on Theorem 4.2 and solutions of (4.11), (4.13).

4.3 Simulations

In this section, two simulation examples are presented to show the effec-
tiveness of the proposed methods. For the techniques in Theorems 4.1
and 4.3, we use an example which appeared in several reset control
papers. For the techniques in Theorems 4.2 and 4.4, we present an
example inspired by a positioning system comprising an electrical DC
motor.

4.3.1 Illustration of Theorems 4.1 and 4.3

Consider the plant P (s) = s+1
s(s+0.2) introduced in Beker et al. [2004] and

discussed in Example 3.2. According with (4.3), a possible realization
is [

Ap Bp
Cp Dp

]
=

 −0.6 0.6 −1
−0.4 0.4 1

0 1 0

 .
Notice that the pair (Cp, Ap) is observable. To design the continuous-
time part (4.4a) of the controllers, we select the matrices Ac, Bc, Cc
and Dc to define the same closed-loop system used in Beker et al. [2004]
and in Example 3.2, obtaining[

Ac Bc
Cc Dc

]
=
[
−1 −1
1 0

]
.

For the hybrid part of our controller, we exploit the optimal configura-
tion presented for the static state feedback in Example 3.2 for the over-
shoot reduction, see Table 4.1. As the basic idea of this optimization
is to approximate the Lyapunov-like function, used to define the flow
and jump sets, to the norm of the plant output (i.e. V (xp, xc) ≈ |y|2),
we select Pc = 10−10 (namely the smallest Pc that satisfies all the
conditions in Assumption 4.2) in such a way that the influence of the
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state xc be reduced. Moreover we set α̃ = 10−8 to enlarge as much as
possible the flow set and ρ = 2 · 10−3. The observer gain in (4.4a) is
chosen as L = [0.26 1.37]> and the controller (4.16) is implemented
with Kx = 0, Kc = 0, and Kη = 0. As for Ky, the inspection of the
transient response revealed that Ky = −5 leads to an improved tran-
sient, partially recovering the performance of the solid line obtained in
Example 3.2 in which the knowledge of the state was assumed.

Figure 4.2 depicts the input and output behavior of the hybrid sys-
tems (4.11) (dashed line) and (4.16) (dot-dashed line) compared to the

Table 4.1: Hybrid controller setting proposed.

P̄p K>p α[
0.0097785 −0.0096375
−0.0096375 0.99990

] [
0.0594992
−4.83065

]
7.784 · 10−6
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Figure 4.2: Hybrid controllers (4.9) and (4.14), compared to the linear case, to the
FORE in Beker et al. [2004] and to the hybrid controller with optimal static state
feedback given in Example 3.2.
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linear case, to the technique in Beker et al. [2004] and to the technique
in Example 3.2. All the controllers have zero initial conditions whereas
the plant state starts from xp(0, 0) = −[1 1]>. As expected, the unde-
sired effects of the dynamics of the observer affect the controller (4.9)
exhibiting a larger overshoot than the static state feedback of Exam-
ple 3.2. This overshoot is caused by the observer transient. The second
control technique is capable to partially compensate for this gap, re-
covering some performance for the output feedback case. We remark
that, although the FORE in Beker et al. [2004] does not introduce fur-
ther dynamics for the hybrid closed-loop system, it exhibits a larger
overshoot than (4.11) and (4.16).

4.3.2 Illustration of Theorems 4.2 and 4.4

Let us consider the use of a DC motor already used in Fichera et al.
[2012c] to place a load in a desired position (namely, the origin). Fig-
ure 4.3 represents the series of the DC motor and the load that we are
considering, where Ke = 10 and τe = 0.05 are the electrical gain and
time constant of the motor, F = 1.2 and J = 0.5 are the friction and
inertia of the load. Note that J = 0.5 corresponds, for example, to the
inertia of a cylindric load with radius R = 0.25m and mass m = 16Kg.

Ke

1 + τes

1

F + Js
1
s

TmV ω θ

P

u y

Figure 4.3: Plant block scheme.

With these parameters, the plant in observer canonical form is

[
Ap Bp
Cp Dp

]
=


−22.4 −6 0 50

8 0 0 0
0 1 0 0
0 0 1 0

 ,
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which can be commonly controlled by the following PI controller whose
parameters have been tuned following a typical PI design procedure
(see, e.g., [Franklin et al., 2009, Chapter 4.3.4])[

Ac Bc
Cc Dc

]
=
[

0 0.1250
−0.08 −0.05

]
.

We want to augment this controller with a hybrid loop tuned in such a
way to reduce the overshoot induced by the integral action. Two differ-
ent hybrid loops are presented: one with a full order observer (namely,
an observer with the same order as the plant) and one with a second
order observer (designed based on a second order approximate model of
the plant). In both cases, the optimization technique in Proposition 3.2
for the overshoot reduction is used. In all the plots, the linear PI con-
troller will be compared to the results obtained with different settings
of the same linear controller augmented by a hybrid loop.

Another aspect that will be taken into account is the robustness
to parameters uncertainty. To this aim, we will consider the case in
which the load has a mass 100% higher than expected, therefore the
perturbed inertia value is J = 1 (see Figure 4.3) and the perturbed
plant matrices become

[
Ap Bp
Cp Dp

]
=


−21.2 −6 0 50

4 0 0 0
0 1 0 0
0 0 1 0

 .

Hybrid loop based on a full order observer

Let us consider the technique in Proposition 3.2, for κM = 0.1 (with the
same notation) and L = [−0.0241 0.0841 1.0808]>, we get (according
to (4.7) and (4.8)):

Kp =
[

0.00803345 0.02347159 0.09657843
]
,

ρy = 0.2809,

P̄p =

 0.02290376 0.06418020 0.06227308
0.06418020 0.19173178 0.18092975
0.06227308 0.18092975 0.95345625

 ,
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where ρy is the quantity to be minimized (according to the discussion
after Proposition 3.2). Then, by selecting α̃ = 10−12, ρ = 0.004, ε =
0.01 and Np as in (4.13c), it is possible to define system (4.11) with the
flow and jump sets in (4.13).

In all of the next simulations, the plant and controller initial con-
ditions will be xp(0, 0) = [0.7 0 − 4]>, xc(0, 0) = 0 and τ(0, 0) = ρ,
whereas the observer initial condition is modified to explore the behav-
ior of the hybrid controller. Choosing x̂p(0, 0) = xp(0, 0) (namely, the
estimate error is zero), the output of the hybrid closed-loop system and
the output of the linear closed loop with the simple PI are plotted in
Figure 4.4(a) for the nominal case. Note that with a full order observer
if e(T ) = 0 then e(t) = 0 for all t ≥ T (in the absence of disturbances).

Figure 4.4(b) compares the behavior of the PI and the hybrid con-
trollers with the plant subject to uncertainties of the parameters. The
hybrid controller behavior is illustrated in several scenarios to better
show how it is possible to compensate for the undesired effects caused
by a non zero observation error. The overshoot reduction for the hybrid
system is maintained in the case with parameters uncertainties when
the estimate error of the observer is zero (dash-dotted line), but it may
be lost if e is large (dashed line). We remark that the faster rise time
in the dashed line is not necessarily more desirable since it requires a
larger control input (see lower plot). To compensate for this overshoot,
we resort to the hybrid controller in (4.16) (same settings as for (4.11),
plus a further term Ky = 0.06 in the reset law) maintaining the flow
and jump sets unchanged (namely, we select the sets in (4.17) with Kx,
Kc, Kη all zero). In this way we reduce the overshoot but the system
still shows a faster rise time (dotted line). Finally, we introduce the
gain Kη = 0.2, which inhibits jumps when the output estimate error
is large. The resulting response, corresponding to the thin solid line,
appears to be closer to the state-feedback response.

Hybrid loop based on an approximate reduced order observer

Let us consider the plant of Figure 4.3 neglecting the first block, related
to the electrical dynamics of the DC motor. Then the remaining part
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(a) Nominal case.
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(b) Perturbed case.

Figure 4.4: Full order observer case (Example of Section 4.3.2).



4.4. Fundamental properties of temporally regularized systems 73

is [
Apr Bpr
Cpr Dpr

]
=

 −2.4 0 2
1 0 0
0 1 0

 ,
and it can be exploited to define a reduced order observer (the subscript
“r” stands for “reduced”). Since the goal is the overshoot reduction,
we use the technique in Proposition 3.2, with κM = 0.1 and L =
[0.0063 0.9015]>, to obtain (according to (4.7) and (4.8))

Kp =
[

0.03680221 0.09245721
]
,

ρy = 0.3435,

P̄p =
[

0.41279516 0.24891952
0.24891952 0.89441164

]
,

where ρy is the quantity to be minimized (according to the discus-
sion after Proposition 3.2). Then, by selecting α̃ = 10−12, ρ = 0.004,
ε = 0.01, Ky = 0.06, Kx = 0, Kc = 0, Kη = 0.2 and Np as in (4.13c),
it is possible to define system (4.11) with the flow and jump sets in
(4.13).

Figure 4.5 shows that the behavior of the hybrid closed-loop system
does not change much compared to the full order case. The overshoot
reduction is achieved and no faster rise time or other considerable ef-
fects coming from the observer can be observed, even for very large
initial estimate errors.

4.4 Fundamental properties of temporally regularized sys-
tems

When adding temporal regularization to a reset logic, the resulting
dynamics generates solutions that behave more desirably in terms of
avoiding Zeno behavior by way of enforcing a dwell-time condition be-
tween consecutive jumps (or resets). However, this positive feature goes
with an undesirable possibility that solutions may flow even though the
x component is outside the set F , because perhaps the timer τ is smaller
than ρ. Due to this reason, it is harder to prove stability results for a
temporally regularized system. In this section we establish a few funda-
mental conditions showing that, under certain reasonable assumptions,
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(b) Perturbed case.

Figure 4.5: Approximated reduced order observer case (Example of Section 4.3.2).



4.4. Fundamental properties of temporally regularized systems 75

one can reduce sufficiently the value of ρ, so that certain stability con-
ditions holding before temporal regularization are preserved also after
temporal regularization.

The results reported in this section appeared in Nešić et al. [2011]
and represent the key tools for proving most of the results covered in
Part III of this survey, and in particular those of Chapter 7. They rep-
resent some useful alternatives to the proof techniques that appeared
earlier in Nešić et al. [2008b], Zaccarian et al. [2005, 2007, 2011] to
analyze reset systems with temporal regularization. These alternative
techniques are instead surveyed in our Chapter 5. In particular, as com-
pared to the results of Chapter 5, the theorems below exploit a strict
Lyapunov decrease at jumps (which was not required in Nešić et al.
[2008b]) to compensate for a possible growth of V outside the flow set
F . This was not possible in Nešić et al. [2008b] because the Lyapunov
functions were only required not to increase at jumps, thereby extra
flow conditions had to be imposed on a slightly inflated version of the
flow set. This new technique leads to a simpler proof than that of Nešić
et al. [2008b]. See Section 7.1 for a qualitative discussion of this fact.

4.4.1 Lyapunov conditions for exponential and L2 stability

Inspired by the nonlinear reset dynamics introduced in the previous
chapter, let us consider the following peculiar structure for a nonlinear
reset systems subject to an exogenous disturbance:{

τ̇ = 1− dz
(
τ
ρ

)
,

ẋ = f(x, d),
x ∈ F or τ ∈ [0, ρ], (4.18a){

τ+ = 0,
x+ = g(x), x ∈ J and τ ∈ [ρ, 2ρ], (4.18b)

Then we formalize the requirement that there is a Lyapunov func-
tion for the x dynamics of system (4.18), which decreases both during
flows and along jumps.

Assumption 4.4. Given system (4.18), a suitable output y satisfying
|y|2 ≤ λ0|x|2 and an integer p ∈ [1,+∞), the locally Lipschitz Lya-
punov function V : Rn → R≥0 is such that there exist positive real
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numbers λi, i = 1, . . . , 7 and η ∈ (0, 1) such that for all d:

λ1|x|p ≤ V (x) ≤ λ2|x|p (4.19a)
∂V (x)
∂x

f(x, d) ≤ λ3V (x) + λ4|x|p−1|d|, for a.a. x ∈ Rn, (4.19b)

max
v∈∂V (x)

v>f(x, d) ≤ −λ5V (x)− λ6|y|p + λ7|d|p, ∀x ∈ F , (4.19c)

V (g(x)) ≤ ηV (x), ∀x ∈ J . (4.19d)

where ∂V (x) is the Clarke generalized gradient of V (·) at x (see Clarke
[1990] for its definition).

Remark 4.3. Note that global asymptotic stability of the origin of{
ẋ = f(x, d), x ∈ F ,
x+ = g(x), x ∈ J , (4.20)

(which has no temporal regularization) with d = 0 is equivalent to
(4.19c) and (4.19d) with d = 0 and V (·) positive definite and radially
unbounded. These conditions, a subset of the conditions in Assump-
tion 4.4, are sufficient to establish semiglobal practical asymptotic sta-
bility for the system (4.20) augmented with temporal regularization,
i.e., the system (4.18). For details, see Goebel and Teel [2006] or Cai
et al. [2008]. Here we also impose the stronger conditions (4.19a) and
(4.19b) because we are interested in establishing global asymptotic sta-
bility results, in addition to properties of the system with disturbance
inputs. y

It should be noted that the way dynamics (4.18) is affected by
the disturbance d is quite peculiar, because its action only concerns
the flow map and is completely absent in the jump map and in the
jump/flow sets. This setting is motivated by the typical scenario in
reset control where somehow the flowing nature of hybrid solutions
is more relevant than the jumping one. In this setting, we measure
the energy of the signal by only concentrating on its continuous-time
nature. In particular, we use pseudo-norms of hybrid signals that only
involve integrals and do not involve sums (for more general hybrid
norms of signals, see Nešić et al. [2013]). These norms become even
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more relevant when considering temporally regularized systems whose
complete solutions are always characterized by unbounded domains in
the t directions.

While we will define more carefully t-L2 norms of hybrid signals
later in Definition 5.1, let us provide here some relevant results that
were reported in Nešić et al. [2011] and regarding some interesting con-
nections between the Lyapunov conditions of Assumption 4.4 (which do
not involve temporal regularization) and exponential and t-Lp stabil-
ity properties of the reset system with temporal regularization (4.18).
When p = 2, the definition of t-Lp stability is defined in Definition 5.1.
For different values of p ∈ [1,∞], it is a straightforward generalization
of that definition.

Theorem 4.5. Given an integer p ∈ [1,+∞), assume that there exists a
function V (·) satisfying Assumption 4.4. Then if f(·, ·) is continuous in
its first argument, the reset system with temporal regularization (4.18)
satisfies the following:

1. there exists ρ̄ > 0 such that for any ρ ∈ (0, ρ̄] the origin of the x
dynamics with d = 0 is exponentially stable;

2. the system is finite gain t-Lp stable from d to y and for any ε > 0,
there exists ρ̄ such that for all ρ ≤ ρ̄ the t-Lp gain from d to y is

upper bounded by
(
λ7
λ6

)1/p
+ ε.

Remark 4.4. The use of generalized gradients in Theorem 4.5 is mo-
tivated by the fact that the result is used in Theorems 7.1–7.3 with
locally Lipschitz Lyapunov functions. Note that it is not sufficient to
impose the flow conditions (4.19c) stated for the gradient of V for al-
most all x. More specifically, for (4.19b) it is sufficient to restrict the
attention to almost everywhere because by continuity of f , for each dis-
regarded point there is a full measure set of points where the condition
holds. However, this reasoning does not hold for (4.19c) where the con-
dition is restricted to the set F for which no extra assumptions hold. In
particular, one can construct defective cases with thin selections of F ,
namely sets of measure zero, so that imposing a flow condition almost
everywhere in F corresponds to not imposing it at all. y
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4.4.2 Stability of linear reset systems acting on cones

An additional contribution from Nešić et al. [2011] addresses linear hy-
brid dynamics acting on jump and flow sets that are cones. Under this
homogeneity property, based on Tuna and Teel [2006], parallel prop-
erties to those of standard linear systems can be established, estab-
lishing several equivalence between different notions of stability involv-
ing asymptotic stability, finite-gain t-Lp and t-L∞ stability and also
t-Input-to-State Stability (or t-ISS in short) defined as the existence of
a class KL function β and a continuous nondecreasing nonlinear gain
γ that is zero at zero, such that all solutions x satisfy

|x(t, j)| ≤ β(|x(0, 0)|, t) + γ(‖d‖∞), ∀(t, j) ∈ dom x.

More specifically, the following equivalences are proved:

• (local) asymptotic stability of the origin ⇔ global exponential
stability,

• global exponential stability⇔ finite gain t-Lp and finite gain t-Lp
to t-L∞ stability from d to x with p ∈ [1,+∞),

• global exponential stability ⇔ finite gain exponential t-ISS from
d to x.

More specifically, we focus on the following class of temporally reg-
ularized linear reset systems:{

τ̇ = 1− dz
(
τ
ρ

)
,

ẋ = Ax+Bd,
x ∈ F or τ ∈ [0, ρ],{

τ+ = 0,
x+ = Gx,

x ∈ J and τ ∈ [ρ, 2ρ],
(4.21)

where x ∈ Rn and τ ∈ R. We assume that (4.21) satisfies the following
assumption.

Assumption 4.5. The sets F and J are closed nonempty subsets of
Rn. Moreover, they both are cones, namely, for each λ > 0 and each
x ∈ Rn, x ∈ F ⇒ λx ∈ F and x ∈ J ⇒ λx ∈ J .
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Let us conclude this chapter with the following robustness result
for system (4.21) under Assumption 4.5.

Theorem 4.6. If Assumption 4.5 holds, then the following statements
are equivalent:

1. the origin of the x dynamics of (4.21) with d = 0 is (locally)
asymptotically stable;

2. the origin of the x dynamics of (4.21) with d = 0 is globally
exponentially stable;

3. given p ∈ [1,+∞), system (4.21) is finite gain t-Lp stable and
t-Lp to t-L∞ stable from d to x;

4. system (4.21) is finite gain exponentially t-ISS from d to x.
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5.1 Introducing continuous-time L2 gains

The material covered in the previous chapters often resulted in dynam-
ics of reset closed loops that corresponded to linear flow and jump maps
and flow/jump sets consisting in symmetric cones. Chapter 4 also dis-
cussed the importance of embedding temporal regularization in those
dynamics. We focus in this chapter on a rather general class of tempo-
rally regularized systems that have been addressed, e.g., in Teel et al.
[2013], Fichera et al. [2013], Nešić et al. [2008b], Zaccarian et al. [2011],
Beker et al. [2001a], and that corresponds to{

ẋ = Ax+Bw

τ̇ = 1− dz
(
τ
ρ

) , (x, τ) ∈ C{
x+ = Gx

τ+ = 0 , (x, τ) ∈ D

z = Czx+Dzww

y = Cyx+Dyww

(5.1)

where x ∈ Rn is the ordinary state, τ ∈ R is a dwell-time logic timer
(with ρ > 0), w ∈ Rnw is an exogenous signal, z ∈ Rnz is the perfor-
mance output, y ∈ Rny is the measured output and C, D are the flow

80
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and jump sets defined, respectively, as

C := {(x, τ) : x ∈ F or τ ∈ [0, ρ]}
= {(x, τ) : x ∈ F} ∪ {(x, τ) : τ ∈ [0, ρ]}, (5.2a)

D := {(x, τ) : x ∈ J and τ ∈ [ρ, 2ρ]}
= {(x, τ) : x ∈ J } ∩ {(x, τ) : τ ∈ [ρ, 2ρ]}, (5.2b)

with F and J symmetric cones defined by a matrix M = M> ∈ Rn×n

as

F :=
{
x ∈ Rn : x>Mx ≤ 0

}
, (5.2c)

J :=
{
x ∈ Rn : x>Mx ≥ 0

}
. (5.2d)

Note that (5.1) and C ∪D = Rn × [0, 2ρ] satisfy the Basic Assump-
tions of Goebel et al. [2009] and then it is easy to show that solutions
exist for all initial conditions of x ∈ Rn and for all initial values in
[0, 2ρ] for the dwell time τ . Since C ∪ D is forward invariant and no
finite escape times are possible due to the linear flow map, then it fol-
lows that all maximal solutions are complete and we will refer in the
following to asymptotic stability rather than pre-asymptotic stability
(see Goebel et al. [2009], Goebel et al. [2012] for more details).

Similar to previous works, in this chapter we are concerned about
the asymptotic behavior of x and not of timer τ . Therefore, we study
stability properties of the compact

A = {0} × [0, 2ρ] ⊂ Rn × [0, 2ρ]. (5.3)

Note that the set [0, 2ρ] is forward invariant for τ . Moreover, due
to the dwell time, each maximal solution ξ = (x, τ) to (5.1)-(5.2) has a
hybrid domain E = dom(ξ), which is unbounded in the ordinary time
t direction. More specifically, any two elements (t, j), (s, k) of E with
t > s satisfy the dwell-time condition (see Goebel et al. [2012], Cai
et al. [2008] for details on dwell-time logic):

ρ+ t− s ≥ ρ(j − k). (5.4)

The hybrid system (5.1)-(5.2) is quite general and has been used
in several works in the literature like Fichera et al. [2012b,c, 2013],
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Zaccarian et al. [2005, 2011], Nešić et al. [2011], which justifies the
interest of the results presented here.

The next remark states some important features of solutions to
hybrid system (5.1)-(5.2).

Remark 5.1. Consider any solution ξ to system (5.1)-(5.2) and its jump
times ti, i ∈ dom(ξ) ⊂ N. Then:

i. ti+1 − ti ≥ ρ, for all i ∈ N, i ≥ 1. In particular, if ti+1 − ti > ρ,
i ∈ N, i ≥ 1, then x(t, i) ∈ F for all t ∈ [ti + ρ, ti+1];

ii. in the first interval [t0, t1] = [0, t1], we have t1 − t0 ≥ ρ − τ(0, 0)
and so it might happen that t1 − t0 < ρ (note that this might also
imply that t1 = t0 = 0 if τ(0, 0) ≥ ρ). Nevertheless, x(t, 0) ∈ F for
all t ∈ [max{0, ρ− τ(0, 0)}, t1];

iii. flow may occur in J due to the dwell-time logic;

iv. whenever x ∈ F ∩J and τ ∈ [ρ, 2ρ], the solution may either jump
or flow.

y

Let us define now the t-decay rate property and the t-L2 norm of a
hybrid signal.

Definition 5.1. i. (t-decay rate) Given a hybrid system, a compact
set A ⊂ Rn is uniformly globally exponentially stable with t-decay
rate λ > 0 if there exists a strictly positive real number k such that
each solution x satisfies

|x(t, j)|A ≤ k exp(−λt)|x(0, 0)|A, ∀(t, j) ∈ dom(x), (5.5)

where dom(x) denotes the hybrid time domain of the solution x.

ii. (t-L2 norm of a hybrid signal) For a hybrid signal w, with
domain dom(w) ⊂ R≥0 × N, the t-L2 norm of w is given by

‖w‖2t =

 ∑
j∈domj(w)

∫ tj+1

tj

|w(t, j)|2dt

 1
2

, (5.6)
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where domj(w) := {j ∈ N : (t, j) ∈ dom(w) for some t ≥ 0} and
with tj+1 possibly being∞ if j ∈ domj(w) and (j+ 1) 6∈ domj(w).

iii. (w ∈ t-L2) For a hybrid signal w, with domain dom(w) ⊂ R≥0 ×
N≥0, we say w ∈ t-L2 whenever ‖w‖2t <∞. Moreover, for any pair
t1 ≥ t2 such that t1, t2 ∈ domt(w), we use ‖w [t1, t2]‖2 to denote
the restriction of (5.6) to the corresponding subdomain.
Due to the dwell time in (5.1)-(5.2) (which guarantees condi-

tion (5.4)), the t-decay rate property (5.5) implies uniform global
exponential stability of the x component of (5.1)-(5.2) in the hybrid
sense (see Teel et al. [2013]). Furthermore, the dwell time is also
a fundamental property that justifies the use of ordinary-time L2
norms defined in (5.6) (just as in Fichera et al. [2012c], Forni et al.
[2011], Nešić et al. [2008b]). In particular, whenever the dwell-time
condition (5.4) is satisfied, the definition in (5.6) essentially corre-
sponds to the continuous-time L2 norm of the continuous-time signal
t 7→ ξt(t) obtained by projecting on the ordinary time the hybrid
arc (t, j) 7→ ξ(t, j). Note that if the hybrid arc ξ only flows, that
is dom(ξ) = [0,+∞) × {0}, then (5.6) corresponds to the standard
continuous-time L2 norm. Note also that (5.6) is not a norm because,
for example, a solution ξ starting at a nonzero value at (t, j) = (0, 0)
and jumping to zero at (t, j + 1) = (0, 1) would satisfy ‖ξ‖2t = 0
(this is not the case for the hybrid norms introduced in Cai and Teel
[2009], Nešić et al. [2013]). Nevertheless we call it norm throughout the
paper due to the intuition that it generalizes the continuous-time norm.

A common performance index for dynamical systems consists in the
worst case t-L2 norm amplification from an input w and a performance
output signal z of interest. More precisely, we want to estimate the
finite t-L2 gain of system (5.1)-(5.2) as defined next.
Definition 5.2. Consider the compact set A in (5.3). System (5.1)-(5.2)
has finite t-L2 gain from w to z with gain (upper bounded by) γ > 0,
if any solution to (5.1)-(5.2) starting from A satisfies

‖z‖2t ≤ γ‖w‖2t, (5.7)
for all w ∈ t-L2.
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5.2 Lyapunov-based t-L2 stability conditions

In this section, we provide sufficient conditions to establish t-L2 gain
performance bounds for system (5.1)-(5.2), relying on a Lyapunov func-
tion defined only in the x-state space direction. Our first theorem be-
low, whose proof is reported in Fichera et al. [2015], corresponds to
an enhancement of the Lyapunov conditions initially proposed in Nešić
et al. [2008b]. In spite of their generality, the conditions given below
may be too convoluted to digest, therefore we present next the simpli-
fied conditions that previously appeared in Nešić et al. [2008b] that,
despite some limitations as compared to those of Fichera et al. [2015],
are general enough to allow deriving a number of useful Lyapunov con-
structions discussed at the end of this chapter. Suitable comparisons
between the two versions of the stability theorem are reported next.

The intuitive goal of the results reported in the rest of this section
is to establish if there exists a non-empty set of possible selections
of the dwell-time parameter ρ > 0 that guarantee global asymptotic
stability of set A in (5.3) for system (5.1)-(5.2) with w = 0 and we
would like to build an estimate of the t-L2 gain from w to z. The results
are stated first considering a generic Lyapunov function and afterwards
considering a quadratic Lyapunov function, which leads to a convenient
convex linear matrix inequalities-based (LMI-based) formulation. The
motivation to move in this direction is due to the example reported at
the beginning of Section 5.4.3, discussing an exponentially stable reset
system for which there does not exist a quadratic Lyapunov function.

Let us state the following statement which comprises a fairly general
non-necessarily quadratic function V . The proof comprises several steps
and is reported in Fichera [2013], Fichera et al. [2015].

Theorem 5.1. Consider system (5.1)-(5.2) and the following definitions

F̃ =
{
x ∈ Rn : x>M̃x ≤ 0

}
, (5.8)

F̃ε =
{
x ∈ Rn : x>M̃x− εx>x ≤ 0

}
, (5.9)

with M̃ = M̃> ∈ Rn×n and ε > 0. Suppose there exist a continuously
differentiable function V : Rn → R≥0 such that set F̃ε in (5.9) satisfies
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F ⊂ F̃ε, positive real scalars a1, a2, a3, a4, a5, γ̄ and a nonnegative
scalar ρ satisfying

a1|x|2 ≤ V (x) ≤ a2|x|2, ∀x ∈ Rn, (5.10a)

〈∇V (x), Ax+Bw〉+ a3V (x) + 1
γ̄
z>z − γ̄w>w < 0,

∀x ∈ F̃ε \ {0},∀w ∈ Rnw , (5.10b)
V (Gx) ≤ exp(a3ρ)V (x), ∀x ∈ J , (5.10c)
Gx ∈ F̃ , ∀x ∈ J , (5.10d)
〈∇V (x), Ax+Bw〉 ≤ a4V (x) + a5|x||w|,

∀x ∈ Rn,∀w ∈ Rnw . (5.10e)

Then for any γ satisfying

γ ≥ γ̄ exp
(
a3ρ

2

)
, γ >

√
2|Dzw|, (5.11)

there exists ρ > 0 such that for any ρ ∈ (ρ, ρ):

1) when w = 0, the set A in (5.3) is globally asymptotically stable for
the hybrid closed-loop system (5.1)-(5.2);

2) when w 6= 0, with w ∈ t-L2, the finite t-L2 gain from w to z is less
than or equal to γ, namely (5.7) holds for any solution to (5.1)-(5.2)
from any initial condition ξ(0, 0) = (x(0, 0), τ(0, 0)) ∈ A.

Theorem 5.1 establishes the existence of ρ. A way to characterize an
estimate of the value of ρ is based on suitable bounds reported next,
that were first derived in [Nešić et al., 2008b, Theorem 1], and then
refined in Fichera et al. [2015]. Selecting ρ?1, ρ?2 and ρ?3 as follows

ρ?1 := ϕ−1
e

(
ε

|2(M̃ − εI)A|

)
(5.12a)

ρ?2 := ϕ−1
1 (γ2 − 2|Dzw|2), ρ?3 := ϕ−1

2

(
ε

a2 exp(a3ρ)

)
(5.12b)

ϕe(s) := 1
2|A| (exp(2|A|s)− 1) (5.12c)

ϕ1(s) := κ1(s) + κ2(s) + 2|Cz|2s
a1

(1 + κ1(s) + κ2(s)) (5.12d)
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ϕ2(s) := L1
s

a1
(1 + κ1(s) + κ2(s))

+ L2

√
s

a1
(1 + κ1(s) + κ2(s)) (5.12e)

κ1(s) := exp
(
a4
2 s
)
κ(s) + 4a1a4

a2
5
κ2(s) (5.12f)

κ2(s) := exp
(
a4
2 s
)
κ(s) + κ2(s) (5.12g)

κ(s) := a5
2

√
exp(a4s)− 1

a1a4
(5.12h)

L1 := 2|(M̃ − εI)A|, L2 := 2|(M̃ − εI)B| (5.12i)
a4 := a4 + a3, a5 := a5 exp(a3ρ) (5.12j)

where M̃ comes from F̃ in (5.8), then

• ρ = ρ?1 guarantees item 1 of Theorem 5.1

• ρ := min{ρ?2, ρ?3}, satisfies item 2 of Theorem 5.1.

Therefore the choice

ρ := min{ρ?1, ρ?2, ρ?3} (5.12k)

guarantees both items 1 and 2 of Theorem 5.1.
Under certain restrictive conditions, we may present a simplified

version of Theorem 5.1, which initially appeared in Nešić et al. [2008b]
and which can be seen then as a corollary of Theorem 5.1, as discussed
next. We will make use of the corollary below for some of the statements
reported in Section 5.4.

Corollary 5.2. Consider the reset control system (5.1)-(5.2) and assume
Dzw = 0. Assume that there exist a locally Lipschitz function V (x) :=
x>P (x)x, and strictly positive constants a1, a2, γ, εM and εS , such that

1. a1|x|2 ≤ V (x) ≤ a2|x|2 for all x ∈ Rn,

2. P (λx) = P (x) = P>(x) > 0 for all x ∈ Rn and for all λ ∈ R,

3. ∂V (x)
∂x

(Ax + Bw) + εS |x|2 + 1
γ
|y|2 − γ|w|2 < 0, for almost all x

such that x>(M − εMI)x ≤ 0,
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F

F
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J

Gx

(a) sets F and J and image of jump map-
ping Gx.

x2

x1

F

F

J

J

Gx

F̃

F̃

F̃ǫ

F̃ǫ

(b) Gx ∈ F̃ and F ⊂ F̃ε (notice also that
F̃ ⊂ F̃ε).

Figure 5.1: Example where item 5 Corollary 5.2 is not satisfied (so that the corol-
lary cannot be applied) and a possible selection of sets F̃ and F̃ε to apply Theo-
rem 5.1 (F̃ is the conic region delimited by dashed lines and F̃ε is the conic region
delimited by bold lines).

4. V (Gx)− V (x) ≤ 0 for all x such that x>Mx ≥ 0.

5. Gx ∈ F for all x such that x>Mx ≥ 0.

Then there exists a small enough ρ̄ > 0 such that for any fixed ρ ∈
(0, ρ̄), the reset control system (5.1)-(5.2) is exponentially stable and
has a finite t-L2 gain from w to y, which is smaller than γ.

Remark 5.2. The condition at item 2 corresponds to requiring that
the Lyapunov function is homogeneous of degree two. The condition
at item 3 corresponds to requiring that in a set that is slightly larger
than the flow set the Lyapunov function is a disturbance attenuation
Lyapunov function for the input w and the output y. The condition at
item 4 corresponds to requiring that the Lyapunov function does not
increase along resets. y

Theorem 5.1 is stronger than Corollary 5.2 in the following ways:

• The gain Dzw is assumed to be zero in Corollary 5.2. Instead
in Theorem 5.1 it should be noted that the second condition in
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(5.11) guarantees that the argument of ϕ1(·) in (5.12a) is strictly
positive and thus it guarantees also that ρ is strictly positive.
Allowing Dzw 6= 0 is crucial in many relevant H∞ type of perfor-
mance goals arising in set-point regulation.

• Increase at jumps of the Lyapunov function x 7→ V (x) is allowed
in Theorem 5.1, while it is not allowed in Corollary 5.2. By se-
lecting a non-zero ρ in (5.10c), growth at jumps is allowed and
is balanced by a strengthened decrease condition during flow,
imposed by the term a3P in (5.10b) (see [Goebel et al., 2012,
Proposition 3.29]). Corollary 5.2 requires non-increase at jumps
thereby resulting often into numerical problems when specializing
the stability conditions to numerical tests based on LMIs. Indeed,
the non-increase requirement is often coupled with a partial reset
action on the states, thereby resulting in thin feasibility sets that
are prone to numerical issues.

• The requirement in item 5 of Corollary 5.2 is removed and re-
placed in Theorem 5.1 by the introduction of set F̃ and its ε-
inflation, F̃ε, in (5.8) and (5.9) respectively, which allow for more
flexibility. Indeed the dwell-time perturbation upon the trajec-
tories (see Remark 5.1) is addressed through these inflated sets.
Moreover in Corollary 5.2, the jumps have to be mapped in the
flow set, which is a requirement relaxed in Theorem 5.1. In par-
ticular, Figure 5.1(a) shows a case for which Corollary 5.2 cannot
be applied. Figure 5.1(b) instead, shows a possible selection of
sets F̃ and F̃ε so that Theorem 5.1 can still be applied. Note that
the situation of Figure 5.1(a) is quite common in certain reset
control systems where G maps to the boundary of F . Clearly,
item 5 of Corollary 5.2 is a particular case of Theorem 5.1 and it
can be retrieved by selecting F̃ = F (namely, M̃ = M). Finally,
we notice that F̃ ⊂ F̃ε always holds.

Remark 5.3. A generic choice of the parameters ε and γ in Theorem 5.1
does not always guarantee that the set of suitable ρ (namely, (ρ, ρ)) is
non empty. In particular, whenever ρ is non-zero (namely, a growth
at jumps is admitted) there is no guarantee a priori that ρ < ρ (for
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example, when using the construction for ρ̄ in (5.12)). Therefore, when-
ever ρ > ρ, the set (ρ, ρ) is empty. However, whenever ρ = 0 (namely
no increase at jumps is allowed), since ρ?1, ρ?2 and ρ?3 are strictly posi-
tive (see the definitions in (5.12)), then ρ > 0 and the set of suitable
ρ is (ρ, ρ) = (0, ρ) and is non empty. Moreover, we emphasize that
ϕe(·), ϕ1(·) and ϕ2(·) defined in (5.12) are class K∞ functions and so
also their inverses, which in particular, depend either on γ or on ε.
Therefore, since ρ is the minimum of these last class K∞ functions, by
enlarging ε and/or γ, we may always obtain ρ < ρ. y

Remark 5.4. There are some special cases for which Theorem 5.1 can
be strengthened:

1. Global flow condition: suppose that (5.10b) holds globally for all
x ∈ Rn \ {0} (consider, for instance, the case where ε ≥ λmax(M̃),
namely, F̃ε = Rn). Therefore even when Dzw 6= 0, the second condi-
tion of (5.11) is not needed and γ = γ̄ exp(a3ρ

2 ). In this case, the set
(ρ, ρ) can always be selected as non empty, by arbitrarily enlarging
ρ.

2. Exponential stability: item 1 of Theorem 5.1 establishes global
asymptotic stability of set {0} × [0, 2ρ]. To prove global exponen-
tial stability, we should require a further decrease term in (5.10b).
In particular, the term a3V (x) in (5.10b) is needed to compensate
for the eventual growth at jumps due to ρ. Nevertheless, replacing
a3V (x) in (5.10b) by (a3 +η)V (x) with η > 0, then global exponen-
tial stability of the attractor A can be ensured even when ρ 6= 0.
On the other hand, whenever ρ = 0, item 1 of Theorem 5.1 provides
global exponential stability of set {0}× [0, 2ρ], because a3V (x) does
not have to compensate for any growth at jumps.

Notice that whenever Dzw = 0 and ρ = 0, then from (5.11) the result
in Corollary 5.2 with γ = γ̄ is recovered. y

5.3 LMI-based L2 stability conditions

A relevant consequence of Theorem 5.1 is the following proposition that
requires the existence of a single quadratic Lyapunov function V (x) =
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x>Px, P = P> > 0 satisfying the conditions of Theorem 5.1, namely
the same quadratic function satisfies the flow condition in the flow set
and the jump condition in the jump set. While being conservative,
this special case is of interest because it leads to convenient convex
formulations, especially relevant when performing reset control designs,
such as those reported in the next chapter.

Proposition 5.1. Suppose there exist matrices P = P> > 0, M̃ = M̃>,
non-negative scalars ρ, τS , τF , τC , τR and positive scalars ε, γ̄, a3 such
that A>P + PA+ a3P − τS(M̃ − εI) PB C>z

B>P −γ̄I D>zw
Cz Dzw −γ̄I

 < 0, (5.13a)

G>PG− exp(a3ρ)P + τRM ≤ 0, (5.13b)
M̃ − τFM ≤ εI, (5.13c)
G>M̃G+ τCM ≤ 0. (5.13d)

Then for any γ satisfying (5.11), there exists ρ > 0 such that for any
ρ ∈ (ρ, ρ):

1) the set A in (5.3) is globally exponentially stable for the hybrid
closed-loop system (5.1)-(5.2), with w = 0;

2) the t-L2 gain from w to z is less than or equal to γ, for all w ∈ t-L2.

For this quadratic case, the generalization in Proposition 5.1 (which
comes from Fichera et al. [2015]) appears relevant, as compared to the
conditions previously published in Nešić et al. [2008b], derived from
the above-mentioned Corollary 5.2, which are reported below and can
be well seen as a corollary of the above statement. A slight novelty as
compared to Nešić et al. [2008b] is the third condition, ensuring item
5 of Corollary 5.2.

Corollary 5.3. Nešić et al. [2008b] Consider the reset control system
(5.1)-(5.2) with Dzw = 0. Assume the following linear matrix inequali-
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ties in the variables P = P> > 0, τS , τR, τC ≥ 0, γ > 0 are feasible: A>P + PA− τSM PB C>z
? −γI 0
? ? −γI

 < 0,

G>PG− P + τRM ≤ 0,
G>MG+ τCM ≤ 0.

(5.14)

Then there exists a small enough ρ̄ > 0 such that for any fixed ρ ∈
(0, ρ̄), the reset control system (5.1)-(5.2) is exponentially stable and
has a finite t-L2 gain from w to y which is smaller than γ.

Proposition 5.1 provides a simple tool to solve conditions (5.10)
thanks to the use of the LMI-based framework (Boyd et al. [1994]).
Indeed conditions (5.13) are linear except for a3, τS in (5.13a) and the
exponential term in (5.13b). Therefore to perform the t-L2 analysis, a3
and ρ have to be imposed a priori and a line search upon τS ≥ 0 may
need to be done. Although this may seem restrictive as compared to the
convex formulation in Corollary 5.3, the reason why we insist on the
more general formulation of Proposition 5.1 is to gain important degrees
of freedom in the LMI optimization. Indeed practical experience reveals
that the conditions in Corollary 5.3 are prone to numerical problems
when looking at situations (such as those of Chapter 6) where some part
of the state remains unchanged across jumps. In those cases, allowing
for a slight increase of V across jumps results in numerically more
tractable conditions. This can be accomplished by fixing small values
of ρ and a3 and then solving the arising LMI conditions with a line
search on τS .

Remark 5.5. Let us point out the two cases below. Conditions (5.13)
can be simplified by considering a3 = 0 and/or ε = 0.

i. Case with a3 = 0: if ρ = 0, then a3 does not need to compensate
for any growth at jumps and therefore it can be selected arbitrarily
small because of the strict inequality in (5.13a).

ii. Case with ε = 0: if τS = 1 and M̃ ≤ τFM then (5.13c) holds for
any ε > 0 and ε can be selected arbitrarily small because of the
strict inequality in (5.13a).
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Moreover, whenever both cases apply, then Proposition 5.1 recovers the
LMI conditions of Corollary 5.3 and one gets also that set (ρ, ρ) = (0, ρ)
is always non-empty (see also a similar comment in Remark 5.3). y

5.4 Application to SISO control loops with FORE

5.4.1 Expression of the closed-loop matrices

Consider a strictly proper SISO linear plant whose dynamics is de-
scribed by

P
{
ẋp = Apxp +Bpuu+Bpdd,

y = Cpxp,
(5.15)

where u is the control input, d is a disturbance input, y is the measured
plant output and Ap, Bpu, Bpd and Cp are matrices of appropriate
dimensions.

y

d

u PFORE

r

Figure 5.2: A linear plant controlled by a FORE.

For the plant (5.15), assume that a FORE control system is de-
signed, according to Figure 5.2, where the FORE element is described
by the following dynamics:

FORE
{
ẋc = acxc + e, exc ≥ 0
x+
c = 0, exc ≤ 0, (5.16)

Interconnection
{
u = kxc,

e = r − y, (5.17)

where r ∈ R is a reference signal. Moreover, k denotes the loop gain
and ac ∈ R denotes the pole of the FORE. Note that ac can be any
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number (including positive ones) while k should be positive. For ex-
ample, choosing k = 1 and ac = 0 corresponds to implementing in the
FORE the well known Clegg integrator introduced in Clegg [1958] and
discussed in Chapters 1 and 2.

The overall closed-loop system augmented with temporal regular-
ization can be written in the form (5.1), where x = [x>p xc]> and z = y,
while the matrices in (5.1) correspond to[

A Bd Br
Cz Dzd Dzr

]
=

 Ap Bpuk Bpd 0
−Cp ac 0 1
Cp 0 0 0

 (5.18a)

[
G M

]
=

[
I 0 0 C>p
0 0 Cp 0

]
(5.18b)

where we may then either select w = d or w = r (and B = Bd or B =
Br, respectively) to alternatively study the effect of the disturbance or
the effect of the reference input on the performance output.

5.4.2 Explicit Lyapunov functions for FORE controlling an integra-
tor

When focusing on the specific interconnection of Figure 5.2, the
Lyapunov-based results of Theorem 5.1 can be exploited to analyti-
cally construct a Lyapunov function by first focusing on the flow set
and designing a suitable shape to guarantee decrease along flows, and
then patching the Lyapunov level sets with an extra piece which sat-
isfies the jump condition in the rest of the state-space. We address
here the simple, yet very relevant case of a FORE connected to an
integrator, which has been thoroughly discussed in Chapter 2 for the
special case of ac = 0. This planar system has been widely studied
in the literature and its improved L2 performance properties are here
characterized by way of a pair of analytic Lyapunov functions. The
bounds corresponding to equation (5.20) are graphically represented
in Figure 5.8 in Section 5.5, where they are compared to the bounds
obtained by using the numerical optimization tools of Section 5.4.3.
Theorem 5.4. Given any ac ∈ R, c onsider the closed-loop between

ẏ = u+ d, (5.19)
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and the FORE (5.16), (5.17) with k = 1 and with temporal regular-
ization. Then there exists a Lyapunov function V (·) which satisfies the
conditions in Corollary 5.2 and, as ρ→ 0, gives a bound (depending on
the FORE’s pole ac) for the t-L2 gain estimate from d to y arbitrarily
close to the following value:

γ(ac) ≤


2
|ac|

+ |ac|, if ac < 0,

max
{
π

2 ,
2π

4 + πac

}
, if ac > −

4
π
.

(5.20)
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Figure 5.3: Level sets of the two Lyapunov functions proposed in Theorem 5.4
(solid) and trajectories of the closed-loop selecting θε = 0.05 (dashed). Left: ac = −1.
Right: ac = 1.

The proof relies on Corollary 5.2 and is only sketched here (see Za-
ccarian et al. [2006] for details). It consists in proposing two candidate
Lyapunov functions (one for each one of the two bounds in (5.20)). In
particular, as illustrated in the level sets reported in Figure 5.3, both
functions are defined as follows:

V (x) :=
{
Vf (x), if x>Mθεx ≥ 0,
x>P̂ x, if x>Mθεx ≤ 0, (5.21)

where x := (y, xc), θε is a small enough angle and Mθε :=[
sin(2θε) −1
−1 sin(2θε)

]
is associated with the white regions in Figure 5.3, cor-

responding to the second and fourth quadrant inflated by an angle θε.
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Given the selection (5.21), each bound in (5.20) arises from selecting a
smooth Vf (·) which is positive definite in {x : x>Mθεx ≥ 0}. More-
over, the matrix P̂ is selected so that continuity of V (·) is ensured
and the jump condition at item 4 of Corollary 5.2 is satisfied (this
is always possible for any smooth Vf (·) which is positive definite in
{x : x>Mθεx ≥ 0} and for a small enough θε). In particular, we pick
P̂ diagonal with the following diagonal entries:[

p̂1
p̂2

]
=
[

cos2 θε sin2 θε
sin2 θε cos2 θε

]−1 [
v1
v2

]
(5.22)

where v1 := V 2
f (cos θε, sin θε) and v2 := V 2

f (sin θε, cos θε) are the values
of Vf (·) on the patching hyperplanes.

Based on (5.21), to prove the first bound in (5.20), the following
selection is made:

Vf (x) := x>Px := x>
[
−2+a2

c
ac

1
1 − 2

ac

]
x, (5.23)

while for the second bound in (5.20), the function Vf is selected in terms
of a polar coordinate system (r, θ) satisfying (y, xc) = (r cos θ, r sin θ):

Vf :=


1
2r

2
(
θ − π

2 + 1
2 sin 2θ + ϕε(θ)

)
, if θ ∈

[
π
2 − θε, π + θε

]
,

1
2r

2
(
θ − 3π

2 −
1
2 sin 2θ + ϕε(θ − π

2 )
)
, if θ ∈

[
3π
2 − θε, 2π + θε

]
,

where ϕε(θ) = ε
(

1
2 max{|ac|,1} − sin θ cos θ

)
and ε is a small enough

positive constant.

Remark 5.6. (Comparing analytic and numerical bounds) In Figure 5.8
reported later in Section 5.5, the t-L2 bounds obtained in Theorem 5.4
for different values of ac are compared to the numerical bounds ob-
tained by applying the numerical results proposed in Section 5.4.3.
Note that the numerical bounds are always tighter than the analytic
ones, however, the relevance of the analytic results stands in the fact
that exponential stability and a bound on the t-L2 gain is proved for
all values of ac, whereas numerical tools inevitably lead to infeasibility,
due to numerical problems, for positive values of ac that become too
large. y
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Remark 5.7. (A lower bound on the t-L2 gain for ac = 0) An inter-
esting question corresponds to asking how tight the analytic and nu-
merical bounds in Figure 5.8 are. A partial answer to this question is
given by the following result which establishes that for the case ac = 0
(namely, the Clegg integrator discussed in Chapter 1), the gain is not
smaller than

√
π/8 ≈ 0.626, which coincides with the star reported in

Figure 5.8.
To show this property for the gain, consider the closed loop with-

out temporal regularization (the extension is trivial) between the Clegg
integrator introduced in (1.1) and a purely integrating plant (see Chap-
ter 2 for ample discussions about this closed loop). Its equations can
be written as {

ẏ = xc + d,

ẋc = −y, (5.24)

and select the following initial conditions y(0) ∈
(√

2
2 , 0

)
, xc(0) =

−y(0). Then select the following disturbance:

d(t) =
{

2 exp(t)y(0) t ∈ [0, t∗],
0 t > t∗,

where t∗ := ln
( √

2
−2y(0)

)
. Then it is immediate to check that

‖d‖2 =
√

4 · 1
2 [exp(2t∗)− 1]y2(0)

≤
√

2| exp(t∗)y(0)| = 1.

and that in the limit as y(0) → 0, ‖d‖2 → 1. Then, by substituting in
(5.24) and considering that xc(t) = − exp(t)y(0), the following holds:

y(t) =
{

exp(t)y(0) t ∈ [0, t∗],
− cos(t− t∗ + π/4) t ∈ [t∗, t∗ + π/4].

It follows that in the first time interval [0, t∗], since y(t) = 0.5d(t), we
have

‖y[0,t∗]‖22 = 1
2[exp(2t∗)− 1]y2(0),
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and that in the limit as y(0) → 0, ‖y[0,t∗]‖22 → 1/4. For the remaining
time interval, we have∥∥∥y[t∗,t∗+π/4]

∥∥∥2

2
=

∫ π/2

π/4
cos2(τ)dτ

=
∣∣∣∣12 t+ 1

4 sin(2t)
∣∣∣∣

= π

4 −
π

8 −
1
4 .

Since the state is reset to zero and remains there after t∗ + π/4, then,
in the limit as y(0)→ 0, we have

‖y‖2 →
√
π

8 =
√
π

8 ‖d‖2,

which proves the claim. y
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Figure 5.4: Simulations of step responses of closed loops between FOREs and an
integrator for different values of ac.

Remark 5.8. (From intuition to formalization) The results of Theo-
rem 5.4 correspond to the mathematical formalization of the following
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intuitive reasoning about the closed-loop behavior of the control sys-
tem of Figure 5.2. Since the plant is an integrator, then the linear part
of the control system will always correspond to trajectories that spiral
around the origin of the phase plane. Having ac = 0 will correspond
to closed trajectories (circles in the phase plane), ac < 0 will lead to
exponentially stable trajectories spiraling inward toward the origin and
ac > 0 will lead to exponentially unstable trajectories spiraling outward
toward infinity. When resets come to place, any of these stable and un-
stable trajectories will be blocked when they approach the second and
fourth quadrant, and will be reset to zero, no matter what the value of
ac is. Therefore, the conclusion about exponential stability established
in Theorem 5.4 holds. Let us consider now the bounds on the t-L2
gain from d to y. Large negative values of ac will correspond to expo-
nentially stable branches of trajectories that move very slowly toward
the resetting quadrants, therefore the t-L2 gain of the corresponding
closed loops will be larger and larger as ac becomes more and more
negative (see also the very left of Figure 5.8). The decreasing trend of
the gain as ac approaches zero only occurs up to a certain point in the
linear case because the linear trajectories approach the unstable cases
(occurring with ac > 0). Conversely, in the reset case, the branches ap-
proaching the reset quadrants become increasingly fast and steep, even
for positive values of ac. The corresponding gain becomes then smaller
and smaller. This trend is easily understood by inspecting the sim-
ulations of Figure 5.4, where several step responses (corresponding to
increasing values of ac) are reported. From these simulations it becomes
evident that as ac approaches +∞, the step responses approach a step
output (so that the gain is expected to approach zero) because they
correspond to an increasingly fast exponentially unstable branch up to
the desired set-point, followed by a constant branch. The decreasing
trend of the gain as ac approaches +∞ is confirmed by the numerical
results reported in Figure 5.8 of Section 5.5 with reference to Exam-
ple 5.2, whereas the bound provided by our Lyapunov approach is non
decreasing. An analytical proof of the fact that the gain approaches
zero as ac approaches +∞ has been given in Nešić et al. [2008a, 2011]
when using a slightly modified closed loop which ensures strict decrease
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along jumps thereby relaxing the requirement to inflate the set where
the flow condition holds. y

5.4.3 Piecewise quadratic construction for SISO control loops with
FORE

Although the LMI results in Proposition 5.1 can be a useful tool for
establishing the stability and performance of a FORE control system,
there are severe limitations to what can be shown using that convex
relaxation of the condition in Theorem 5.1, mainly arising from the
conservativeness associated with the use of quadratic Lyapunov func-
tions1. Indeed, it is possible to show that those quadratic Lyapunov
conditions are never feasible if the FORE element is not exponentially
stable. As an example of this, let us focus on the simpler conditions
of Corollary 5.3 and corresponding to (5.14) and consider the case of
a FORE controlling an integrator, which has been subject of great at-
tention over the years (see the discussion in Chapter 2). For the sake
of generality let us consider any positive loop gain k > 0. With all the
external signals at zero, we have during flow:

ẏ = kxc,

ẋc = acxc − y.

Consider a quadratic Lyapunov function V (x) = [ yxc ]>
[
p11

p12
2

p12
2 p22

]
[ yxc ]

and its derivative along the system flow:

V̇ (x) = −p12y
2 + (p12k + 2p22ac)x2

c + (2p11k + p12ac − 2p22)xcy,

Due to the shape of the flow set, we need V̇ (x) < 0 both when xc = 0,
which requires p12 > 0 and when y = 0, which requires p12 < 0 because
k, p22 > 0 and ac ≥ 0 by assumption. The result follows from the
contradiction that p12 needs to be both positive and negative.

Based on the above reasoning, the convex LMI-based constructions
in Proposition 5.1 and Corollary 5.3 do not appear to be good to prove
useful stability and performance properties induced by resets on an oth-
erwise unstable linear closed-loop. Indeed, with an integrating plant the

1The conservativeness of quadratic Lyapunov results is actually a well known
fact also in other nonlinear control research areas.
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corresponding LMIs are infeasible exactly when the linear closed-loop
system stops being exponentially stable (despite the fact that, based
on Theorem 5.4 we know that the reset closed-loop is exponentially
stable for any positive or negative ac).

The most natural relaxation of the quadratic conditions of Propo-
sition 5.1 and Corollary 5.3 consists in piecewise quadratic conditions
where several quadratic functions are selected in different cones of the
state space and patched together to form a unique piecewise quadratic
function. The arising patched function will be continuous as long as the
quadratic functions coincide at the patching surfaces and will be homo-
geneous of degree two because the patching surfaces are cone bound-
aries. In general, piecewise quadratic relaxations of convex quadratic
conditions lead to non convex formulations that do not correspond to
LMIs. However, in our case, it is possible to write convex conditions by
exploiting the special structure of the flow and jump sets. The corre-
sponding result is reported next.

Theorem 5.5. (Piecewise quadratic Lyapunov conditions) Consider
the reset control system (5.16), (5.17) with the matrix selection (5.18).
Assume (without loss of generality) that the plant (5.15) is in observ-
ability canonical form (so that Cp = [0 · · · 0 1]). Select either w = r

and B = Br or w = d and B = Bd. Choose any N ≥ 2 and any θε > 0.
Define θi, i = 0, . . . , N such that −θε = θ0 < 0 < θ1 < · · · <

π

2 <

θN = π

2 + θε (for example, in our case studies we select θi = i
N
π
2 , for

all i ∈ {1, . . . , N − 1}). Define the angle vectors Θi ∈ Rn as

Θi =
[

01×n−2 sin(θi) cos(θi)
]>
, i = 0, . . . , N,

and their orthogonal complements Θi⊥ (so that Θ>i⊥Θi = 0) as

Θi⊥ :=
[
I 0 0
0 cos(θi) − sin(θi)

]>
, i = 0, . . . , N.

Define also the sector matrices Si = S>i ∈ Rn×n as

S0 := Θ0Θ>N + ΘNΘ>0
Si := −(ΘiΘ>i−1 + Θi−1Θ>i ), i = 1, . . . , N,
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Sε1 :=

0(n−2)×(n−2) 0 0
0 0 sin(θε)
0 sin(θε) −2 cos(θε)

 ,

Sε2 :=

0(n−2)×(n−2) 0 0
0 −2 cos(θε) sin(θε)
0 sin(θε) 0

 .
Define Z = [In−2 0(n−2)×2]. If the following linear matrix inequali-

ties in the variables Pi = P>i > 0, τFi ≥ 0, i = 1, . . . , N , P0 = P>0 > 0,
τJ , τε1, τε2 ≥ 0, γ > 0 are feasible: A>Pi + PiA+ τFiSi PiB C>z

? −γI 0
? ? −γI

 < 0, i = 1, . . . , N, (5.25a)

 Z(A>P0 + P0A)Z> ZP0B ZC>z
? −γI 0
? ? −γI

 < 0, i = 1, . . . , N, (5.25b)

G>P1G− P0 + τJS0 ≤ 0 (5.25c)
G>P1G− P1 + τε1Sε1 ≤ 0 (5.25d)
G>P1G− PN + τε2Sε2 ≤ 0 (5.25e)

Θ>i⊥ (Pi − Pi+1) Θi⊥ = 0, i = 0, . . . , N − 1,(5.25f)
Θ>N⊥(PN − P0)ΘN⊥ = 0 (5.25g)

then there exists a small enough ρ̄ > 0 such that for any fixed ρ ∈ (0, ρ̄),
the FORE control system (5.16), (5.17) is exponentially stable and has
a finite t-L2 gain from w to y which is smaller than γ.

Remark 5.9. (Interpretation of the LMIs (5.25)). The piecewise
quadratic Lyapunov function arising from Theorem 5.5 is obtained by
patching together N quadratic functions (characterized by the matrices
P1, . . . , PN ) defined in the (inflated) flow set and one quadratic func-
tion (characterized by the matrix P0) in the jump set, as represented
in Figure 5.5. Note that in most of the state space either a flow or a
jump condition needs to be satisfied, except for the dashed sectors in
the figure, where both the jump and flow conditions are enforced by
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Figure 5.5: The type of piecewise quadratic Lyapunov functions constructed in
Theorem 5.5.

(5.25). The level set sketched in Figure 5.5 represents a possible solu-
tion arising from the LMI constraints. In particular, conditions (5.25f),
(5.25g) ensure that the Lyapunov function is continuous on the patch-
ing surfaces. Moreover, condition (5.25c) enforces the jump condition
from the set S0, condition (5.25d) enforces it from the set Sε1 corre-
sponding to the portion of the set S1 overlapping with the jump set,
and similarly for condition (5.25e) and SN . Finally, conditions (5.25a)
ensure that the proposed Lyapunov function is a disturbance attenua-
tion Lyapunov function everywhere except for S0. y

Remark 5.10. Note that given any solution to (5.25), all the variables
can be scaled by an arbitrary constant while preserving its feasibility.
It is therefore useful to also impose Pi > I, i = 0, . . . , N (without loss
of generality) to obtain reasonable values in the entries of the matrices
Pi. Moreover, these constraints are useful for implementation purposes,
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where the LMI constraints (5.25) can be solved by solving an auxiliary
LMI problem consisting of only strict linear matrix inequalities.

In particular, once a very small tolerance ε has been fixed, the non
strict LMIs (5.25c), (5.25e) can be replaced by the strict LMIs

G>P1G− P0 + τJS0 < 0
G>P1G− PN + τε2Sε2 < 0 (5.26)

while the nonstrict LMI (5.25d) should be broken in the following two
conditions

−
[

01×(n−1) 1
]
P1

 0(n−2)×1
1
0

+ τε1 sin(θε) < 0 (5.27)

 −εI
[
In−2 0(n−2)×2

]
P1

[
0(n−1)×1

1

]
? −εI

 < 0. (5.28)

Finally, the equality constraints (5.25f) can be replaced by the LMIs[
−εI Θ>i⊥ (Pi − Pi+1) Θi⊥
? −εI

]
< 0, i = 0, . . . , N − 1,

(and similarly for (5.25g)). The arising solutions will satisfy the LMIs
(5.25) up to a very small tolerance (proportional to the size of ε). y

5.5 Numerical examples

In this section we show how the LMI formulations given in Section 5.4
can be used to establish useful stability and performance properties
of reset control systems involving FOREs. We first address the most
classical example of a Clegg integrator (namely a FORE with ac =
0) connected to an integrator, then we address the case of a FORE
connected to an integrator, which has been studied in Section 5.4.2 by
way of analytic Lyapunov constructions and finally we discuss a higher
order example.

Example 5.1. (A Clegg integrator controlling an integrator plant) One
of the simplest reset systems considered in the literature corresponds
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to a Clegg integrator connected in feedback with an integrating plant.
Studying the stability of this simple closed-loop by Lyapunov tools
is already a challenging task to accomplish which was addressed and
solved in Hollot et al. [1997], Hu et al. [1997]. The equations of the
closed-loop system before temporal regularization can be written as

ẏ = xc + d,

ẋc = r − y, if xc(r − y) ≥ 0,

x+
c = 0, if xc(r − y) ≤ 0.

(5.29)

Exponential and t-L2 stability of this closed-loop is established in
Theorem 5.4 in Section 5.4.2. Here, by employing the LMI-based tech-
niques of Section 5.4.3, we also give a tight estimate on the t-L2 gain
of the system from the input d to the output y. In light of the sta-
bility properties established in Theorem 5.4 and e.g., in Hollot et al.
[1997], Hu et al. [1997], we may expect to get an estimate of the t-L2
gain from d to y using the quadratic Lyapunov functions proposed in
Proposition 5.1. However, the LMI constraints therein proposed turn
out to be non feasible for this particular problem. Indeed, as discussed
in Section 5.4.3, even for such a simple closed-loop system, a piecewise
quadratic Lyapunov function is necessary to obtain an estimate of the
t-L2 gain. When using the LMIs of Theorem 5.5, it is necessary to use
at least N = 2 to prove the closed-loop exponential stability2. More-
over, as N increases, tighter and tighter bounds are obtained for the
t-L2 gain of the system. Table 5.1 reports some of the values obtained
by increasing the number of regions.

N 2 3 4 8 15 50
gain 2.8338 1.8188 1.3766 0.9145 0.8839 0.8701

Table 5.1: Example 5.1: estimates of the t-L2 gain of (5.29) determined by piecewise
quadratic Lyapunov functions.

It is instructive to study the level sets of the piecewise quadratic
Lyapunov functions arising from the LMIs of Theorem 5.5. For the

2All the numbers in Table 5.1 have been determined following the strategy com-
mented in Remark 5.10 with ε = 1e− 10.
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Figure 5.6: Example 5.1: level sets of the five quadratic Lyapunov functions used
for the case N = 4 (left). Level set of the arising piecewise quadratic Lyapunov
function (right).

case of N = 4 (corresponding to five quadratic functions), Figure 5.6
shows on the left the level sets of the quadratic functions involved in
the piecewise quadratic construction, and on the right, a level set of
the patched piecewise quadratic Lyapunov function. It is interesting
to notice that the Lyapunov function is non-convex. Qualitatively, the
nonconvexity should allow for significant degrees of freedom in Lya-
punov functions constructions. Indeed, it has been recently shown in
Blanchini and Savorgnan [2006] that there are situations where convex
Lyapunov functions are insufficient to prove stability.

Example 5.2. (A FORE controlling an integrator) As discussed in
Chapter 2, reset control systems can overcome certain limitations of lin-
ear control systems. In particular, for an integrating plant, it is shown
in Hollot et al. [2001] that the reset controller can achieve arbitrarily
large rising time of the closed loop while guaranteeing zero overshoot.
This is proved to be non achievable for linear control systems (see Hol-
lot et al. [2001] for details). In [Hollot et al., 2001, §9.2.1], a FORE
with time constant ac = 1 connected in unit negative feedback to an
integrator is used to illustrate this fact. The closed-loop responses of
the system without reset (solid) and of the system with resets (bold) is
shown in Figure 5.4 reported in Section 5.4.2 when illustrating the re-
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sults of Theorem 5.4. According to our notation, the closed-loop system
before temporal regularization is described by the following dynamics

ẏ = xc + d

ẋc = acxc − (r − y), xc(r − y) ≥ 0,

x+
c = 0, xc(r − y) ≤ 0,

(5.30)

and corresponds to the block diagram of Figure 5.2 with P = 1
s
and

ac = 1 in the FORE.
As for the previous example, the stability of this closed-loop system

is established by Theorem 5.4 in Section 5.4.2. However, we can use
the tools introduced in Sections 5.3 and 5.4.3 for the construction of
quadratic or piecewise quadratic Lyapunov functions to obtain a (tight)
estimate of the input/output gain from the reference signal r to the
output y. For this example, it is of interest to compare the t-L2 gain
of the reset control system to the t-L2 gain characterizing the closed
loop without resets. In particular, the t-L2 gain of the linear closed
loop is 1.468 and the estimate arising from the quadratic Lyapunov
construction of Corollary 5.3, corresponding to 1.84, is not good enough
to show that the t-L2 gain of the reset control system is improved
as compared to the linear case. However, determining a bound using
the piecewise quadratic construction of Theorem 5.5 leads to a less
conservative estimate of 1.18 (determined using 51 quadratic Lyapunov
functions), which is able to predict the improved performance of the
reset control system.

Figure 5.7 shows on the left the level sets of the quadratic functions
involved in the piecewise quadratic construction, and on the right, a
level set of the patched piecewise quadratic Lyapunov function (bold)
compared to the level set of the quadratic Lyapunov function estab-
lishing the 1.84 gain estimate. Note that, for this example, the optimal
piecewise quadratic Lyapunov function is nonconvex again.

It is useful to emphasize that it not necessary for the FORE ele-
ment in (5.30) to be exponentially stable. Indeed, as already proved in
Theorem 5.4, any real selection of ac enforces closed-loop stability and
finite t-L2 gain from d to y. Figure 5.8 represents the different bounds
obtained by the piecewise quadratic construction of Theorem 5.5 for a
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Figure 5.7: Example 5.2. Left: level sets of the 51 quadratic Lyapunov functions
used for the caseN = 50. Right: level set of the arising piecewise quadratic Lyapunov
function (bold) and of the quadratic Lyapunov function from Corollary 5.3.
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Figure 5.8: Example 5.2. The t-L2 gain estimates obtained by using PWQ Lya-
punov functions (dashed) for different values of the FORE’s pole ac, compared to
the corresponding linear performance (solid) and to the analytic bounds established
in Theorem 5.4 (dash-dotted). The “*” at ac = 0 corresponds to the lower bound
established in Remark 5.7.

wide range of values of ac. This gain curve (solid) is compared to the
corresponding linear closed-loop gain (dashed), namely the gain that
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one obtains from the linear closed-loop in the absence of resets. In-
evitably, as ac approaches zero from the left, this curve goes to infinity
because the linear system is exponentially unstable for positive ac’s.
The bounds on the t-L2 gain established in Theorem 5.4 by way of
analytic Lyapunov constructions are also reported in Figure 5.8 (dash-
dotted curves). Note that the numerical estimates arising from Theo-
rem 5.5 improve upon the analytic bounds.
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Figure 5.9: t-L2 gains of linear and reset closed loops for Example 5.3, as a function
of the pole of the FORE.

Example 5.3. As a last example we consider a two dimensional lin-
ear plant controlled by a FORE discussed in Nešić et al. [2005] and
previously introduced in Hollot et al. [2001]. In this example, a FORE
element whose linear part is characterized by the transfer function 1

s+1
(namely with ac = −1) controls via a negative unitary feedback a
SISO plant whose transfer function is P = s+1

s(s+0.2) . For this example,
the control system involving the FORE is shown in Hollot et al. [2001]
to behave more desirably than the linear control system. It was shown
in Hollot et al. [2001] that the reset system had only about 40% over-
shoot of the linear closed-loop system while retaining the rise time of
the linear design. This example can be further interpreted using our
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results. Indeed, when computing the t-L2 gain from the plant input to
the plant output, the linear closed-loop system has anH∞ norm around
5, while using the piecewise quadratic construction of Theorem 5.5 we
obtain that the t-L2 gain of the reset system is smaller than 2.77.
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Figure 5.10: Time responses for different values of the FORE pole, with and with-
out resets for Example 5.3.

Figure 5.9 reports the t-L2 gains for the linear closed-loop and the
reset closed-loop as a function of the pole of the FORE (N = 10 is
chosen in Theorem 5.5). Similar to the previous example, for positive
values of ac (unstable FOREs) the linear closed-loop is unstable, while
the reset closed loop induces improved gains. The case studied in Hol-
lot et al. [2001] corresponds to the horizontal coordinate ac = −1 in
Figure 5.9.

For this example it seems appropriate to show the different re-
sponses obtained when using the linear controller guaranteeing the
minimum H∞ norm in Figure 5.9 (namely ac ≈ −1.8) and when using
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the FORE for different values of ac. These responses are reported in
Figure 5.10.



6
Towards reset H∞ control design

6.1 Overview

In this chapter, we extend, in a first stage, the results of Chapter 5 (see
also Nešić et al. [2008b]), providing relaxed Lyapunov-based conditions
to estimate an L2 gain bound for a class of hybrid control systems.
That includes several works in the literature (notably Zaccarian et al.
[2005, 2011], Nešić et al. [2011], Fichera et al. [2012b, 2013]). Convex
conditions for simultaneous design of an optimal multi-objective H∞
reset controller minimizing the decay rate and minimizing the L2 gain
for a linear continuous-time plant are proposed. The reset controller
architecture in Fichera et al. [2012b] and the analysis results are com-
bined by means of a suitable change of coordinates, in order to obtain
convex synthesis conditions. A preliminary version of the construction
proposed here had been reported in Fichera et al. [2012c] and is not dis-
cussed here. As compared to Fichera et al. [2012c] the hybrid controller
architecture that we use here allows obtaining an H∞ reset controller
whose flow map is not necessarily stabilizing in the whole state space
(see also Zaccarian et al. [2011]) thereby possibly leading to more ag-
gressive actions during flowing solutions. Satoh [2011] and Yuan and
Wu [2014] also provide conditions to design a complete H∞ reset con-

111
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troller. The proposed techniques are based on different structures in
the Lyapunov matrix P certifying the quadratic stability of the hybrid
closed loop system.

6.2 Full state availability

In this first part, we consider a controller architecture Hc in which
the reset law realized (namely, the right hand side of the x+

c equation)
requires the availability of the full state xp. This is a strong assumption
that will be removed in the subsequent section by the addition of a
Luenberger observer.

6.2.1 Problem statement

Let us consider Figure 6.1, which describes the system under consider-
ation. Hence, according to Figure 6.1, consider a linear continuous-time

ẋc = Acxc + Bcy

τ̇ = 1− dz
(
τ
ρ

)

u = Ccxc +Dcy

xp

xc, τ

yu

Supervisor

flow:



xp
xc




⊤
M



xp
xc


 ≤ 0 or τ ∈ [0, ρ]

x+c = Kpxp

τ+ = 0

jump:



xp
xc




⊤
M



xp
xc


 ≥ 0 and τ ∈ [ρ, 2ρ]

Hc

ẋp = Apxp + Bpu + Bww
y = Cpxp +Dpu +Dww
z = Czxp +Dzu +Dzww P

w z

Figure 6.1: Block diagram of the proposed reset controller.

plant P, represented by
ẋp = Apxp +Bpuu+Bpww

z = Czxp +Dzuu+Dzww

y = Cpxp +Dpuu+Dpww

(6.1)
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where xp ∈ Rnp is the state of the plant, u ∈ Rnu is the control input,
y ∈ Rny is the measured output (used for the feedback), w ∈ Rnw is an
exogenous input (comprising disturbances and references) and z ∈ Rnz
is the performance output. It is the same model as in Chapter 5 by
considering the presence of an exogenous output (compare (5.1) with
(6.1)).

To keep the presentation simple, algebraic loops are avoided by
making the following typical assumption.

Assumption 6.1. Plant (6.1) is strictly proper from u to y, namely
Dpu = 0.

Note that the previous assumption is not very restrictive. Indeed,
if in plant P Dpu 6= 0, then one can always define ȳ := y −Dpuu and
use ȳ as a new plant measurement output.

In the following, the objective is to propose an optimization-based
synthesis method for simultaneous design of flow map, jump map,
flow set and jump set of a plant-order reset controller. The results
of the previous chapter are used and, via a change of coordinates
similar to Fichera et al. [2012c], a convex LMI formulation with a
line search are obtained. The proposed architecture can be well in-
terpreted as a reset version of continuous-time H∞ controller synthesis.

The first reset controller architecture Hc that we propose is given
by {

ẋc = Acxc +Bcy

τ̇ = 1− dz
(
τ
ρ

) , (x, τ) ∈ C,{
x+
c = Kpxp
τ+ = 0 , (x, τ) ∈ D,

u = Ccxc +Dcy,

(6.2a)

where x = (xp, xc), xc ∈ Rnc and τ ∈ [0, 2ρ] is the dwell-time logic
timer. Furthermore, the flow and jump sets C and D are defined simi-
larly to (5.2a)-(5.2d) as follows:

C := {(x, τ) : x ∈ F or τ ∈ [0, ρ]}
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= {(x, τ) : x ∈ F} ∪ {(x, τ) : τ ∈ [0, ρ]}, (6.2b)
D := {(x, τ) : x ∈ J and τ ∈ [ρ, 2ρ]}

= {(x, τ) : x ∈ J } ∩ {(x, τ) : τ ∈ [ρ, 2ρ]}, (6.2c)

with F and J symmetric cones defined by a matrix M = M> ∈ Rn×n,
with n = np + nc, as

F :=
{
x ∈ Rn : x>Mx ≤ 0

}
, (6.2d)

J :=
{
x ∈ Rn : x>Mx ≥ 0

}
. (6.2e)

In the previous equations, M is a design parameter defined as

M := He
(
PA+ α̃

2P
)
, (6.2f)

with A representing the flow map of the closed-loop system (see (6.1)
and also (6.3) below) and α̃, P being controller parameters to be
defined. Hybrid controller (6.2) is the same as the one in [Fichera et al.,
2012b, Theorem 1], with differences clarified below in Remark 6.1.

Similar to Fichera et al. [2012c], Satoh [2011], Prieur et al. [2010,
2011, 2013], we consider that state feedback reset laws, namely the
jump map and sets C and D in (6.2), depend on the knowledge of the
plant state xp at jump times, which is a strong assumption. Neverthe-
less, applying the results in Fichera et al. [2013], whenever the plant
state is detectable from y, we may implement the proposed controller
in output feedback from y and without a direct measurement of xp,
preserving the closed-loop exponential stability properties established
by this design.

The feedback interconnection between Hc and P is always possi-
ble since Assumption 6.1 implies well-posedness in the linear sense.
Thus, we obtain the hybrid closed-loop system (6.1)-(6.2) with x =
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[x>p x>c ]> ∈ Rn, with the selection:


A B

G −
− M

C̄z D̄zw

C̄p D̄pw

 =



Āp B̄p
B̄c Āc

B̄pw
B̄cw

G −
− M

C̄z D̄zw

C̄p D̄pw



=



Ap +BpuDcCp BpuCc Bpw +BpuDcDpw

BcCp Ac BcDpw

I 0 −
Kp 0 −
− − He

(
PA+ α̃

2P
)

Cz +DzuDcCp DzuCc Dzw +DzuDcDpw

Cp 0 Dpw


. (6.3)

In the sequel, we refer to the interconnection between Hc and P as
(6.1)-(6.2), (6.3).

Remark 6.1. As compared to Fichera et al. [2012b], here we want to
use the same reset controller architecture to propose a multi-objective
simultaneous synthesis optimizing the t-decay rate and the t-L2 perfor-
mance introduced in Definition 5.1. Note that in Fichera et al. [2012b],
the proposed optimization-based synthesis for overshoot reduction only
concerned the design of the reset loop. In other words for any given flow
map (namely, matrix A is given), a solution was proposed to design
flow and jump sets and the jump map (namely, M and Kp in (6.2))
to achieve global exponential stability of the origin, guaranteeing over-
shoot reduction. However, controller matrices (Ac, Bc, Cc, Dc) were not
part of the design. Here instead, similar to Fichera et al. [2012c], Satoh
[2011], we propose an optimization-based synthesis to completely de-
sign the H∞ reset controller, that is, flow and jump maps and flow and
jump sets altogether. y



116 Towards reset H∞ control design

6.2.2 H∞ reset controller design

The following theorem states sufficient conditions for an optimization-
based design of theH∞ reset controller (6.2) with respect to the t-decay
rate α̃ and the t-L2 gain γ, introduced in Definition 5.1. In particular,
the theorem provides an almost convex procedure to design a plant-
order H∞ reset controller. The result is proved by merging the expo-
nential stability results in Fichera et al. [2012b], from which a t-decay
rate can be inferred, and the t-L2 analysis in Proposition 5.1. In partic-
ular, the synthesis is performed without requiring growth at jumps of
the Lyapunov function. Thus if ρ = 0, the set of allowable values of ρ
is always non empty and (5.11) is equivalent to (6.6) in this particular
case. The details of the proof are reported in Fichera et al. [2016].

Theorem 6.1. Given plant (6.1) satisfying Assumption 6.1 and any set
of positive definite matrices Y = Y > ∈ Rnp×np , W = W> ∈ Rnp×np ,
matrices Â ∈ Rnp×np , B̂ ∈ Rnp×ny , Ĉ ∈ Rnu×np , D̂ ∈ Rnu×ny , positive
scalars γ̄, α and a nonnegative scalar τS ≥ 0 satisfying[

Y I

I W

]
> 0, (6.4a)

He
(
ApY +BpuĈ

)
+ αY < 0, (6.4b)

He
([

M1 M2
M3 M4

])
< 0. (6.4c)

with

M1 = (1− τS)
[
ApY +BpuĈ Ap +BpuD̂Cp

Â WAp + B̂Cp

]
− τSα̃

2

[
Y I

I W

]

M2 =
[
Bpw +BpuD̂Dpw 0
WBpw + B̂Dpw 0

]

M3 =
[

0 0
CzY +DzuĈ Cz +DzuD̂Cp

]

M4 =
[

− γ̄
2 I 0

Dzw +DzuD̂Dpw − γ̄
2 I

]
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for some α̃ ∈ (0, α], select the controller parameters as:

P =
[

W −W
−W W + (Y −W−1)−1

]
,

Kp = (Y −W−1)Y −1,

Dc = D̂,

Cc = (Ĉ −DcCpY )(Y −W−1)−1,

Bc = −W−1B̂ +BpuDc,

Ac = −W−1(Â+WBcCpY −WBpuCc(Y −W−1)
−W (Ap +BpuDcCp)Y )(Y −W−1)−1. (6.5)

Then, there exists ρ > 0 such that for any ρ ∈ (0, ρ):

• t-decay rate: the set A in (5.3) is globally exponentially stable
for the hybrid closed-loop system (6.1)-(6.2), (6.3), with w = 0,
and the t-decay rate is α̃/2;

• H∞ specification: for any w ∈ t-L2, the t-L2 gain from w to z
is smaller than or equal to

γ = min{γ̄,
√

2|Dzw|}. (6.6)

Remark 6.2. Optimization issues. Theorem 6.1 gives an LMI-based
convex procedure with a line-search on τS ≥ 0 to design an H∞ reset
controller. Note that the line search must be carried out to get convexity
of the optimization. Indeed, (6.4) becomes an LMI after fixing τS . The
(α, γ̄) trade-off in our design can be addressed by fixing α̃ = α > 0 and
solving an eigenvalue problem minimizing γ̄. Then the t-decay rate is
fixed to be α̃/2 and the t-L2 gain can be minimized. It may sometimes
be desirable to pick α̃ smaller than α to induce longer times between
pairs of consecutive resets. Before computing α̃ smaller than α, it is
simpler to first apply Theorem 6.1 with α̃ = α, and then recompute
unknown variables with α̃ a suitable fraction α, and so on, to find the
"best" couple of variables (α̃, α). y

Remark 6.3. Line-search effects. Note that (6.4c) corresponds to
(5.13a) in Proposition 5.1, and then it is clear that τS is the multi-
plier used in the S-procedure that allows relaxing the flow condition
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but only enforcing it in F̃ε (see also (5.10b)). In particular whenever
τS = 0, the flow set does not appear in (6.4c) so that, according to
Remark 5.4, item 1, condition (5.11) (and so the second term in (6.6))
is not needed, and the t-L2 gain is γ = γ̄. This is the approach that was
followed in the preliminary work of Fichera et al. [2012c]. The choice
of τS = 0 is, however, conservative because in this case (6.4c) holds for
all x ∈ Rn \ {0} and therefore the Lyapunov flow condition holds in
all the state space. Whenever τS > 0, (6.4c) holds for all x ∈ F̃ε, so
that the fact that trajectories are forced to only flow in F̃ε is taken into
account. In this latter case, condition (5.11) (and so (6.6)) needs to be
satisfied. Furthermore several different scenario can be characterized,
according to the value of τS in (6.4c):

• 0 ≤ τS < 1 implies that A in (6.3) is Hurwitz, namely the linear
dynamics before resets is exponentially stable (that is, the flow
map of the H∞ reset controller stabilizes the continuous-time
loop);

• τS = 1 implies that A is not necessarily Hurwitz;

• τS > 1 implies that A is non Hurwitz and interesting closed-loop
responses exhibiting exponentially diverging branches might be
observed (see Zaccarian et al. [2011]), because the linear dynamics
before resets is exponentially unstable.

y

According to Proposition 5.1, inequalities (6.4a) and (6.4c) imply
the existence of a matrix P =

[
Y Z
Z Z

]−1 = P> > 0 satisfying (5.13) and
then the t-L2 result follows from Proposition 5.1. In the meantime,
(6.4a) and (6.4b) guarantee that the t-decay rate is assessed. Note that
we are still using the same Lyapunov function for each objective, and
the conservativeness discussed in [Scherer et al., 1997, §IV.A] still holds.
However, since the controller state can be reset (this is an extra degree
of freedom), better compromises can be obtained in the multi-objective
context.
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6.3 Partial state availability

It is important to observe that an important weakness of the proposed
reset H∞ architecture (6.2) is that, despite the typical output feedback
structure of the flow dynamics, both the jump/flow sets and the jump
rule depend on the availability of the complete plant state xp. Such a
drawback has been considered in Chapter 4, where two solutions for
the output feedback extension, allowing to study an output feedback
implementation of (6.2) under a less general structure than that of
closed loop (5.1), are considered.

In the case with additive perturbation, a parallel result to that
of Theorems 4.1 and 4.2 is given by the following proposition, whose
proof uses a different approach from Fichera et al. [2013], more similar
in nature to the results in Teel [2010].

Proposition 6.1. Consider plant (6.1) in feedback with a hybrid con-
troller of the form (6.2), where the state x = (xp, x̂p, xc) and the plant
state estimate x̂p arises from the continuous-time Luenberger observer
having flow equation:

˙̂xp = (Ap − LCp)x̂p + (Bpu − LDpu)u+ Ly, (6.7)

and jump equation x̂+
p = x̂p. If matrix Ap − LCp is Hurwitz, then

the corresponding output feedback closed loop guarantees global expo-
nential stability of the attractor Ae := {(xp, xc, x̂p, τ) : (x̂p, xc, τ) ∈
A and xp − x̂p = 0}.

At this stage, it is important to note that the result of Proposi-
tion 6.1 does not allow to carry forward the performance properties
established in Theorem 6.1 from the state-feedback case to the output
feedback case. Nevertheless, one can expect that similar results to those
in Proposition 4.1 (see also [Fichera et al., 2013, Prop. 1 & 2]) could be
proven for our case too, thus establishing some tight relation between
the solutions to the state feedback and output feedback cases. Exten-
sions to a convex observer-free reset H∞ full output feedback design is
regarded as future work.

Remark 6.4. Another route, which is an alternative to the previous
one based on the use of an observer, is to use directly the available
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signals, that is in particular the measured output. Some results have
been published in order to build the flow and jump sets, together with
the reset rule using only the available signals.

For example, in the disturbance-free case, in Seuret et al. [2016],
the way to use reset control in event-triggering strategy purpose from
an emulation point of view is studied. Furthermore, in the H∞ per-
formance context of this chapter, Yuan and Wu [2014] defines the flow
and jump sets from the use of the state of the controller and the output
of the plant. y

6.4 Illustrative examples

6.4.1 Example: DC motor

Let us illustrate the drawbacks and the advantages of the results by
dealing with a DC motor already used in Section 4.3.2. A comparison
with the linear classical multi-objective case Scherer et al. [1997] is also
proposed.

In order to avoid fast exponential branches that may damage the
actuator or require excessive bandwidth in the control system, we ex-
ploit the advantages of the LMI formulation by adding the following
constraints to the conditions of Theorem 6.1:

− 2β1 ⊗X −He (AX) < 0, (6.8a)

− 2β2 sin(θ)
[
I 0
0 I

]
+
[

sin(θ)I cos(θ)I
− cos(θ)I sin(θ)I

]
⊗AX

+
[

sin(θ)I − cos(θ)I
cos(θ)I sin(θ)I

]
⊗ (AX)> < 0, (6.8b)

where X and AX are given by (see Chilali and Gahinet [1996], Scherer
et al. [1997]):

X :=
[
Y I

I W

]
, AX :=

[
ApY +BpuĈ Ap +BpuD̂Cp

Â WAp + B̂Cp

]
,

and correspond to the Lyapunov matrix and the closed-loop dynamical
matrix, respectively. β1, β2 and θ are design parameters. Enforcing the
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Figure 6.2: Pole placement region.

constraints in (6.8) guarantees that the poles of the closed-loop feed-
back (or the continuous-part of the feedback for the reset case) lay in
the region pictorially shown in Figure 6.2. In particular, notice that
after the linear synthesis, the poles of the closed-loop feedback will lay
in the polygon QAQBQCQDQE . Even if exponential stability is equiv-
alent to having the closed-loop poles in the left-side of the complex
plane, the hybrid case is instead nonlinear, thus the synthesis allows
for the design of an H∞ reset controller whose continuous-time dy-
namics is not stabilizing. Therefore the poles of the continuous-time
part of the reset closed-loop system could be placed anywhere in the
complex plane, possibly generating fast positive exponential branches
(while stability is induced by resets). In the sequel, we consider β1 = 50,
β2 = 25 and θ = π/30 as reasonable values for the systems in exam.
All the design is performed by means of YALMIP (Löfberg [2004]).

According to Fichera et al. [2013], we augment the H∞ reset con-
troller with an observer in order to have a complete output feedback
(where also the resets depend on an estimate of the plant state pro-
vided by the observer) and we will use the t-L2 analysis in the previous
chapter to estimate the new t-L2 gain for the arising hybrid closed loop
comprising the H∞ reset controller and the observer.
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According to (6.1), let us first introduce the plant:

 Ap Bpu Bpw
Cz Dzu Dzw

Cp Dpu Dpw

 =


−2.4 0 2 1

1 1 0 1
0 1 10 0
0 1 0 5

 . (6.9)

The top of Figure 6.3 shows the t-L2 gain obtained for the reset and
linear case for a given decay-rate α. Similar to Fichera et al. [2012c],
the reset controller guarantees lower t-L2 gains than the linear case,
as the decay-rate increases. Unlike Fichera et al. [2012c], the design
strategy in Section 6.2.2 allows us to design an H∞ reset controller
through a line-search on τS ≥ 0 (see (6.4)). The bottom of Figure 6.3
shows the t-L2 gains obtained with the hybrid synthesis for α = 3 and
for τS ∈ [0, 5]. Although the t-L2 gain increases with τS , for τS ≥ 1 we
haveH∞ reset controllers with nonstabilizing continuous-time part (see
Remark 6.3). Indeed, Figure 6.4(a) shows the behavior of the closed-
loop system with the H∞ reset controller obtained with α = α̃ = 3,
τS = 5 and ρ = 5·10−2. Since both the linear and the reset synthesis are
designed imposing α = 3, we do not have any guarantee that the H∞

Figure 6.3: Comparison reset H∞ (solid line) and linear H∞ (dotted line) control
feedback for the DC motor.
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(a) Free response xp(0, 0) = (−1, −1) (i.e.w = 0)
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(b) Response with noise w ∈ t-L2.

Figure 6.4: Simulations for the DC motor, example of Section 6.4.
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reset controller leads to faster responses. Nevertheless, the fact that the
flow map is unstable requires the action of the reset part to mitigate the
unstable modes and to induce exponential stability, with the interesting
effects of showing a faster decay rate than the linear case even though
the same speed of convergence was imposed by design. In particular
according to (6.2), the synthesis returns the following controller (where
M has been divided by its determinant)

 Ac Bc
Kp −
Cc Dc

 =


1.51871 −1.82471 2.17031
0.89613 0.67999 −0.75037
−0.27132 −0.87136 −
0.60395 1.41394 −
1.85009 0.11383 −0.01509

 ,

M =


0.00579 0.01221 −0.00579 −0.01221
0.01221 0.02569 −0.01221 −0.02569
−0.00579 −0.01221 0.00579 0.01221
−0.01221 −0.02569 0.01221 0.02569

 .
Figure 6.4 contains also the hybrid output feedback case obtained

by applying [Fichera et al., 2013, Theorem 1]. The idea is simply to
replace xp by x̂p in (6.2) (flow and jump sets included), where x̂p is
the estimated state coming from a classical Luenberger observer Luen-
berger [1966]:

˙̂xp = (Ap − LCp)x̂p + (Bpu − LDpu)u+ Ly, (6.10)

where the observer gain L =
[

1.5 5.7
]>

has been selected by trial
and error.

Notice that the multi-objective nature of the synthesis is lost once
the observer is introduced because the t-decay rate is no longer guar-
anteed. Nevertheless we can use the analysis developed in the previous
chapter to estimate the t-L2 gain of the new hybrid system. By apply-
ing Proposition 5.1, we use (5.13) by fixing a3 = 1·10−4 and ρ = 1·10−2

and making a line search on τS . We obtain that the new t-L2 gain for
the hybrid output feedback is γ = 102.86 (obtained for τS = 3). Clearly,
an increase of the t-L2 gain is to be expected, as compared to the state
feedback case, nevertheless through Proposition 5.1 we are able to still
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establish an upper bound. Figure 6.4 shows a desirable behavior of the
H∞ reset controller, although the case with the observer (bold dashed
dot line) is closer to the linear response. The external disturbance w is
chosen as w(t) = exp(−10t) sin(2t), for all t ≥ 0.2 and zero otherwise.

6.4.2 Longitudinal dynamics of an F-8 aircraft

Figure 6.5: Comparison hybrid and linear control feedback for the F-8.

Consider now the following MIMO example, used also in Kapasouris
et al. [1988], representing the longitudinal dynamics of the F-8 aircraft.
The system data is

 Ap
Cz
Cp

 =



−0.8 −0.0006 −12 0
0 −0.014 −16.64 −32.2
1 −0.0001 −1.5 0
1 0 0 0
0 0 0 1
0 0 −1 1
0 0 0 1
0 0 −1 1


,
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 Bpu Bpw
Dzu Dzw

Dpu Dpw

 =



−19 −3 −19 −3
−0.66 −0.5 −0.66 −0.5
−0.16 −0.5 −0.16 −0.5

0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


.

For the purpose of the simulation, we selected a performance output
that penalizes both the control input u and the plant output y. The
four states of this plant represent the pitch rate (rad/sec), the forward
velocity (ft/sec), the angle of attack (rad) and the pitch angle (rad),
respectively. The two measured outputs are then the pitch angle and
the flight path angle. The two control inputs (supposed unconstrained)
are the aileron angle (deg) and the flaperon angle (deg), respectively.

The top of Figure 6.5 shows the values of γ obtained with the linear
H∞ and the reset H∞ syntheses as a function of the t-decay rate, and
shows that the H∞ reset controller induces a certain convergence rate
without giving up on the achievable t-L2 gain, which shows a mild
increase. The bottom of Figure 6.5 shows that for α = 1.5, the hybrid
synthesis returns γ ' 10 for almost all τS ≥ 0.

Figures 6.6 and 6.7 show the behavior of the H∞ reset controller
obtained for α = α̃ = 1.5 and τS = 5. The perturbed case is obtained
by using the exogenous signal w = [w1w2]> defined as

w1(t) =
{

exp(−10t) sin(2t) if t ≥ 2
0 if t < 2 ,

w2(t) =
{

exp(−5(t− 0.1)) if t ≥ 0.1
0 if t < 0.1 .

We do not report the values of the controller for reason of space. Nev-
ertheless it is easy to see that the controller behaves quite well using
much less control than the linear case. In particular, it is possible to
see the discontinuous control signal that keeps the trajectories in the
flow set guaranteeing a good t-L2 gain and good t-decay rate due to
the unstable nature of the flow map.
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(a) y1, z1, u1

(b) y2, z2, u2

Figure 6.6: Free response xp(0, 0) = (−1, −1, −1, −1) (i.e.w = 0).
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(a) y1, z1, u1

(b) y2, z2, u2

Figure 6.7: Response with noise w ∈ t-L2.



Part III

Planar reset systems



7
Planar SISO systems with First Order Reset

Elements

7.1 A modified model of FORE and its Lyapunov implications

In this chapter we come back to the material initially introduced in Part
I of the survey (namely Chapters 1 and 2) and address, first, the issue
of stability assessment and regulation for the simple case where a First
Order Reset Element (FORE) controls a first order plant. The arising
closed loop is planar and this fact simplifies the stability conditions to
the point that necessary and sufficient conditions can be established.

The results presented in this chapter actually pertain a revised
model of FORE, that was introduced in Nešić et al. [2011], which cor-
responds to replacing the jump and flow conditions in (1.2) as follows:{

ẋc = acxc + bce, is allowed when εv2 + 2exc ≥ 0
x+
c = 0, is allowed when εv2 + 2exc ≤ 0, (7.1)

where ε > 0 is a small number associated with the tilting of the flow
set boundary (see Figures 7.1 and 7.2). One way to understand the
different FORE models (1.2) and (7.1) is by comparing the different
sets F and J enabling the possibility of flowing or jumping for the
corresponding solutions.

Then, at any time (t, j) ∈ dom(xc), a solution of the hybrid system

130
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F

Figure 7.1: The jump (grey) and flow (striped) sets for the model (1.2) (left) and
the modified model (7.1) (right).

will flow or jump depending on whether its value at that time belongs
to the jump set J or it belongs to the flow set F or even both.

With reference to Figure 1.4, Figure 7.1 shows the differences be-
tween the flow sets F and jump sets J for the two FORE models 1

(1.2) and (7.1). For instance, in the FORE model (1.2) the jump set
J consists of the first and third quadrants including the axes and the
flow set is the second and fourth quadrant including the axes (left sub-
figure). Note that in this case J ∩ F = {(xc, e) : xc = 0 or e = 0}.
The right sub-figure corresponds to the modified FORE model and the
only difference is that one of the boundaries of the jump and flow sets
is slightly tilted. A sample trajectory starting from the same initial
condition and with the same input is given in all two sub-figures (see
also the one already discussed in Figure 1.4) to illustrate the difference
in dynamic behavior that comes from the differences among the jump
and flow sets. In particular, note that the modified model has the ad-
vantage that solutions jumping from the interior of J are mapped to
the interior of F . This fact leads to several advantages when wanting to
prove suitable Lyapunov conditions for closed loops involving FOREs.

Paralleling the discussions in Chapter 4 and in the following chap-
ters, we note that Zeno solutions exist also for the modified model, oc-

1In Figure 7.1, the e axis direction is reversed so that in the case of negative
feedback with one dimensional plants (v = −xp), this is exactly the closed-loop
phase plane, which has been commented in Nešić et al. [2008b, 2005], Zaccarian
et al. [2005, 2006], Nešić et al. [2008a], Zaccarian et al. [2011].
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curring whenever the state jumps from the origin of the (xc, e) plane.
Then, in order to avoid Zeno solutions, we augment (7.1) with a clock
variable in a similar manner to (4.1), resulting in:{

τ̇ = 1− dz
(
τ
ρ

)
,

ẋc = acxc + bce,
(e, xc) ∈ F or τ ∈ [0, ρ], (7.2a){

τ+ = 0,
x+
c = 0, (e, xc) ∈ J and τ ∈ [ρ, 2ρ], (7.2b)

with

F :=
{

(e, xc) : εe2 + 2exc ≥ 0
}
,

J :=
{

(e, xc) : εe2 + 2exc ≤ 0
}
,

(7.2c)

The motivation for using (7.1) as opposed to (1.2) stems from a
Lyapunov analysis that is discussed next. When using the temporally
regularized model (4.1) the temporal regularization causes the solu-
tions to possibly slightly overflow into the jump set J before the reset
occurs and this makes the Lyapunov construction harder. In particu-
lar, all the first Lyapunov-based results reported in Nešić et al. [2008a,
2005, 2008b], Zaccarian et al. [2005, 2006, 2007, 2011] (which are es-
tablished for model (4.1) and well summarized in Chapter 5) are based
on the existence of a Lyapunov function that satisfies standard regular-
ity and growth conditions, in addition to the following flow and jump
conditions:

1. it is a disturbance attenuation Lyapunov function in a slightly
inflated version of the flow set F ;

2. it does not increase when jumping from the jump set J .

The two requirements above are graphically represented in the left
sub-figure of Figure 7.2. The striped region represents the set on which
the Lyapunov function is required satisfy item 1 (the flow conditions)
and the shaded region is where item 2 above (jump conditions) should
hold. Note that there is an overlap of these two sets where both items 1
and 2 should hold. This stringent requirement makes the construction
of appropriate Lyapunov functions hard in this case.
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Figure 7.2: The sectors of the state space where the Lyapunov flow and jump con-
ditions must hold for the temporally regularized FORE (1.2) without strict decrease
at jumps (left) and the FORE (7.2) with strict decrease at jumps (right).

Conversely, the stability results for reset systems that use the model
(7.1) and its temporally regularized version (7.2) require a Lyapunov
function that:

1a. is a disturbance attenuation Lyapunov function in the flow set F ;

2a. strictly decreases when jumping from the jump set J .

The right sub-figure of Figure 7.2 illustrates the two new conditions.
The striped and shaded regions represent the sets on which the Lya-
punov function needs to satisfy items 1a and 2a respectively. It turns
out that it is much easier to construct Lyapunov functions satisfying
conditions 1a and 2a rather than 1 and 2. Indeed, note that the model
(1.2) as it stands will never satisfy item 2a because there are cases
when a state jumps onto itself (this is whenever xc = 0). Therefore it
is necessary to tilt the boundary between the flow and the jump set as
shown in the right sub-figure of Figure 7.1. More specifically, the “tilt-
ing” corresponds to transforming the horizontal sector boundary from
xc = 0 (i.e., the e axis) into xc = −εe. Then any state in the jump set
will be mapped into the interior of the flow set (except for the origin)
and it will be possible to construct Lyapunov functions guaranteeing
item 2a.

From an intuitive viewpoint, having a strict decrease at jumps al-
lows to compensate for a possible growth of V (x(t)) that might have
happened while x(t) was overflowing in the jump set (for τ ≤ ρ), thus
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making it possible to require a less stringent flow condition and to only
rely on the regularity assumptions on V .

7.2 Necessary and sufficient conditions for exponential sta-
bility

In this section we characterize the exponential and t-L2 stability prop-
erties of the planar reset systems that consist of the FORE (7.2), in-
terconnected via

u = xc, e = −y. (7.3)

to the following scalar linear plant{
ẋp = apxp + bpu+ d,

y = xp
(7.4)

where u ∈ R is the control input, d ∈ R is a disturbance input and
xp ∈ R is the plant state.

In particular, in Theorem 7.1 we characterize asymptotic and ex-
ponential stability of the closed-loop giving necessary and sufficient
conditions in terms of the system parameters. Then in Theorems 7.2
and 7.3 we provide results about the t-L2 gain of the planar reset sys-
tem from the input d to the output y.

The closed loop (7.4), (7.2), (7.3) can be conveniently written in
the following form{

τ̇ = 1− dz
(
τ
ρ

)
,

ẋ = Ax+Bd,
x>Mx ≤ 0 or τ ∈ [0, ρ],{

τ+ = 0,
x+ = Gx,

x>Mx ≥ 0 and τ ∈ [ρ, 2ρ],
(7.5)

where x := (xp, xc) ∈ R2 and

[
A B

G M

]
=


ap bp 1
−bc ac 0
1 0 −ε 1
0 0 1 0

 . (7.6)
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where the sign in the selection of M comes from the negative feedback
interconnection in (7.3) (see also the right sub-figure of Figure 7.1). To
state a stability result concerning the FORE control system (7.5), (7.6)
we introduce the following definition.

Definition 7.1. Consider the FORE control system with temporal reg-
ularization (7.5), (7.6). The system is exponentially stable (or finite
gain t-L2 stable) conditionally to hierarchically small (ε, ρ) if there ex-
ists ε∗ such that for each ε ∈ (0, ε∗] there exists ρ∗ such that for all
ρ ∈ (0, ρ∗] we have that system (7.5), (7.6) is exponentially stable (finite
gain t-L2 stable).

The next theorem establishes necessary and sufficient conditions for
the exponential stability and finite t-L2 gain (from d to x) of the planar
FORE control system (7.5), (7.6). The result was presented in Nešić
et al. [2011].

Theorem 7.1. (Stability conditions) Consider the planar FORE con-
trol system (7.5), (7.6) (i.e., the closed-loop system (7.4), (7.2), (7.3))
and suppose that the loop gain bpbc is positive. Then the following
statements are equivalent.

1. The origin is (locally) asymptotically stable conditionally to hi-
erarchically small (ε, ρ).

2. The origin is globally exponentially stable conditionally to hier-
archically small (ε, ρ).

3. The system is finite gain t-L2 and t-L2 to t-L∞ stable from d to
(xp, xc) conditionally to hierarchically small (ε, ρ).

4. At least one of the following two conditions holds:

(a) the matrix A in (7.6) is Hurwitz;

(b) the following condition is satisfied:

2
√
bpbc + ac − ap > 0. (7.7)
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Theorem 7.1 establishes necessary and sufficient conditions for ex-
ponential stability and t-L2 stability of planar FORE systems. In par-
ticular, from item 4a it follows that for a planar FORE control sys-
tem, as long as the loop gain is positive (thereby leading to a negative
feedback because v = −y), FORE resets can never destabilize an un-
derlying exponentially stable linear dynamics. An interesting aspect to
study is to understand how the t-L2 gain compares to the t-L2 gain of
the closed-loop without resets (whenever it exists) and also the trend of
the gain as certain parameters get large. In particular, it was commonly
acknowledged by practical experience of the early 2000 that introduc-
ing resets improves the performance of a linear planar control system,
even though a formal proof of this fact was not available. A possible
motivation for this fact can be found in the next Theorem 7.2, which
was presented in Nešić et al. [2011].

Moreover, it has been already noticed by studying certain gain es-
timates in the numerical examples reported in Chapter 5 that the t-L2
gain seems to become smaller as the loop gain and/or the pole of the
FORE (namely ac) becomes larger. This intuition arises from the fact
that the step response generated by the closed loop is faster, by corre-
sponding to the patching of an exponentially diverging branch (having
larger growth rate) followed by a flat-top at the desired steady state
(see also the blue response in Figure 2.2 or the response of Figure 4.4
when using an observer). A formal proof of these t-L2 gain trends has
been given in Nešić et al. [2011] through the theorems reported below.
For the correct statement of these theorems we need to clarify a suit-
able concept of gain estimate and of gain convergence, introduced in
the next definition.

Definition 7.2. Consider the FORE control system with temporal reg-
ularization (7.5), (7.6). Assume that γ is an input/output gain. Then
we say that γ̄ is an asymptotic estimate of the gain γ conditionally to
hierarchically small (ε, ρ), denoted as follows:

γ
ε,ρ
≤ γ̄,

if for each (arbitrarily small) δ > 0 there exists ε∗ such that for each
ε ∈ (0, ε∗] there exists ρ∗ such that for all ρ ∈ (0, ρ∗], γ ≤ γ̄ + δ.
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Assume that p is a suitable parameter of the closed-loop system
and that γ(p) is an input/output gain depending on p. Then we say
that γ(p) converges to zero conditionally to hierarchically small (ε, ρ)
as p tends to +∞, denoted as follows:

p→∞ ⇒ γ(p) ε,ρ−→ 0,

if for each (arbitrarily small) γ̄ > 0 there exists2 p∗ > 0 such that for
each p ≥ p∗ there exists ε∗ such that for each ε ∈ (0, ε∗] there exists ρ∗
such that for all ρ ∈ (0, ρ∗], γ(p) ≤ γ̄.

Remark 7.1. The goal of Definition 7.2 is to clarify what we mean
by gain estimate and convergence to a value in terms of the small pa-
rameters of the system. In particular, the gain estimates and trends
established in the next theorem require that first the parameter ε char-
acterizing the FORE resetting rule in (7.2) is sufficiently small and then
that the temporal regularization constant ρ is once again sufficiently
small. This hierarchical selection is necessary because larger (possibly
unstable) FORE poles will cause larger state evolution and smaller se-
lections of ρ will be necessary. However, for fixed parameters, there
always exists a small enough ρ for which the theorem statements hold.
Similarly, with reference to the second part of Definition 7.2, we note
that in Theorem 7.3 we consider various situations when p = ac or
p = k := bcbp or p = (ac, k). In a design context, one should first fix the
desired gain γ̄, then choose p sufficiently large and then impose first ε
sufficiently small and subsequently ρ sufficiently small. y

Theorem 7.2. (t-L2 gain estimates) Consider the planar FORE con-
trol system (7.5), (7.6) (i.e., the closed-loop system (7.4), (7.2), (7.3)
with temporal regularization) where the loop gain k := bpbc is positive.
Whenever the closed loop is exponentially stable (so that, by Theo-
rem 7.1 at least one of the two conditions at item 4 of Theorem 7.1
holds), the following asymptotic estimates hold conditionally to hier-
archically small (ε, ρ) (in the sense of Definition 7.2) for the t-L2 gain
γ of the closed loop from d to y:

2The parameter p is allowed to be a vector and in this case p > 0 means that
each entry of p is strictly larger than zero.
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1. if item 4a of Theorem 7.1 holds, then

γ
ε,ρ
≤ γL, (7.8)

where γL is the (finite, because A is Hurwitz) gain from d to y of
the linear closed-loop without resets.

2. if item 4b of Theorem 7.1 holds, then

γ
ε,ρ
≤

2(2 + κ) exp(κπ2 )
κ(2

√
bcbp−max{ap−ac, 0})−4 max{|ac|,|ap|}

, (7.9)

where κ is any constant satisfying κ > κ := 4 max{|ac|,|ap|}
2
√
bcbp−max{ap−ac,0}

.

Remark 7.2. It is of interest to investigate whether for fixed values of
the parameters there is an optimal selection of κ within (7.9) which
gives the tightest estimate for the t-L2 gain. Indeed, by taking the
derivative of the right-hand side of (7.9) with respect to κ and imposing
that the derivative is zero, one gets two solutions (of a second order
equation), one of them always being smaller than κ (thus not being
usable) and one of them always being larger than κ. In particular, the

optimal κ is determined as κ∗ := κ
2 −1+

√(
κ
2 + 1

) (
κ
2 + 1 + 4

π

)
, which

is a global minimizer because (7.9) is a smooth function of κ growing
unbounded both when κ→ κ from the right and when κ→ +∞. When
substituted into the gain bound equation (7.9), this value κ∗ gives the
following bound, which only depends on the system parameters:

γ∗ =
1 + κ0 +

√
κ0(κ0 + 2) exp

(
κ1 +

√
κ0(κ0 + 2)

)
2
√
bcbp −max{ap − ac, 0}

(7.10)

where κ0 = π
4 (κ+ 2) and κ1 = π

4 (κ− 2).
An example of the gain curve given by the function (7.10) is shown

in Figure 7.3, when selecting ap = 0 and bpbc = 1 and having ac take val-
ues in [−0.4, 0.4]. This curve is compared to the gain estimates obtained
when using the analytic and numerical tools given in Theorem 5.4 and
Theorem 5.5, respectively (this comparison had appeared in Zaccarian
et al. [2011]). The latter estimates turn out to be tighter for this spe-
cial case, but the advantage of this construction is that it provides an
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Figure 7.3: Comparison of the gain estimates obtained by using equation (7.10)
from Remark 7.2 (bold), using the analytic tools from Section 5.4.2 (dashed) and
the numerical tools from Section 5.4.3 (dash-dotted).

estimate of the gain for a larger class of systems (the construction in
Theorem 5.4 is limited to the case ap = 0 and bpbc = 1). y

Theorem 7.3. (t-L2 gain trends) Consider the planar FORE control
system (7.5), (7.6) (i.e., the closed-loop system (7.4), (7.2), (7.3)) where
the loop gain k := bpbc is positive. Let ap be fixed. Denote by γ(ac, k)
the t-L2 gain of the closed-loop from d to y as a function of the FORE
pole ac and of the loop gain k := bpbc. Then the following trends
hierarchically conditioned by (ε, ρ) in the sense of Definition 7.2 hold
for the closed-loop system:

1. k → +∞ ⇒ γ(ac, k) ε,ρ−→ 0,

2. ac → +∞ ⇒ γ(ac, k) ε,ρ−→ 0,

3. k → +∞ and ac → +∞ ⇒ γ(ac, k) ε,ρ−→ 0,

namely, the t-L2 gain of the closed loop decreases to zero (conditionally
to hierarchical selections of (ε, ρ)) as the loop gain and/or the FORE
pole are increased.
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7.3 Extension to minimum phase relative degree one linear
SISO plants

The stability results of the previous section can be exploited for showing
stability of a larger class of SISO linear systems that can be represented
as the feedback interconnection between a planar FORE closed loop
and an auxiliary exponentially stable linear dynamics. The approach
is similar in spirit to the well-known high gain stabilization results for
linear systems, but it is enhanced by the extra property that not only
high gain stabilizes the planar FORE closed loop but, as an alternative,
highly unstable FOREs stabilize the closed loop as well.

The underlying idea in the t-L2 stability proof is to view the control
system as a feedback interconnection of a planar reset control system
and an asymptotically stable linear subsystem as depicted in Figure 7.4
and then use a small gain theorem, exploiting the t-L2 gain results for
planar reset systems reported in Section 7.2. Then using the fundamen-
tal stability results already discussed in Section 4.4, which pertain to
general linear reset systems, we get exponential stability in the absence
of disturbances.

Scalar Output
Dynamics

Inverse
Dynamics

FORE

d d̃

y
u

PLANT

PLANAR RESET SYSTEM

FORE

d

y

u

LINEAR PLANT
MIN. PHASE
DEGREE ONE
SISO RELATIVE Inverse

Dynamics

d d̃

y

PLANAR
RESET SYSTEM

Figure 7.4: Equivalent feedback interconnections for stability analysis purposes.

More specifically, let us consider a higher order linear plant gener-
alizing the scalar dynamics (7.4) as follows:

P
{
ẋp = Apxp +Bpuu+Bpdd,

y = Cpxp.
(7.11)

where xp ∈ Rnp is the plant state, u ∈ R is the control input, d ∈ Rnd
is a disturbance input and y ∈ R is the measured plant output (Ap,
Bpu, Bpd and Cp are matrices of appropriate dimensions).
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Under a minimum phase and relative degree one assumption, there
exists a nonsingular change of coordinates so that we can write dynam-
ics (7.11) as [Isidori, 1995, Remark 4.3.1]:

ż = Azz +Bzyy +Bzdd (7.12a)
ẏ = apy + bpu+ Czz + Edd︸ ︷︷ ︸

d̃

, (7.12b)

where y ∈ R corresponds to the scalar output dynamics, z ∈ Rnp−1

corresponds to the inverse dynamics and u ∈ R is the plant input
in the middle diagram of Figure 7.4. Since plant (7.11) is minimum
phase, Az is Hurwitz and we assume without loss of generality that
bp > 0. We may now generalize the hierarchical concepts introduced
in Definition 7.1 for our characterization of stability, with the extra
feature of studying trends of certain closed-loop parameters (such as
the loop gain or the pole of the FORE).

Definition 7.3. Consider the FORE control system with temporal reg-
ularization (7.11), (7.2), (7.3). Assume that α is a suitable parameter
of the closed-loop system. Then we say that the system is exponentially
stable (or finite gain t-L2 stable) conditionally to large α and hierar-
chically small (ε, ρ) if there exists α∗ > 0 such that for each α ≥ α∗

there exists ε∗ such that for each ε ∈ (0, ε∗] there exists ρ∗ such that for
all ρ ∈ (0, ρ∗] we have that system (7.11), (7.2), (7.3) is exponentially
stable (finite gain t-L2 stable).

It is understood in the above definition that the only parameters
that we can change are α, ε, ρ, whereas all other constants in the model
are fixed. Then we can state the following result, which has been proven
in Nešić et al. [2011].

Theorem 7.4. Consider the closed loop between the plant (7.12) and
the FORE (7.2) via the interconnection (7.3), where the FORE (7.2) is
parametrized by (ac, bc, ε, ρ). Let Az be Hurwitz and bp > 0 in (7.12).
Then, the following statements are true:

1. (unstable FORE feedback) the system is finite gain t-L2 and t-L2
to t-L∞ stable from d to xp conditionally to large ac and hierar-
chically small (ε, ρ). Moreover, when d(t) ≡ 0 the system is also
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exponentially stable conditionally to large ac and hierarchically
small (ε, ρ);

2. (high gain feedback) the system is finite gain t-L2 and t-L2 to
t-L∞ stable from d to xp conditionally to large bc and hierar-
chically small (ε, ρ). Moreover, when d(t) ≡ 0 the system is also
exponentially stable conditionally to large bc and hierarchically
small (ε, ρ);

3. (high gain+unstable FORE feedback) the system is finite gain
t-L2 and t-L2 to t-L∞ stable from d to xp conditionally to large
(ac, bc) and hierarchically small (ε, ρ). Moreover, when d(t) ≡
0 the system is also exponentially stable conditionally to large
(ac, bc) and hierarchically small (ε, ρ).

Remark 7.3. The three results in Theorem 7.4 can be interpreted in
the context of the well-known high-gain feedback stabilization of lin-
ear systems. In particular, item 2 states that the same result holds for
reset control systems. The novelty established here is in item 1 which
states that high instability in the FORE is capable of stabilizing the
reset control system. This result is new and significantly less trivial
because the underlying linear dynamics become exponentially unstable
for large values of ac. Despite this fact, our novel proof technique al-
lows to establish the exponential stability of the reset control system.
Finally, item 3 simply states that if both the loop gain and the FORE
pole go to infinity, the same stabilization result still holds. y

Remark 7.4. A result similar to Theorem 7.4 can be proved under ap-
propriate conditions for a class of nonlinear SISO systems that are min-
imum phase (in an appropriate sense) and relative degree one. For in-
stance, consider a nonlinear control affine system without disturbances:{

ẋp = f(xp) + g(xp)up
y = h(xp)

and suppose that there exists a (global or local) nonsingular change of
coordinates (z, y) = T (xp) and an input transformation up = K(xp) +
L(xp)u such that the system in new coordinates and with the new input
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u becomes3: {
ż = F (z, y)
ẏ = u+G(z, y) .

In other words, the nonlinear system is input-output linearized. Then,
if we assume that the zero dynamics, which correspond to the z state
are finite gain L2 stable from y to G(z, y), we can apply FORE design to
the linearized y state and use the same steps to conclude that increasing
the gain or the pole (or both) of the FORE would stabilize the overall
nonlinear system. y

Remark 7.5. Our results can be generalized to a class of nonlinear
MIMO plants that have the same number χ of inputs and outputs
if there exists a coordinate and input transformation that yields the
system in the following form:{

ż = F (z, y)
ẏi = ui +Gi(z, y) , i = 1, . . . , χ.

For precise conditions under which such transformations are possible
for control affine systems, see [Isidori, 1995, Chapter 5]; typically, one
would require vector relative degree (1, 1, . . . , 1) and zero dynamics that
are stable in an appropriate sense. In this case, applying a FORE to
each SISO pair (yi, ui) we will obtain the planar system considered in
the next section and the overall system consists of χ such decentral-
ized systems interconnected in feedback with the zero dynamics. With
appropriate stability properties on the zero dynamics and by adjusting
the parameters of all FOREs we can show that stability of the closed
loop holds. y

While the results commented above are useful for stability assess-
ment when using FORE stabilizers, one important aspect that should
be recognized is that unlike PI-type control laws, FOREs are not ca-
pable of rejecting constant disturbances such as sensor biases and/or
actuator offsets, which are pervading in control systems technology.
Due to this fact, the discussion of the next sections is geared towards

3Conditions under which this transformation is possible are given for instance in
[Isidori, 1995, Chapter 4].
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first establishing some results about constant set-point regulation, and
then also non-constant reference tracking.

7.4 Set-point regulation

7.4.1 Constant feedforward injection

The goal of this section is to show how the set-point regulation of
plant (7.11) using a FORE can be reduced to a stabilization problem
in suitably transformed coordinates. A block diagram of the arising
control scheme is represented in Figure 7.5.

FORE
xc yr

+ − +

+

P (s)
u

Feed-
forward

uff
d

+

+

Figure 7.5: Set-point regulation of linear SISO plants using a FORE.

Suppose that the transfer function of the plant (7.11) from u to
y does not have zeros at the origin. Then set point regulation of the
output y can be achieved from u. To this aim, define the following
scalar:

F =

 −
1

CpA
−1
p Bpu

, if Ap is invertible,

0, otherwise,
(7.13)

corresponding to the inverse of the DC gain of the plant, and define F̂ as
a nominal value for F . Then, if the closed loop between the FORE (7.2)
and the plant (7.11), with d = 0, u = xc and e = −y is asymptotically
stable, set-point regulation can be achieved by using (7.2) with the
following feedback interconnection:{

u = xc + uff
e = r − y, (7.14)
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which involves a constant feedforward signal uff = F̂ r, where F̂ is the
best available estimate of F . The following statement, whose proof is
reported in Nešić et al. [2011] establishes useful set-point regulation
properties of the closed loop under the assumption that the closed loop
with r = 0 is asymptotically stable.

Theorem 7.5. (FORE set point stabilizer) Suppose that the transfer
function of the plant (7.11) from u to y does not have zeros at the
origin and that the origin of the reset control system (7.11), (7.2),
(7.14) with r = 0 and d = 0 is locally asymptotically stable. Then
the interconnection of (7.11), (7.2) with state (xp, (xc, τ)) via equation
(7.14) is such that:

1. if F = F̂ , then for any constant reference r∗ ∈ R:

(a) if d = 0, the unique equilibrium point x∗ = (x∗p, 0), satisfying
y∗ = Cpx

∗
p = r∗ is globally exponentially stable;

(b) for each p ∈ [1,+∞) the system is finite gain t-Lp and t-Lp
to t-L∞ stable from d to (xp − x∗p, xc);

2. if F 6= F̂ , denoting ∆F = F̂ − F , there exist positive constants
k, ` and γ such that for any constant reference r∗ ∈ R:

|y(t, j)− r∗| ≤ max{ke−`t|x̃(0, 0)|, γ‖d‖∞, γ∆Fr∗}, (7.15)

where x̃(0, 0) = (xp(0, 0)− x∗p, xc(0, 0)).

The construction proposed in Theorem 7.5 and shown in Figure 7.5
generalizes the FORE control system construction to the set-point reg-
ulation problem. This generalization is quite intuitive when the plant
(7.11) has in it an integrator, or more generally an internal model of the
reference, and is actually the case for all situations where FOREs have
been used in the literature (see for example the discussion in [Beker
et al., 2004, Section 4.1]). As a matter of fact in that case F = 0,
the feedforward path in Figure 7.5 disappears and the scheme resem-
bles the typical control scheme in feedback from the set-point tracking
error. However, when the plant does not satisfy det(Ap) = 0, using
F̂ = 0 in Figure 7.5 is no longer effective and can lead to undesirable
closed-loop behavior, as shown in the next example.
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Figure 7.6: Example 7.1: linear response (dashed), FORE without feedforward
(dash-dotted), FORE with feedforward and nominal F (bold) and FORE with feed-
forward and perturbed F (thin solid).

Remark 7.6. Note that applying Theorem 4.6 to system (7.11), (7.2),
(7.14) with r = 0 allows to conclude to t-ISS and t-Lp stability from d

to (xp, xc) for any p ∈ [1,∞). This property is less relevant here because
we are dealing with set-point regulation. Nevertheless, by virtue of The-
orem 4.6, it follows directly from the asymptotic stability assumption.

y

Example 7.1. Consider the plant (7.11) in feedback interconnection
(7.14) with the FORE (7.2). Use the following parameters

Ap = −1.5, Bpu = 1, Cp = 1, bc = 2, ac = 1,

so that F = 0.75. In Figure 7.6, the grey curve represents the refer-
ence signal r and the dashed line represents the response of the system
without resets and with the feedforward path (using F = F̂ ), which
is exponentially stable for these parameters. Note that this response
is only illustrative of how the reset mechanism changes the underlying
linear dynamics but cannot be used to establish any superiority of reset
control versus linear solutions. Indeed, many alternative linear control
schemes could be considered for this set-point regulation problem, de-
pending on what the performance goal is. The solid line reports the
response of the FORE control system implemented without the feed-
forward path (or, equivalently, by selecting F̂ = 0) and the bold line
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reports the response of the FORE control system implemented accord-
ing to Figure 7.6 with F = F̂ . Finally, the thin solid curve shows the
response when F is increased by 10% with respect to the correct value.
The resulting response is a slight deterioration of the desirable bold
response as anticipated by the result at item 2 of Theorem 7.5.

7.4.2 Adaptive feedforward injection

When the plant to be controlled is scalar, namely its dynamics is given
by a first order linear filter, it is possible to exploit the fact that after
each reset the closed-loop error dynamics starts from zero initial condi-
tions, because the plant output error is crossing zero and the controller
state is reset to zero. Moreover, for scalar plants the disturbance d act-
ing on the state equation can be considered without loss of generality as
an input matched disturbance acting as follows on the plant equation:

ẏ = apy + bp(u+ d̄(r)) (7.16)

where ap is the plant pole and bp is the plant input gain, just as in (7.4).
Focusing on plant (7.16), an online adaptation law for the feedforward
signal uff is proposed, which is constant during flows and is adapted by
suitable jumps at resets. Due to this special nature of the adaptation
law, the following assumption is required.

Assumption 7.1. The origin of the reset closed-loop (7.16), (7.2) with
e = −y, u = xc and d̄(r) = 0 is exponentially stable. Moreover, the
reset closed loop is such that from any nonzero initial condition, there
exists a finite time when the response will present a reset.

Remark 7.7. Note that necessary and sufficient conditions for expo-
nential (and asymptotic) stability of the planar reset closed loop in
Assumption 7.1 have been given in Theorem 7.1. As for the other re-
quirement in Assumption 7.1, it is automatically satisfied whenever the
underlying linear dynamics of the closed loop before resets generates
diverging trajectories. Indeed, in that case if no resets occur, trajec-
tories would diverge, thereby contradicting the exponential stability
assumption. This is a typical situation in practical cases where a re-
set controller is used. Indeed, to induce fast transients, the underlying
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linear dynamics is destabilized, and then resets are exploited for stabi-
lization purposes. An example of such a design scheme is given next in
Section 8.4. y

For constant values of r, d̄(r) and uff , define u∗ff(r) = Fr−d̄(r) as the
unknown steady-state control input required by the set-point regulation
scheme. To design an adaptive version of the feedforward signal uff in
(7.14), define ũff := uff − u∗ff(r) and, without loss of generality let
us address the case ũff > 0. Consider also the change of coordinates
(xc, ỹ) = (xc, y − r) and notice that the closed-loop system can be
written in the new coordinates as[

˙̃y
ẋc

]
=

[
ap bp
−bc ac

] [
ỹ

xc

]
+
[
bp
0

]
ũff (7.17a)

=: Acl

[
ỹ

xc

]
+Bclũff . (7.17b)

It can be proven (see [Panni et al., 2014, Lemma 1]) that, as long
as uff is constant inbetween resets, the FORE state xc just before a
resetting action is proportional to the feedforward mismatch:

xc(T, 0) = −Mx(uff − u∗ff(r)). (7.18)

Remark 7.8. Assumption 7.1 and the strong requirement that the plant
is scalar are two key properties to be able to prove the monotonicity in
(7.18). Indeed, if Assumption 7.1 does not hold, then there can be de-
fective cases where the error dynamics in (7.17) converges to a nonzero
value of ỹ without any reset (even though an t-L∞ bound on the re-
sponse will hold because of exponential stability and the t-ISS prop-
erties established in Theorem 7.5. An example showing the relevance
of Assumption 7.1 is obtained with the parameters

[
ap bp
bc ac

]
=
[
−3 1
1 −1

]
,

which lead to an exponentially converging response that never resets
(it can be checked, for example, running a simulation with d = 0,
(y(0, 0), xc(0, 0)) = 0 and some nonzero constant reference r).

Also the requirement that the plant is a scalar filter is necessary, in
general, to prove the monotonic relation (7.18). For example, using ac =
3, bc = 1 and an exponentially stable plant with two poles in {−1,−2}
and no zeros generates a response where the sign of y (therefore, also
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that of xc) switches between positive and negative and vice-versa for
each consecutive pairs of resets. Therefore, the state xc(t, j) before
a reset does not anymore carry the information on the sign of the
feedforward mismatch ũff > 0, and more sophisticated proof techniques,
should be adopted or more sophisticated adaptation laws should be
used. A similar undesirable result is also obtained for a relative degree
one stable minimum phase plant having a zero in −80 and poles in
{−3,−2}, loop gain bc = 1 and FORE pole ac = 1.

Practical experience suggests that even for these higher order plants
the adaptation law proposed here successfully converges to the cor-
rect feedforward term, however the convergence is characterized by
a peculiar oscillatory behavior of the feedforward mismatch ũff > 0,
which suggests that a Lyapunov proof of its convergence cannot be ob-
tained using the convenient path involving the monotonicity property
in (7.18). y

To obtain an adaptive version of the feedforward term in Figure 7.5,
we augment the FORE dynamics (7.2) with an extra state uff governed
by the following hybrid dynamics:{

u̇ff = 0, (e, xc) ∈ F or τ ∈ [0, ρ],
u+

ff = uff + λxc, (e, xc) ∈ J and τ ∈ [ρ, 2ρ], (7.19)

where we have left unchanged the flow and jump sets of (7.2) and the
scalar λ > 0 should be selected sufficiently small, according to the next
result whose proof is given in Panni et al. [2014].

Proposition 7.1. Consider a scalar plant (7.16) in feedback intercon-
nection (7.14) with the adaptive reset controller (7.2), (7.19). Under
Assumption 7.1, there exists a small enough ρ∗ and a small enough
λ∗ such that for all ρ ∈ (0, ρ∗), all λ ∈ (0, λ∗), and any constant pair
(r, d̄(r)), the state uff exponentially converges to u∗ff(r) and the plant
output y exponentially converges to r.

Remark 7.9. Useful insight can be given for tuning the parameter λ in
the adaptation law of the controller (7.19). In particular, a useful ex-
perimental strategy is that of increasing λ until the stability limit (typi-
cally, oscillatory behavior will be experienced for values of λ around λ∗).
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Then, once the critical value λ∗ has been determined, a recommended
strategy is to select λ as half of that value. Indeed, some nontrivial cal-
culations exploiting relation (7.18) show that choosing λ = λ∗

2 results
in an equivalent dead beat discrete dynamics for ũff . The expected out-
come is that, regardless of the value of r, the steady-state value of uff
is quickly determined after the first reset. y

7.4.3 Parametrization of a position-dependent input bias

The rationale behind the adaptive reset controller (7.19) is that in a set-
point regulation scheme with a piecewise constant reference r, whenever
a step reference change is experienced, the feedback action provided by
the FORE state xc will stabilize the error dynamics, while the adaptive
feedforward action given by the FORE state uff will converge to the
steady-state input required for asymptotic regulation.

For improved performance, it is desirable to implement the adaptive
reset controller in such a way that, whenever the same reference is
repeated, the adaptation carried out at the previous instance of the
same reference value is exploited to speed up the convergence of uff
to the correct value u∗ff(r) = Fr − d̄(r). This intuitive goal can be
accomplished by suitably parametrizing such a correct value by u∗ff(r) =∑N
i=1 α

∗
iψi(r), which is the optimal value of the following parametric

equation for uff :

uff =
N∑
i=1

αiψi(r) = Ψ>(r)α. (7.20)

In (7.20), the vector Ψ(r) ∈ RN gathers together N constant inde-
pendent basis functions ψi(r) and α =

[
α1 · · · αN

]>
contains the

parameters to be adapted. With the parametrization (7.20), it is then
convenient to replace the state uff in the adaptive FORE (7.2), (7.19)
by a new state α whose hybrid dynamics is given by:

α̇ = 0, (v, xc) ∈ F or τ ∈ [0, ρ],

α+ = α+ λ
Ψ(r)

Ψ>(r)Ψ(r)xc, (v, xc) ∈ J and τ ∈ [ρ, 2ρ], (7.21)

Then, for each fixed value of r, the parametrized adaptive
FORE (7.2), (7.21) preserves the convenient features of the original
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scheme (7.2), (7.19) established in Proposition 7.1. Indeed, using the
parametrization (7.20), the jump rule in (7.21) corresponds to the fol-
lowing update rule for the feedforward term:

u+
ff = Ψ>(r)α+ = Ψ>(r)α+ Ψ>(r)λ Ψ(r)

Ψ>(r)Ψ(r)xc = uff + λxc,

which coincides with the one in (7.19).
The advantage of the implementation (7.21) as compared to the

previous one, is that under the assumption that there exists α∗ such
that u∗ff(r) = Ψ>(r)α∗, as long as the adaptive system is persistently
excited, the state α will converge to α∗ and the closed-loop responses
will be increasingly faster because upon the occurrence of a new step
reference r, the adaptation will already start from a value uff coinciding
with (or close to) the asymptotic value u∗ff(r). We do not pursue a
formal analysis of these properties which would require addressing a
number of technicalities, but similar reasonings to those of the proof
of Proposition 7.1 can be carried out by replacing the Lyapunov term
|ũff |2 by |α̃|2, where α̃ := α − α∗. In particular, using the update rule
in (7.21), relation (7.18) and a small enough λ satisfying λMx < 2, the
change of this function across jumps corresponds to

|α̃+|2 − |α̃|2 =
∣∣∣∣α+ λ

Ψ(r)
Ψ>(r)Ψ(r)xc − α

∗
∣∣∣∣2 − |α− α∗|2

=
∣∣∣∣∣α̃− λMx

Ψ(r)Ψ>(r)
Ψ>(r)Ψ(r) α̃

∣∣∣∣∣
2

− |α̃|2

= α̃>
(
I − 2λMx

Ψ(r)Ψ>(r)
Ψ>(r)Ψ(r)

+ λ2M2
x

Ψ(r)Ψ>(r)Ψ(r)Ψ>(r)
(Ψ>(r)Ψ(r))2

)
α̃− α̃>α̃

= −λMx(2− λMx)α̃>Ψ(r)Ψ>(r)
Ψ>(r)Ψ(r) α̃ ≤ 0,

which guarantees that the norm of the parameters estimation error α̃
is nonincreasing.

Establishing a strict decrease of |α̃| from the above Lyapunov in-
equalities can be done by requiring some kind of persistence of ex-
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citation from the piecewise constant reference signal r. In particular,
following discrete-time derivations parallel to the continuous-time re-
sults in [Khalil, 2002, Theorem 8.5], we need to require the existence
of two positive numbers ε ∈ R≥0 and M ∈ Z≥0 such that, denoting by
{ti}i≥0 the ordinary times when the jumps occur,

k+M∑
i=k

Ψ(r(ti))Ψ>(r(ti))
Ψ>(r(ti))>Ψ(r(ti))

≥ εI, ∀k ∈ Z≥0.

A proof of the convergence of α̃ to zero should also involve ad-
dressing the problem of defective isolated update laws happening after
a step change of the reference. Indeed, a step change in r causes a
different change of coordinates of the error dynamics, resulting in a
different initial condition, so that condition (7.18) fails to hold at the
first reset. Due to this reason, the adaptation of α should be inhibited
at the first reset after any step reference change of r. As customary
in the adaptive control context, a possible robust implementation of
this mechanism can be carried out by generating a high-pass filtered
version rf of the reference r:

rf (s) = s

s+ λh
r(s) (7.22a)

and then pushing to zero the adaptation gain λ if the norm of rf is
larger than a threshold r̄f , replacing (7.21) by:

α̇ = 0, (v, xc) ∈ F or τ ∈ [0, ρ],
α+ = α+ λmax{0,min{1, (v, xc) ∈ J and τ ∈ [ρ, 2ρ],

|r̄f − rf |}}
Ψ(r)

Ψ>(r)Ψ(r)xc,
(7.22b)

Clearly, with the mechanism above, the adaptation is only enabled
as long as the piecewise constant reference dwells on each constant
value for a long enough time. Moreover, this mechanism works also
whenever the reference signal r is affected by noise (possibly because
it comes from a higher level control system) as long as the threshold
r̄f is not too small.

In Chapter 8 this control strategy is illustrated on the experimental
control of an EGR valve of a Diesel engine.
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7.5 Reference tracking

The set-point regulation scheme presented in the previous section is not
suitable for tracking a generic time-varying reference. This fact can be
appreciated, for example, in the undesirable sinusoidal tracking exper-
iments reported later in Section 8.6. Based on the results in Cordioli
et al. [2015], we generalize here the scheme with the goal in mind of
tracking a generic time-varying but continuously differentiable refer-
ence r under the strong assumption that both r and its time derivative
ṙ are available for building the adaptive feedforward input uff . Then
the scheme of Figure 7.5 naturally extends to the generalization repre-
sented in Figure 7.7.

FORE
xc yr

+ − +

+

P (s)
u

Feed-
forward

uff
d

+

+

ṙ

Figure 7.7: FORE-based reference tracking scheme with adaptive feedforward.

Following classical result on linear and nonlinear regulation theory,
while uff will take care of generating the steady-state input, the regu-
lation error will be driven to zero by the action of the FORE feedback
stabilizer.

In particular, inspired by the adaptation law presented in Sec-
tion 7.4, we propose the following parametrization of the feedforward
signal uff in (7.14):

uff = Ψ>(r, ṙ)α :=

1
r

ṙ


> α1

α2
α3

 , (7.23)

where the parameters α can be adapted online and the vector Ψ is fixed
a priori and changes according to the variation of the smooth reference
r.

With the parametrization in (7.23) and the dynamics (7.16), (7.2),
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(7.14), there exists α∗ such that from suitable initial conditions, the
open-loop control signal:

u∗ff = Ψ>(r, ṙ)α∗ (7.24)

guarantees perfect tracking, that is y(t) = r(t) for all t ≥ 0. To see this,
select

α∗ = [α∗1 α∗2 α∗3]> = 1
bp

[d̄ −ap 1]> (7.25)

and notice that, using (7.16), one gets:

ė = ṙ − ẏ = ṙ − apy − bpu∗ff − d̄
= ṙ − ap(r − e)− (d̄− apr + ṙ) + d̄,

= ape,

(7.26)

which implies that e(t) = 0 for all t as long as e(0) = 0. Note also that
the error dynamics is not necessarily exponentially stable (this is why
the action of a feedback stabilizer is necessary in the hybrid control
scheme).

With this parametrization, we can follow similar steps to those in
Section 7.4 and maintain the parameters α constant during flow, while
adapting them at jumps (resets). However, the adaptation must be
more sophisticated than that in (7.21) because now the reference is
time-varying. Following the derivations in Cordioli et al. [2015] an ef-
fective solution exploting the information stored in the FORE state xc
just before a jump corresponds to the following dynamics:

α̇ = 0, (e, xc) ∈ F or τ ∈ [0, ρ],
α+ = α+ λ ϕ(τ)

max{η,|ϕ(τ)|2}Ψ(r, ṙ)xc, (e, xc) ∈ J and τ ∈ [ρ, 2ρ],
(7.27)

with
ϕ(τ) :=

∫ τ

0
CeAf (τ−s)Bfds (7.28)

where matrices Af and Bf arise from the continuous dynamics and
correspond to [

Af Bf
]

=
[
ap −bp −bp
bc ac 0

]
. (7.29)
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Moreover, η > 0 is a (typically small) parameter ensuring that the
adaptation does not blow up when little information is provided by xc,
and where, just as before, the scalar gain λ > 0 should be selected
sufficiently small.

In Chapter 9, this control strategy will be illustrated on the exper-
imental control of an electromechanical valve adopted in a power-split
transmission system.



8
FORE control of an EGR valve

8.1 Overview

Exhaust gas recirculation (EGR) is one of the most effective technique
to reduce emissions in diesel engines. It works by recirculating a small
amount of exhaust gas in the intake manifold, which contains the fresh
air that is collected to perform the combustion. This is done by placing
a valve between the intake manifold and the exhaust manifold. There
are two control stages for the EGR valve: a higher level control system
commands a reference position for the valve in order to regulate the
amount of the exhaust gas to be recirculated, and a lower level one
regulates the actuator position to the desired reference value. In this
section we illustrate an application of adaptive FORE control to the
lower level stage of an EGR valve. Part of these results are reported in
Panni et al. [2014].

The main control goal is to provide a fast set-point regulation of
the EGR valve position and rejection of a constant disturbance acting
as a load force on the valve actuator. In the real engine application,
this disturbance comes from the force generated by the pressure dif-
ference between the intake and the exhaust manifold. In a laboratory
experiment, described below, the spring which is embedded into the

156
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valve and an elastic band are used to represent the load disturbance.

Figure 8.1: A snapshot of the laboratory experiment with the EGR valve.

8.2 Model parameters identification

Figure 8.1 is a snapshot of the EGR valve used for a laboratory ex-
periment, which is clamped to a table using a vice. It is possible to
distinguish between the mechanical assembly which contains the valve
itself and the electric brushless DC motor that drives the valve. The
DC motor is a torque motor characterized by a maximum rotation
of 75 degrees, a maximum torque of 540 mNm and a response time
smaller than 50 ms. On the side of the motor, a spring keeps the valve
closed when the motor is unpowered. A cam mechanism converts the
angular rotation of the motor into the linear displacement of the valve,
within a limited segment. An embedded sensor provides a voltage out-
put proportional to the linear position of the valve. An input voltage
is used to provide the power signal to the DC motor. The feedback
control system is designed with MATLAB/Simulink and implemented
on a dSpace real-time rapid prototyping system. In particular, on the
measurement side, the output voltage providing information about the
valve position is converted into the percentage of the position range
[0, 100], where 0 means that the valve is fully closed and 100 means
that the valve is fully open. On the actuation side, an analog output of
the MATLAB/dSpace system is connected to a MOSFET-based com-
mercial PWM power amplifier, which is based on an H bridge structure,
supports a 5.5 to 30 V voltage range and can deliver a maximum con-
tinuous current of 15 A. The PWM amplifier provides a 35 kHz PWM
voltage signal switching between 0 V and 14 V or between −14 V and
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0 V depending on the state of the H-bridge. The duty cycle can be
conveniently adjusted using a reference voltage ranging between 0 V

and 5 V and the state of the H-bridge is controlled using a 5 V dig-
ital signal. Those reference voltages are provided by suitable outputs
of the MATLAB/dSpace system, whose values are commanded on the
software side by a suitable Simulink block ranging from −1 (negative
signal with maximum duty cycle, namely maximum negative average
voltage) to +1 (positive signal with maximum duty cycle, namely max-
imum positive average voltage).
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Figure 8.2: Simulated and experimental responses using the model (8.1).

The identification of the valve transfer function from the duty cycle
input to the voltage (position) output was carried out using a Pseudo-
Random Binary Sequence (PBRS) input signal. Figure 8.2 shows a
portion of the data used for the identification process (solid lines in the
upper and lower plots) together with the simulated output arising from
the identified transfer function (8.1) reported below. The mean value of
the PRBS was chosen to compensate for the influence of the spring. In
this way, if the maximum frequency of the PRBS is sufficiently high, the
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valve roughly oscillates around the middle position without impacting
the limiters.

A model has been estimated with the MATLAB System Identifi-
cation Toolbox (Ljung [2007]). Good results were obtained estimating
continuous-time process models. The raw input/output data of a 80 sec-
onds experiment was used for the identification phase, while another
set of 30 seconds of data was used for validation, giving comparable re-
sults to the ones of the upper trace in Figure 8.2. A two poles transfer
function gave a 78% fit to the measured data, using

P (s) =
2200

(s+ 164.4)(s+ 10.69). (8.1)

Adding extra dynamics does not improve noticeably the fitting of the
estimated model. Hence, the transfer function (8.1) was chosen as a
model for the EGR valve. This model is also reasonable from a physical
point of view. Indeed, neglecting the electrical time constant of the
valve, the system is well represented by a second order mass-spring-
damper system. Note that the electrical time constant is neglected in
this model, nevertheless, a more accurate description of the valve would
indeed require third order dynamics, as confirmed by the open-loop
time-optimal input signal discussed in Section 8.7 (see also Figure 8.9),
which switches three times.

Experiments show that the influence of the stiction is relevant. In
particular, imposing low but considerable values of the control input
when the valve is still, does not move the valve. Of course, the linear
transfer function cannot capture this effect. Nevertheless, the proposed
control scheme is aggressive enough to remain essentially unaffected
by the undesired stiction effect. The effectiveness of the design tech-
nique proposed in the next section does not rely on a precise model,
as it only relies on certain properties of the transfer function. However,
the identified model is accurate enough to allow for the closed-loop
performance assessment in simulation, before the experimental tests.
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Figure 8.3: Block diagram of the double-loop control scheme.

8.3 Proposed regulation scheme

The EGR valve transfer function (8.1) identified in Section 8.2 has
two poles so that the control strategy presented in Section 7.4 cannot
be directly applied. To overcome this issue, we employ the double loop
scheme shown in Figure 8.3 where a linear dynamical filter is connected
to the EGR position output to provide an estimate ẏf of the EGR valve
speed according to the results in Nicosia et al. [1990] (alternative ob-
server designs for plants with unknown inputs could also be employed).
Then, as shown in the block diagram, an inner loop in feedback from
the estimate ẏf of ẏ can be implemented according to the technique in
Section 7.4. The scheme in feedback from ẏf is a sufficiently accurate
approximation of the scheme in feedback from ẏ as long as the filter pa-
rameters are fast enough. Finally, an outer loop regulates the position
by way of the static gain K. Note that by writing the EGR valve model
as in Figure 8.3 we ignore the effect of the spring and friction acting
on the valve and assume that the slow pole in (8.1) is at zero. This
is reasonable if one considers that the disturbance d̄(r) can capture
the steady-state effects of these neglected terms. The advantage of the
arising scheme of Figure 8.3 is twofold: 1) the scheme guarantees zero
steady-state error because the integrator serves as an internal model of
the reference which would otherwise be missing given the static nature
of the outer loop; 2) the scheme is independent of the specific model
and it appears to be more suited for the industrial application under
consideration where the valve parameters may be subject to variation
due to construction issues and aging.

According to the results in Nicosia et al. [1990], the filter in Fig-
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ure 8.3 corresponds to the following high-gain observer dynamics:

ẏf = yf,dot +
1
ε
hp(y − yf )

ẏf,dot =
1
ε2
hv(y − yf )

(8.2)

which provides an output yf corresponding to a filtered version of the
valve position y and an output yf,dot corresponding to a filtered version
of its time derivative ẏ (see Nicosia et al. [1990] for details). The filter
parameters are chosen as (hp, hv) = (5.0, 6.0) so that the roots of the
characteristic polynomial p(λ) = λ2 +λhp+hv have negative real part.
The parameter ε is a tuning knob: large values of ε correspond to a
very slow filter and small values of ε correspond to a fast filter. The
main advantage of this filter is that the tuning is easily carried out by
adjusting the scalar ε.

Regarding the tuning of ε, the filter has to be much faster than the
speed of the reset control loop, so that its dynamics is negligible from
the point of view of the scheme of Section 7.4. Nevertheless, the position
signal is affected by a certain amount of measurement noise. For this
reason the filter cannot be too fast and this limits the performance of
the system. The tuning of ε then comprises a trade-off between the two
aspects highlighted above and the value selected for our experiments is
ε = 0.001.

8.4 Results with adaptive feedforward

A first set of experiments was carried out on the laboratory equipment
described in Section 8.2 by employing the FORE control system with
feedforward term (7.2), (7.14), (7.19) described in Section 7.4.2 within
the scheme of Figure 8.3. Once the filter parameters discussed in the
previous section were fixed, the FORE parameters have been selected
according to the results in Theorem 7.1, stating that a large enough
loop gain bc and/or a large enough FORE pole ac suffice to induce
closed-loop exponential stability. In particular, a large value of ac has
been preferred because it leads to very fast transients comprising expo-
nentially unstable branches stabilized by resets (in this way Assump-
tion 7.1 is satisfied). Note that even though Theorem 7.1 states that
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arbitrarily large ac and bc can be employed, the effect of the sample-
and-hold device, delays in the control loop and the presence of the filter
(8.2) impose a limit on the parameters. In light of the above consider-
ations, the parameters have been chosen as ac = 60, bc = 0.013, while
the outer loop gain of Figure 8.3 has been selected as K = 140 to
induce a fast stabilization with little overshoot.
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Figure 8.4: Experimental step responses with several values of λ.

Regarding the selection of λ, according to the tuning technique pro-
posed in Remark 7.9, λ was increased up to the value where oscillations
of uff are experienced (this corresponds to λ∗ = 0.64). Then the dead-
beat value was selected as half of λ∗, that is λ = 0.32. The relevance
of this tuning strategy is illustrated in Figure 8.4 where several ex-
perimental step responses from 20% to 60% of the valve position are
reported:

1. with the optimal value of λ = 0.32 leading almost to a dead-beat
response of uff (red solid);
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2. with the value λ = 0.04, slightly above zero, leading to a very
lightly damped convergence (blue dashed) corresponding to a
value of 1− λMx slightly smaller than 1;

3. with the value λ = 0.58, slightly below the limit λ∗, leading to a
very oscillatory response (green dashed-dotted) corresponding to
a value of 1− λMx slightly greater than −1.
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Figure 8.5: A sequence of three step responses when using λ = 0.35.

Figure 8.5 shows that the asymptotic value of the adaptation
changes upon any reference change. When focusing on the red response
of item 1 above, even though λ is tuned to have an almost dead-beat
response of uff , the estimation affects the transient of the step response
and reduces the performance essentially causing a significant overshoot
(which can be appreciated in the red solid curve in the upper plot of
Figure 8.4 and in the red solid curve in the upper plot of Figure 8.5).
Moreover, from both Figure 8.4 and 8.5 it appears that the update ac-
tion for uff immediately after the step occurrence induces an undesired
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transient on the trace of uff which is only dead-beat after the second re-
set. This essentially comes from the fact that equation (7.18) only holds
if the plant state starts from zero in the transformed coordinates (ỹ, xc),
so while the convergence result of Proposition 7.1 holds, the nonzero ini-
tial condition of ỹ before the first reset induces an additional undesired
transient. This peculiar behavior motivates the inhibition mechanism
introduced in (7.22) and adopted in the next section.

8.5 Results with parametrized feedforward

To reduce the undesired overshoot of the step response discussed in
the previous section (see, for example, the red solid curve in the the
upper plot of Figure 8.4), the FORE control scheme with parametrized
feedforward presented in Section 7.4.3 has been experimentally imple-
mented. With this scheme in place, a recurring value of the reference is
expected to lead to an increasingly improved performance because the
adaptation system takes advantage of the knowledge coming from the
past adaptations of uff to jump (very close) to the correct value of the
feedforward term.

In our laboratory experiment we implemented the FORE control
system (7.14), (7.2), (7.21) with a suitable parametrization of uff(r)
according to (7.20). In particular, to select the basis functions ψi(r)
leading to a good parametrization of uff(r) in (7.20) we collected sev-
eral steady-state values of uff and r using the controller of the previous
section. The values of uff were collected 5 seconds after each step ref-
erence change while the values of the reference was updated randomly
in the range 5% ÷ 85% at each step change. The blue “*” dots in
Figure 8.6 represent all the collected steady-state (r, uff) pairs. Their
peculiar shape suggests that the correct feedforward term u∗ff(r) is well
approximated by a quadratic function of the reference. Note that the
spread of the samples in Figure 8.6 is essentially caused by the signifi-
cant stiction affecting the commercial EGR valve. Based on Figure 8.6,
the function Ψ(r) was chosen as [1 r

100
r2

5000 ]>. The normalizing factors
100 and 5000 where introduced to overcome numerical problems of the
estimation algorithm. In particular, they where chosen in such a way



8.5. Results with parametrized feedforward 165

that the elements of Ψ(r) have comparable orders of magnitude in the
range r ∈ [0, 100]. The red curve in Figure 8.6 represents the esti-
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Figure 8.6: Steady-state input-output pairs and the identified function.

mated function, given by uff(r) = (α∗)>[1 r
100

r2

5000 ] using the asymp-
totic value α∗ = (0.128, 0.087, 0.115) of α reached after the sequence
of step changes of r reported in Figure 8.7. In particular, Figure 8.7
shows the experiment performed by initializing α to zero and running
the FORE control scheme (7.14), (7.2), (7.22) under a random sequence
of steps for the position reference. For the experiment in Figure 8.7,
we have intentionally selected the non-convenient value λ = 0.04 (cor-
responding to the slow blue dashed-dotted response of the lower plot
of Figure 8.4) so that it is possible to appreciate the convergence of
the parameters α to the optimal values α∗ discussed in Section 7.4.3.
The parameters of the adaptation inhibition mechanism in (7.22) have
been tuned to λh = 100 and r̄f = 50 in such a way to avoid undesired
transients in the trace of uff upon sudden changes of the reference r
(this was experienced in the responses of Figure 8.4 and discussed at
the end of Section 8.4). Note also that as the parameters α get closer
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Figure 8.7: Convergence of the parameters α across a sequence of steps of r.

to their asymptotic values α∗ (lower plot of Figure 8.7), the step re-
sponses in the upper plot of the figure become increasingly desirable. In
particular, the typical step response experienced after the parameters
have converged corresponds to the black solid response in Figure 8.9
which shows a significantly decreased overshoot as compared to the red
solid step response in Figure 8.4 of the previous section (that response
is also reported in Figure 8.9 using a red dashed-dotted curve). A last
comment should be made about a similar experiment to that of Fig-
ure 8.7, carried out after placing an elastic band that pulled the valve
open, as shown in Figure 8.1. In this case the parameters converged
to the values α∗ = (−0.0375, 0.0148, −0.0096) and, after convergence,
the step responses were very similar to the previous case. The black
dashed curve in Figure 8.6 shows the estimated function u∗ff(r) with
this configuration using the elastic band.
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8.6 Tracking a time-varying position reference

Our FORE-based reset controller design is carried out addressing a
set-point regulation problem, namely a piecewise constant reference
position. However, in a typical application on the engine it is important
to also consider the behavior of the FORE when facing a time-varying
reference. In this case, when the reference variation is fast enough, the
adaptation of the feedforward action is stopped by the inhibition logic
(7.22) and the feedforward action, based on the previous adaptation,
will be combined with the stabilizing feedback performed by the FORE.
Conversely, if the reference varies slow enough, the adaptation will be
active and will exploit the corresponding information also in practical
cases where the reference is close to being constant but perhaps affected
by noise.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
20

40

60

80

P
o
s
it
io

n
 y

 [
%

]

 

 

Reference

Position

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0

0.1

0.2

0.3

Time [s]

D
u
ty

 c
y
c
le

 u

 

 

Control input (x
c
+u

ff
)

u
ff

Figure 8.8: Response of the FORE control system to a time-varying reference.

An example of this behavior is shown in Figure 8.8 where the ref-
erence is a 1 Hz sine wave. The distorted sine wave visible as a dashed
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curve in the lower plot corresponds to uff and is the image of the refer-
ence through the quadratic curve of Figure 8.6. Figure 8.8 also reveals
high frequency oscillations whose period depends on the parameters of
the FORE. More precisely, if the FORE is fast enough, the frequency
of the oscillations will be higher and the amplitude will be smaller.
These oscillations represent the typical behavior of the FORE in this
scenario. They are caused by the fact that the controller acts with ex-
ponential branches of the control input, that could be seen as pulses
occurring when the error is large enough (if the FORE is aggressive
enough). Figure 8.8 shows that once the feedforward term is adapted,
the FORE control scheme achieves a reasonable tracking of the refer-
ence but an undesired ripple is to be expected due to the very nature
of FORE stabilization. The size of the ripple is expected to decrease as
the reference becomes slower, nevertheless for a full elimination of the
ripple and perfect reference tracking, more sophisticated solutions are
required, such as the one presented in Section 7.5.

8.7 Comparison to time-optimal and PI solutions

To provide a more complete assessment of the developed reset control
scheme for the EGR valve, we develop in this section two alternative
solutions for a step reference change from 20% to 60% of the valve
position. In particular, we compare the step responses obtained using
the FORE control schemes of Sections 8.4 and 8.5 to the responses
obtained using

1. a time-optimal open-loop control strategy, leading to the re-
quested position change in minimum time; the arising response
(blue dashed curve of Figure 8.9) can be thought of as the best
possible achievable performance using a robust feedback con-
troller;

2. a standard PI controller; the arising response (green solid curve in
Figure 8.9) can be understood as the typical industrially adopted
solution.
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More specifically, the time-optimal open-loop control sequence (blue
dashed curve in the lower plot of Figure 8.9) has been determined
from the knowledge that the optimal input is a bang-bang signal which
remains at the maximum allowable input values until the new steady-
state is reached. In particular, by classical time-optimal control results
(see, e.g., [Pontryagin et al., 1962, Thm 10, page 120]) for a third
order plant, three time intervals where the input switches between the
upper and lower saturation levels are required1. The three time intervals
characterizing the time-optimal input sequence were empirically found
to be T1 = 8.95 ms, T2 = 5.58 ms, T3 = 5.2 ms, while the steady-state
inputs before and after the bang-bang burst were given by the black
dashed curve of Figure 8.6 evaluated at 20% and 60%. Note that the
time-optimal solution is only useful for comparison purposes and cannot
be used on the real plant because it is a feed-forward signal extremely

1It should be emphasized that a third order model, also including the electrical
time constant of the valve’s electrical motor, is necessary to suitably characterize
the response in the time scale characterized by the time-optimal response.
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sensitive to parameter variations. Indeed, the dashed curve of Figure 8.9
was the best one among a series of experiments where often the output
exhibited over or undershoots due to the uncertainties affecting the
valve response. Moreover, in a situation with strong disturbances, such
as the Diesel engine implementation of the next section, it is essentially
impossible to compute the time-optimal sequence of inputs for each
requested valve positions.

Regarding the tuning of the PI gains, the following approach was
taken. A first set of gains was determined by means of the Simulink
Control Design PID Tuner, a tool available within the Matlab envi-
ronment. Among other things, this tool allows to specify the desired
closed-loop response time and, based on a given plant model, it com-
putes the PI parameters inducing that response time with an adequate
robustness level. Using the identified model (8.1), the tool was used
with decreasing values of the requested response time, until the simu-
lation response was sufficiently representative of the experimental one.
Finally, the corresponding PI gain selection was slightly adjusted for
improving the performance on the step reference change from 20% to
60%. This led to the final selection (Kp,Ki) = (0.004, 0.1). Note that
industrial PI solutions often use nonlinear gains to increase perfor-
mance and robustness so this comparison is not comprehensively il-
lustrative. However, the comparison carried out on the Diesel engine,
reported in Section 8.9, reveals that the qualitative results anticipated
by the curves of Figure 8.9 are confirmed by the tremendous perfor-
mance increase (the mean squared PI position error is more than four
times larger than the mean squared FORE position error) shown by
the experiments.

Inspecting the four responses of Figure 8.9 reveals that the per-
formance of the adaptive FORE with parametrized feedforward (black
solid) is quite close to the time optimal response. Indeed, the rise time
is roughly doubled and the settling time is approximately 70 ms as
compared to the 20 ms achieved by the time-optimal response. The
performance obtained using the PI controller (green solid) is not even
comparable to the extremely aggressive performance of the proposed
FORE scheme. Finally, as illustrated at the end of the previous sec-



8.8. Implementation on the Diesel engine testbench 171

tion, the comparison between the red dashed-dotted and the black solid
curves illustrates the advantage of the scheme illustrated in Section 8.5
as compared to the one of Section 8.4, especially in terms of overshoot
reduction.

8.8 Implementation on the Diesel engine testbench

We discuss here the FORE controller implementation on a 2 liter 4
cylinder passenger car turbocharged Diesel engine, which is designed
to meet the EU5 emission legislation. The engine features a common
rail injection system, a variable geometry turbine turbocharger with
charge air cooling and cooled high pressure exhaust gas recirculation.
The engine is equipped with production standard sensors and it was
operated on a highly dynamical engine test bed at the Johannes Ke-
pler University (JKU) in Linz. The development engine control unit
(ECU) was connected to a real-time hardware-in-the-loop system for
data acquisition and control. All the experiments were carried out by
the use of a dSpace rapid prototyping system to control the EGR valve
positioning, whereas the remaining functions of the engine control unit
were kept at production standard.

For this engine, we implemented the hybrid EGR valve position
controller described in Section 8.5 with the optimized value λ = 0.32,
as discussed in Section 8.4 and using the filter in Section 8.3 with
ε = 0.005. Note that the selected value of ε is larger than the one used
for the laboratory experiments (ε = 0.001), because the noise level is
higher in the Diesel engine test bed signals.

To suitably implement our controller, the bypass feature available
for certain ECU signals has been used. This allowed us to leave un-
changed the higher level controller, while the production standard EGR
valve position controller coded in the ECU was replaced by the FORE
controller, which was running in the dSpace hardware-software setup
connected to the testbench. Moreover, the testbench allowed for the
monitoring of several engine outputs whose behavior is reported in this
section.

Notice that since the valve recycles exhaust gasses, it is subject to
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Figure 8.10: Plot of the (uff , ∆p) pairs given with a fixed position reference for
the EGR valve.

aging, in the sense that soot particles may interfere with the valve op-
eration, e.g., increasing the valve stiction when it is fully closed.
When the engine is running, the main disturbance is caused by the
flux of the exhaust gas which pushes the EGR valve in the closing
direction. A peculiarity of this disturbance is that closing the valve
causes an increased pressure difference, therefore an increased distur-
bance. This effect may induce closed-loop oscillations if the controller
is not aggressive enough. Moreover, the disturbance may oscillate at
the steady state due to the oscillations of the pressure drop across
the valve. For illustration purposes, Figure 8.10 shows the steady-state
feedforward input as a function of the pressure difference ∆p = pi− pe
between the intake manifold pressure pi and the exhaust manifold
pressure pe. Each curve corresponds to the steady-state feedforward
value when the valve is regulated at a constant position. Experimen-
tally, the curves were obtained by running the engine testbench with
a constant EGR position reference and changing the engine operating
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conditions (therefore ∆p) while recording several steady-state input
values. Each recorded value is represented by a “+” or an “×” in Fig-
ure 8.10. Since the dependence on ∆p is essentially affine, we use the
FORE controller with the same parameters used in Section 8.5 and with
Ψ(r,∆p) = [2.5 r/100 r2/5000 ∆p/500], so that α ∈ R4. With this se-
lection, the feedforward action (7.20) comprises a linear term in ∆p to
capture the behavior of Figure 8.10 in addition to the remaining terms
used in the laboratory experiments. The selection above for Ψ ensures
that the entries of Ψ all have the same order of magnitude during aver-
age operations, except for a larger value of the first bias term (namely
the constant term of the polynomial function uff = Ψ(r,∆p)>α). This
ensures that when the engine operates close to zero valve position,
where our approximation is inaccurate, the states α2, α3, α4 do not
deviate too much from the values providing good performance in mid-
range operating conditions.

Figure 8.11: Steady-state map Ψ(r,∆p)>α after the experimental adaptation. The
blue dots correspond to the measured steady-state input/output values during the
experiment.
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Figure 8.11 shows the feedforward surface Ψ(r,∆p)>α after an ex-
perimental adaptation of α with changing engine conditions. The blue
dots represent the steady-state input-output pairs observed during the
experimental run. This function essentially extends the curve of Fig-
ure 8.6 to the case where also ∆p is considered in the feedforward
parametrization.

Remark 8.1. Since in the Diesel engine application the FORE con-
trol system is subject to temporary disturbances mostly arising from
the closed-loop effects of the VGT, practical experience revealed that
it is advantageous to saturate the update term Ψ

Ψ>Ψxc in (7.22b) so
that excessively large updates of α due to transient disturbances do
not occur. For our application we used Ψ

Ψ>Ψσ0.2(xc), where σM (s) =
sign(s) min{|s|,M} is the standard scalar saturation function. Simi-
larly, it is possible to saturate the right hand side of the xc state equa-
tion in (7.2) or even to limit the maximum value of xc in such a way
that transient disturbances do not cause excessively large deviations of
the plant input from the steady-state. For our application we limited
xc in the set [−0.3, 0.3]. Note that this does not correspond to limit-
ing u in that set due to the presence of uff in the second equation of
(7.14). An alternative to this is to design a more conservative controller
by reducing the FORE parameters. However, using saturation gives the
advantage of not affecting the aggressive small signal behavior and only
toning down the large signal responses. y

8.9 Experimental results

A first set of experiments carried out to assess the FORE controller per-
formance was performed bypassing the EGR position reference coming
from the higher level controller and requiring a step change of the EGR
valve position during a steady operation phase of the engine. There-
fore, parallel experiments to the ones of Figure 8.9 are obtained. In
particular, Figure 8.12 was obtained with the engine running at speed
2200 rpm (≈ 37 Hz) and fuel amount of 30 mg/cycle. Here, the solid
curve corresponds to the response of the FORE controller and should
be compared to the dashed curve, obtained when delivering the step
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reference to the ECU production standard controller, which is based on
a gain scheduled PI plus feedforward architecture. The high frequency
oscillations on the measured position (upper plot) are caused by the air
flow peaks through the EGR valve caused by the combustion cycles.
Their frequency (roughly 75 Hz) is four times larger than a complete
cycle of the engine (roughly 18 Hz – note that each cycle requires two
engine revolutions therefore this frequency is half of the engine rotation
frequency). The third trace reveals also oscillations of ∆p which exhibit
the two above discussed fundamental frequencies of 18 and 75 Hz. The
feedforward action uff = Ψ(r,∆p)>α is effective at making this distur-
bance almost invisible on the position error, where only the residual
75 Hz component is visible. The rest of the job is carried out by the
exponentially diverging branches of the input u. The lower plot of Fig-
ure 8.12 shows the adapted parameters α. Notice that the parameters
remain essentially constant because they have already converged to the
steady-state values, nevertheless, in accordance with the discussion of
Section 8.8, the bias term α1 exhibits more visible variations due to
the choice of the normalization factors in the function Ψ(r,∆p).

A second, perhaps more significant, test carried out on the engine
testbench was to compare the EGR valve positioning accuracy when
using the ECU production standard controller and the proposed FORE
controller through an urban part of the New European Driving Cycle
(NEDC), which lasts roughly 198 seconds. As customary, this test cy-
cle corresponds to providing suitable torque and speed references to
the engine, based on a conventional behavior of a virtual driver on a
prescribed road. This test simulates a typical situation in an urban
environment2.

The response of the FORE is compared to the one of the produc-
tion standard ECU controller in Figures 8.13 and 8.14. Such a com-
parison clearly infers that the FORE allows for a much faster tracking
of the reference position. In particular Figure 8.13 and the two top
plots of Figure 8.14 clearly reveal the higher precision of the hybrid
controller. Looking at the lower plot of Figure 8.14 it is also possible

2The extra-urban part of the NEDC was not considered as it is less demanding
from the point of view of the presented EGR control system.
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Figure 8.12: Comparison of the step responses of the proposed FORE controller
and of the ECU production standard controller.

to appreciate the impact on the NOx emissions when using the FORE
scheme. In particular, not surprisingly, the most relevant difference of
the NOx emissions is visible whenever an opening of the EGR valve
is requested by the higher-level control system (see the transient re-
sponse around time t = 117). Indeed, the reduced position tracking
error given by the FORE controller ensures a prompt gas recircula-
tion and a reduced amount of emissions. One may also expect that
the large position error experienced by the ECU control system in the
time interval t ∈ [119, 120] could have an impact on the emissions but
this is not the case because this error does not impact much the EGR
flow. Instead in the previously commented phase, where the EGR valve
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Figure 8.13: ECU and FORE responses on a portion of the NEDC.
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Controller MSE Percentage
ECU 6.6794 100 %
FORE 1.5343 23 %

Table 8.1: Mean squared position error of the FORE and ECU control systems
along the NEDC cycle.

is almost closed, the FORE position controller accuracy has a strong
impact on the EGR flow.

To numerically quantify the gap between the two controllers, we
also consider the mean squared position error achieved by the two con-
trollers in the considered NEDC cycle, namely

MSE = 1
|I|

∑
i∈I

e2
i , I = {i ∈ {1, . . . , n} : ri 6= 0} (8.3)

where ei corresponds to the i-the sample of the difference between
the position reference (dashed line in Figures 8.13 and 8.14) and the
valve position (solid lines in the same figures). The sampling period
of the signals is 1 ms so that during the whole 198 s NEDC urban
cycle there are n = 198000 samples. Note, however, that we evaluate
the MSE averaging only the values of the error where the reference
position of the valve is not zero. This is due to the fact commented
above that with zero reference the ECU control system switches to the
“fast closure” operating mode where the position measurement signal is
negative (see the discussion above and the corresponding time intervals
in Figure 8.14) and this would lead to (incorrectly) increased values of
the MSE for the ECU control system.

The values obtained using the two schemes are listed in Table 8.1
where it appears that the FORE control system reduces to less than
one fourth the MSE value. This is not surprising if one takes into con-
sideration the curves of Figures 8.13 and 8.14 which reveal a substantial
improvement of the valve positioning performance.
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9.1 Overview

Power-split transmission systems for traction drives comprise differ-
ent branches where power can be directed and manipulated in order
to achieve suitable efficiency goals (see Mueller et al. [2014] and ref-
erences therein). In recent years, high-technology solutions have been
developed with the goal of reducing the energy consumption in off-
highway mobile machines. One such example is the Hydromechanical
Variable Transmission (HVT) developed at Dana Rexroth Transmis-
sion Systems (DRTS). This device combines the mechanical and hy-
drostatic travel drive to join the best features of both technologies. In
particular, with such device the energy consumption of the vehicle is re-
duced and the life cycle costs are also decreased due to the high level of
automation within the hydro-mechanical components. The HVT devel-
oped by DRTS includes a hydrostatic variator and a mechanical power
branch whose interplay is modulated by way of variable hydrostatic
pump and motor, and by the action of proportional controlled wet disc
clutches allowing the automatic control system to switch among sev-
eral drive ranges (see Mueller et al. [2014] for details). These clutches
are then suitably actuated by electro-proportional valves modulating

179
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the oil pressure. One key feature of the overall control system is an ac-
curate control system for the current flowing within the electrovalves,
which has a direct impact on the accuracy and precision of the clutches
operation.

According to the detailed description in Mueller et al. [2014], the
HVT transmission developed at DRTS, schematically represented in
Figure 9.1 as integral part of a Wheel Loader (WHL) drive train, in-
cludes among its many features the action of two clutches whose role
is to suitably adjust the range of the two branches, so that desirable
operating conditions are met by the device for increased performance
and comfort.

Figure 9.1: Scheme of the power-split transmission developed by DRTS.

To the end of suitably actuating the clutches, it is fundamental that
the oil pressure before the clutches be accurately regulated in such a
way that the clutch discs reach with a precise filling operation, the
so-called kiss point, before engaging. Then, no dead time (or time lag)
is experienced by the higher level control system when demanding the
engagement of the clutch. This critical goal can be accomplished by ac-
curately modulating the current flowing in the electrovalves regulating
the fluid pressure of the clutch piston acting on the clutch discs. In its
current HVT architecture, DRTS uses proportional electrovalves whose
operation stands between the cheap and inaccurate “switching valve”
solution and the fragile “servo-valve” solution. Proportional hydraulic
valves became commercially available in the mid 1980s and became vi-
able alternatives to the more expensive and fragile servo-valves. They
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allow for infinite positioning of the spool, thus providing infinitely ad-
justable flow volumes. These valves are electrically operated by propor-
tional built-in solenoids whose goal is to provide a smooth and contin-
uous variation in flow or pressure by suitably manipulating the current
flowing in the solenoid. What permits the opening of the ports is the
movement of the spool that is regulated by the balance of the forces
acting on it. In particular, the electrical input passing through the coils
of the solenoids produces an electromagnetic force that is opposed by
the force of the spring and this infinitesimal balancing of forces permits
the opening/closing of the valve. The difference with the conventional
directional valves, as said above, is that the opening/closing can be
modulated to vary the flow and pressure. Summarizing this means that
an opening of the valve (movement of the valve spool) is proportional
to the magnitude of the milliamp current applied to the valve. As a con-
sequence, besides the nonlinear relationship between electrical current
and fluid pressure, which should be suitably inverted (possibly using
adaptive schemes), the pressure and flow can be regulated by these
valves by only focusing on the electrical dynamics, which is linear and
can be written as a standard RL model:

İ = −R
L
I + 1

L
V + d̄, (9.1)

where I is the current flowing in the solenoid, V is the applied voltage,
d̄ is a constant input bias and R and L are the parameters of the
corresponding RL passive circuit.

Accurate tracking of the time-varying reference for the current flow-
ing in the valves of the power-split transmission system of DRTS allows
to obtain extreme performance in the overall device. This section then
reports on the experimental results obtained when using the control
scheme presented in Section 7.5 for obtaining perfect tracking of a
time varying current reference profile, which may be then adjusted in
order to achieve suitable pressure/flow regulation in the clutch. The
advantage of the adopted scheme is that it is able to adapt to slow
variations of the parameters R, L and d in equation (9.1) and that is
robust enough to unmodeled phenomena, such as the sampled-data im-
plementation of the control scheme and the PWM nature of the power
amplifier operating the valve (see the next section for details).
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9.2 Application to the valve model and simulation results

When focusing on the experimental system described in Section 9.1, the
adaptive scheme of Section 7.5 can be applied by identifying the linear
dynamics in (7.16) with the electrical equations of the valve, reported
in (9.1).
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Figure 9.2: Linear fitting of the static experimental measurements.

Some preliminary experiments have been carried out under quasi-
static behavior of the valve, in order to validate the correctness of the
parametrization in (7.23). In particular, a number of increasing step
voltages have been applied to the valve, and the corresponding out-
put current has been sampled and averaged after it reached its steady
state value upon each value of the piecewise constant input. The cor-
responding experimental results are reported by the red solid curve in
the upper plot of Figure 9.2. From this curve it is evident that the pro-
posed parametrization well suites this application, at least under static
conditions (that is, when ṙ = 0). The blue dashed line in the upper
plot of Figure 9.2 shows the linear least squares fit of the experimen-
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tal curve, and the lower plot in the figure highlights the arising error,
that can be considered acceptable for the specific application at hand.
Note also that the parameters associated to this curve vary with time,
mostly depending on the temperature of the valve, but also depend-
ing on aging and other unpredictable effects on the electro-mechanical
valve.

Component Value Units
R 10 Ω
L 70 mH

d̄ −3 A/s

Table 9.1: Parameters used in the simulations of Section 9.2.

For simulation purposes, we have selected the parameters reported
in Table 9.1 which are compatible with the experimental curves shown
in Figure 9.2. Regarding the parameters of the FORE, according to
suitable experimental tests reported in Cordioli [2014], they have been
selected as ac = 50, bc = 15 and λ = 0.4 in both simulations and
experiments. The dwell time parameter in (7.2) has been selected as
ρ = 0.01. It has been noted that this parameter does not really affect
the type of responses experienced from the closed loop.

Simulations have been carried out for the feedback between plant
(7.16) with ap = −R/L and bp = 1/L (see (9.1)) and controller
(7.2), (7.14), (7.29), (7.28), (7.27) introduced in the previous section.
In all of them, the function ϕ in (7.28) has been selected based on
the nominal values of the parameters in Table 9.1, namely ϕ(τ) =
0.022997 exp(48.882τ) + 0.007931 exp(−141.74τ)− 0.030928. However,
these values have been perturbed in the plant by simulating the con-
troller over a plant with R̂ = 1.2R and L̂ = 0.8L (note that we have
perturbed R and L in opposite directions to ensure that the time con-
stant L/R was suitably perturbed too). An input matched disturbance
of −3 V has been introduced in the simulations that, according to dy-
namics (7.16) results in a selection of d̄ = −3/bp. In all our simulations,
a band limited white noise with power 10−8 and sampling time of 1 ms
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has been added to the current sensing feedback signal.
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Figure 9.3: Simulation results with the Toolbox Sanfelice et al. [2013]. Two upper
left plots: output currents (top) and input voltages (bottom) at the beginning of
the adaptation. Two upper right plots: output currents (top) and input voltages
(bottom) at the end of the adaptation. Down plot: time-evolution of the parameters
α1, α2 and α3.

Two different simulations are shown in Figures 9.3 and 9.4. In the
first case of Figure 9.3 we have implemented the FORE scheme on a
simulation file involving a continuous-time implementation based on
the hybrid simulation tool of Sanfelice et al. [2013]. In the second case
the controller has been discretized with the sampling time of 2 ms and
the hybrid logic has been encoded in a StateFlow diagram which can
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Figure 9.4: Simulation results of the sampled-data approximated controller imple-
mentation. Two upper left plots: output currents (top) and input voltages (bottom)
at the beginning of the adaptation. Two upper right plots: output currents (top) and
input voltages (bottom) at the end of the adaptation. Down plot: time-evolution of
the parameters α1, α2 and α3.

be easily converted into the C source code automatically generated by
the TargetLink software described in the next section. Moreover, the
exponentials in the function ϕ have been implemented approximatively
using a second order Taylor expansion to allow for real-time implemen-
tation in the available hardware.

The simulations represent a 300 seconds time interval where the
valve current reference profile corresponding to the dashed gray curve
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in the upper left plot is indefinitely repeated. The parameters α are
initialized at half of their exact values α∗ = [−3 R̂ L̂] (see (7.25)).
The two upper left plots in Figures 9.3 and 9.4 show output currents
(top) and input voltages (bottom) to the valve at the beginning of the
adaptation, where poor tracking is achieved and most of the control
action comprises the feedback action given by xc (uff is very small). The
right counterparts show the same signals at the end of the simulation,
after the adaptation has converged to reasonable estimates and most of
the control action is performed by the feedforward component uff (the
feedback action is essentially not visible). In both cases perfect tracking
is achieved. The larger plot in the lowest part of both figures shows
the evolution of the parameters α. Note the significant difference in
evolution arising from the approximated sampled-data implementation
of Figure 9.4 and also caused by the approximated implementation of
the exponential function. Asymptotic convergence is however reached
in both cases.
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Figure 9.5: Evolution of the Lyapunov-like function |α̃|2 for the two simulations
of Figures 9.3 and 9.4.

Additional information can be extracted by looking at Figure 9.5,
where the Lyapunov-like function |α̃|2 is represented for the two cases,
thus clearly showing that this function decreases to zero thereby im-
plying that parameters α converge to α∗.
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9.3 Experimental tests

The simulation results of the previous section correspond to the so-
called “Model-In-the-Loop” (MIL) implementation of the proposed
controller, implemented using standard Simulink tools. For industrial
application, the code transferred to the ECU of the power-split trans-
mission must however be written in C language, compiled and flashed
to the ECU. The C code has been automatically generated using the
TargetLink software. The TargetLink generation involves associating a
suitable variable (with its own precision and mainly uint8, sint8, uint16,
sint16) depending on the range of variation of the related quantity
(maximum value and maximum precision). For the proposed reset law,
a critical variable appeared to be the controller state variable xc whose
required precision becomes quite large once the feedforward parameters
α are close to the actual values α∗ and very small feedback corrections
are necessary. In that part of the controller, 32 bit variables have been
necessary to avoid freezing of the related adapted parameters.

The TargetLink software allows for automatic testing of the gen-
erated C code against the plant model (Software-In-the-Loop or SIL),
which has been compared to the MIL results of the previous section.
One resulting response is shown in Figure 9.6 that provides compa-
rable results to those of Figures 9.3 and 9.4. For the SIL simulation,
unperturbed plant parameters were used so that the feedforward state
α converges to slightly different values. Different references have been
used in these tests and all gave satisfactory results, but are not reported
here due to space constraints.

A few experimental tests have been performed on the physical elec-
trovalve connected to the ECU by using TargetLink to generate the
C code. The ECU is then connected to a hardware dSpace simulator,
called Hardware-In-the-Loop (HIL), where the electrical signals reach-
ing the ECU correspond to the ones present in the actual power-split
transmission. For our test, the relevant part is that the plant connected
to the ECU is not anymore a model but is the actual experimental valve.
While some of the mechanical components of the power-split hardware
are simulated by the HIL, the actuators and sensors are experimen-
tal, and their physical quantities are suitably monitored by the HIL to
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Figure 9.6: Results of the SIL source code implementation. Two upper left plots:
output currents (top) and input voltages (bottom) at the beginning of the adapta-
tion. Two upper right plots: output currents (top) and input voltages (bottom) at
the end of the adaptation. Down plot: time-evolution of the parameters α1, α2 and
α3.

characterize their behavior against the response of the actual ECU with
actuating and sensing devices. The results of the HIL test are shown
in Figure 9.7, which confirms the results of the previous MIL and SIL
results. For this experimental test, the parameters α exhibit some slow
drift, probably caused by temperature variations in the valves. As ex-
pected, the tracking algorithm is able to follow these slow variations
and preserve the reference tracking features of the scheme.



9.3. Experimental tests 189

5 5.5 6 6.5 7
-0.2

0

0.2

0.4

C
u
rr

e
n
t 
[A

]

 

 

Reference

Current [A]

298 298.5 299 299.5 300
-0.2

0

0.2

0.4

 

 

Reference

Current [A]

5 5.5 6 6.5 7
0

1

2

3

4

5

V
o
lt
a
g
e
 [
V

]

298 298.5 299 299.5 300
0

1

2

3

4

5

 

 

u=u
ff
 + x

c

Feedforward u
ff

0 50 100 150 200 250 300

0

2

4

6

8

Time [s]

α

 

 

α
1

α
2

α
3

Figure 9.7: Experimental results with the HIL system. Two upper left plots: output
currents (top) and input voltages (bottom) at the beginning of the adaptation. Two
upper right plots: output currents (top) and input voltages (bottom) at the end of
the adaptation. Down plot: time-evolution of the parameters α1, α2 and α3.

Finally, a different HIL experiment has been carried out by modi-
fying the shape of the reference wave. In particular, we have used the
sum of two sinusoidal waves with non commensurate periods, so that
the arising signal is not periodic. The results, reported in Figure 9.8
illustrate once again the merits of the tracking algorithm and are asso-
ciated to a correct convergence of the parameters α to the same values
reached in the experiment of Figure 9.7. Observing Figure 9.8 one can
appreciate that once the parameters have converged, very little action
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Figure 9.8: Experimental response to trigonometric reference.

is performed by the feedback part of the scheme (see the lowest plot).
In addition, carefully inspecting the two upper traces of the figure, one
realizes that the knowledge of the time derivative of the reference ṙ
enables a non-causal action at the plant input u which appears to be a
slightly anticipated (see, e.g. times 28.8 and 29.2) and distorted version
of the actual reference r, capable of inducing perfect tracking. This re-
sult automatically arises from the effect of the linear combination in
(7.23) for correct values of α = α∗.
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Conclusions and perspectives

10.1 Conclusions

Motivated by a linear analog integrator, namely the Clegg integrator
circuit (see the description provided in Chapter 1), we introduced a par-
ticular class of controllers: the reset control laws. Such controllers have
a mixed discrete/continuous dynamics, yielding to a hybrid dynamical
closed-loop system when closing the loop with a continuous-time plant.
The interest of such controllers has been presented and motivated by
some examples (see in particular in Chapter 2). In particular, the ad-
ditional discrete dynamics with respect to continuous-time dynamical
controllers may allow to attain a better performance, e.g., in terms of
the speed of convergence or in terms of the overshoot reduction.

This improvement has been precisely stated for nonlinear plants in
Chapter 3, where design methods for state feedback laws have been
presented. Using only a part of the state, and designing reset output
feedback controllers is a challenging problem for both control theory
and stability analysis. Indeed, the separation principle, that is classical
in linear control theory, does not apply in general when closing the loop
with output feedback reset laws. Moreover, as far as stability of hybrid
dynamical systems is concerned, using observers may lead to the ex-
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istence of Zeno solutions, which are defective and should be avoided.
These aspects motivated us to introduce, in Chapter 4, a temporal
regularization written in terms of an additional reset dynamics provid-
ing a dwell time between consecutive jumps. Combining the results of
the preceding chapters with this temporal regularization yielded de-
sign algorithms for output feedback reset controllers, mainly for linear
continuous-time plants. Numerically tractable algorithms have been
developed in Chapter 5 to estimate the L2 gain of the closed-loop sys-
tem when studying the performance of measured outputs with respect
to exogenous signals. The explicit computation of Lyapunov functions
and of the estimation of the L2 gain was provided in terms of Linear
Matrix Inequalities for Single-Input-Single-Output (SISO) linear plant
controlled by First-Order-Reset-Elements (FORE). Further results on
H∞ control design have been given in Chapter 6, where again the full
state availability and the partial state availability (output) cases are
studied separately. Illustrative examples have been given on physical
models of real applications by exhibiting both the advantages and draw-
backs of the results.

Planar reset systems have been studied in the last part of this sur-
vey. First further results were given on planar SISO linear plants con-
trolled by FORE controllers, paralleling the results of Chapter 5 when
focusing to planar plants. Advanced results were given to solve set-point
and trajectory tracking problems in Chapter 7. The obtained results
were applied to the control of Exhaust Gas Recirculation (EGR) by
FORE in Chapter 8 where, after an identification procedure, adaptive
feedforward FORE were implemented on a Diesel engine testbench.
FORE control was applied to an electromechanical valve in a traction
drive device in Chapter 9. Experimental tests illustrated the merits of
the tracking algorithm.

10.2 Perspectives

The central approach, presented in this survey on reset controllers,
has many connections with other results and works on control theory,
and on engineering applications of automatic control. To cite a few
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results, consider the important works on design of hybrid controllers
for nonlinear plants, in particular for control systems where stabilizing
continuous dynamical controllers do not exist, as considered in Liberzon
[2003], Prieur and Astolfi [2003], Prieur and Teel [2011] among other
references. It could be useful to revisit this literature on the design of
hybrid controllers and to apply the techniques presented in this paper
for the design of robust reset controllers. The use of timers and dwell
time is important when using observers in the closed-loop system as
it has been seen in this survey for linear control systems. It is also
important for nonlinear ones. See in particular Marx et al. [2016] where
dwell-time property has been employed to combine a high-gain observer
with a hybrid controller for general nonlinear control systems.

Many results for the design of event-triggered controllers are related
to the results and methods presented in this survey. For both linear
plants and nonlinear models, designing event-triggered controllers may
reduce the need for input updates when controlling a plant, and may
also reduce the need for measuring the plant outputs. This is particu-
larly important for systems measured and controlled through networks
(as considered in Tabuada [2007], Postoyan et al. [2011], Peng and
Yang [2013]). Different event-triggered schemes exist, in particular the
periodic approach (see Heemels et al. [2013]) for linear plants, and Lya-
punov based techniques for output stabilization of nonlinear systems
(as in Tanwani et al. [2015], Abdelrahim et al. [2017]). Reset controllers
(and more generally hybrid controllers) could be applied when the infor-
mation is quantized in the networks. See the recent works Ferrante et al.
[2015], Tanwani et al. [2016] on this subject. Reset control techniques
are also fruitful for controlling plants where only sporadic measures
and inputs are available, as considered in Ferrante et al. [2016].

Reset controllers may also be applied when controlling plants with
a saturating input. They allow to enlarge the basin of attraction of
the saturated control system (see Loquen et al. [2007]), and to solve
a tracking reference problem in presence of input saturation, as done
in Loquen et al. [2008]. Dedicated stability analysis and anti-windup
techniques exist for reset control systems, as studied respectively in Fi-
acchini et al. [2012, 2013] and in Tarbouriech et al. [2011]. Connections
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of reset controllers with delay is also an interesting research line, see
Baños et al. [2014b] for a recent work on stability results when delay
effect is considered.

In summary, this survey paves the way for future directions of re-
search including taking into account in a generic fashion the isolated
or structural nonlinearities affecting the system (as, for example, satu-
ration) to improve the characterization of the basin of attraction of the
closed loop. The design of reset controllers to overcome several limita-
tions of classical continuous-time systems as the presence of uncertain-
ties or delay could be also fruitful. Moreover, the use of reset controllers
to develop new paradigms in networked control systems could be very
interesting.
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