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Abstract

Clustering is a central problem in machine
learning for which graph-based approaches
have proven their efficiency. In this paper, we
study a relaxation of the modularity maxi-
mization problem, well-known in the graph
partitioning literature. A solution of this re-
laxation gives to each element of the dataset
a probability to belong to a given cluster,
whereas a solution of the standard modular-
ity problem is a partition. We introduce an
efficient optimization algorithm to solve this
relaxation, that is both memory efficient and
local. Furthermore, we prove that our method
includes, as a special case, the Louvain opti-
mization scheme, a state-of-the-art technique
to solve the traditional modularity problem.
Experiments on both synthetic and real-world
data illustrate that our approach provides
meaningful information on various types of
data.

1 Introduction

Modularity is a quality function defined on node parti-
tions that has been widely used to tackle the problem
of node clustering in graphs [9, 26]. Numerous algo-
rithms have been proposed to solve the problem of
maximizing this objective function [6,13,24]. The Lou-
vain algorithm [2], which is built in a number of graph
analysis software packages, is arguably the most popu-
lar approach to solve this problem. A solution to the
modularity optimization problem is a partition of the
graph nodes. In particular, a node cannot belong to
more than one cluster. Yet, in many real-life applica-
tions, it makes more sense to allow some elements to
belong to multiple clusters. For instance, if we consider
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the problem of clustering the users of a social network
such as Facebook or LinkedIn, we see that a person
can belong to several social circles, such as her family,
her colleagues and her friends, and we might be inter-
ested in recovering all these circles with a clustering
algorithm, even if they do not form a partition.

In order to overcome this limit of the classical definition
of modularity, we introduce a relaxation of the problem
to perform a so-called soft clustering that allows partial
membership like fuzzy clustering methods [1, 8]. A so-
lution to this new problem gives for each node a degree
of membership to each cluster, instead of returning
a simple node partition. More precisely, we obtain a
probability pik ∈ [0, 1] for each node i to belong to a
given cluster k, where the classical modularity-based
techniques implicitly consider that this probability can
be either 0 or 1.

The main contribution of this paper is to introduce an
efficient algorithm to find an approximation of this soft
version of the modularity maximization problem. This
algorithm has four main advantages. First, the number
of clusters does not need to be specified. Second, the
algorithm is local, in the sense that each update of
the membership information of a given node depends
only on its direct neighbors in the graph. Third, the
solution found by the algorithm is sparse, i.e. most
of the membership probabilities pik returned by our
algorithm are equal to 0, which guarantees an efficient
storage of the solution. Finally, an update performed
by our algorithm reduces to an update performed by
the Louvain algorithm as soon as the unique parameter
t of our algorithm is larger than a threshold w/δ that
depends on the graph.

The remainder of the paper is organized as follows. In
section 2, we present the related work on the topic of
modularity optimization. We introduce the relaxation
of the modularity maximization problem in section 3.
In section 4, we present our optimization method and
obtain theoretical guarantees about its convergence. In
section 5, we take benefits of the specificities of our
optimization technique to propose an algorithm that
is both local and memory efficient. In section 6, we
study the ties of our approach to the Louvain algorithm.
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Finally, in section 7, we present experimental results on
synthetic and real-world data, and section 8 concludes
the paper. Complete proofs of the main results of the
paper are presented in the supplementary material.

In the rest of the paper, we consider that we are given a
weighted and undirected graph G = (V,E,W ). We use
V to denote the set of nodes, E the set of edges, and
W = (Wij)i,j∈V the adjacency matrix of the graph. If
(i, j) ∈ E, Wij > 0 is the weight of edge (i, j), and if
(i, j) /∈ E, Wij = 0. We use wi to denote the weighted
degree of node i, wi =

∑
j∈V Wij , and w the total

weight of the graph w =
∑
i∈V wi. We use Nei(i) to

denote the set of the neighbors of node i ∈ V , and j ∼ i
as a notation for j ∈ Nei(i). Finally, we use n = |V | to
denote the number of nodes, and m = |E| the number
of edges of the graph.

2 Related work

2.1 Modularity optimization

The modularity function (1) has first been introduced
by Newman and Girvan [26] to measure the quality of
a partition of graph nodes. For a given node partition
P , modularity is defined as

Q(P ) =
1

w

∑
C∈P

∑
i,j∈C

(
Wij −

wiwj
w

)
. (1)

Modularity Q can be interpreted as the difference be-
tween the probability to pick an edge in G between two
nodes of the same cluster C, i.e. an intra-cluster edge,
and the probability to pick such an intra-cluster edge
in a random graph generated with the so-called null
model, where the probability that an edge (i, j) exists
is wiwj/w.

Clustering approaches based on modularity try to solve
the modularity maximization problem

max
P∈P

Q(P ), (2)

where P is the set of the partitions of V .

We refer to the Newman and Girvan modularity as
the hard modularity, to distinguish it from the soft
modularity that we introduce in Section 3. The hard
modularity optimization problem (2) cannot be solved
exactly in real applications as it has been proven to be
NP-hard [3]. However, many methods have been pro-
posed to find good approximations of the modularity
optimum in reasonable time. These techniques includes
greedy algorithms [24], spectral approaches [25], and
simulated annealing methods [13]. A thorough review
of existing algorithms can be found in [9]. One of the
most popular algorithm for finding a good approxi-
mation of the modularity maximum is the Louvain

algorithm [2], which is widely used in benchmarks for
its ability to scale up to very large graphs (e.g. the
Friendster social graph with 1.8 billions edges [29]). In
this paper, we introduce an algorithm for optimizing
the relaxation of the modularity maximization problem
(4) that takes a parameter t, and we prove that each
update performed by our algorithm reduces to the up-
date performed by the Louvain algorithm if t is large
enough. This constitutes a strong guarantee since the
Louvain algorithm has proven its worth on multiple
real-life applications.

2.2 Modularity relaxation

Relaxations of the hard modularity optimization prob-
lem have been tackled by few articles [4, 12, 14, 16,
20, 21, 27]. They all introduce membership matrices
p ∈ Rn×K , with K ≥ 1, where pik ≥ 0 represents
the degree of membership of node i ∈ V to the kth
cluster, k ∈ J1,KK. K is a given positive integer, that
represents the maximum number of clusters. These
relaxations all have similar forms and are very close
to the one we introduce in Section 3. These works
differ in the optimization techniques they use to solve
the problem. In [4], Chang et al. use a softmax pa-
rameterization for p, defining for each i ∈ V and k
pik = exp(θik)/(

∑
l exp(θil)) where θ ∈ Rn×K is the

parameter to optimize. In [27], Nicosia et al. use a
genetic algorithm to optimize a more general relaxation
of the modularity problem. In [12], Griechisch et al.
do not directly study the optimization of the relax-
ation problem, but they rely on an external quadratic
solver. Finally, in [14], Havens et al. use a spectral
approach that does not directly solve the relaxation of
the modularity problem, but where modularity is used
as a selection criterion. The main limitation of these
methods lies in the maximum number of clusters K
that must be specified. We could get around this issue
by taking large values for K, but all the approaches
cited above do not scale well to large K. Indeed, the
solutions p ∈ Rn×K found by these methods are dense
matrices. In other words, the number of parameters to
store in memory and to optimize is in O(nK), which
quickly becomes prohibitive for large values of K. For
instance, in the approach of [4], the matrix p is the dens-
est possible matrix, i.e. all its coefficients are positive.
In the approach of [27], the genetic algorithm starts
with dense random matrices of Rn×K , and its hybrida-
tion and mutation mechanisms do not lead to sparser
matrices, so that all the coefficients of the solution p
found by this algorithm are positive with probability 1.

In this paper, we introduce an efficient algorithm to
solve a relaxation of the modularity optimization prob-
lem with a membership matrix p ∈ Rn×n. Thus, the
maximum number of clusters does not need to be spec-
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ified. Besides, unlike the approaches presented above,
the updates performed by our algorithm preserve the
sparsity of the solution p and are local, in the sense that
the membership vector pi· of a node i ∈ V is updated
using only membership information from its neighbors
in the graph. Thus, our algorithm can easily scale up
to large datasets with large number of clusters, which
is not the case of the algorithms listed above.

As proposed in [32], the problem of soft graph cluster-
ing can also be tackled by a combination of spectral
embedding [10, 31] and soft-clustering in the vector
space, with algorithms such as the fuzzy C-means algo-
rithm [8] or the NEO k-means algorithm [32]. However,
the number of clusters K has to be specified for these
techniques. Besides, spectral embedding methods do
not scale well to large size graphs [28]. For instance,
they are unable to handle the subgraph of Wikipedia
that we use in our experiments in Section 7. Finally,
it is worth mentioning that several algorithms have
been proposed for the related problem of overlapping
community detection in networks [18, 34, 36]. Whereas
these approaches return clusters C ⊂ V , soft-clustering
methods give for each node the degrees of membership
to all clusters, which represents a richer information.
Note that some overlapping community detection al-
gorithms also allow soft clustering [19]. In the survey
of [33], our algorithm would fall into the class of lo-
cal expansion algorithms, where all algorithms have
worst case complexity O(n2) (except iCLD dealing with
dynamic networks).

3 Soft modularity

Given an ordered partition P = (C1, . . . , CK) of the
nodes of V (i.e. a partition of V whose sets are given
in a certain order), we define the membership matrix
p associated with P as follows: ∀i ∈ V,∀k ∈ J1,KK,
pik = 1 if i ∈ Ck, and 0 otherwise. It is easy to
see that P is an optimal solution of the modularity
maximization problem (2) if and only if its associated
membership matrix p is an optimal solution of

maximize
p∈Zn×n

1

w

∑
i,j∈V

n∑
k=0

(
Wij −

wiwj
w

)
pikpjk

subject to ∀i ∈ V,
n∑
k=1

pik = 1,∀k ∈ J1, nK, pik ≥ 0.

(3)

Given a membership matrix p, we use pi· to denote
the vector that corresponds to the ith line of p and
p·k to denote the vector that corresponds to its kth
column. From the new formulation (3), we introduce
the natural relaxation of the problem where coefficients

of p can take real values

maximize
p∈Rn×n

Q(p)

subject to ∀i ∈ V,1Tpi· = 1,pi· ≥ 0.
(4)

where Q(p) = 1
w

∑
i,j∈V

(
Wij − wiwj

w

)
pi·

Tpj·.

Note that if p is a feasible solution of this problem, then
pik can be interpreted as a probability. It corresponds
to the probability for a node i to belong to cluster
k. So, by solving this relaxation of the modularity
optimization problem we can obtain nodes that belong
to multiple clusters unlike in the classical modularity
maximization problem. We refer to a solution to this
problem as a soft clustering of the nodes of G. We
refer to this new objective function Q(p) as the soft
modularity. Remark that, when pi· ≥ 0, the constraint
∀i ∈ V,1Tpi· = 1 is equivalent to the l1 constraint
‖pi·‖1 = 1, where ‖·‖1 denotes the l1 norm.

4 Alternating projected gradient
descent

We can rewrite the relaxation of the modularity opti-
mization problem as a classic minimization problem
minp∈X J(p), where J : p 7→ −Q(p) is the cost func-
tion and X = {p ∈ Rn×n : ∀i,pi· ≥ 0,1Tpi· = 1} is the
set of constraints. We define the normalized weighted
Laplacian of the graph, as L = I −D−1/2WD−1/2,
where D is the diagonal matrix whose entries are the
weighted degrees of the nodes: D = diag(w1, . . . , wn).
The Laplacian matrix is symmetric and semi-definite
positive [5]. We use 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn to denote
its eigenvalues.
Theorem 4.1. The function J is convex if and only
if the second lowest eigenvalue λ2 of the normalized
Laplacian L verifies λ2 ≥ 1.

Proof. We prove in the supplementary material that
the hessian matrix H of J is congruent to a matrix
whose eigenvalues are 0, λ2 − 1, . . . , λn − 1.

The condition λ2 ≥ 1, which corresponds to a large
spectral gap, is in general not satisfied. For instance,
Lemma 1.7. in [5] proves that λ2 ≤ 1 if G is unweighted
and not complete. Therefore, the loss function associ-
ated with our problem is in general non-convex. How-
ever, it is convex in pi· for a graph with no self-loop as
shown in the following proposition. In the rest of the
paper, we assume that the graph G does not contain
any self-loop.
Proposition 4.2. If the graph does not contain any
self loops, i.e. if Wii = 0 for all node i, the function
p 7→ J(p) is convex with respect to variable pi· for all
i ∈ V .
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Proof. If Wii = 0, the hessian matrix Hi of J with
respect to pi· is Hi = 2(wi/w)2I.

With this result, we can apply the methods of convex
optimization with convex constraints to the problem
minpi·∈Y J(p), with fixed pj· for j 6= i, where the
set Y corresponds to the probability simplex of Rn:
Y = {q ∈ Rn : q ≥ 0,1Tq = 1}. We use πY to denote
the euclidean projection onto the probability simplex
Y , πY(x) = arg miny∈Y‖x− y‖2. Then, using the pro-
jected gradient descent method [11,22], we can define
an update rule for variable pi· such that modularity is
non-decreasing at each step. The gradient of J with
respect to pi· is: ∇iJ = − 2

w

∑
j∈V (Wij −wiwj/w)pj·.

Theorem 4.3. The soft modularity objective function
Q(p) is non-decreasing under the update rule

pi· ← πY

pi· + 2t

w

∑
j∈V

(
Wij −

wiwj
w

)
pj·

 (5)

for all node i ∈ V if the step size t verifies t < (w/wi)
2.

Q(p) is invariant under all these update rules iff pi·
maximizes Q(p) with fixed pj·, j 6= i, for all node
i ∈ V .

Proof. In the supplementary material, we prove that
Q(p+) ≥ Q(p) + t

(
1− t

(
wi

w

)2) ‖Gi(p)‖2 where p+ is
the matrix p after the update, and Gi(p) = (pi· −
p+i· )/t.

We now consider the natural algorithm that cycles
through the nodes of the graph to apply the update
(5).
Theorem 4.4. The algorithm converges to a local max-
imum of the soft modularity function p 7→ Q(p) which
is a fixed point of the updates of (5).

Proof. This is a direct consequence of the analysis
conducted in the proof of Theorem 4.3 provided in the
supplementary material.

5 Soft clustering algorithm

In the previous section, we have presented updates rules
that can be applied in an alternating fashion to find a
local maximum of the soft modularity Q(p). However,
there are three major issues with a naive implementa-
tion of this method. First, the gradient descent update
for each node i is computationally expensive because
the update rule (5) involves a sum over all nodes of
V . Then, the size of a solution p is n2, which is pro-
hibitive for large datasets. Finally, the computational
cost of the projection πY onto the probability simplex
is classically in O(n log n) [7], which can be a limiting
factor in practice.

In the present section, we present an efficient implemen-
tation of the algorithm that solves these three problems.
In particular, our implementation guarantees that the
update step for node i only requires local computa-
tion, is memory efficient, and uses a fast mechanism
for projection.

5.1 Local gradient descent step

The update of Theorem 4.3 relative to node i ∈ V can
be decomposed into two steps:

1. p̂i· ← pi· + 2t
w

∑
j∈V

(
Wij − wiwj

w

)
pj·

2. pi· ← πY(p̂i·).

At first sight, step 1 seems to depend on information
from all nodes of V , and to require the computation
of a sum over n terms. However, the gradient descent
step can be written as

p̂i· ← pi· +
2t

w

∑
j∼i

Wij(pj· − p̄),

where p̄ is weighted average of vector pj·: p̄ =∑
j∈V

wj

w pj·. The vector p̄ ∈ Rn can be stored and
updated throughout the algorithm. Then, the compu-
tation of p̂i· is purely local, in the sense that it only
requires information from neighbors of node i. More-
over, the sum to compute contains only di terms, where
di = |Nei(i)| is the unweighted degree of node i. In
most real-life graphs, the degree distribution follows a
heavy tail distribution and most of nodes have a low
degree di.

5.2 Cluster membership representation

The cluster membership variable p is a n×n matrix. In
a naive implementation, the memory cost of storing p
is therefore in O(n2). However, we will see below that
the projection step can be written πY(p̂i·) = (p̂i·−θ1)+
with θ ≥ 0, where [(x)+]k = max(xk, 0). Thus, the
projection acts as a thresholding step. We expect it
to have the same effect as a Lasso regularization1 and
to lead to a sparse vector pi·. To take benefit of this
sparsity, we only store the non-zero coefficients of p.
If, for all node i ∈ V , the number of non-zero values
in vector pi· is lower than a given L, then the memory
cost of storing p is in O(nL). We will see, in our
experiments in Section 7, that the average number of
positive components that we observe for vectors pi·
throughout the execution of our algorithm is lower
than 2, and that the maximum number of positive
components that we record is L = 65 for a graph with
731, 293 nodes.

1 The l1 proximal operator is x 7→ sign(x)(|x| − λ)+.
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5.3 Projection onto the probability simplex

The classic algorithm to perform the projection πY(p̂i·)
onto Y is described in [7]. It starts by sorting the
vector p̂i· into µ: µ1 ≥ µ2 ≥ · · · ≥ µn. Then, it
finds ρ = max

{
j ∈ [n], µj − 1

j

(∑j
r=1 µr − 1

)
> 0
}
,

and defines θ = 1
ρ (
∑ρ
i=1 µi − 1) so that πY (p̂i·) =

(p̂i· − θ1)+. This algorithm runs in O(n log n) because
of the sorting step.

In our case, the complexity can be reduced to
O(Li logLi), with Li = |suppi(p)|, where suppi(p) =
{k ∈ J1, nK,∃j ∈ Nei(i) ∪ {i}, pik > 0} is the union of
the supports of vectors pj· for j ∈ Nei(i) ∪ {i}. Li is
upper-bounded by L(di + 1) which is typically much
smaller than the total number of nodes n.

Proposition 5.1. In order to compute πY(p̂i·), we
only need to sort the components k ∈ suppi(p) of p̂i·
to determine ρ and θ. All components k /∈ suppi(p) of
πY (p̂i·) are set to zero.

Proof. We prove this result in the supplementary ma-
terial.

5.4 MODSOFT

Finally, the algorithm can be described as follows.

• Initialization: p← I and p̄← w/w.
• One epoch: For each node i ∈ V ,
– ∀k ∈ suppi(p), p̂ik ← pik + t′

∑
j∼iWij(pjk − p̄k)

– p+i· ← project(p̂i·)
– p̄← p̄+ (wi/w)(p+i· − pi·) and pi· ← p+i· .

where w is the vector (wi)1≤i≤n, project is the adap-
tation of the algorithm of [7] presented above, and t′
is the effective learning rate t′ = 2t/w. One epoch of
the algorithm is typically repeated until the increase
of modularity falls below a given threshold ε > 0, as
in the Louvain algorithm. Note that we chose, in this
implementation, to put each node in its own cluster at
initialization, but our algorithm could also be initialized
with the results of another algorithm (e.g. Louvain).
We refer to this algorithm as MODSOFT (MODularity
SOFT clustering).

6 Link with the Louvain algorithm

In this section, we show that if the learning rate t
is larger than a graph-specific threshold, one update
performed by our algorithm reduces to a local update
performed by the Louvain algorithm. First, we observe
that, if the membership matrix p verifies p ∈ {0, 1}n2

,
then the update rule (5) for a node i ∈ V becomes

pi· ← πY
([

1{i∈Ck} +
2t

w

(
wi(Ck)− wi

Vol(Ck)

w

)]
k

)

where Ck = {i ∈ V : pik = 1} refers to the kth clus-
ter defined by p, wi(C) denotes the degree of node
i in cluster C ⊂ V , wi(C) =

∑
j∈CWij , and Vol(C)

denotes the volume of cluster C, Vol(C) =
∑
j∈C wj .

In the following, we assume that: ∀C,C ′ ⊂ V,∀i ∈ V ,

C 6= C ′ ⇒ wi(C)−wiVol(C)
w 6= wi(C

′)−wiVol(C′)
w . (H)

The hypothesis (H) is non-binding in real cases, because,
if the weights (Wij)(i,j)∈E are continuously distributed,
then we will have (H) with probability 1; and if they
follow a discrete distribution, we can always add a
small noise to the weights, so that (H) is verified with
probability 1. Moreover, note that this hypothesis does
not hold only in specific symmetrical graphs. In real-life
data, these symmetrical cases are rare.

Proposition 6.1. Let p ∈ X be a membership matrix.
If p ∈ {0, 1}n2

, if the hypothesis (H) is verified, and if
t > w/δ where
δ = min

C,C′⊂V
i∈V
C 6=C′

∣∣∣(wi(C)−wiVol(C)
w

)
−
(
wi(C

′)−wiVol(C′)
w

)∣∣∣,
then the update rule (5) for node i ∈ V reduces
to pik ← 1 if k = arg max

l:j∈Cl,j∼i

[
wi(Cl)− wiVol(Cl)

w

]
, and

pik ← 0 otherwise, where Ck denotes the kth cluster
defined by p.

Proof. We show in the supplementary material that
assuming that the updated vector pi· has more than
one positive component leads to a contradiction with
t > w/δ.

In particular, this result shows that if p ∈ {0, 1}n2

and t is large enough, then for each update of our
algorithm, the updated membership matrix p+ verifies
p+ ∈ {0, 1}n2

, which corresponds to the maximum
sparsity that can be achieved by a feasible solution
p ∈ X .

The Louvain algorithm [2] is a popular heuristic to find
a local maximum for the hard modularity maximization
problem (2). One epoch of the main routine of the
Louvain algorithm considers successively each node i ∈
V , and (1) removes i from its current cluster, (2) applies
an update rule, that we refer to as LouvainUpdate(i),
which consists in transferring i to the cluster that leads
to the largest increase in hard modularity. Proposition
6.2 gives an explicit formula to pick the cluster Ck∗ to
which node i is transferred by LouvainUpdate(i).

Proposition 6.2. The update performed by
LouvainUpdate(i) is equivalent to transfer-
ring node i to the cluster Ck∗ such that
k∗ = arg max

k:j∈Ck,j∼i

[
wi(Ck)− wiVol(Ck)

w

]
.
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Figure 1: Algorithm performance in function of the
cluster size on the overlapping stochastic block model

Proof. We derive this result from the definition of the
hard modularity in the supplementary material.

Using Proposition 6.1, we see that the update per-
formed by LouvainUpdate(i) and the update rule (5)
are equivalent if (H) is verified and t > w/δ.

7 Experimental results

7.1 Synthetic data

We consider a variant with overlaps of the popular
Stochastic Block Model (SBM) [15], defined as follows.
We have V = C1∪ · · ·∪CK with |C1| = . . . = |CK | = c
and |Ck ∩ Ck+1| = o for all k. For all nodes i and
j such that i 6= j, the edge (i, j) exists with prob-
ability pin if i, j ∈ Ck for some k, and with proba-
bility pout otherwise. In order to numerically evalu-
ate the performance of our algorithm on this model,
we first compute the relative difference between the
modularity Qsoft obtained with our algorithm and
the modularity Qhard obtained with the Louvain al-
gorithm, ∆Q = (Qsoft − Qhard)/Qhard. We also com-
pare the planted clusters of our model Ck with the
clusters Ĉk returned by our algorithm. We consider
that these clusters are the non-empty sets Ĉk where
Ĉk = {i ∈ V : pik > 0}. Note that the clusters Ĉk
returned by our algorithm can overlap just as the Ck.
In order to compare the clusters Ck and Ĉk, we use
the average of the classic F1 score defined as the har-
monic mean of the precision and the recall, which takes
values between 0 and 1, and is equal to 1 if the es-
timated clusters Ĉk correspond exactly to the initial
clusters Ck. We compute the same two metrics for

Chang’s algorithm [4]. Since the membership matrix
returned by this algorithm is not sparse, we define Ĉk
as Ĉk = {i ∈ V : pik > α} for the F1 score evaluation.
We present the results for α = 0.05, but other values
of α leads to similar results.

For different values of the cluster size c, we run our
algorithm, Chang’s algorithm and the Louvain algo-
rithm on 100 random instances of this model, with
o = 2, K = 2, pin = 0.9, and pout = 0.1, We display
the results in Figure 1. The average F1 scores for our
algorithm and Chang’s algorithm are close to 1 (> 0.99
on average), and are higher than those obtained by
Louvain (0.94 on average). Besides, the relative dif-
ference to the modularity found by Louvain ∆Q for
Chang’s algorithm and our algorithm is always positive.
However, we note that ∆Q and the differences between
the F1 scores become negligible as the cluster size c
increases. This can be explained by the fact that, as the
cluster size c increases, the proportion of nodes with
mixed membership, i.e. nodes that belong to multiple
clusters Ck, decreases. If this proportion is low, the
misclassification of nodes with mixed membership has
a low impact on the modularity score Q and on the F1
score.

We also represent in Figure 1 the sparsity of the so-
lution in term of the number of non-zero coefficients
of the matrix p, and the average execution time in
milliseconds for the different algorithms. We observe
that our algorithm provides performance comparable
to Louvain (but with richer membership information).
Besides, we see that MODSOFT runs more than 10
times faster and uses 5 times less memory than Chang’s
algorithm.

7.2 Real data

7.2.1 Wikipedia

We first consider a graph built from Wikipedia data,
where nodes correspond to Wikipedia articles and edges
correspond to hyperlinks between these articles (we con-
sider that the edges are undirected and unweighted).
Wikipedia articles can correspond to a wide variety
of entities: persons, locations, organizations, concepts
etc. In order to restrict ourselves to homogeneous enti-
ties, we choose to limit ourselves to Wikipedia pages
that correspond to humans. For this purpose, we use
Wikidata, a knowledge base that provides structured
data about Wikipedia articles. In particular, Wikidata
objects have an instance_of field that we use to de-
termine if a Wikipedia article represents a human or
not. The subgraph induced by the human entities has
731,293 nodes and 3,266,258 edges.

We run the Louvain algorithm, Chang’s algorithm and
MODSOFT on this subgraph. As described in Section
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Figure 2: MODSOFT on a small subgraph of Wikipedia

2, Chang’s algorithm requires the maximum number
of clusters K to be specified. We run it with K = n
(which corresponds to the implicit choice made for our
algorithm), K equal to the number of clusters returned
by Louvain (i.e. K = 12, 820) and K = 100. Chang’s
algorithm is unable to handle the graph (the execu-
tion raises a memory error) for all these choices of
K, whereas our algorithm runs in 38 seconds on an
Intel Xeon Broadwell CPU with 32 GB of RAM. As a
baseline for comparison, the Louvain algorithm runs
in 20 seconds on this dataset. The difference in mem-
ory consumption between our algorithm and Chang’s
algorithm can easily be explained by the fact that the
membership matrix p in Chang’s approach is a dense
n×K matrix (see Section 2), i.e. the algorithm needs
to store and perform operations on 73, 129, 300 coeffi-
cients for K = 100. By contrast, the matrix returned
by our algorithm is very sparse, since it contains only
760, 546 non-zero coefficients in our experiments, which
represents a proportion of approximately 10−6 of the
coefficients of the n× n matrix. The average number
of positive components of vectors pi· throughout the
execution of the algorithm is 1.21, and the densest
vector pi· has 65 positive components.

Our algorithm leads to a higher modularity than the
Louvain algorithm on this dataset. However, this in-
crease represents a modularity increase ∆Q of slightly
less than 1%. This can be explained by the fact that
the nodes with mixed membership found by our algo-
rithm represent less than 5% of the total number of
nodes. Even if the performance increase brought by
our algorithm in terms of modularity is marginal, we
qualitatively observe that the results of our algorithm,
and in particular the nodes with mixed membership
identified by our approach, are particularly relevant.

In order to be able to graphically represent the results
of our algorithm, we consider the subgraph induced
by the top 100 nodes in term of degree. We display

the results of our algorithm on this smaller graph in
Figure 2. In particular, we observe that Napoleon, who
became Emperor of the French in 1804, appears to
belong to the same cluster as European leaders from
the old regime, such as Charles V and Louis XIV, and,
at the same time, to the same cluster as post-French-
revolution leaders such as Queen Victoria and Edward
VII. We also see that Miles Davis, a famous American
jazz trumpeter, is found to belong to the same cluster as
classical music composers, such as Claude Debussy and
Johan Sebastian Bach, but also to the same cluster as
pop/rock musicians such as Jimi Hendrix and Michael
Jackson. Finally, we observe that Albert Einstein who
became politically involved during World War II, be-
longs to the same cluster as thinkers, intellectuals and
scientists, such as Sigmond Freud and Plato, and to
the same cluster as political leaders during World War
II such as Adolf Hitler and Joseph Stalin.

7.2.2 Open Flights

Then, we consider a graph built from the Open Flights
database that regroups open-source information on
airports and airlines. The graph we consider is built
as follows: the nodes correspond to the airports and
the edges correspond to the airline routes, i.e. there
is an edge between two airports if an airline operates
services between these airports.

We apply our algorithm and the Louvain algorithm to
this graph. During the execution of the algorithm, the
number of positive components of vectors pi· remains
lower than 11 and is on average 1.17. We measure
a relative increase in modularity ∆Q of less that 1%,
and yet we find that our algorithm brings insightful
information about the dataset by identifying bridges
between important zones of the world. In Figure 3,
we display the results of our algorithm. We use plain
colors to code for the cluster membership of pure nodes,
i.e. nodes that belong to a unique cluster, and bigger

Figure 3: MODSOFT on the OpenFlights graph (red
circles represent nodes with mixed-membership)
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Graph size
|V | |E|

Amazon 334,863 925,872
DBLP 317,080 1,049,866
YouTube 1,134,890 2,987,624

Table 1: F1-scores and execution times in seconds on
SNAP datasets

F1-score Execution time (s)
L O M L O M

Amazon 0.28 0.47 0.53 15 1038 32
DBLP 0.14 0.35 0.38 17 1717 33
YouTube 0.01 - 0.15 45 - 98

Table 2: F1-scores and execution times in seconds on
SNAP datasets

red dots to identify nodes with a mixed membership.
Note that most of these nodes with mixed membership
are located on the borders between large regions of
the world. For instance, we remark that numbers
of nodes are located on the frontier between Europe,
Africa and Middle East, such as the Dubai airport
in the United Arab Emirates. We also observe that
airports with mixed membership are located all along
the border between the United States on the one hand,
and Canada and Alaska on the other hand.

7.2.3 SNAP datasets

We present further experiments on datasets from SNAP
that come with ground-truth clusters [35] (see Table
1). The Amazon dataset corresponds to a product
co-purchasing network. Its nodes represent Amazon
products and its edges correspond to frequently co-
purchased products. The ground-truth clusters are
defined as the product categories. The DBLP dataset
corresponds to a scientific collaboration network. The
nodes represent the authors and the edges the co-
authorship relations. The scientific conferences are
used as ground-truth clusters. In the YouTube dataset,
nodes represent users and edges connect users who
have a friendship relation. User groups are used as
ground-truth clusters. We use Louvain and the state-
of-the-art algorithm OSLOM [18] as baselines for our
experiments. OSLOM is known as one of the most ef-
fective overlapping community detection algorithm [33].
Note that Chang’s algorithm does not run on these
large graphs. We use a Cython implementation of the
Modsoft algorithm that is publicly available2. In Table
2, we give the F1-scores and the execution times for
Louvain (L), OSLOM (O) and Modsoft (M). The ex-
periments were carried out on an AWS instance with

2https://github.com/ahollocou/modsoft

64GB RAM and 16 vCPUs with Intel Xeon. A learning
of t = 0.1 was used for Modsoft. Note that we did not
include the results of OSLOM on the YouTube dataset
because its the execution time exceeded 6 hours. We
see that Modsoft outperforms OSLOM both in terms
of F1-score (11% higher on average) and execution
time (OSLOM is about 40 times slower). Note that,
in our experiments, the objective function of Modsoft
is within 1% of its optimal value after 3 to 5 epochs.
Moreover, although Modsoft is slower than Louvain
(about twice slower on average), it offers F1-scores
that are at least twice as large as the ones provided
by Louvain. This can be explained by the fact that
the clusters returned by Louvain are necessary disjoint
whereas the ground-truth clusters in all three datasets
can overlap. In contrast, Modsoft is able to capture
these mixed memberships. Besides, we observe in these
experiments that, as expected, the larger t, the sparser
the solution. For instance, on the Amazon dataset, the
average number of posistive components per row is 5.58
for t = 0.5, 2.27 for t = 1, and 1.87 for t = 2.

8 Conclusion

We studied a relaxation of the popular modularity
maximization problem, with the aim of performing soft
clustering of graph nodes instead of hard partitioning.
In order to efficiently solve this relaxation, we intro-
duced a novel algorithm that is based on an alternating
projected gradient descent. By diving into the specific
form of the gradient descent updates, we were able to
guarantee the locality of each algorithm step, and to
make good use of the sparsity of the solutions. As a
result, unlike existing methods, our approach is both
local and memory efficient. Furthermore, we proved
that our algorithm includes the main routine of the
popular Louvain algorithm for t > w/δ. In this case,
Modsoft outputs the sparsest possible solution, with
only one component per row. We illustrated on real-life
examples, that our algorithm has an execution time
and a memory consumption comparable to the Louvain
algorithm, but goes further than Louvain by identi-
fying nodes with mixed memberships that represent
important bridges between clusters, even if this does
not always translate into a large modularity increase.

A generalization of standard modularity introducing
a resolution parameter has been proposed by different
authors [17, 30] to perform multi-level clustering. In
future works, we could add this resolution parameter
to the soft modularity function in order to perform
soft graph clustering at different scale. In the future,
we would also like to compare our approach to a non-
negative matrix factorization method applied to the
matrixW , which can be performed with a comparable
alternating projected gradient descent [23].

https://github.com/ahollocou/modsoft
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