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Abstract

We address the problem of comparing deformable 3D objects represented by

graphs such as triangular tessellations. We propose a new graph matching tech-

nique to measure the distance between these graphs. The proposed approach

is based on a new decomposition of triangular tessellations into triangle-stars.

The algorithm ensures a minimum number of disjoint triangle-stars, provides

improved dissimilarity by covering larger neighbors and allows the creation of

descriptors that are invariant or at least oblivious under the most common defor-

mations. The present approach is based on an approximation of the Graph Edit

Distance, which is fault-tolerant to noise and distortion, thus making our tech-

nique particularly suitable for the comparison of deformable objects. Classifica-

tion is performed with supervised machine learning techniques. Our approach

defines a metric space using graph embedding and graph kernel techniques. It

is proved that the proposed distance is a pseudo-metric. Its time complexity

is determined and the method is evaluated against benchmark databases. Our

experimental results confirm the performances and the accuracy of our system.
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1. Introduction

Comparing 3D objects is one of the most important tasks in 3D object recog-

nition. Objects represented by graphs such as triangular tessellations (Defini-

tions 1, 2), may be compared using graph matching techniques. In a graph,

properties are associated with vertices while relationships are represented by5

edges. Vertices, edges and their attributes are specified according to the under-

lying application; for instance, vertices may represent points, regions of interest

or any other substructure obtained by applying a data reduction process such as

segmentation. Edges are associated with vertex connectivity, defining a topo-

logical relationship between them, such as proximity, adjacency, etc. Graph10

matching is the process of finding a correspondence between vertices and edges

of two graphs that satisfies a set of constraints, ensuring that substructures in

one graph are mapped to similar substructures in the other. Several approaches

have been proposed to solve the graph matching problem [1, 2, 3, 4]. Graph

edit distance is one of the most celebrated measures for determining such a dis-15

tance [5, 6, 7, 8]. It is defined as the minimum-cost sequence of edit operations

that transforms one graph into another. Tolerance to noise and distortion is

one of the advantages of edit distance. Unfortunately, it has a high computa-

tional complexity which grows exponentially with the number of vertices [9]. In

this paper, we address the problem of comparing deformable 3D objects. The20

shapes are represented by graphs. We propose a new distance for comparing

deformable 3D objects. This distance is based on the decomposition of trian-

gular tessellations into a set of new substructures that we call triangle-stars.

A triangle-star is a connected component formed by the union of a triangle

and the set of its neighboring triangles, depending on the neighborhood order25

considered. The proposed decomposition offers a parameterizable triangle-stars

representation, which is determined by the order assigned to the neighborhood

(Definition 7). The resulting number of triangle-stars is much smaller than

the number of vertices as well as being smaller than the number of classical

stars [10, 11] (Definition 2). As a result, the computational complexity is re-30
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duced. The proposed dissimilarity measure ensures a better approximation of

the Graph Edit Distance. Indeed, considering triangle-stars structures makes

it possible to cover a larger neighborhood area and presents a richer local de-

scriptor compared to classical stars [10, 11]. From the proposed distance, it is

possible to construct a set of descriptors which are either invariant or at least35

oblivious under the most common deformations.

A preliminary version of our work appeared in [12]. In the present version,

the graph dissimilarity measure and the triangle-stars decomposition method

are both improved. Classification is performed using supervised machine learn-

ing techniques. Our approach defines a metric space which describes the various40

objects. Five classifiers were used, namely: the näıve Bayes classifier, the ran-

dom forest classifier, the gradient boosted trees approach, support vector ma-

chine (SVM) and logistic regression. The complexity analysis section has been

extended. A new set of experiments has been performed with recent bench-

mark databases for deformable shape comparison. The remainder of the paper45

is organized as follows. In Section 2, we briefly review some related works.

The proposed decomposition is described in Section 3 while the proposed dis-

tance is introduced in Section 4. Time complexity is determined in Section 5.

In Section 6, we present and discuss our experimental results while compar-

ing them with some benchmark shape-matching algorithms, for two benchmark50

databases. Finally, Section 7 concludes the paper.

2. Related works

In this section, we briefly review some 3D object recognition methods. We

mainly focus on graph-based approaches as they are the most relevant for our

technique. For a more exhaustive review, we refer the reader to [13] for 3D55

object recognition methods and to [9, 14, 15, 16, 17] for pattern recognition and

graph matching techniques. Then, we briefly present the algorithms with which

our method has been compared.
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2.1. 3D object recognition related works

Three main categories can be distinguished for 3D object comparison tech-60

niques [13]: feature-based methods, graph-based methods and others. In the

case of feature-based methods, objects are compared using features associated

with their geometrical and topological properties. These features may be global,

local or spatial maps. In the case of global features and spatial maps, the en-

tire shape is characterized by a unique descriptor while, in the case of local65

features, a descriptor is either associated with the vertices, the triangles or any

substructure of interest. Various feature-based approaches have been proposed

in the literature [18, 19, 20, 21, 22]. Graph-based methods are powerful tools

for establishing correspondences between objects and partial shapes as well as

for their invariant description. According to the type of graph considered, sev-70

eral graph-based techniques have been proposed for 3D object comparison [13].

For instance, in some approaches, shapes are reduced to skeletons through a

thinning process [23, 24, 25]. The resulting skeletons are compared using graph

matching techniques. Other approaches rely on Reeb graphs, which are con-

structed from mapping functions defined on the shape manifolds [26, 27, 28].75

Various segmentation techniques have been proposed in the literature, in which

the shapes are segmented into a finite set of components from which a graph

is constructed: the segments correspond to the vertices while their topologi-

cal relationships are represented by the edges. These graphs may be compared

with graph matching techniques [29, 30, 31]. Additional methods have been80

proposed [13] such as: view-based similarity, volumetric error based similarity,

and weighted point set based similarity, among others. In the case of view-based

similarity, two 3D objects are considered to be similar if their projections are

similar from all possible viewpoints [32, 33, 34]. For volumetric error based

similarity, the distance between two shapes is calculated by estimating the vol-85

umetric error between them [35, 36]. On the other hand, in the case of weighted

point set based similarity, a distance between two shapes is calculated from a

set of descriptors, which consist of weighted 3D points. First, the shapes are

decomposed into substructures. Then, each substructure is represented by a
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weighted point. Finally, the weighted points are matched. The matching pro-90

cess depends on the weight considered. In [37], the weight represents the volume

of the component, in [38], a measure for curvature is used as a weight, while

in [39], the authors consider a hierarchy of weighted point sets, representing

spherical object approximations.

2.2. Benchmark for shape-matching algorithms95

The proposed approach has been compared to various benchmark algorithms

associated with SHREC competitions. These algorithms correspond to the two

benchmark databases used for their evaluations, namely the TOSCA database

[40, 41] and the SHREC11 watertight database [42]. Consequently, our method

has been compared with the following algorithms: CAM [43]: An approach in100

which surfaces are represented by 3D curves extracted around feature points.

GeodesicD2: A global description which consists of distribution of the geodesic

distances associated with a given 3D shape. This approach is an extension of

Euclidean D2 [44]. DSR [45]: The Hybrid Feature Vector is a combination

of two view-based descriptors: a depth buffer for the silhouette and a radi-105

alized extent function descriptor. RSH [46]: The Ray-based approach with

Spherical Harmonic Representation is a method which aligns the models into

a canonical position, determines the maximal extents and applies a spherical

harmonic decomposition. TD [47]: The Temperature Distribution descriptor is

a shape descriptor based on the heat kernel. The L2 norm is used to evaluate110

the distance between the descriptors. Shape-DNA [48]: The Shape-DNA is

a numerical fingerprint obtained by evaluating the eigenvalues of the Laplace-

Beltrami operator associated with the manifold. The matching between two

objects is obtained by comparing their respective eigenvalues. SRCP-TD [49]:

The SRCP-TD is a method based on a sparse representation of a scale-invariant115

heat kernel. The authors use Laplace-Beltrami eigenfunctions to detect criti-

cal points on the manifold. The descriptor is constructed from the heat kernel

values at these points. A sparse representation is employed to reduce the di-

mensionality of the descriptor.

5



3. Algorithm description: new decomposition into triangle-stars120

In this section, we propose a new decomposition of triangular tessellations

into connected components that we call triangle-stars. This decomposition aims

to reduce the number of components while covering larger neighborhoods. The

extent of the neighborhood associated with a triangle-star is determined by

its order Nk. From this representation, it is possible to define a description125

which is invariant or at least oblivious under the most common deformations.

Prior to decomposition, a strict total order on the triangles must be established.

This order aims to reduce the number of triangle-stars that is generated while

guaranteeing the uniqueness of the decomposition.

3.1. Triangle-star130

We propose to decompose graphs such as triangular tessellations into a set

of connected components that we call triangle-stars (TS). Triangle-stars are

defined from the following set of definitions:

Definition 1 (Graph). A graph G is a set of vertices connected by a set of

edges. Formally, a graph G is a four tuple G = (V,E, α, β), where: V and135

E ⊆ V × V are the vertices and edges. α : V → LV and β : E → LE are

labeling functions associated with the vertices and edges, respectively [50].

Definition 2 (Star). A classical star S is a labeled, single-level, tree formed

by a root vertex r, the set of leaves or mono-degree vertices L and the set of

edges E connecting the root vertex with any vertex belonging to L. Figure140

1 shows all the classical stars that may be constructed from a given graph G

[10, 11].

Definition 3 (Triangular tessellations). A triangular tessellation Gtr is

a graph defined by a set of vertices, edges and triangles. Formally, Gtr is a

graph defined by a six tuple Gtr = (V,E, T, α, β, θ), where: V , E and T are145

the vertices, edges and triangles, respectively. α : V → LV , β : E → LE and

θ : T → LT are their corresponding labeling functions.
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Figure 1: Classical stars associated with a graph.

Definition 4 (neighborhood of a triangle). Two triangles are neighbors

if they share at least one common vertex. Let t1 and t2 be two triangles and

V (t1) and V (t2) their respective vertices. Then, t1 and t2 are neighbors150

⇔ ‖V (t1) ∩ V (t2)‖ > 0. In other words, the neighborhood (N) of a triangle t

consists of all the triangles sharing at least one common vertex with t.

Definition 5 (Nk-neighborhood of a triangle). Two triangles t0 and tk are

Nk-neighbors if between t0 and tk there is a chain of at most (k − 1) distinct

triangles, which are pairwise consecutive neighbors. Formally, t0 and tk are Nk-155

neighbors⇔ ∃ ti=1...k−1 where : ∀ i ∈ 1...(k− 1), ti and ti+1 are neighbors.

In the case of k = 1, the Nk-neighborhood is reduced to a simple neighborhood

(Definition 4).

Definition 6 (triangle-star). A triangle-star ts is a labeled subgraph, defined

by a triangle and the set formed by its neighbors. Formally, a triangle-star ts160

is a three tuple ts = (tr, T
′, θ), where: tr is the root triangle, T ′ is the set of

adjacent triangles and θ : T → LT is the triangle labeling function, while LT is

a set of labels.

Definition 7 (Nk-triangle-star). A Nk-triangle-star Nk-ts is a triangle-star

defined by a triangle and the set of its Nk-neighbors. In the case of k = 1, the165

Nk-triangle-star is a simple triangle-star (Definition 6). See, for instance, the

following example.
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Example 1. Consider a graph-tessellationGtr containing 17 triangles t0...16.

Table 1 shows the graph-tessellation Gtr and the corresponding Nk-triangle-

stars associated with the triangle t0 according to the order Nk=0...2 of the corre-170

sponding neighborhood. In the case Nk=0, the graph-tessellation is decomposed

into 17 triangle-stars. Each triangle-star consists of a single triangle which

means that no neighborhood is considered. Therefore, the triangle-star N0-TS

associated with the triangle t0 is the very same triangle t0. When Nk=1, only

the closest neighborhood is employed for the construction of the triangle-stars175

(See Definition 4). Thus, the triangle-star N1-TS associated with the trian-

gle t0 is formed by the triangle t0 and its N1-neighbors (direct neighbors), i.e,

T (N1-TS) = {t0...7}. In the case Nk=2, the N2-neighborhoods are considered,

which means that the graph-tessellation is decomposed into a set of triangle-stars

formed by the root triangle and its N2-neighbors (See Definition 5). As a result,180

the triangle-star N2-TS associated with the triangle t0, is formed by the triangle

t0 and its N2-neighbors (second order neighborhood). T (N2-TS) = {t0...16}.

Graph Gtr N0-TS of triangle t0

N1-TS of triangle t0 N2-TS of triangle t0

Table 1: Example of Nk-triangle-stars.
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Triangle-star features. A six-tuple tj = (v1, v2, v3, e1, e2, e3) is associated

with each triangle tj . The vertices vi are labeled by their respective Cartesian

coordinates vi = (x, y, z), while the edges ek = (vp, vw) are labeled (weighted)185

with the Euclidean in distance between their respective vertices (vp, vw). The

triangles are labeled with a three-tuple tj = (id, Area, Perimeter), where id is

a number. Each triangle-star is characterized by a set of descriptors, allowing

for evaluation of the dissimilarity between triangle-stars. We consider the fol-

lowing descriptors: Area of triangle-star, Perimeter of triangle-star, Area of the190

triangles forming the triangle-stars, their Perimeters, the Weights associated

with their edges, and the Degrees of their vertices. Our choice of descriptors is

justified by the fact that these quantities are oblivious under the most common

deformations.

Triangle-star vector representation. A vector is associated with each triangle-195

star. This vector consists of the global area AG and the global perimeter PG

of the triangle-star, the area A and the perimeter P of each triangle belonging

to the triangle-star, the weights associated with their edges W , as well as the

degrees Deg associated with their vertices. This vector is given by:

{AG(ts), PG(ts), {A(ti), P (ti), W (ti, j=1...3), Deg(ti, j=1...3)}i=‖T (ts)‖
i=1 }200

The various variables are described in Table 2. The triangles belonging to

the triangle-star ts are ranked according to their areas in descending order. The

weights and the degrees are ranked in descending order as well. All triangle-

stars TS vectors have the same size: size = 2+(8 Γ), where Γ is the maximum

number of triangles in the triangle-stars. If a triangle-star ts has a number of205

triangles less than Γ, the unassigned entries are completed with zeros.

Definition 8 (Disjoint triangle-stars). Two triangle-stars tsi and tsj are

disjoints if they do not share, at least, a common triangle. Let i 6= j, if tsi

and tsj are disjoints⇒ T (tsi) ∩ T (tsj) = ∅.
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Symbol Description

ti,l Triangle tl belonging to the triangle-star tsi: tl ∈ tsi
Wi,l,k Weight (Euclidean distance) of edge ek belonging to triangle tl ∈ tsi
Degi,l,k Degree of vertex vk belonging to triangle tl ∈ tsi
Γ Max number of triangles in the triangle-stars

α ∈ R6
+ Parameters associated with the descriptors where |α|1 = 1

A(ti) Area of triangle i.

P (ti) Perimeter of triangle i.

AG(tsi) Area of triangle-star i. AG(tsi) =
∑j=‖T (tsj)‖

j=1 A(tj)

PG(tsi) Perimeter of triangle-star i. DG(tsi) =
∑j=‖T (tsj)‖

j=1 D(tj)

Table 2: Quantities associated with the dissimilarity measure and their description.

3.2. Triangle ordering210

The proposed decomposition generates disjoint triangle-stars (Definition 8),

which significantly reduces the number of components (‖TS‖ � ‖V ‖ < ‖T‖) as

well as the number of comparisons involved when matching two graphs. How-

ever, depending on the ordering considered, the triangle-stars obtained may

differ (see Example 2). Indeed, the same triangular tessellation may generate215

different sets of triangle-stars if the ordering of the triangles is not identical.

In order to ensure the uniqueness of the decomposition and to further

reduce the number of triangle-stars, a strict descending total order must be

established on the set of triangles prior to their decomposition into triangle-stars.

Considering a ‖Neighbors (Triangles)‖ with descending order results in the220

smallest number of triangle-stars TS (as demonstrated in the experimentations),

thus further contributing to the reduction of computational complexity.

In order to establish a strict descending total order on the set of triangles,

each triangle ti is represented by a vector {‖N(ti)‖, {xi,j , yi,j , zi,j}j=3
j=1} ∈ R10

which corresponds to the number of neighbors ‖N(ti)‖ and to the Euclidean co-225

ordinates x, y, z associated with the vertices forming the triangle ti. Naturally,

the coordinates and consequently the ordering may be affected by a rotation of

the object. In order to eliminate this problem, the coordinates are expressed

in the reference frame defined by the Eigen vectors of the tensor of inertia as-

sociated with the vertices. The number of neighbors ‖N(ti)‖ is used to further230
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reduce the number of triangle-stars. If two triangles have the same number of

neighbors, the vertex coordinates are used to ensure the uniqueness of the de-

composition. The vertices in the vector (10-tuple) are lexicographically ordered

according to their coordinates.

Example 2. Let us consider a triangle t0 with

n neighbors t1...n (Figure 2).

If we consider a triangle order based on the num-

ber of neighbors with descending order, we ob-

tain only one triangle-star, else three triangle-

stars are obtained.

Figure 2: A triangle t0 with n triangular neighbors.

3.3. Triangle-stars decomposition235

Once the strict total order of the triangles has been established, the de-

composition of the graph into triangle-stars may be performed. This process is

described in Algorithm 1. According to the order established for the triangles

(strict descending order), the first Nk-triangle-star is constructed from the first

triangle and its corresponding Nk-neighbors (Definition 7); that is, the triangles240

not belonging to any other Nk-triangle-stars. Then, the set of triangles and the

set of the resulting Nk-triangle-stars are updated. The process is repeated until

a Nk-triangle-star is associated with each triangle.

The proposed decomposition generates a reduced number of triangle-stars

ts as opposed to the number of vertices ‖TS‖ � ‖V ‖. The resulting triangle-245

stars are disjoints (Definition 8) and cover a larger local area than the classical

stars (Definition 2). This decomposition is also parameterizable through the

neighborhood order. Indeed, the higher the neighborhood order, the smaller

the number of triangle-stars (‖Nk+1-TS‖ ≤ ‖Nk-TS‖) which, in turn, cover

a larger neighborhood (‖T (Nk+1-TS)‖ ≥ ‖T (Nk-TS)‖). In addition, the250

proposed decomposition is unique.
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Algorithm 1 Graph decomposition into Nk-triangle-stars.
1: Inputs: A graph Gtr and the neighborhood order Nk.

2: Outputs: A set of Nk-triangle-stars (Nk-TS).

3: Begin

4: Apply a descending strict total order on the set of triangles of Gtr;

5: Nk-TS = ∅ ;

6: while (T (Gtr) 6= ∅) do

7: ti = T (Gtr)[0]

8: T (Nk-tsi) = ti ∪ Nk-neighbors(ti) ;

9: Nk-TS = Nk-TS ∪ Nk-tsi ;

10: T (Gtr) = T (Gtr) − T (Nk-tsi) ;

11: end while

12: return Nk-TS ;

13: End

Example 3. We consider a triangular tessellation defined as follows:

Gtr = {16 vertices, 20 triangles t1...20} as shown in Table 3. The decom-

position into triangle-stars (N1-TS) begins with the construction of the first

triangle-star TS1 using the triangle t13 as the root triangle and its correspond-255

ing N1-neighborhood. The triangle t13 is selected as the root triangle since it

has the maximum number of neighbors, which is 12 in this particular case. The

next triangle with the maximum number of neighbors (seven) is t1; this triangle

is employed for the construction of the second triangle-star TS2. TS2 is con-

structed using t1 and its 3 neighbors. The third triangle-star TS3 is formed by260

t11 and its neighbors: t11 had 5 neighbors which is the maximum number of

neighbors in the remaining set of triangles. TS3 is constructed using t11 and

its 2 remaining neighbors. In the case of the N2-neighborhood, we obtain one

triangle-star N2-TS1 formed by the triangle t13 and its N2-neighborhood which

consists of all the triangles belonging to Gtr. Therefore, N2-TS1 is equivalent265

to the triangular tessellation Gtr in this particular case.

Example 4. Table 4 shows the correspondence in between N2-triangle-

stars of two poses centaur0 and centaur3 of the same object centaur belonging

to the TOSCA Database.

12



Graph Gtr TS1

TS2 TS3

N2-TS1

Table 3: Decomposition of a graph into a set of N1 and N2-triangle-stars.

4. Algorithm description: new distance for triangular tessellations270

In this section we propose a novel distance between the triangle-stars of two

triangular tessellations to address their matching. We prove that the proposed

distance (TSM for Triangle-Star Measure) is a pseudo-metric.

4.1. Edit distance between triangle-stars

We first introduce the graph edit distance between triangle-stars. The pro-

posed dissimilarity measure is defined to be applicable to deformable objects.

As a result, the set of descriptors must be invariant or at least oblivious under

the most common deformations. The dissimilarity measure is based on the fol-
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Table 4: The correspondence between N2-triangle-stars (colored in red) of two poses centaur0

and centaur3 of the same object centaur belonging to the TOSCA Database.

lowing parameters: Area and Perimeter of triangle-star, Area and Perimeter

of triangles, Weights of edges and Degrees of vertices. Formally a triangle-

star is represented as follows: {AG(ts), PG(ts), {A(ti), P (ti), W (ti, j=1...3),

Deg(ti, j=1...3)}i=‖T (ts)‖
i=1 }. The dissimilarity measure d between two triangle-

stars tsi and tsj is defined as:

d(tsi, tsj) =

k=6∑
k=1

dsimk (tsi, tsj) (1)

The dissimilarity measure d is normalized (0 ≤ d ≤ 1) and requires the def-275
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inition of six auxiliary functions dsimk. These functions are defined as follows:

dsimk (tsi, tsj) =



α1
|AG(tsi) − AG(tsj)|

AGMAX
if k = 1

α2
|PG(tsi) − PG(tsj)|

PGMAX
if k = 2

α3

∑l=Γ
l=1 | A(T (tsi)l) − A(T (tsj)l) |

AMAX Γ if k = 3

α4

∑l=Γ
l=1 | P (ti,l) − P (tj,l) |

PMAX Γ if k = 4

α5

∑l=Γ
l=1

∑k=3
k=1 | Wi,l,k − Wj,l,k |
3 WMAX Γ if k = 5

α6

∑l=Γ
l=1

∑k=3
k=1 | Degi,l,k − Degj,l,k |

3 DegMAX Γ if k = 6

(2)

dsim1(tsi, tsj) and dsim2(tsi, tsj) compare respectively the Area AG and

the Perimeter PG of two triangle-stars tsi and tsj . dsim3(tsi, tsj) and dsim4(tsi, tsj)

compare respectively the Area A and the Perimeter P of their respective trian-

gles. While dsim5(tsi, tsj) and dsim6(tsi, tsj) compare respectively the Weights280

W associated with their respective edges and the Degree Deg of the correspond-

ing vertices. The symbols associated with the dissimilarity measure are defined

in Table 2.

Graph Edit Distance (GED) is based on a set of classical edit operations namely:

insertion, deletion and substitution of vertices and/or edges. The proposed dis-285

similarity measure d(tsi, tsj) (Eq. 1) is equivalent to a substitution edit opera-

tion of two triangle-stars tsi and tsj . However, the insertion edit operation of a

triangle-star tsi is equivalent to replacing an empty triangle-star ε by tsi which,

in turn, is equivalent to the dissimilarity measure d(ε, tsi). Analogously, the

deletion edit operation of a triangle-star tsi is equivalent to replacing tsi by an290

empty triangle-star ε, which is equivalent to the dissimilarity measure d(tsi, ε).

The six auxiliary functions dsimk (Eq. 2) are equivalent to a substitution of two

triangle-stars tsi and tsj dsimk(tsi, tsj), a deletion or an insertion of a triangle-

star tsi dsimk(tsi, ε) by considering, separately, one of the six parameters (AG,

PG, A, P , W and Deg). Consequently, the dimensions of the cost matrix D295

are reduced and we obtain a better time complexity, see Section 5.

Scale invariance. The dissimilarity measure d (Eq. 1) is sensitive to

scale, which means that if two triangle-stars tsi and tsj have the same structure
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but a different scale, they are not considered to be similar. In order to obtain

scale invariance, the weights W must be normalized, which means formally that300

∀i,Wi = Wi

WMAX
. Consequently, by normalizing weights W , the parameters AG,

PG, A and P are also normalized.

4.2. Edit distance between two triangular tessellations

The calculation of the distance between two triangular tessellations repre-

sented by triangle-stars constitutes the last step of our algorithm. We call this305

dissimilarity measure Triangle-Star Measure TSM . This measure determines

the best possible matching between two sets of triangle-stars. The dissimilarity

between two sets of triangle-stars is defined as follows:

Definition 9 (TSM). Let gTr1 and gTr2 be two triangular tessellations, TS1

and TS2 their corresponding sets of triangle-stars, M the set of all possible

matchings between TS1 and TS2, and m ∈ M the mapping function. The

dissimilarity measure TSM(TS1, TS2) (normalized dissimilarity) is defined as:

TSM(TS1, TS2) =
minm∈M

∑
tsi ∈ TS1, m(tsi) ∈ TS2

d(tsi, m(tsi))

max(‖TS1‖, ‖TS2‖)
(3)

The computation of TSM(TS1, TS2) is equivalent to solving the assign-

ment problem, which is one of the fundamental combinatorial optimization prob-310

lems that aim to find the minimum/maximum weight matching in a weighted

bipartite graph. To solve this assignment problem, we define a n × n ma-

trix D, where n is given by n = max(‖TS1‖, ‖TS2‖). Each element Di,j of

the matrix represents the dissimilarity measure d(tsi, tsj) (Eq. 1) between a

triangle-star tsi in TS1 and a corresponding triangle-star tsj in TS2. In the315

case of ‖TS1‖ 6= ‖TS2‖, the smallest set of triangle-stars is completed by

(max(||TS1||, ||TS2||) −min(||TS1||, ||TS2||)) empty triangle-stars ε. The dis-

tance between an empty triangle-star ε and a triangle-star ts is computed by

Eq. 1 and corresponds to the cost of adding ts to the small set of triangle-stars

(or deleting ts from the large set of triangle-stars).320
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We apply the Hungarian algorithm [51] to the matrix D to find the best

assignment in O(n3) time. The evaluation of the distance between two graphs

(triangle tessellations), is summarized in Algorithm 2.

The classification is then performed using supervised machine learning tech-

niques. Our approach defines a metric space which describes the various objects,325

using graph embedding and graph kernel techniques: Each object (the set of its

triangle-stars) TSi is mapped onto a vector space, where it is represented by

a vector of distances TSM(TSi, TSj=1...n), between TSi and the set of other

objects TSj=1...n.

Algorithm 2 The distance between two graphs using TSM.
1: Inputs: Two graphs g1 and g2.

2: Outputs: The distance between g1 and g2.

3: Begin

4: Decomposition of g1 and g2 into sets of triangle-stars TS1 and TS2, (Algo. 1).

5: Construct a matrix of distance D.

6: For each tsi ∈ TS1 and tsj ∈ TS2 do

7: Di,j = d(tsi, tsj) (Eq. 1);

8: end For each

9: Solving (Eq. 3), by applying the Hungarian algorithm [51] on the matrix D.

10: return the distance TSM(TS1, TS2) ;

11: End

4.3. The Pseudo-metric330

In this section we prove that the proposed distance is a pseudo-metric.

Definition 10 (Pseudo-metric) Let X be a set of objects and x, y, z ∈

X. Let f be a function defined as follows f : X × X −→ R. Let the fol-

lowing set of properties: (1) non-negativity: f(x, y) ≥ 0, (2) symmetry:

f(x, y) = f(y, x), (3) triangle inequality: f(x, y) ≤ f(x, z) + f(z, y) and (4)335

uniqueness: f(x, y) = 0 ⇒ x = y. The function f is a metric if f satisfies

these four properties, while f is a pseudo-metric if f satisfies only the first three

properties (1, 2 and 3).
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Since f is a pseudo metric, a distance function may be defined between each340

pair of graphs. As a result, the dissimilarity between graphs may be efficiently

determined. [52, 53].

Lemma: The proposed similarity measure TSM (Eq. 3) between two sets

of triangle-stars TS1 and TS2 is a pseudo-metric.

Proof: From (Eq. 3) it may be concluded that if TSM is a pseudo-metric345

then d (Eq. 1) is a pseudo-metric, which implies that dsimk (Eq. 2) are pseudo-

metrics. Consequently, we shall prove that dsimk (Eq. 2) are pseudo-metrics.

Proving that dsimk (Eq. 2) are pseudo-metrics is equivalent to ensuring that the

first three properties are satisfied. The functions dsimk are defined as follows:

dsimk = αk ∗ |x1−x2|
β with x1, x2,∈ R+, αk, β ∈ R∗+.350

1) non-negativity: TSM(TS1, TS2) ≥ 0. We have dsimk ≥ 0 ⇒ TSM ≥ 0

Thus TSM is non-negative. 2) symmetry: TSM(TS1, TS2) = TSM(TS2, TS1).

The proposed decomposition is unique and the TSM is only based on symmetri-

cal operations (addition and subtraction in absolute value). Consequently, TSM

is symmetrical. 3) triangle inequality: TSM(TS1, TS2) ≤ TSM(TS1, TS3)+355

TSM(TS3, TS2). We have the triangle inequality verified in: |x1 − x2| ≤

|x1 − x3| + |x3 − x2|. Thus, the triangle inequality is verified in dsimk and we

have: TSM(TS1, TS2) ≤ TSM(TS1, TS3) + TSM(TS3, TS2). Consequently,

the triangle inequality is verified in TSM .

5. Computational complexity360

The most demanding part of the algorithm, in terms of time complexity,

is the one solving the assignment problem. As mentioned earlier, the Hun-

garian algorithm [51] is employed to find the best assignment in O(n3) time,

where n is the maximum number of components in the two graphs. Let

n = max(‖V1‖, ‖V2‖) and n′ = max(‖TS1‖, ‖TS2‖), where Vi is the set365

of vertices and TSi is the set of triangle-stars in gtr i. In the proposed de-

composition, any triangle-star has at least one triangle. Consequently, in the
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worst case, we have n′ = n
3 , which means that complexity is of the order of

O(0.037 n3). However, the number of triangle-stars depends on the struc-

ture of the underlying graph as well as on the neighborhood order Nk. In-370

deed, the number of triangle-stars decreases when the neighborhood order Nk

increases. The computational complexity, for the TOSCA database [40, 41],

is of the order of O(α [ n
log(n) ]3), where α ∈ [1.80 ∗ 10−7, 0.74] for Nk=1...6:

O(0.74 [ n
log(n) ]3) for N1, O(0.0001 [ n

log(n) ]3) for N2, O(5.6115 ∗ 10−6 [ n
log(n) ]3)

for N3, O(9.84 ∗ 10−7 [ n
log(n) ]3) for N4, O(3.59 ∗ 10−7 [ n

log(n) ]3) for N5 and375

O(1.80 ∗ 10−7 [ n
log(n) ]3) for N6. As shown above, the complexity decreases

when the neighborhood order Nk increases: the neighborhood order Nk=1 has

the highest complexity while the neighborhood order Nk=6 has the lowest.

Computing the exact value of the graph edit distance GED is NP-Hard for

general graphs which implies an exponential computational complexity [11]. As380

a result, several algorithms approximating GED in polynomial time have been

suggested. We propose a new graph distance, which is an approximation of

GED (bipartite graph matching) based on triangle-star (TS) decomposition.

The proposed dissimilarity measure d(tsi, tsj) (Eq. 1) is equivalent to a sub-

stitution edit operation of two triangle-stars tsi and tsj . The insertion and385

deletion edit operation is equivalent to replace an empty triangle-star ε by tsi

d(ε, tsi) (for insertion) and replacing tsi by an empty triangle-star ε d(tsi, ε) (for

deletion), respectively. Consequently, the dimensions of the cost matrix D are

reduced to n×n, where n is given by n = max(‖TS1‖, ‖TS2‖) (‖TS‖ � ‖V ‖).

Therefore, we obtain a better time complexity than the state of the art. In-390

deed, in [10] and [11], the complexity achieved is O((n + m)3), where n and

m are the number of nodes in the two graphs. In [54] and [55], the obtained

complexity is O((max(n, m))3). However, the Jonker-Volgenant linear solver

[56] has some convergence problems for some specific cost matrices. In [57],

the proposed algorithm has a quadratic computational cost O(n ∗ m). How-395

ever, it does not generate a bijective correspondence between the nodes of the

two graphs. In [58], the complexity achieved is: O((min(n, m))2 max(n, m)).

Our approach obtains a better time complexity than [58], except from when
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||n − m|| ∈]1600, 4000[, for which the complexity is O(0.037 n3)) and, when

||n−m|| ∈]1700, 3900[ and Nk=1, for which the complexity is O(0.74 [ n
log(n) ]3).400

However, these intervals are not present in our experimentations (TOSCA and

SHREC databases).

6. Experimental results

To evaluate the proposed approach, we undertook a set of experimentations

in which we compared our approach with some benchmark algorithms for shape-405

matching, under different evaluation criteria, for two benchmark databases,

namely the TOSCA database [40, 41] and the SHREC11 watertight database

[42].

6.1. Database description

In this section, we describe the two benchmark databases utilized in our410

evaluation: TOSCA and SHREC11 watertight databases.

The TOSCA database [40, 41] consists of 148 three-dimensional objects.

Each object is represented by a triangular tessellation. The database consists of

12 classes. Each class is composed of the same object submitted to isometric or

quasi-isometric deformations. The database is unbalanced (from 3 to 24 objects415

per class). On average, the number of vertices is 3154 while the number of

triangles is 6220.

The SHREC11 watertight database [42] consists of a relatively large collec-

tion of non-rigid 3D shapes. This database was created from several publicly

available databases such as the McGill database [59], the TOSCA database420

[40, 41] and the Princeton Shape Benchmark [60]. The SHREC11 watertight

database [42] consists of 600 non-rigid objects represented by triangular tessel-

lations. The database is balanced: it is formed by 30 classes, each consisting of

20 poses of the same object.
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6.2. Experimental results425

In this section, we compare and discuss our results with those obtained with

the following benchmark databases: TOSCA [40, 41] and SHREC11 watertight

[42]. The proposed distance TSM is parameterized through the parameters αk,

which determine the weights assigned to the various similarity measures. The

default value for these parameters is: αk = 1/6,∀ k. As proved earlier, the TSM430

distance is a pseudo-metric. In order to classify the various objects belonging

to the benchmark databases, the metric is learned with machine learning tech-

niques. This is in contrast with the standard approach in which an invariant

descriptor is associated with each object and classification is performed with

machine learning techniques through supervised learning. In our approach,435

the TSM distance defines a metric space which describes the various objects.

Therefore, in order to perform classification, the metric must be learned using

a supervised learning process. Five classifiers were evaluated in order to deter-

mine their suitability for metric learning, namely: the näıve Bayes classifier, the

random forest classifier, the gradient boosted trees approach, support vector440

machine (SVM) and logistic regression. These classifiers have been extensively

described in the literature [61, 62]. Therefore, we shall limit ourselves to a high

level description. In what follows, the features refer to the metric. The näıve

Bayes (NB) classifier [61, 62] is a probabilistic classifier based on the Bayes’

theorem. It assumes that the features are generated independently given the445

class and uses the Bayes theorem to predict the class. The random forest (RF)

classifier [61, 62] uses a set of decision trees to predict the class. Each decision

tree has been trained on a random subset of the training set, and only uses a ran-

dom subset of the features. The gradient boosted tree (GBT) classifier [61, 62]

predicts labels by iteratively training a sequence of decision trees on training450

data and combining them. The support vector machine (SVM) classifier [61, 62]

separates the training set into two classes using a maximum-margin hyperplane.

The multi-class classification problem is reduced to a set of binary classification

problems. Finally, the logistic regression (LR) classifier [61], also known as the

maximum entropy classifier, models class probabilities with logistic functions of455

21



linear combinations of features.

For each classifier, a small validation set was automatically generated in or-

der to evaluate the classifier parameters. The sole parameter for the näıve Bayes

classifier was the smoothing parameter, which was typically around 0.2. For the

random forest classifier, four parameters were required, namely: features frac-460

tion, leaf size, number of trees, and distribution smoothing, which were set to

1/2
√

37, 2, 100 and 0.5 respectively. This algorithm was implemented using the

Intel Data Analytics Accelerations Library (DAAL) [63]. The gradient boosted

trees approach requires numerous parameters, including the boosting method.

This is based on the gradient, the maximum number of training rounds (50),465

the number of leaves (13), the learning rate (0.1), the maximum number of bins

(255), the number of threads (20), the maximum depth (6), the leaf size (15),

the feature fraction (1), and the bagging fraction (1) among others. For the

SVM classifier, the following parameters were determined: kernel type (radial

basis function), gamma scaling parameter (0.00725065), soft margin parameter470

(3), bias parameter (1), multiclass strategy (one versus one), and kernel cache

size (100). Finally, the logistic regression classifier was optimized by means

of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm

with a quadratic regularization term (0.001). Four metrics were employed to

evaluate the performance of our system, namely: accuracy, precision, recall and475

F-measure. These metrics were chosen because of their performance and in or-

der to compare our approach with those utilized in the benchmark databases.

Since these metrics are well known and extensively used, we refer the reader

to [64, 65] for more details. In addition, in some cases, we added the confu-

sion matrix and the accuracy-rejection rate curve in order to further assert the480

performance of the system as well as its sensitivity with respect to the detec-

tion threshold probability. Here, the rejection rate refers to the classification

probability of a given result: if this probability is below a certain threshold,

the outcome of the classification process is considered undetermined and, con-

sequently, not employed in evaluation of the performance metrics. Since the485

benchmark databases are relatively small, they are not really suitable for cross-
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validation. Therefore, to evaluate the metric, we employed a bootstrapping or

bagging technique. Bagging assumes that the dataset is representative of its

real distribution. The training and validation sets are uniformly randomly sam-

pled with replacement from the original dataset in order to train the classifiers.490

The process was repeated ten times. Accuracy, precision, recall and F-measure

correspond to the mean of these ten iterations.

Whenever possible, the classifiers were implemented on the GPU. The cal-

culations were performed on a workstation with two Xeon processors with 40

cores, 64 GB or RAM and a NVIDIA Quadro GP-100 GPU with 3584 CUDA495

cores and 16 GB of memory.

6.2.1. Experimental results for the TOSCA and SHREC11 Watertight

Databases

The TSM distance between each pair of tessellated models was evaluated

for the first six neighborhoods. These distances form the metric which must500

be learned. For each neighborhood order and for each classifier: accuracy, pre-

cision, recall, F-measure, confusion matrix, and accuracy-rejection rate curve

were determined. Only the results associated with the three best classifiers are

reported in Table 5 as these results are substantially better than the others.

For the second neighborhood order, the best results were obtained with the505

logistic regression classifier, while, for the first and the last four neighborhood

orders, the best results were obtained with either the random forest classifier or

the gradient boosted trees classifier. For the best classifiers, the lowest accuracy

was 76.35% while the highest accuracy was 88.51%. Both were obtained with

the first neighborhood order using the gradient boosted trees classifier.510

The accuracy-rejection rate curve and the confusion matrix are reported for

the first neighborhood order in Figures 3 and 4 respectively. This accuracy-

rejection rate curve clearly demonstrates that an accuracy of 95% may be easily

achieved just by imposing a rejection rate of 0.1. The confusion matrix (Figure

4) further demonstrates the performance of our approach.515
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Nk Accuracy Precision Recall F-measure

GBT RF LR GBT RF LR GBT RF LR GBT RF LR

1 88.51 83.78 85.81 91.80 85.12 88.34 89.64 80.41 87.41 0.90 0.80 0.86

2 71.62 79.05 79.73 72.31 81.70 81.60 74.40 80.41 82.04 0.72 0.80 0.81

3 81.76 79.73 77.27 85.39 79.87 77.41 81.47 78.50 77.52 0.82 0.78 0.76

4 75.00 76.35 61.49 77.35 78.98 68.07 75.40 76.50 64.26 0.74 0.76 0.62

5 77.70 72.30 62.21 81.04 74.29 66.06 76.75 71.10 68.20 0.76 0.70 0.68

6 80.41 79.05 62.21 83.34 80.18 66.06 79.94 78.96 68.20 80.41 0.78 0.68

Table 5: accuracy, precision, recall and F-measure obtained with the gradient boosted trees

(GBT), the random forest (RF) and the logistic regression (LR) classifiers for the TOSCA

Database.
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Figure 3: Accuracy-rejection rate curve for the first neighborhood order Nk=1 for the gradient

boosted trees classifier.

We also compared our method TSM with four other SHREC benchmark al-

gorithms, namely CAM, GeodesicD2, DSR and RSH. Table 6 compares the pre-

cision reported by these approaches with the precision achieved by our method

for the first neighborhood order with the gradient boosted trees classifier. Our520

approach clearly outperforms the others with a precision of 91.80% as opposed

to a maximum of 30% for the four other approaches.

In addition, we compared our approach for all neighborhood orders with the

TD, Shape-DNA and SRCP-TD methods in terms of F-measure. The results

are reported in Table 7. Once more, our approach outperformed the others525
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Figure 4: Confusion matrix for the first neighborhood order Nk=1 for the gradient boosted

trees classifier.

Method Precision (%) Recall (%)

TSM , Nk=1, GBT 91.80 89.64

CAM 30 89.64

Geodesic2D 26 89.64

DSR 24 89.64

RSH 21 89.64

Table 6: Comparison of our method TSM (first neighborhood order Nk=1) in terms of pre-

cision with the CAM, GeodesicD2, DSR and RSH approaches for the TOSCA Database.

irrespective of the neighborhood order considered.

Finally, we report the results obtained with the SHREC11 Watertight Database.

The experimental methodology was the same as that used for TOSCA. The best
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Method Nk Classifier F-measure

TSM 1 GBT 0.90

TSM 2 LR 0.81

TSM 3 GBT 0.82

TSM 4 RF 0.76

TSM 5 GBT 0.76

TSM 6 GBT 0.80

TD N/A N/A 0.67

Shape-DNA N/A N/A 0.45

SRCP-TD N/A N/A 0.44

Table 7: F-measure for the best classifier associated with a given neighborhood order compared

with the F-measure obtained with the TD, Shape-DNA and SRCP-TD algorithms for the

TOSCA Database.

results in terms of accuracy, for neighborhood orders two and six, were 65.80%

and 69.16%, respectively; these were obtained with the random forest classifier.530

6.2.2. Experimental results for the TOSCA Database with respect to

re-meshing

We investigated the robustness of our approach TSM with respect to mesh

reduction and re-meshing. This is of paramount importance since our method

is based on the mesh or graph associated with the 3D models. The TOSCA535

Database [40, 41] was employed for the evaluation. The number of triangles was

reduced by 10% and 20% in order to generate the TOSCA 90 and TOSCA 80

Databases respectively. The triangular reduction was realized with quadratic

edge collapse decimation [66], which uses iterative contractions of vertex pairs

to simplify the model and maintains surface error approximations using quadric540

matrices. By contracting arbitrary vertex pairs (not just edges), the algorithm

is able to join unconnected regions of models. This may facilitate far better

approximation, both visually and with respect to geometric error. The re-

sults we evaluated in terms of accuracy, precision, recall and F-measure for the

TOSCA 80 and TOSCA 90 Databases are reported in Table 8.545

Mesh reduction and re-meshing have a direct incidence on our approach since
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Nk Classifier Accuracy (%) Precision (%) Recall (%) F-measure

T80 T90 T80 T90 T80 T90 T80 T90 T80 T90

1 RF RF 84.45 84.46 86.97 87.44 84.29 85.44 0.84 0.85

2 GBT GBT 71.62 77.70 75.20 78.00 72.50 78.26 71.49 0.78

3 RF GBT 71.62 73.65 73.50 76.85 74.09 75.29 0.73 0.75

4 RF RF 79.73 75.00 81.97 78.32 80.95 77.08 0.80 0.76

5 GBT RF 77.70 76.35 80.51 77.34 78.77 77.82 0.79 0.76

6 GBT RF 74.32 73.65 80.82 74.74 75.59 73.06 0.76 0.73

Table 8: TSM accuracy, precision, recall and F-measure obtained with the gradient boosted

trees (GBT) and the random forest (RF) classifiers for Nk=1...6 for the TOSCA 80 (T80) and

the TOSCA 90 (T90) Databases.

the latter is graph-based. Nevertheless, TSM is based on an approximation of

Graph Edit Distance which is fault-tolerant to noise and distortion. Further-

more, our approach uses a set of descriptors which are invariant or at least

oblivious under the most common geometrical deformations. As a result, TSM550

is robust with respect to mesh reduction and re-meshing. Despite the fact that

the triangular reduction was relatively great (10% to 20%), the algorithm dis-

played a surprisingly high resilience to mesh reduction: accuracy was as high as

84.5% for the first neighborhood order for both a 10% and 20% mesh reduction

as opposed to 88.51% without mesh reduction. These results were all obtained555

with the random forest classifier.

Our experimentation with the TOSCA, the SHREC11 watertight and the

mesh-reduced TOSCA databases, as described earlier, reveals the performances

and robustness of our approach.

Indeed, we obtained excellent results in terms of accuracy, precision, recall560

and F-measure for the TOSCA and the SHREC11 watertight databases. Our

predicted time complexity was systematically confirmed by our experimenta-

tions. Our method outperforms CAM, GeodesicD2, DSR and RSH in terms

of accuracy, precision and recall for the TOSCA database. The same remarks

apply when our approach is compared to other benchmark methods in terms of565

F-measure.
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7. Conclusions

In this paper, we presented a new matching algorithm for addressing the

problem of comparing deformable 3D objects represented by graphs (triangu-

lar tessellations). The proposed approach is based on a new decomposition of570

triangular tessellations into triangle-stars. The resulting triangle-stars are used

to determine the distance between triangular tessellations using the Hungar-

ian algorithm. The proposed algorithm ensures a minimum number of disjoint

triangle-stars, offers a better dissimilarity by covering a larger neighborhood in

triangle-stars and uses a set of descriptors which are invariant or at least obliv-575

ious under the most common deformations. The proposed approach is based

on an approximation of Graph Edit Distance, which is fault-tolerant to noise

and distortion, making our approach suitable for comparing deformable ob-

jects. Classification is performed using supervised machine learning techniques.

Our approach defines a metric space using graph embedding and graph kernel580

techniques. We proved that the proposed distance TSM is a pseudo-metric.

Our experimental results, as obtained from various benchmark databases for

deformable shapes (TOSCA and SHREC11), confirm the performances and the

accuracy of our algorithm. In a near future, we plan to enrich the triangle-stars

description while reducing the time complexity and improving the performances585

of the proposed graph matching algorithm. We also plan to combine our ap-

proach with deep learning.
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and efficacy of topological skeletons in shape modelling, in: 2003 Interna-

tional Conference on Shape Modeling and Applications (SMI 2003), 12-16

May 2003, Seoul, Korea, 2003, pp. 245–256, 297.

[25] Skeleton graph matching vs. maximum weight cliques aorta registration

techniques, Computerized Medical Imaging and Graphics 46, Part 2 (2015)665

142 – 152, information Technologies in Biomedicine.

[26] M. Hilaga, Y. Shinagawa, T. Komura, T. L. Kunii, Topology matching for

fully automatic similarity estimation of 3d shapes, in: Proceedings of the

28th Annual Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH 2001, Los Angeles, California, USA, August 12-17, 2001, 2001,670

pp. 203–212.

[27] S. Biasotti, S. Marini, M. Mortara, G. Patanè, M. Spagnuolo, B. Falcidieno,
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