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Persistence of a surface film on a liquid in the presence

of disturbance propagation
M. Dudeck and R. Prud"Homime

Laburatoire d'Aérothermigue du C.NRS of de [Universiié Paris V. 4 ter. route dos Gandes F93190
Meudon, France

(Reveivad 21 June 1576; in final form 20 September 1976)

An impermeable flm (such 25 o) can be nsed fo provent gas entrainment by the free sarface of & liguid,
This film, lying on the liquid, is modeled s 3 continnong visenelagtic two-dimensional medinm. Cobesion
and sufficient thickness of this madiem are nectssary to ensmure effective protection. The authors study the
evolution of the system in the case of & progressive sarface wave of low amphide. A theory of lisegrized
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conditions of the liguid.

PACS numbers: 68.25.+j, 46.20. 4= 4630Jv, 03.40.Kf

L INTRODUCTION

The presence of an impermeable film on the surface
of a liquid makes it poasible to prevent gas entrainment
by the liquid. However, this process requires cohesion
of the film, without which the latter would not be im-
permeable. Hence prior knowledge of the cohesion
limits of the [ifm is essential, ag a [unction of external
conditions and of the movement of the free surface,
Conversely, once the external conditions to which the
film is subjected are known, it is important to be ina
position to make a suitable choles of the nature of this
film.

These consideTations led us to investigate factors
likely to contribute to a ldgs in impermeabllity by
breakage of the film during its movement. Reduction
of the fitm thickness can also be consldered as a cause
of the loss of impermeability,

The present study is concerned with a heavy imeom-
pressible liquid comparable to a perfect fluid, At rest,
the free gurfice is coversd by a planar heavy elastie
or viscoelastie film of uniform thickness. This film
is eonsidered 28 & plane two-fimensional medium with
a certain mass per unit area,

These hypotheses are less restrictive than those em-
ploved by Puri! in his study of the oscillations of two
superposed liquids separated by &« membrane agsumed
to be of uniform mass per onit area and constant ten-
slom, When the liquid and film are subjected to small
movements, interaction oecurs between their move-
ments. We ghall always consider the film as a two-
dimensional medium and shall assume that it adheres
perfectly to the Free surface on which it slips with ac-
companying deformation, In the article by Hansen and
Mann,* the fluid is assumed to be viseous, and the
poseibility of film slippage on the surface is discarded.

Since the movements considered are of low amplitude,
it is normal to linearize the equations, making it possi-
ble to consider the sclulion of the problem as a sum of
monochromatic waves, Hence it ig sufficient to analyze
the response of the Him and the liguid to a stress of
glven frequency and amplitude,

We shall show that the veloeity of the wave depends
on the frequency and that damping occurs along the sur-

3] Jourral of Applied Physies, Vol 48, No. 1, Janusry 1977

face if the film is viscoelastic., The dispersion egoation
of the medium is established, making it posgible to re-
late the velocity of the wave and the damping at this
froquency,

The densify of the film, and hence its thickness,
togethar with the internal tensions, are calculated as
a fanetion of the amplitude of the movement ag well as
its frequency. It ia then possible to determine the non-
breakage lmits and hence to resolve the problem which
has been posed.

1. DISPERSION EQUATION

Under the stress of small movements, a given
medium can be characterizged by the values of dis-
turbapees bearing on the different parameters which
define it (Fig. 1). Since the medium investigated is
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FIG, L (a) Reforence state; {b) progressive nondamped sur-
[nee wave.
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planar and two-dimensional, we can define the free sur-
face by

¥ -'-'J.(x1 l]; {13
where v is the aseending vertical axis, ¢ 1a chosen such
that g/ ! i small in relation to unity, and ! is a given
reference length,

LW ‘*"’r.s‘il=J= +loglo, £ ME=0 at y=e¢f @
is the equation of mass conservation of the interface”
dealing with disturbances o, », and »,. We have
=0, +40, + 0%, the mass per unit area; w=cu, + 0",
the horizontal surface velocity; v=¢n, + 0f"), the verti-
cal velpeity of the fluid; p is the densily of the fluid.

[ I denotes change of the eorresponding term between
the upper and lower media on either side of the film (in
principle, the upper floid I3 a gas of nagligible mass).

If the film 15 impermeable, then necesgarily
=l (3)

and the condition of adherence of the film to the surface
also gives

B=f e ' )
The impalsion baance equation of the film is written
oty =¥, = pl=0, y=eflx,1) (5)

oy m‘n lpE=-0,g-pgf, y=efln,tl, (6
where fr s the prassure of the fluid, ¥ is the surface
tension of the film, ¥ is its vertical veloeity, and g is
the gravitatienal acesleration.

If we assume that the tension v, is null in the rel-
erence state (rest), we obtain, for the Bernoulli aqua-
tiem™® of the fluid,

by mmaf o Tt S y=eng), (1)
with the velocity potential ® =g, +- .+ guch that

ul=01.*. a‘.h,.=il". {8)
Knowledge of the function &, such that

o T, =0 (9)

enables determination of the fluid mnvement hetween
the surface and the bottom, assumed io be of infinite
depth {y — ==}, In order to resolve the problem, it is
agsumed that Eg. (T} becomes, for y = ef,
= 5 o, 10
¥,= xp{ﬂ(f+ g vt " Pn) o
Condition (8) gives rise to two separats equations at
wand at {x,i). Their regolution in the complax plane
glves
&, =82 explifiz - will, 11)
where dis a constant of integration, Z=x - fy, w is the

angular frequeney, and K=Fk +ix is the complex wave
number.

This gives the velocity field of the fluid. If we as.
sume that the modulus of the function fis equal to unity
for x="0and /=0, we have
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F=explillx - wt)] =expl- ax) expliler - wi]. (12
Condition (3} than gives
d=w?/gK. (13)

With a law of behavior of the vigcoelastie type flm, ®

E
Lo 141

E
yl=-_ E“‘_

one obtains, after elimination of velocity u, between
Eqa. (2) and (5) the following result:

(15}

E
i, -— === = =11,
1,0 uﬂ o Ty 1.m df.ﬂ

Since Egs. (7) and (11} also give us, in view of Eq,
{13),

o, = pod expli{Kx — wi}] -pyf— u—"f,m

we therefore have the following dispersion equa.ﬁm in
K-

(18}

(1-,:}§+ 2)1-5- L ra o,
1mn
where
E E
f;‘=u_';'= 'r'%:“-‘”m
G=%E, W=BE, we n

—— — FREE SURFACE

A

FIG, 2, {a) Ware veloeity as a fimetlon of frequency; (b) wave
velocity 5 a fmetion of wavelsngth,
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FiG. 3. Infloence of depth on wave
propagation.,

This complex equation, after separation of the real and
imaginary portions, makes it possible to calculate the
wave velocity ¢(w) and damping o () such that

w [ L)

For a purely elastic film, ¢, is oull and it can ba
shown that the wave is not damped along x so that

K 1
+52 (19)

H_ 4%
p - (21)
ar
we=g. (22)
Let us sai
= =% =4 ..
= M= i 2 C= e {20

and introduce the wavelength ) and the corresponding
redieced variable

L C
A= ?‘—‘.-: a- {24)
€ and A verify an equation which, in the case of the
elasgtie film, is written
(A+1)0" = [4% +97(4 + 1)]C* + A% (n? — 1) =0. (25)

In reduced variableg, the velocity ie represented in
Figs, 2{a) and (2b) as a fonction of frequency and wave-
length. Two modes appear, corresponding to the in-
teraction of the conditions specifie to a liquid with a
free gurface, with the vibration of a plane film, The
coupling ceeurs through the contaet condition of the
film and by the effect on the liquid of 2 variable mase
per ynit aren, For large wavelengths, mode I tends to
the solution associated with a liguid with a free surface
=0, C*=4); for low wavelengths, mode I tends to the
solution associated with the vibration of a plane film,
The velocity region lying between ¢ ip? — 1)/ and o
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is not incleded. As the elasticity of the flm increases,
the solution oblazined approaches that corregponding to 2
liguid with 2 free surface; two states appear beyond the
gspecific value p=1. In the first mode, the velocity of
the film is greater than that of the liguid for y—0-,
and the directions of these two veloeities are identieal.
In the second mode, the velocities have opposite direc—
tion and the modulys of the film velocity is greater or
lower than that of the liguid near the surface if the
phase velocity is greater or lower than the velocily €,
(€, =3.4 Ior n=5h

The slip velocity 15 expressad as

b _p O (26)

@, G-
The mass per unit area of the film is expressed as
O =0, +el, +ora=0y+ Egﬂ_ﬁ?mlf(,&_wﬂ] P _m:l

For the first mode, the maximum value of the mass per
unit area ig reached at the highest points of the film
{y=e) and the mirimum value at the lowest pointg
{y=—¢). The effect iz raverzed for the second mode,

In many practical eases, it ig important to know the
effect of depth k of the 1iquid. This depth, assumed to
be constant, acts through the cosfficiant .

= Weh
T £ B¢
Without going into detail concerning the mathomatical
formulation in the cage of finite depth, we present here
the results concerning the elastic film itself, obtained
from the dispersion equation which is written, in this
case,

(1 —n*C*)[= 8% = C cothln 5/ C) + 1]+ C =0,
The sclutions are shown in Fig, 3.

For a piven wavelength, the presence of a boliom at
a finite distance reduces the propagation veloeity
associated with each of the branches of the curve. In
the cage of the free surface, the efiect is identical.

(28)
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FIG. 4. {a} Wave velocity in the case of
4 vigcorlasto film ng a fmetion of wawve-
length, Solid curve: n=5; brokea curve:
fres surface; (b) wave velocity in the
cage of a viscoelnstic film as 2 fimction
of frequency. Solid curve: 5=5; broken
ourve; free surface.

The separation of real and imaginary portions of Eq.
(17) for a viscoelzgtic flm gives

(1-r3C* 3t - 20 c-1) (-n' - +1)

- L; 2'CIA +9ZAC ~ nniA*JF“{-LT O -4 =0,
{28)
[ —n®C® + AT - 23R C-1A4) Fa'ﬁ_af +2024
+{= BPCIA +920C - n.,:.m(. @ 3 1) =0,

(30}
where the reduced damping A is given by

A=q,a,-"m. (28)
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This system of two equations with three variables C, 4,
and O is resclved numerically, as the elimination of 4
between the two eguations leads to an eguation linking

C and &2 {or € and 4) and involving high powers of

the se variables.

The solutions of this aystem were determined by an
elasticity coefficient y equal fo 5 and for a positive
phase velocity., For a slightly viscoelastic film, only
the behavior at low wavelengthe of the first mode dif-
ferg from that of the elagtle film, by an increage in the
phase velocity, This effect becomes more proncunced
as the viaecelasticity of the film increases, Beyvond &
certain value of the viscoslasticity cosfficient 5, ah
exchange occurs between the asympiotic branches, and
no region I8 excluded for the phase velocity. In reduced

. variableg, the phase veloelty and damping coefficient

are repeesgented 28 a function of wavelength and fre-
quency (Figs. 4 and ). The evolution of the bebavior of
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FI3, 5. (=) Viscoelastic damping ceaf-
ficlent am o function of wavelength (n=5);

b viscoslastic damping cosfflclent 15 2
function of frequency (n= 5.

te 0z o as o

(1]
phase velocily as a fanction of wavelength is shown in
the neighborheod of the singular point in Fig, 6.

Il INTERNAL TENSIONS AND NONBREAKAGE
CONDITIONS

The value of o, and that of tension y, are derived from
the amplitade of the surface deformation.

By introducing f, with & unit modalus at the origin,
in Eq. (14), we obtain

(.m+£x=-i§:mx')ﬁl:-¢,;m, {s1)
o .

o, =7, expli(Kx - wi]].
Equation (13) also becomes

F;-(—-f+i§:o.aﬁr (32)
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When the film Is elastic, €0, and ¥, are real numbers
equal to the mass per unit area and the surface tension;

e (33)
ﬂ‘-1=—%"’_;":‘- (34)

If the foneiion C(R) for each of the modes and the film
breakage limit are known, cne can determine the maxi-
mum movement amplitode and frequency ensuring non-
breakage of the film.

If R is the breakage tension, the nombreakage eondi-
tion is

[C*wn®| 20, gnie/R. (35)

Mpreover, 4 reduetion of mass per unlt ares can be
Interpreted as a decrease in thickness for 2 constant-

~ density film. In this case, we have

M. Dudeck and R. Prud"Homme 63



FIG, 6. Wave velocity in the cage of a viscoelastie fllm: evolu=
tiow mepr the singuler point.

Ag A T
el AP
g = T E"ﬂ 1 {SB‘}
where ¢ is fie Alm thickness. K ¢, is the minimum
thickness ensuring impermeability, one then bas the

conditi
o, Bp=g,
|! @, < % H tm

which can also be written -

o -n'l> sty (s8)

The two foregoing conditions must be satisfied in
order to avoid gas entrainment during a distorbance of
amplitude ¢. Conversely, given R and e,, one can cal-
culate the maximum amplitude ¢ of the surface wave as
2 functcn of ite pulsation. The limit eurve is always of
the form

FIG. T, Impermeszbility limit of an elastic fllm.

e =a(C*=n, (38
where g 18 a proportionality factor (Fig. T).
In the presence of vigeoelasticlty, one has
[1-92C 44 - EZRAC

+ (= BREACT 0T — g2 RAYE, =pg(CF - A% + au? oY
40)

&l =
Pu -
ns L
n =10
o4 L
| FIG. 8. Modulus of the surface densi-
ty perturbation as a function of the
LR ELASTIC FILM wave velosity: elogtic and viscoslastic
H filim,
| \ ELASTIC FILM
0.2 1
[ A |
a
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FIG. 9. Modulus of the surface tengion perturbation as a fime-
tiom of the velooily wave: elastic and viscoelastic film.
Finally, the tension modulus

1713 ‘ A"+ 2P
g _1+H’+C")’%'ﬁ%“-—c"w,n_mﬁ’

(41}

and that of the variation in mass per unit area
k-] +C-!}t

g7, &2
T T ORI AT O 4 AT ¢

(42)

With the damping of the viscoelasite wave, it is neces-
sary to consider the maximum amplitude and not that of
the already attenuated wave (Fizs. B and 9). One can
then proceed as in the case of the elastie film and
determine the limit curve € (i) for impermesbility con-
ditions to be guaranteed,

IV. CONCLUSIONS

We succesded in determinlng the impermeability con-
ditiong of the surface film subjected to monochromatic
digturbances of low amplitude causing the propagation
of a progressive wave, The amplitade of these dis-
turbances is a fungton of their frequency, which we
have determined. On the basic level, our results call
for vertain observations.

We obtain two clearly distinet branches for the dis-
persion curve C{fY) when the reduced elasticity modulus
7 is greater than unity. This phenomenon can be inter-
preted as the result of a double wave propagation, one
in the flunid medium, the second in the elastic or visco-
elastie film, If these phenomena were independent, one
would simply obtain the propagation velocities e= g
and ¢=k w of the elastic film and the liquid with the
free surface. The differsnce results from the
interaction,

By comparing this result with a well-known case, it
can be seen that this phenomenon does not ocour with
a free surface (with null mass per unit area) with sur-
face tension as shown in the curve in Fig, 10, This
curve elearly has two branches, bot enrye C{A) i8 con-
tinuous, The interpretation of these two branches is
given by Bouasse®; this i a question of two states, one
corresponding to surface ripples, the second to the
WAVE proper.

Onr shudy also revealed dimensionless paramelers
and characteristic frequancies and velocities of which
the values must be known for each specific case. These
coefficients depend on the natyre of the liquid, the na-
tare of the film and its thickness,

Nole that we have ignored the effect of the gas locat-
ed above the surface, and that we have dealt exclusive-
Iy with the impermeable character of the film, Accord-
ing to caleulations which we made, no sipnificant in-

FIG. 18. THapersion curve for free aur-
face with eonstant surface tension 4.
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teraction oceurs between the gag and the liguid coverad
with a film for moderate-energy waves., However, a
high-energy wave propageting in the gas will not fail to
act both on the film and on e liguid. This is a caze of
strong disturbanees, of which the propagation study is
incompatible with the linearized theory to which we
restricted our investigation, Our study nevertheless
remzins applicable o 4 wide range of disturbances
which eceur in praciice for relatively uniform flaws.
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